linux/fs/btrfs/super.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
  44#include <linux/btrfs.h>
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "hash.h"
  52#include "props.h"
  53#include "xattr.h"
  54#include "volumes.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58#include "dev-replace.h"
  59#include "free-space-cache.h"
  60#include "backref.h"
  61#include "tests/btrfs-tests.h"
  62
  63#include "qgroup.h"
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/btrfs.h>
  66
  67static const struct super_operations btrfs_super_ops;
  68static struct file_system_type btrfs_fs_type;
  69
  70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  71
  72static const char *btrfs_decode_error(int errno)
  73{
  74        char *errstr = "unknown";
  75
  76        switch (errno) {
  77        case -EIO:
  78                errstr = "IO failure";
  79                break;
  80        case -ENOMEM:
  81                errstr = "Out of memory";
  82                break;
  83        case -EROFS:
  84                errstr = "Readonly filesystem";
  85                break;
  86        case -EEXIST:
  87                errstr = "Object already exists";
  88                break;
  89        case -ENOSPC:
  90                errstr = "No space left";
  91                break;
  92        case -ENOENT:
  93                errstr = "No such entry";
  94                break;
  95        }
  96
  97        return errstr;
  98}
  99
 100static void save_error_info(struct btrfs_fs_info *fs_info)
 101{
 102        /*
 103         * today we only save the error info into ram.  Long term we'll
 104         * also send it down to the disk
 105         */
 106        set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 107}
 108
 109/* btrfs handle error by forcing the filesystem readonly */
 110static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 111{
 112        struct super_block *sb = fs_info->sb;
 113
 114        if (sb->s_flags & MS_RDONLY)
 115                return;
 116
 117        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 118                sb->s_flags |= MS_RDONLY;
 119                btrfs_info(fs_info, "forced readonly");
 120                /*
 121                 * Note that a running device replace operation is not
 122                 * canceled here although there is no way to update
 123                 * the progress. It would add the risk of a deadlock,
 124                 * therefore the canceling is ommited. The only penalty
 125                 * is that some I/O remains active until the procedure
 126                 * completes. The next time when the filesystem is
 127                 * mounted writeable again, the device replace
 128                 * operation continues.
 129                 */
 130        }
 131}
 132
 133#ifdef CONFIG_PRINTK
 134/*
 135 * __btrfs_std_error decodes expected errors from the caller and
 136 * invokes the approciate error response.
 137 */
 138void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 139                       unsigned int line, int errno, const char *fmt, ...)
 140{
 141        struct super_block *sb = fs_info->sb;
 142        const char *errstr;
 143
 144        /*
 145         * Special case: if the error is EROFS, and we're already
 146         * under MS_RDONLY, then it is safe here.
 147         */
 148        if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 149                return;
 150
 151        errstr = btrfs_decode_error(errno);
 152        if (fmt) {
 153                struct va_format vaf;
 154                va_list args;
 155
 156                va_start(args, fmt);
 157                vaf.fmt = fmt;
 158                vaf.va = &args;
 159
 160                printk(KERN_CRIT
 161                        "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 162                        sb->s_id, function, line, errno, errstr, &vaf);
 163                va_end(args);
 164        } else {
 165                printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 166                        sb->s_id, function, line, errno, errstr);
 167        }
 168
 169        /* Don't go through full error handling during mount */
 170        save_error_info(fs_info);
 171        if (sb->s_flags & MS_BORN)
 172                btrfs_handle_error(fs_info);
 173}
 174
 175static const char * const logtypes[] = {
 176        "emergency",
 177        "alert",
 178        "critical",
 179        "error",
 180        "warning",
 181        "notice",
 182        "info",
 183        "debug",
 184};
 185
 186void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 187{
 188        struct super_block *sb = fs_info->sb;
 189        char lvl[4];
 190        struct va_format vaf;
 191        va_list args;
 192        const char *type = logtypes[4];
 193        int kern_level;
 194
 195        va_start(args, fmt);
 196
 197        kern_level = printk_get_level(fmt);
 198        if (kern_level) {
 199                size_t size = printk_skip_level(fmt) - fmt;
 200                memcpy(lvl, fmt,  size);
 201                lvl[size] = '\0';
 202                fmt += size;
 203                type = logtypes[kern_level - '0'];
 204        } else
 205                *lvl = '\0';
 206
 207        vaf.fmt = fmt;
 208        vaf.va = &args;
 209
 210        printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
 211
 212        va_end(args);
 213}
 214
 215#else
 216
 217void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 218                       unsigned int line, int errno, const char *fmt, ...)
 219{
 220        struct super_block *sb = fs_info->sb;
 221
 222        /*
 223         * Special case: if the error is EROFS, and we're already
 224         * under MS_RDONLY, then it is safe here.
 225         */
 226        if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 227                return;
 228
 229        /* Don't go through full error handling during mount */
 230        if (sb->s_flags & MS_BORN) {
 231                save_error_info(fs_info);
 232                btrfs_handle_error(fs_info);
 233        }
 234}
 235#endif
 236
 237/*
 238 * We only mark the transaction aborted and then set the file system read-only.
 239 * This will prevent new transactions from starting or trying to join this
 240 * one.
 241 *
 242 * This means that error recovery at the call site is limited to freeing
 243 * any local memory allocations and passing the error code up without
 244 * further cleanup. The transaction should complete as it normally would
 245 * in the call path but will return -EIO.
 246 *
 247 * We'll complete the cleanup in btrfs_end_transaction and
 248 * btrfs_commit_transaction.
 249 */
 250void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 251                               struct btrfs_root *root, const char *function,
 252                               unsigned int line, int errno)
 253{
 254        /*
 255         * Report first abort since mount
 256         */
 257        if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
 258                                &root->fs_info->fs_state)) {
 259                WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
 260                                errno);
 261        }
 262        trans->aborted = errno;
 263        /* Nothing used. The other threads that have joined this
 264         * transaction may be able to continue. */
 265        if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
 266                const char *errstr;
 267
 268                errstr = btrfs_decode_error(errno);
 269                btrfs_warn(root->fs_info,
 270                           "%s:%d: Aborting unused transaction(%s).",
 271                           function, line, errstr);
 272                return;
 273        }
 274        ACCESS_ONCE(trans->transaction->aborted) = errno;
 275        /* Wake up anybody who may be waiting on this transaction */
 276        wake_up(&root->fs_info->transaction_wait);
 277        wake_up(&root->fs_info->transaction_blocked_wait);
 278        __btrfs_std_error(root->fs_info, function, line, errno, NULL);
 279}
 280/*
 281 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 282 * issues an alert, and either panics or BUGs, depending on mount options.
 283 */
 284void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 285                   unsigned int line, int errno, const char *fmt, ...)
 286{
 287        char *s_id = "<unknown>";
 288        const char *errstr;
 289        struct va_format vaf = { .fmt = fmt };
 290        va_list args;
 291
 292        if (fs_info)
 293                s_id = fs_info->sb->s_id;
 294
 295        va_start(args, fmt);
 296        vaf.va = &args;
 297
 298        errstr = btrfs_decode_error(errno);
 299        if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
 300                panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 301                        s_id, function, line, &vaf, errno, errstr);
 302
 303        btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 304                   function, line, &vaf, errno, errstr);
 305        va_end(args);
 306        /* Caller calls BUG() */
 307}
 308
 309static void btrfs_put_super(struct super_block *sb)
 310{
 311        close_ctree(btrfs_sb(sb)->tree_root);
 312}
 313
 314enum {
 315        Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 316        Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 317        Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 318        Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 319        Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 320        Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 321        Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
 322        Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
 323        Opt_check_integrity, Opt_check_integrity_including_extent_data,
 324        Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
 325        Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
 326        Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
 327        Opt_datasum, Opt_treelog, Opt_noinode_cache,
 328        Opt_err,
 329};
 330
 331static match_table_t tokens = {
 332        {Opt_degraded, "degraded"},
 333        {Opt_subvol, "subvol=%s"},
 334        {Opt_subvolid, "subvolid=%s"},
 335        {Opt_device, "device=%s"},
 336        {Opt_nodatasum, "nodatasum"},
 337        {Opt_datasum, "datasum"},
 338        {Opt_nodatacow, "nodatacow"},
 339        {Opt_datacow, "datacow"},
 340        {Opt_nobarrier, "nobarrier"},
 341        {Opt_barrier, "barrier"},
 342        {Opt_max_inline, "max_inline=%s"},
 343        {Opt_alloc_start, "alloc_start=%s"},
 344        {Opt_thread_pool, "thread_pool=%d"},
 345        {Opt_compress, "compress"},
 346        {Opt_compress_type, "compress=%s"},
 347        {Opt_compress_force, "compress-force"},
 348        {Opt_compress_force_type, "compress-force=%s"},
 349        {Opt_ssd, "ssd"},
 350        {Opt_ssd_spread, "ssd_spread"},
 351        {Opt_nossd, "nossd"},
 352        {Opt_acl, "acl"},
 353        {Opt_noacl, "noacl"},
 354        {Opt_notreelog, "notreelog"},
 355        {Opt_treelog, "treelog"},
 356        {Opt_flushoncommit, "flushoncommit"},
 357        {Opt_noflushoncommit, "noflushoncommit"},
 358        {Opt_ratio, "metadata_ratio=%d"},
 359        {Opt_discard, "discard"},
 360        {Opt_nodiscard, "nodiscard"},
 361        {Opt_space_cache, "space_cache"},
 362        {Opt_clear_cache, "clear_cache"},
 363        {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 364        {Opt_enospc_debug, "enospc_debug"},
 365        {Opt_noenospc_debug, "noenospc_debug"},
 366        {Opt_subvolrootid, "subvolrootid=%d"},
 367        {Opt_defrag, "autodefrag"},
 368        {Opt_nodefrag, "noautodefrag"},
 369        {Opt_inode_cache, "inode_cache"},
 370        {Opt_noinode_cache, "noinode_cache"},
 371        {Opt_no_space_cache, "nospace_cache"},
 372        {Opt_recovery, "recovery"},
 373        {Opt_skip_balance, "skip_balance"},
 374        {Opt_check_integrity, "check_int"},
 375        {Opt_check_integrity_including_extent_data, "check_int_data"},
 376        {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 377        {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 378        {Opt_fatal_errors, "fatal_errors=%s"},
 379        {Opt_commit_interval, "commit=%d"},
 380        {Opt_err, NULL},
 381};
 382
 383/*
 384 * Regular mount options parser.  Everything that is needed only when
 385 * reading in a new superblock is parsed here.
 386 * XXX JDM: This needs to be cleaned up for remount.
 387 */
 388int btrfs_parse_options(struct btrfs_root *root, char *options)
 389{
 390        struct btrfs_fs_info *info = root->fs_info;
 391        substring_t args[MAX_OPT_ARGS];
 392        char *p, *num, *orig = NULL;
 393        u64 cache_gen;
 394        int intarg;
 395        int ret = 0;
 396        char *compress_type;
 397        bool compress_force = false;
 398
 399        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 400        if (cache_gen)
 401                btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 402
 403        if (!options)
 404                goto out;
 405
 406        /*
 407         * strsep changes the string, duplicate it because parse_options
 408         * gets called twice
 409         */
 410        options = kstrdup(options, GFP_NOFS);
 411        if (!options)
 412                return -ENOMEM;
 413
 414        orig = options;
 415
 416        while ((p = strsep(&options, ",")) != NULL) {
 417                int token;
 418                if (!*p)
 419                        continue;
 420
 421                token = match_token(p, tokens, args);
 422                switch (token) {
 423                case Opt_degraded:
 424                        btrfs_info(root->fs_info, "allowing degraded mounts");
 425                        btrfs_set_opt(info->mount_opt, DEGRADED);
 426                        break;
 427                case Opt_subvol:
 428                case Opt_subvolid:
 429                case Opt_subvolrootid:
 430                case Opt_device:
 431                        /*
 432                         * These are parsed by btrfs_parse_early_options
 433                         * and can be happily ignored here.
 434                         */
 435                        break;
 436                case Opt_nodatasum:
 437                        btrfs_set_and_info(root, NODATASUM,
 438                                           "setting nodatasum");
 439                        break;
 440                case Opt_datasum:
 441                        if (btrfs_test_opt(root, NODATASUM)) {
 442                                if (btrfs_test_opt(root, NODATACOW))
 443                                        btrfs_info(root->fs_info, "setting datasum, datacow enabled");
 444                                else
 445                                        btrfs_info(root->fs_info, "setting datasum");
 446                        }
 447                        btrfs_clear_opt(info->mount_opt, NODATACOW);
 448                        btrfs_clear_opt(info->mount_opt, NODATASUM);
 449                        break;
 450                case Opt_nodatacow:
 451                        if (!btrfs_test_opt(root, NODATACOW)) {
 452                                if (!btrfs_test_opt(root, COMPRESS) ||
 453                                    !btrfs_test_opt(root, FORCE_COMPRESS)) {
 454                                        btrfs_info(root->fs_info,
 455                                                   "setting nodatacow, compression disabled");
 456                                } else {
 457                                        btrfs_info(root->fs_info, "setting nodatacow");
 458                                }
 459                        }
 460                        btrfs_clear_opt(info->mount_opt, COMPRESS);
 461                        btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 462                        btrfs_set_opt(info->mount_opt, NODATACOW);
 463                        btrfs_set_opt(info->mount_opt, NODATASUM);
 464                        break;
 465                case Opt_datacow:
 466                        btrfs_clear_and_info(root, NODATACOW,
 467                                             "setting datacow");
 468                        break;
 469                case Opt_compress_force:
 470                case Opt_compress_force_type:
 471                        compress_force = true;
 472                        /* Fallthrough */
 473                case Opt_compress:
 474                case Opt_compress_type:
 475                        if (token == Opt_compress ||
 476                            token == Opt_compress_force ||
 477                            strcmp(args[0].from, "zlib") == 0) {
 478                                compress_type = "zlib";
 479                                info->compress_type = BTRFS_COMPRESS_ZLIB;
 480                                btrfs_set_opt(info->mount_opt, COMPRESS);
 481                                btrfs_clear_opt(info->mount_opt, NODATACOW);
 482                                btrfs_clear_opt(info->mount_opt, NODATASUM);
 483                        } else if (strcmp(args[0].from, "lzo") == 0) {
 484                                compress_type = "lzo";
 485                                info->compress_type = BTRFS_COMPRESS_LZO;
 486                                btrfs_set_opt(info->mount_opt, COMPRESS);
 487                                btrfs_clear_opt(info->mount_opt, NODATACOW);
 488                                btrfs_clear_opt(info->mount_opt, NODATASUM);
 489                                btrfs_set_fs_incompat(info, COMPRESS_LZO);
 490                        } else if (strncmp(args[0].from, "no", 2) == 0) {
 491                                compress_type = "no";
 492                                btrfs_clear_opt(info->mount_opt, COMPRESS);
 493                                btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 494                                compress_force = false;
 495                        } else {
 496                                ret = -EINVAL;
 497                                goto out;
 498                        }
 499
 500                        if (compress_force) {
 501                                btrfs_set_and_info(root, FORCE_COMPRESS,
 502                                                   "force %s compression",
 503                                                   compress_type);
 504                        } else {
 505                                if (!btrfs_test_opt(root, COMPRESS))
 506                                        btrfs_info(root->fs_info,
 507                                                   "btrfs: use %s compression",
 508                                                   compress_type);
 509                                /*
 510                                 * If we remount from compress-force=xxx to
 511                                 * compress=xxx, we need clear FORCE_COMPRESS
 512                                 * flag, otherwise, there is no way for users
 513                                 * to disable forcible compression separately.
 514                                 */
 515                                btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 516                        }
 517                        break;
 518                case Opt_ssd:
 519                        btrfs_set_and_info(root, SSD,
 520                                           "use ssd allocation scheme");
 521                        break;
 522                case Opt_ssd_spread:
 523                        btrfs_set_and_info(root, SSD_SPREAD,
 524                                           "use spread ssd allocation scheme");
 525                        btrfs_set_opt(info->mount_opt, SSD);
 526                        break;
 527                case Opt_nossd:
 528                        btrfs_set_and_info(root, NOSSD,
 529                                             "not using ssd allocation scheme");
 530                        btrfs_clear_opt(info->mount_opt, SSD);
 531                        break;
 532                case Opt_barrier:
 533                        btrfs_clear_and_info(root, NOBARRIER,
 534                                             "turning on barriers");
 535                        break;
 536                case Opt_nobarrier:
 537                        btrfs_set_and_info(root, NOBARRIER,
 538                                           "turning off barriers");
 539                        break;
 540                case Opt_thread_pool:
 541                        ret = match_int(&args[0], &intarg);
 542                        if (ret) {
 543                                goto out;
 544                        } else if (intarg > 0) {
 545                                info->thread_pool_size = intarg;
 546                        } else {
 547                                ret = -EINVAL;
 548                                goto out;
 549                        }
 550                        break;
 551                case Opt_max_inline:
 552                        num = match_strdup(&args[0]);
 553                        if (num) {
 554                                info->max_inline = memparse(num, NULL);
 555                                kfree(num);
 556
 557                                if (info->max_inline) {
 558                                        info->max_inline = min_t(u64,
 559                                                info->max_inline,
 560                                                root->sectorsize);
 561                                }
 562                                btrfs_info(root->fs_info, "max_inline at %llu",
 563                                        info->max_inline);
 564                        } else {
 565                                ret = -ENOMEM;
 566                                goto out;
 567                        }
 568                        break;
 569                case Opt_alloc_start:
 570                        num = match_strdup(&args[0]);
 571                        if (num) {
 572                                mutex_lock(&info->chunk_mutex);
 573                                info->alloc_start = memparse(num, NULL);
 574                                mutex_unlock(&info->chunk_mutex);
 575                                kfree(num);
 576                                btrfs_info(root->fs_info, "allocations start at %llu",
 577                                        info->alloc_start);
 578                        } else {
 579                                ret = -ENOMEM;
 580                                goto out;
 581                        }
 582                        break;
 583                case Opt_acl:
 584#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 585                        root->fs_info->sb->s_flags |= MS_POSIXACL;
 586                        break;
 587#else
 588                        btrfs_err(root->fs_info,
 589                                "support for ACL not compiled in!");
 590                        ret = -EINVAL;
 591                        goto out;
 592#endif
 593                case Opt_noacl:
 594                        root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 595                        break;
 596                case Opt_notreelog:
 597                        btrfs_set_and_info(root, NOTREELOG,
 598                                           "disabling tree log");
 599                        break;
 600                case Opt_treelog:
 601                        btrfs_clear_and_info(root, NOTREELOG,
 602                                             "enabling tree log");
 603                        break;
 604                case Opt_flushoncommit:
 605                        btrfs_set_and_info(root, FLUSHONCOMMIT,
 606                                           "turning on flush-on-commit");
 607                        break;
 608                case Opt_noflushoncommit:
 609                        btrfs_clear_and_info(root, FLUSHONCOMMIT,
 610                                             "turning off flush-on-commit");
 611                        break;
 612                case Opt_ratio:
 613                        ret = match_int(&args[0], &intarg);
 614                        if (ret) {
 615                                goto out;
 616                        } else if (intarg >= 0) {
 617                                info->metadata_ratio = intarg;
 618                                btrfs_info(root->fs_info, "metadata ratio %d",
 619                                       info->metadata_ratio);
 620                        } else {
 621                                ret = -EINVAL;
 622                                goto out;
 623                        }
 624                        break;
 625                case Opt_discard:
 626                        btrfs_set_and_info(root, DISCARD,
 627                                           "turning on discard");
 628                        break;
 629                case Opt_nodiscard:
 630                        btrfs_clear_and_info(root, DISCARD,
 631                                             "turning off discard");
 632                        break;
 633                case Opt_space_cache:
 634                        btrfs_set_and_info(root, SPACE_CACHE,
 635                                           "enabling disk space caching");
 636                        break;
 637                case Opt_rescan_uuid_tree:
 638                        btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 639                        break;
 640                case Opt_no_space_cache:
 641                        btrfs_clear_and_info(root, SPACE_CACHE,
 642                                             "disabling disk space caching");
 643                        break;
 644                case Opt_inode_cache:
 645                        btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 646                                           "enabling inode map caching");
 647                        break;
 648                case Opt_noinode_cache:
 649                        btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 650                                             "disabling inode map caching");
 651                        break;
 652                case Opt_clear_cache:
 653                        btrfs_set_and_info(root, CLEAR_CACHE,
 654                                           "force clearing of disk cache");
 655                        break;
 656                case Opt_user_subvol_rm_allowed:
 657                        btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 658                        break;
 659                case Opt_enospc_debug:
 660                        btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 661                        break;
 662                case Opt_noenospc_debug:
 663                        btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 664                        break;
 665                case Opt_defrag:
 666                        btrfs_set_and_info(root, AUTO_DEFRAG,
 667                                           "enabling auto defrag");
 668                        break;
 669                case Opt_nodefrag:
 670                        btrfs_clear_and_info(root, AUTO_DEFRAG,
 671                                             "disabling auto defrag");
 672                        break;
 673                case Opt_recovery:
 674                        btrfs_info(root->fs_info, "enabling auto recovery");
 675                        btrfs_set_opt(info->mount_opt, RECOVERY);
 676                        break;
 677                case Opt_skip_balance:
 678                        btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 679                        break;
 680#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 681                case Opt_check_integrity_including_extent_data:
 682                        btrfs_info(root->fs_info,
 683                                   "enabling check integrity including extent data");
 684                        btrfs_set_opt(info->mount_opt,
 685                                      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 686                        btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 687                        break;
 688                case Opt_check_integrity:
 689                        btrfs_info(root->fs_info, "enabling check integrity");
 690                        btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 691                        break;
 692                case Opt_check_integrity_print_mask:
 693                        ret = match_int(&args[0], &intarg);
 694                        if (ret) {
 695                                goto out;
 696                        } else if (intarg >= 0) {
 697                                info->check_integrity_print_mask = intarg;
 698                                btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
 699                                       info->check_integrity_print_mask);
 700                        } else {
 701                                ret = -EINVAL;
 702                                goto out;
 703                        }
 704                        break;
 705#else
 706                case Opt_check_integrity_including_extent_data:
 707                case Opt_check_integrity:
 708                case Opt_check_integrity_print_mask:
 709                        btrfs_err(root->fs_info,
 710                                "support for check_integrity* not compiled in!");
 711                        ret = -EINVAL;
 712                        goto out;
 713#endif
 714                case Opt_fatal_errors:
 715                        if (strcmp(args[0].from, "panic") == 0)
 716                                btrfs_set_opt(info->mount_opt,
 717                                              PANIC_ON_FATAL_ERROR);
 718                        else if (strcmp(args[0].from, "bug") == 0)
 719                                btrfs_clear_opt(info->mount_opt,
 720                                              PANIC_ON_FATAL_ERROR);
 721                        else {
 722                                ret = -EINVAL;
 723                                goto out;
 724                        }
 725                        break;
 726                case Opt_commit_interval:
 727                        intarg = 0;
 728                        ret = match_int(&args[0], &intarg);
 729                        if (ret < 0) {
 730                                btrfs_err(root->fs_info, "invalid commit interval");
 731                                ret = -EINVAL;
 732                                goto out;
 733                        }
 734                        if (intarg > 0) {
 735                                if (intarg > 300) {
 736                                        btrfs_warn(root->fs_info, "excessive commit interval %d",
 737                                                        intarg);
 738                                }
 739                                info->commit_interval = intarg;
 740                        } else {
 741                                btrfs_info(root->fs_info, "using default commit interval %ds",
 742                                    BTRFS_DEFAULT_COMMIT_INTERVAL);
 743                                info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 744                        }
 745                        break;
 746                case Opt_err:
 747                        btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
 748                        ret = -EINVAL;
 749                        goto out;
 750                default:
 751                        break;
 752                }
 753        }
 754out:
 755        if (!ret && btrfs_test_opt(root, SPACE_CACHE))
 756                btrfs_info(root->fs_info, "disk space caching is enabled");
 757        kfree(orig);
 758        return ret;
 759}
 760
 761/*
 762 * Parse mount options that are required early in the mount process.
 763 *
 764 * All other options will be parsed on much later in the mount process and
 765 * only when we need to allocate a new super block.
 766 */
 767static int btrfs_parse_early_options(const char *options, fmode_t flags,
 768                void *holder, char **subvol_name, u64 *subvol_objectid,
 769                struct btrfs_fs_devices **fs_devices)
 770{
 771        substring_t args[MAX_OPT_ARGS];
 772        char *device_name, *opts, *orig, *p;
 773        char *num = NULL;
 774        int error = 0;
 775
 776        if (!options)
 777                return 0;
 778
 779        /*
 780         * strsep changes the string, duplicate it because parse_options
 781         * gets called twice
 782         */
 783        opts = kstrdup(options, GFP_KERNEL);
 784        if (!opts)
 785                return -ENOMEM;
 786        orig = opts;
 787
 788        while ((p = strsep(&opts, ",")) != NULL) {
 789                int token;
 790                if (!*p)
 791                        continue;
 792
 793                token = match_token(p, tokens, args);
 794                switch (token) {
 795                case Opt_subvol:
 796                        kfree(*subvol_name);
 797                        *subvol_name = match_strdup(&args[0]);
 798                        if (!*subvol_name) {
 799                                error = -ENOMEM;
 800                                goto out;
 801                        }
 802                        break;
 803                case Opt_subvolid:
 804                        num = match_strdup(&args[0]);
 805                        if (num) {
 806                                *subvol_objectid = memparse(num, NULL);
 807                                kfree(num);
 808                                /* we want the original fs_tree */
 809                                if (!*subvol_objectid)
 810                                        *subvol_objectid =
 811                                                BTRFS_FS_TREE_OBJECTID;
 812                        } else {
 813                                error = -EINVAL;
 814                                goto out;
 815                        }
 816                        break;
 817                case Opt_subvolrootid:
 818                        printk(KERN_WARNING
 819                                "BTRFS: 'subvolrootid' mount option is deprecated and has "
 820                                "no effect\n");
 821                        break;
 822                case Opt_device:
 823                        device_name = match_strdup(&args[0]);
 824                        if (!device_name) {
 825                                error = -ENOMEM;
 826                                goto out;
 827                        }
 828                        error = btrfs_scan_one_device(device_name,
 829                                        flags, holder, fs_devices);
 830                        kfree(device_name);
 831                        if (error)
 832                                goto out;
 833                        break;
 834                default:
 835                        break;
 836                }
 837        }
 838
 839out:
 840        kfree(orig);
 841        return error;
 842}
 843
 844static struct dentry *get_default_root(struct super_block *sb,
 845                                       u64 subvol_objectid)
 846{
 847        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 848        struct btrfs_root *root = fs_info->tree_root;
 849        struct btrfs_root *new_root;
 850        struct btrfs_dir_item *di;
 851        struct btrfs_path *path;
 852        struct btrfs_key location;
 853        struct inode *inode;
 854        u64 dir_id;
 855        int new = 0;
 856
 857        /*
 858         * We have a specific subvol we want to mount, just setup location and
 859         * go look up the root.
 860         */
 861        if (subvol_objectid) {
 862                location.objectid = subvol_objectid;
 863                location.type = BTRFS_ROOT_ITEM_KEY;
 864                location.offset = (u64)-1;
 865                goto find_root;
 866        }
 867
 868        path = btrfs_alloc_path();
 869        if (!path)
 870                return ERR_PTR(-ENOMEM);
 871        path->leave_spinning = 1;
 872
 873        /*
 874         * Find the "default" dir item which points to the root item that we
 875         * will mount by default if we haven't been given a specific subvolume
 876         * to mount.
 877         */
 878        dir_id = btrfs_super_root_dir(fs_info->super_copy);
 879        di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 880        if (IS_ERR(di)) {
 881                btrfs_free_path(path);
 882                return ERR_CAST(di);
 883        }
 884        if (!di) {
 885                /*
 886                 * Ok the default dir item isn't there.  This is weird since
 887                 * it's always been there, but don't freak out, just try and
 888                 * mount to root most subvolume.
 889                 */
 890                btrfs_free_path(path);
 891                dir_id = BTRFS_FIRST_FREE_OBJECTID;
 892                new_root = fs_info->fs_root;
 893                goto setup_root;
 894        }
 895
 896        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 897        btrfs_free_path(path);
 898
 899find_root:
 900        new_root = btrfs_read_fs_root_no_name(fs_info, &location);
 901        if (IS_ERR(new_root))
 902                return ERR_CAST(new_root);
 903
 904        dir_id = btrfs_root_dirid(&new_root->root_item);
 905setup_root:
 906        location.objectid = dir_id;
 907        location.type = BTRFS_INODE_ITEM_KEY;
 908        location.offset = 0;
 909
 910        inode = btrfs_iget(sb, &location, new_root, &new);
 911        if (IS_ERR(inode))
 912                return ERR_CAST(inode);
 913
 914        /*
 915         * If we're just mounting the root most subvol put the inode and return
 916         * a reference to the dentry.  We will have already gotten a reference
 917         * to the inode in btrfs_fill_super so we're good to go.
 918         */
 919        if (!new && sb->s_root->d_inode == inode) {
 920                iput(inode);
 921                return dget(sb->s_root);
 922        }
 923
 924        return d_obtain_root(inode);
 925}
 926
 927static int btrfs_fill_super(struct super_block *sb,
 928                            struct btrfs_fs_devices *fs_devices,
 929                            void *data, int silent)
 930{
 931        struct inode *inode;
 932        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 933        struct btrfs_key key;
 934        int err;
 935
 936        sb->s_maxbytes = MAX_LFS_FILESIZE;
 937        sb->s_magic = BTRFS_SUPER_MAGIC;
 938        sb->s_op = &btrfs_super_ops;
 939        sb->s_d_op = &btrfs_dentry_operations;
 940        sb->s_export_op = &btrfs_export_ops;
 941        sb->s_xattr = btrfs_xattr_handlers;
 942        sb->s_time_gran = 1;
 943#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 944        sb->s_flags |= MS_POSIXACL;
 945#endif
 946        sb->s_flags |= MS_I_VERSION;
 947        err = open_ctree(sb, fs_devices, (char *)data);
 948        if (err) {
 949                printk(KERN_ERR "BTRFS: open_ctree failed\n");
 950                return err;
 951        }
 952
 953        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 954        key.type = BTRFS_INODE_ITEM_KEY;
 955        key.offset = 0;
 956        inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 957        if (IS_ERR(inode)) {
 958                err = PTR_ERR(inode);
 959                goto fail_close;
 960        }
 961
 962        sb->s_root = d_make_root(inode);
 963        if (!sb->s_root) {
 964                err = -ENOMEM;
 965                goto fail_close;
 966        }
 967
 968        save_mount_options(sb, data);
 969        cleancache_init_fs(sb);
 970        sb->s_flags |= MS_ACTIVE;
 971        return 0;
 972
 973fail_close:
 974        close_ctree(fs_info->tree_root);
 975        return err;
 976}
 977
 978int btrfs_sync_fs(struct super_block *sb, int wait)
 979{
 980        struct btrfs_trans_handle *trans;
 981        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 982        struct btrfs_root *root = fs_info->tree_root;
 983
 984        trace_btrfs_sync_fs(wait);
 985
 986        if (!wait) {
 987                filemap_flush(fs_info->btree_inode->i_mapping);
 988                return 0;
 989        }
 990
 991        btrfs_wait_ordered_roots(fs_info, -1);
 992
 993        trans = btrfs_attach_transaction_barrier(root);
 994        if (IS_ERR(trans)) {
 995                /* no transaction, don't bother */
 996                if (PTR_ERR(trans) == -ENOENT) {
 997                        /*
 998                         * Exit unless we have some pending changes
 999                         * that need to go through commit
1000                         */
1001                        if (fs_info->pending_changes == 0)
1002                                return 0;
1003                        /*
1004                         * A non-blocking test if the fs is frozen. We must not
1005                         * start a new transaction here otherwise a deadlock
1006                         * happens. The pending operations are delayed to the
1007                         * next commit after thawing.
1008                         */
1009                        if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1010                                __sb_end_write(sb, SB_FREEZE_WRITE);
1011                        else
1012                                return 0;
1013                        trans = btrfs_start_transaction(root, 0);
1014                }
1015                if (IS_ERR(trans))
1016                        return PTR_ERR(trans);
1017        }
1018        return btrfs_commit_transaction(trans, root);
1019}
1020
1021static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1022{
1023        struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1024        struct btrfs_root *root = info->tree_root;
1025        char *compress_type;
1026
1027        if (btrfs_test_opt(root, DEGRADED))
1028                seq_puts(seq, ",degraded");
1029        if (btrfs_test_opt(root, NODATASUM))
1030                seq_puts(seq, ",nodatasum");
1031        if (btrfs_test_opt(root, NODATACOW))
1032                seq_puts(seq, ",nodatacow");
1033        if (btrfs_test_opt(root, NOBARRIER))
1034                seq_puts(seq, ",nobarrier");
1035        if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1036                seq_printf(seq, ",max_inline=%llu", info->max_inline);
1037        if (info->alloc_start != 0)
1038                seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1039        if (info->thread_pool_size !=  min_t(unsigned long,
1040                                             num_online_cpus() + 2, 8))
1041                seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1042        if (btrfs_test_opt(root, COMPRESS)) {
1043                if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1044                        compress_type = "zlib";
1045                else
1046                        compress_type = "lzo";
1047                if (btrfs_test_opt(root, FORCE_COMPRESS))
1048                        seq_printf(seq, ",compress-force=%s", compress_type);
1049                else
1050                        seq_printf(seq, ",compress=%s", compress_type);
1051        }
1052        if (btrfs_test_opt(root, NOSSD))
1053                seq_puts(seq, ",nossd");
1054        if (btrfs_test_opt(root, SSD_SPREAD))
1055                seq_puts(seq, ",ssd_spread");
1056        else if (btrfs_test_opt(root, SSD))
1057                seq_puts(seq, ",ssd");
1058        if (btrfs_test_opt(root, NOTREELOG))
1059                seq_puts(seq, ",notreelog");
1060        if (btrfs_test_opt(root, FLUSHONCOMMIT))
1061                seq_puts(seq, ",flushoncommit");
1062        if (btrfs_test_opt(root, DISCARD))
1063                seq_puts(seq, ",discard");
1064        if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1065                seq_puts(seq, ",noacl");
1066        if (btrfs_test_opt(root, SPACE_CACHE))
1067                seq_puts(seq, ",space_cache");
1068        else
1069                seq_puts(seq, ",nospace_cache");
1070        if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1071                seq_puts(seq, ",rescan_uuid_tree");
1072        if (btrfs_test_opt(root, CLEAR_CACHE))
1073                seq_puts(seq, ",clear_cache");
1074        if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1075                seq_puts(seq, ",user_subvol_rm_allowed");
1076        if (btrfs_test_opt(root, ENOSPC_DEBUG))
1077                seq_puts(seq, ",enospc_debug");
1078        if (btrfs_test_opt(root, AUTO_DEFRAG))
1079                seq_puts(seq, ",autodefrag");
1080        if (btrfs_test_opt(root, INODE_MAP_CACHE))
1081                seq_puts(seq, ",inode_cache");
1082        if (btrfs_test_opt(root, SKIP_BALANCE))
1083                seq_puts(seq, ",skip_balance");
1084        if (btrfs_test_opt(root, RECOVERY))
1085                seq_puts(seq, ",recovery");
1086#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1087        if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1088                seq_puts(seq, ",check_int_data");
1089        else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1090                seq_puts(seq, ",check_int");
1091        if (info->check_integrity_print_mask)
1092                seq_printf(seq, ",check_int_print_mask=%d",
1093                                info->check_integrity_print_mask);
1094#endif
1095        if (info->metadata_ratio)
1096                seq_printf(seq, ",metadata_ratio=%d",
1097                                info->metadata_ratio);
1098        if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1099                seq_puts(seq, ",fatal_errors=panic");
1100        if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1101                seq_printf(seq, ",commit=%d", info->commit_interval);
1102        return 0;
1103}
1104
1105static int btrfs_test_super(struct super_block *s, void *data)
1106{
1107        struct btrfs_fs_info *p = data;
1108        struct btrfs_fs_info *fs_info = btrfs_sb(s);
1109
1110        return fs_info->fs_devices == p->fs_devices;
1111}
1112
1113static int btrfs_set_super(struct super_block *s, void *data)
1114{
1115        int err = set_anon_super(s, data);
1116        if (!err)
1117                s->s_fs_info = data;
1118        return err;
1119}
1120
1121/*
1122 * subvolumes are identified by ino 256
1123 */
1124static inline int is_subvolume_inode(struct inode *inode)
1125{
1126        if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1127                return 1;
1128        return 0;
1129}
1130
1131/*
1132 * This will strip out the subvol=%s argument for an argument string and add
1133 * subvolid=0 to make sure we get the actual tree root for path walking to the
1134 * subvol we want.
1135 */
1136static char *setup_root_args(char *args)
1137{
1138        unsigned len = strlen(args) + 2 + 1;
1139        char *src, *dst, *buf;
1140
1141        /*
1142         * We need the same args as before, but with this substitution:
1143         * s!subvol=[^,]+!subvolid=0!
1144         *
1145         * Since the replacement string is up to 2 bytes longer than the
1146         * original, allocate strlen(args) + 2 + 1 bytes.
1147         */
1148
1149        src = strstr(args, "subvol=");
1150        /* This shouldn't happen, but just in case.. */
1151        if (!src)
1152                return NULL;
1153
1154        buf = dst = kmalloc(len, GFP_NOFS);
1155        if (!buf)
1156                return NULL;
1157
1158        /*
1159         * If the subvol= arg is not at the start of the string,
1160         * copy whatever precedes it into buf.
1161         */
1162        if (src != args) {
1163                *src++ = '\0';
1164                strcpy(buf, args);
1165                dst += strlen(args);
1166        }
1167
1168        strcpy(dst, "subvolid=0");
1169        dst += strlen("subvolid=0");
1170
1171        /*
1172         * If there is a "," after the original subvol=... string,
1173         * copy that suffix into our buffer.  Otherwise, we're done.
1174         */
1175        src = strchr(src, ',');
1176        if (src)
1177                strcpy(dst, src);
1178
1179        return buf;
1180}
1181
1182static struct dentry *mount_subvol(const char *subvol_name, int flags,
1183                                   const char *device_name, char *data)
1184{
1185        struct dentry *root;
1186        struct vfsmount *mnt;
1187        char *newargs;
1188
1189        newargs = setup_root_args(data);
1190        if (!newargs)
1191                return ERR_PTR(-ENOMEM);
1192        mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1193                             newargs);
1194
1195        if (PTR_RET(mnt) == -EBUSY) {
1196                if (flags & MS_RDONLY) {
1197                        mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1198                                             newargs);
1199                } else {
1200                        int r;
1201                        mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1202                                             newargs);
1203                        if (IS_ERR(mnt)) {
1204                                kfree(newargs);
1205                                return ERR_CAST(mnt);
1206                        }
1207
1208                        r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1209                        if (r < 0) {
1210                                /* FIXME: release vfsmount mnt ??*/
1211                                kfree(newargs);
1212                                return ERR_PTR(r);
1213                        }
1214                }
1215        }
1216
1217        kfree(newargs);
1218
1219        if (IS_ERR(mnt))
1220                return ERR_CAST(mnt);
1221
1222        root = mount_subtree(mnt, subvol_name);
1223
1224        if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1225                struct super_block *s = root->d_sb;
1226                dput(root);
1227                root = ERR_PTR(-EINVAL);
1228                deactivate_locked_super(s);
1229                printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1230                                subvol_name);
1231        }
1232
1233        return root;
1234}
1235
1236static int parse_security_options(char *orig_opts,
1237                                  struct security_mnt_opts *sec_opts)
1238{
1239        char *secdata = NULL;
1240        int ret = 0;
1241
1242        secdata = alloc_secdata();
1243        if (!secdata)
1244                return -ENOMEM;
1245        ret = security_sb_copy_data(orig_opts, secdata);
1246        if (ret) {
1247                free_secdata(secdata);
1248                return ret;
1249        }
1250        ret = security_sb_parse_opts_str(secdata, sec_opts);
1251        free_secdata(secdata);
1252        return ret;
1253}
1254
1255static int setup_security_options(struct btrfs_fs_info *fs_info,
1256                                  struct super_block *sb,
1257                                  struct security_mnt_opts *sec_opts)
1258{
1259        int ret = 0;
1260
1261        /*
1262         * Call security_sb_set_mnt_opts() to check whether new sec_opts
1263         * is valid.
1264         */
1265        ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1266        if (ret)
1267                return ret;
1268
1269#ifdef CONFIG_SECURITY
1270        if (!fs_info->security_opts.num_mnt_opts) {
1271                /* first time security setup, copy sec_opts to fs_info */
1272                memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1273        } else {
1274                /*
1275                 * Since SELinux(the only one supports security_mnt_opts) does
1276                 * NOT support changing context during remount/mount same sb,
1277                 * This must be the same or part of the same security options,
1278                 * just free it.
1279                 */
1280                security_free_mnt_opts(sec_opts);
1281        }
1282#endif
1283        return ret;
1284}
1285
1286/*
1287 * Find a superblock for the given device / mount point.
1288 *
1289 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1290 *        for multiple device setup.  Make sure to keep it in sync.
1291 */
1292static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1293                const char *device_name, void *data)
1294{
1295        struct block_device *bdev = NULL;
1296        struct super_block *s;
1297        struct dentry *root;
1298        struct btrfs_fs_devices *fs_devices = NULL;
1299        struct btrfs_fs_info *fs_info = NULL;
1300        struct security_mnt_opts new_sec_opts;
1301        fmode_t mode = FMODE_READ;
1302        char *subvol_name = NULL;
1303        u64 subvol_objectid = 0;
1304        int error = 0;
1305
1306        if (!(flags & MS_RDONLY))
1307                mode |= FMODE_WRITE;
1308
1309        error = btrfs_parse_early_options(data, mode, fs_type,
1310                                          &subvol_name, &subvol_objectid,
1311                                          &fs_devices);
1312        if (error) {
1313                kfree(subvol_name);
1314                return ERR_PTR(error);
1315        }
1316
1317        if (subvol_name) {
1318                root = mount_subvol(subvol_name, flags, device_name, data);
1319                kfree(subvol_name);
1320                return root;
1321        }
1322
1323        security_init_mnt_opts(&new_sec_opts);
1324        if (data) {
1325                error = parse_security_options(data, &new_sec_opts);
1326                if (error)
1327                        return ERR_PTR(error);
1328        }
1329
1330        error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1331        if (error)
1332                goto error_sec_opts;
1333
1334        /*
1335         * Setup a dummy root and fs_info for test/set super.  This is because
1336         * we don't actually fill this stuff out until open_ctree, but we need
1337         * it for searching for existing supers, so this lets us do that and
1338         * then open_ctree will properly initialize everything later.
1339         */
1340        fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1341        if (!fs_info) {
1342                error = -ENOMEM;
1343                goto error_sec_opts;
1344        }
1345
1346        fs_info->fs_devices = fs_devices;
1347
1348        fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1349        fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1350        security_init_mnt_opts(&fs_info->security_opts);
1351        if (!fs_info->super_copy || !fs_info->super_for_commit) {
1352                error = -ENOMEM;
1353                goto error_fs_info;
1354        }
1355
1356        error = btrfs_open_devices(fs_devices, mode, fs_type);
1357        if (error)
1358                goto error_fs_info;
1359
1360        if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1361                error = -EACCES;
1362                goto error_close_devices;
1363        }
1364
1365        bdev = fs_devices->latest_bdev;
1366        s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1367                 fs_info);
1368        if (IS_ERR(s)) {
1369                error = PTR_ERR(s);
1370                goto error_close_devices;
1371        }
1372
1373        if (s->s_root) {
1374                btrfs_close_devices(fs_devices);
1375                free_fs_info(fs_info);
1376                if ((flags ^ s->s_flags) & MS_RDONLY)
1377                        error = -EBUSY;
1378        } else {
1379                char b[BDEVNAME_SIZE];
1380
1381                strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1382                btrfs_sb(s)->bdev_holder = fs_type;
1383                error = btrfs_fill_super(s, fs_devices, data,
1384                                         flags & MS_SILENT ? 1 : 0);
1385        }
1386
1387        root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1388        if (IS_ERR(root)) {
1389                deactivate_locked_super(s);
1390                error = PTR_ERR(root);
1391                goto error_sec_opts;
1392        }
1393
1394        fs_info = btrfs_sb(s);
1395        error = setup_security_options(fs_info, s, &new_sec_opts);
1396        if (error) {
1397                dput(root);
1398                deactivate_locked_super(s);
1399                goto error_sec_opts;
1400        }
1401
1402        return root;
1403
1404error_close_devices:
1405        btrfs_close_devices(fs_devices);
1406error_fs_info:
1407        free_fs_info(fs_info);
1408error_sec_opts:
1409        security_free_mnt_opts(&new_sec_opts);
1410        return ERR_PTR(error);
1411}
1412
1413static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1414                                     int new_pool_size, int old_pool_size)
1415{
1416        if (new_pool_size == old_pool_size)
1417                return;
1418
1419        fs_info->thread_pool_size = new_pool_size;
1420
1421        btrfs_info(fs_info, "resize thread pool %d -> %d",
1422               old_pool_size, new_pool_size);
1423
1424        btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1425        btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1426        btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1427        btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1428        btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1429        btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1430        btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1431                                new_pool_size);
1432        btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1433        btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1434        btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1435        btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1436        btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1437                                new_pool_size);
1438}
1439
1440static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1441{
1442        set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1443}
1444
1445static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1446                                       unsigned long old_opts, int flags)
1447{
1448        if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1449            (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1450             (flags & MS_RDONLY))) {
1451                /* wait for any defraggers to finish */
1452                wait_event(fs_info->transaction_wait,
1453                           (atomic_read(&fs_info->defrag_running) == 0));
1454                if (flags & MS_RDONLY)
1455                        sync_filesystem(fs_info->sb);
1456        }
1457}
1458
1459static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1460                                         unsigned long old_opts)
1461{
1462        /*
1463         * We need cleanup all defragable inodes if the autodefragment is
1464         * close or the fs is R/O.
1465         */
1466        if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1467            (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1468             (fs_info->sb->s_flags & MS_RDONLY))) {
1469                btrfs_cleanup_defrag_inodes(fs_info);
1470        }
1471
1472        clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1473}
1474
1475static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1476{
1477        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1478        struct btrfs_root *root = fs_info->tree_root;
1479        unsigned old_flags = sb->s_flags;
1480        unsigned long old_opts = fs_info->mount_opt;
1481        unsigned long old_compress_type = fs_info->compress_type;
1482        u64 old_max_inline = fs_info->max_inline;
1483        u64 old_alloc_start = fs_info->alloc_start;
1484        int old_thread_pool_size = fs_info->thread_pool_size;
1485        unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1486        int ret;
1487
1488        sync_filesystem(sb);
1489        btrfs_remount_prepare(fs_info);
1490
1491        if (data) {
1492                struct security_mnt_opts new_sec_opts;
1493
1494                security_init_mnt_opts(&new_sec_opts);
1495                ret = parse_security_options(data, &new_sec_opts);
1496                if (ret)
1497                        goto restore;
1498                ret = setup_security_options(fs_info, sb,
1499                                             &new_sec_opts);
1500                if (ret) {
1501                        security_free_mnt_opts(&new_sec_opts);
1502                        goto restore;
1503                }
1504        }
1505
1506        ret = btrfs_parse_options(root, data);
1507        if (ret) {
1508                ret = -EINVAL;
1509                goto restore;
1510        }
1511
1512        btrfs_remount_begin(fs_info, old_opts, *flags);
1513        btrfs_resize_thread_pool(fs_info,
1514                fs_info->thread_pool_size, old_thread_pool_size);
1515
1516        if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1517                goto out;
1518
1519        if (*flags & MS_RDONLY) {
1520                /*
1521                 * this also happens on 'umount -rf' or on shutdown, when
1522                 * the filesystem is busy.
1523                 */
1524                cancel_work_sync(&fs_info->async_reclaim_work);
1525
1526                /* wait for the uuid_scan task to finish */
1527                down(&fs_info->uuid_tree_rescan_sem);
1528                /* avoid complains from lockdep et al. */
1529                up(&fs_info->uuid_tree_rescan_sem);
1530
1531                sb->s_flags |= MS_RDONLY;
1532
1533                btrfs_dev_replace_suspend_for_unmount(fs_info);
1534                btrfs_scrub_cancel(fs_info);
1535                btrfs_pause_balance(fs_info);
1536
1537                ret = btrfs_commit_super(root);
1538                if (ret)
1539                        goto restore;
1540        } else {
1541                if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1542                        btrfs_err(fs_info,
1543                                "Remounting read-write after error is not allowed");
1544                        ret = -EINVAL;
1545                        goto restore;
1546                }
1547                if (fs_info->fs_devices->rw_devices == 0) {
1548                        ret = -EACCES;
1549                        goto restore;
1550                }
1551
1552                if (fs_info->fs_devices->missing_devices >
1553                     fs_info->num_tolerated_disk_barrier_failures &&
1554                    !(*flags & MS_RDONLY)) {
1555                        btrfs_warn(fs_info,
1556                                "too many missing devices, writeable remount is not allowed");
1557                        ret = -EACCES;
1558                        goto restore;
1559                }
1560
1561                if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1562                        ret = -EINVAL;
1563                        goto restore;
1564                }
1565
1566                ret = btrfs_cleanup_fs_roots(fs_info);
1567                if (ret)
1568                        goto restore;
1569
1570                /* recover relocation */
1571                mutex_lock(&fs_info->cleaner_mutex);
1572                ret = btrfs_recover_relocation(root);
1573                mutex_unlock(&fs_info->cleaner_mutex);
1574                if (ret)
1575                        goto restore;
1576
1577                ret = btrfs_resume_balance_async(fs_info);
1578                if (ret)
1579                        goto restore;
1580
1581                ret = btrfs_resume_dev_replace_async(fs_info);
1582                if (ret) {
1583                        btrfs_warn(fs_info, "failed to resume dev_replace");
1584                        goto restore;
1585                }
1586
1587                if (!fs_info->uuid_root) {
1588                        btrfs_info(fs_info, "creating UUID tree");
1589                        ret = btrfs_create_uuid_tree(fs_info);
1590                        if (ret) {
1591                                btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1592                                goto restore;
1593                        }
1594                }
1595                sb->s_flags &= ~MS_RDONLY;
1596        }
1597out:
1598        wake_up_process(fs_info->transaction_kthread);
1599        btrfs_remount_cleanup(fs_info, old_opts);
1600        return 0;
1601
1602restore:
1603        /* We've hit an error - don't reset MS_RDONLY */
1604        if (sb->s_flags & MS_RDONLY)
1605                old_flags |= MS_RDONLY;
1606        sb->s_flags = old_flags;
1607        fs_info->mount_opt = old_opts;
1608        fs_info->compress_type = old_compress_type;
1609        fs_info->max_inline = old_max_inline;
1610        mutex_lock(&fs_info->chunk_mutex);
1611        fs_info->alloc_start = old_alloc_start;
1612        mutex_unlock(&fs_info->chunk_mutex);
1613        btrfs_resize_thread_pool(fs_info,
1614                old_thread_pool_size, fs_info->thread_pool_size);
1615        fs_info->metadata_ratio = old_metadata_ratio;
1616        btrfs_remount_cleanup(fs_info, old_opts);
1617        return ret;
1618}
1619
1620/* Used to sort the devices by max_avail(descending sort) */
1621static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1622                                       const void *dev_info2)
1623{
1624        if (((struct btrfs_device_info *)dev_info1)->max_avail >
1625            ((struct btrfs_device_info *)dev_info2)->max_avail)
1626                return -1;
1627        else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1628                 ((struct btrfs_device_info *)dev_info2)->max_avail)
1629                return 1;
1630        else
1631        return 0;
1632}
1633
1634/*
1635 * sort the devices by max_avail, in which max free extent size of each device
1636 * is stored.(Descending Sort)
1637 */
1638static inline void btrfs_descending_sort_devices(
1639                                        struct btrfs_device_info *devices,
1640                                        size_t nr_devices)
1641{
1642        sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1643             btrfs_cmp_device_free_bytes, NULL);
1644}
1645
1646/*
1647 * The helper to calc the free space on the devices that can be used to store
1648 * file data.
1649 */
1650static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1651{
1652        struct btrfs_fs_info *fs_info = root->fs_info;
1653        struct btrfs_device_info *devices_info;
1654        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1655        struct btrfs_device *device;
1656        u64 skip_space;
1657        u64 type;
1658        u64 avail_space;
1659        u64 used_space;
1660        u64 min_stripe_size;
1661        int min_stripes = 1, num_stripes = 1;
1662        int i = 0, nr_devices;
1663        int ret;
1664
1665        /*
1666         * We aren't under the device list lock, so this is racey-ish, but good
1667         * enough for our purposes.
1668         */
1669        nr_devices = fs_info->fs_devices->open_devices;
1670        if (!nr_devices) {
1671                smp_mb();
1672                nr_devices = fs_info->fs_devices->open_devices;
1673                ASSERT(nr_devices);
1674                if (!nr_devices) {
1675                        *free_bytes = 0;
1676                        return 0;
1677                }
1678        }
1679
1680        devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1681                               GFP_NOFS);
1682        if (!devices_info)
1683                return -ENOMEM;
1684
1685        /* calc min stripe number for data space alloction */
1686        type = btrfs_get_alloc_profile(root, 1);
1687        if (type & BTRFS_BLOCK_GROUP_RAID0) {
1688                min_stripes = 2;
1689                num_stripes = nr_devices;
1690        } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1691                min_stripes = 2;
1692                num_stripes = 2;
1693        } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1694                min_stripes = 4;
1695                num_stripes = 4;
1696        }
1697
1698        if (type & BTRFS_BLOCK_GROUP_DUP)
1699                min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1700        else
1701                min_stripe_size = BTRFS_STRIPE_LEN;
1702
1703        if (fs_info->alloc_start)
1704                mutex_lock(&fs_devices->device_list_mutex);
1705        rcu_read_lock();
1706        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1707                if (!device->in_fs_metadata || !device->bdev ||
1708                    device->is_tgtdev_for_dev_replace)
1709                        continue;
1710
1711                if (i >= nr_devices)
1712                        break;
1713
1714                avail_space = device->total_bytes - device->bytes_used;
1715
1716                /* align with stripe_len */
1717                do_div(avail_space, BTRFS_STRIPE_LEN);
1718                avail_space *= BTRFS_STRIPE_LEN;
1719
1720                /*
1721                 * In order to avoid overwritting the superblock on the drive,
1722                 * btrfs starts at an offset of at least 1MB when doing chunk
1723                 * allocation.
1724                 */
1725                skip_space = 1024 * 1024;
1726
1727                /* user can set the offset in fs_info->alloc_start. */
1728                if (fs_info->alloc_start &&
1729                    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1730                    device->total_bytes) {
1731                        rcu_read_unlock();
1732                        skip_space = max(fs_info->alloc_start, skip_space);
1733
1734                        /*
1735                         * btrfs can not use the free space in
1736                         * [0, skip_space - 1], we must subtract it from the
1737                         * total. In order to implement it, we account the used
1738                         * space in this range first.
1739                         */
1740                        ret = btrfs_account_dev_extents_size(device, 0,
1741                                                             skip_space - 1,
1742                                                             &used_space);
1743                        if (ret) {
1744                                kfree(devices_info);
1745                                mutex_unlock(&fs_devices->device_list_mutex);
1746                                return ret;
1747                        }
1748
1749                        rcu_read_lock();
1750
1751                        /* calc the free space in [0, skip_space - 1] */
1752                        skip_space -= used_space;
1753                }
1754
1755                /*
1756                 * we can use the free space in [0, skip_space - 1], subtract
1757                 * it from the total.
1758                 */
1759                if (avail_space && avail_space >= skip_space)
1760                        avail_space -= skip_space;
1761                else
1762                        avail_space = 0;
1763
1764                if (avail_space < min_stripe_size)
1765                        continue;
1766
1767                devices_info[i].dev = device;
1768                devices_info[i].max_avail = avail_space;
1769
1770                i++;
1771        }
1772        rcu_read_unlock();
1773        if (fs_info->alloc_start)
1774                mutex_unlock(&fs_devices->device_list_mutex);
1775
1776        nr_devices = i;
1777
1778        btrfs_descending_sort_devices(devices_info, nr_devices);
1779
1780        i = nr_devices - 1;
1781        avail_space = 0;
1782        while (nr_devices >= min_stripes) {
1783                if (num_stripes > nr_devices)
1784                        num_stripes = nr_devices;
1785
1786                if (devices_info[i].max_avail >= min_stripe_size) {
1787                        int j;
1788                        u64 alloc_size;
1789
1790                        avail_space += devices_info[i].max_avail * num_stripes;
1791                        alloc_size = devices_info[i].max_avail;
1792                        for (j = i + 1 - num_stripes; j <= i; j++)
1793                                devices_info[j].max_avail -= alloc_size;
1794                }
1795                i--;
1796                nr_devices--;
1797        }
1798
1799        kfree(devices_info);
1800        *free_bytes = avail_space;
1801        return 0;
1802}
1803
1804/*
1805 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1806 *
1807 * If there's a redundant raid level at DATA block groups, use the respective
1808 * multiplier to scale the sizes.
1809 *
1810 * Unused device space usage is based on simulating the chunk allocator
1811 * algorithm that respects the device sizes, order of allocations and the
1812 * 'alloc_start' value, this is a close approximation of the actual use but
1813 * there are other factors that may change the result (like a new metadata
1814 * chunk).
1815 *
1816 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1817 * available appears slightly larger.
1818 */
1819static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1820{
1821        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1822        struct btrfs_super_block *disk_super = fs_info->super_copy;
1823        struct list_head *head = &fs_info->space_info;
1824        struct btrfs_space_info *found;
1825        u64 total_used = 0;
1826        u64 total_free_data = 0;
1827        int bits = dentry->d_sb->s_blocksize_bits;
1828        __be32 *fsid = (__be32 *)fs_info->fsid;
1829        unsigned factor = 1;
1830        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1831        int ret;
1832
1833        /*
1834         * holding chunk_muext to avoid allocating new chunks, holding
1835         * device_list_mutex to avoid the device being removed
1836         */
1837        rcu_read_lock();
1838        list_for_each_entry_rcu(found, head, list) {
1839                if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1840                        int i;
1841
1842                        total_free_data += found->disk_total - found->disk_used;
1843                        total_free_data -=
1844                                btrfs_account_ro_block_groups_free_space(found);
1845
1846                        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1847                                if (!list_empty(&found->block_groups[i])) {
1848                                        switch (i) {
1849                                        case BTRFS_RAID_DUP:
1850                                        case BTRFS_RAID_RAID1:
1851                                        case BTRFS_RAID_RAID10:
1852                                                factor = 2;
1853                                        }
1854                                }
1855                        }
1856                }
1857
1858                total_used += found->disk_used;
1859        }
1860
1861        rcu_read_unlock();
1862
1863        buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1864        buf->f_blocks >>= bits;
1865        buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1866
1867        /* Account global block reserve as used, it's in logical size already */
1868        spin_lock(&block_rsv->lock);
1869        buf->f_bfree -= block_rsv->size >> bits;
1870        spin_unlock(&block_rsv->lock);
1871
1872        buf->f_bavail = div_u64(total_free_data, factor);
1873        ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1874        if (ret)
1875                return ret;
1876        buf->f_bavail += div_u64(total_free_data, factor);
1877        buf->f_bavail = buf->f_bavail >> bits;
1878
1879        buf->f_type = BTRFS_SUPER_MAGIC;
1880        buf->f_bsize = dentry->d_sb->s_blocksize;
1881        buf->f_namelen = BTRFS_NAME_LEN;
1882
1883        /* We treat it as constant endianness (it doesn't matter _which_)
1884           because we want the fsid to come out the same whether mounted
1885           on a big-endian or little-endian host */
1886        buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1887        buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1888        /* Mask in the root object ID too, to disambiguate subvols */
1889        buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1890        buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1891
1892        return 0;
1893}
1894
1895static void btrfs_kill_super(struct super_block *sb)
1896{
1897        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1898        kill_anon_super(sb);
1899        free_fs_info(fs_info);
1900}
1901
1902static struct file_system_type btrfs_fs_type = {
1903        .owner          = THIS_MODULE,
1904        .name           = "btrfs",
1905        .mount          = btrfs_mount,
1906        .kill_sb        = btrfs_kill_super,
1907        .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
1908};
1909MODULE_ALIAS_FS("btrfs");
1910
1911/*
1912 * used by btrfsctl to scan devices when no FS is mounted
1913 */
1914static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1915                                unsigned long arg)
1916{
1917        struct btrfs_ioctl_vol_args *vol;
1918        struct btrfs_fs_devices *fs_devices;
1919        int ret = -ENOTTY;
1920
1921        if (!capable(CAP_SYS_ADMIN))
1922                return -EPERM;
1923
1924        vol = memdup_user((void __user *)arg, sizeof(*vol));
1925        if (IS_ERR(vol))
1926                return PTR_ERR(vol);
1927
1928        switch (cmd) {
1929        case BTRFS_IOC_SCAN_DEV:
1930                ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1931                                            &btrfs_fs_type, &fs_devices);
1932                break;
1933        case BTRFS_IOC_DEVICES_READY:
1934                ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1935                                            &btrfs_fs_type, &fs_devices);
1936                if (ret)
1937                        break;
1938                ret = !(fs_devices->num_devices == fs_devices->total_devices);
1939                break;
1940        }
1941
1942        kfree(vol);
1943        return ret;
1944}
1945
1946static int btrfs_freeze(struct super_block *sb)
1947{
1948        struct btrfs_trans_handle *trans;
1949        struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1950
1951        trans = btrfs_attach_transaction_barrier(root);
1952        if (IS_ERR(trans)) {
1953                /* no transaction, don't bother */
1954                if (PTR_ERR(trans) == -ENOENT)
1955                        return 0;
1956                return PTR_ERR(trans);
1957        }
1958        return btrfs_commit_transaction(trans, root);
1959}
1960
1961static int btrfs_unfreeze(struct super_block *sb)
1962{
1963        return 0;
1964}
1965
1966static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1967{
1968        struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1969        struct btrfs_fs_devices *cur_devices;
1970        struct btrfs_device *dev, *first_dev = NULL;
1971        struct list_head *head;
1972        struct rcu_string *name;
1973
1974        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1975        cur_devices = fs_info->fs_devices;
1976        while (cur_devices) {
1977                head = &cur_devices->devices;
1978                list_for_each_entry(dev, head, dev_list) {
1979                        if (dev->missing)
1980                                continue;
1981                        if (!dev->name)
1982                                continue;
1983                        if (!first_dev || dev->devid < first_dev->devid)
1984                                first_dev = dev;
1985                }
1986                cur_devices = cur_devices->seed;
1987        }
1988
1989        if (first_dev) {
1990                rcu_read_lock();
1991                name = rcu_dereference(first_dev->name);
1992                seq_escape(m, name->str, " \t\n\\");
1993                rcu_read_unlock();
1994        } else {
1995                WARN_ON(1);
1996        }
1997        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1998        return 0;
1999}
2000
2001static const struct super_operations btrfs_super_ops = {
2002        .drop_inode     = btrfs_drop_inode,
2003        .evict_inode    = btrfs_evict_inode,
2004        .put_super      = btrfs_put_super,
2005        .sync_fs        = btrfs_sync_fs,
2006        .show_options   = btrfs_show_options,
2007        .show_devname   = btrfs_show_devname,
2008        .write_inode    = btrfs_write_inode,
2009        .alloc_inode    = btrfs_alloc_inode,
2010        .destroy_inode  = btrfs_destroy_inode,
2011        .statfs         = btrfs_statfs,
2012        .remount_fs     = btrfs_remount,
2013        .freeze_fs      = btrfs_freeze,
2014        .unfreeze_fs    = btrfs_unfreeze,
2015};
2016
2017static const struct file_operations btrfs_ctl_fops = {
2018        .unlocked_ioctl  = btrfs_control_ioctl,
2019        .compat_ioctl = btrfs_control_ioctl,
2020        .owner   = THIS_MODULE,
2021        .llseek = noop_llseek,
2022};
2023
2024static struct miscdevice btrfs_misc = {
2025        .minor          = BTRFS_MINOR,
2026        .name           = "btrfs-control",
2027        .fops           = &btrfs_ctl_fops
2028};
2029
2030MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2031MODULE_ALIAS("devname:btrfs-control");
2032
2033static int btrfs_interface_init(void)
2034{
2035        return misc_register(&btrfs_misc);
2036}
2037
2038static void btrfs_interface_exit(void)
2039{
2040        if (misc_deregister(&btrfs_misc) < 0)
2041                printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2042}
2043
2044static void btrfs_print_info(void)
2045{
2046        printk(KERN_INFO "Btrfs loaded"
2047#ifdef CONFIG_BTRFS_DEBUG
2048                        ", debug=on"
2049#endif
2050#ifdef CONFIG_BTRFS_ASSERT
2051                        ", assert=on"
2052#endif
2053#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2054                        ", integrity-checker=on"
2055#endif
2056                        "\n");
2057}
2058
2059static int btrfs_run_sanity_tests(void)
2060{
2061        int ret;
2062
2063        ret = btrfs_init_test_fs();
2064        if (ret)
2065                return ret;
2066
2067        ret = btrfs_test_free_space_cache();
2068        if (ret)
2069                goto out;
2070        ret = btrfs_test_extent_buffer_operations();
2071        if (ret)
2072                goto out;
2073        ret = btrfs_test_extent_io();
2074        if (ret)
2075                goto out;
2076        ret = btrfs_test_inodes();
2077        if (ret)
2078                goto out;
2079        ret = btrfs_test_qgroups();
2080out:
2081        btrfs_destroy_test_fs();
2082        return ret;
2083}
2084
2085static int __init init_btrfs_fs(void)
2086{
2087        int err;
2088
2089        err = btrfs_hash_init();
2090        if (err)
2091                return err;
2092
2093        btrfs_props_init();
2094
2095        err = btrfs_init_sysfs();
2096        if (err)
2097                goto free_hash;
2098
2099        btrfs_init_compress();
2100
2101        err = btrfs_init_cachep();
2102        if (err)
2103                goto free_compress;
2104
2105        err = extent_io_init();
2106        if (err)
2107                goto free_cachep;
2108
2109        err = extent_map_init();
2110        if (err)
2111                goto free_extent_io;
2112
2113        err = ordered_data_init();
2114        if (err)
2115                goto free_extent_map;
2116
2117        err = btrfs_delayed_inode_init();
2118        if (err)
2119                goto free_ordered_data;
2120
2121        err = btrfs_auto_defrag_init();
2122        if (err)
2123                goto free_delayed_inode;
2124
2125        err = btrfs_delayed_ref_init();
2126        if (err)
2127                goto free_auto_defrag;
2128
2129        err = btrfs_prelim_ref_init();
2130        if (err)
2131                goto free_delayed_ref;
2132
2133        err = btrfs_end_io_wq_init();
2134        if (err)
2135                goto free_prelim_ref;
2136
2137        err = btrfs_interface_init();
2138        if (err)
2139                goto free_end_io_wq;
2140
2141        btrfs_init_lockdep();
2142
2143        btrfs_print_info();
2144
2145        err = btrfs_run_sanity_tests();
2146        if (err)
2147                goto unregister_ioctl;
2148
2149        err = register_filesystem(&btrfs_fs_type);
2150        if (err)
2151                goto unregister_ioctl;
2152
2153        return 0;
2154
2155unregister_ioctl:
2156        btrfs_interface_exit();
2157free_end_io_wq:
2158        btrfs_end_io_wq_exit();
2159free_prelim_ref:
2160        btrfs_prelim_ref_exit();
2161free_delayed_ref:
2162        btrfs_delayed_ref_exit();
2163free_auto_defrag:
2164        btrfs_auto_defrag_exit();
2165free_delayed_inode:
2166        btrfs_delayed_inode_exit();
2167free_ordered_data:
2168        ordered_data_exit();
2169free_extent_map:
2170        extent_map_exit();
2171free_extent_io:
2172        extent_io_exit();
2173free_cachep:
2174        btrfs_destroy_cachep();
2175free_compress:
2176        btrfs_exit_compress();
2177        btrfs_exit_sysfs();
2178free_hash:
2179        btrfs_hash_exit();
2180        return err;
2181}
2182
2183static void __exit exit_btrfs_fs(void)
2184{
2185        btrfs_destroy_cachep();
2186        btrfs_delayed_ref_exit();
2187        btrfs_auto_defrag_exit();
2188        btrfs_delayed_inode_exit();
2189        btrfs_prelim_ref_exit();
2190        ordered_data_exit();
2191        extent_map_exit();
2192        extent_io_exit();
2193        btrfs_interface_exit();
2194        btrfs_end_io_wq_exit();
2195        unregister_filesystem(&btrfs_fs_type);
2196        btrfs_exit_sysfs();
2197        btrfs_cleanup_fs_uuids();
2198        btrfs_exit_compress();
2199        btrfs_hash_exit();
2200}
2201
2202late_initcall(init_btrfs_fs);
2203module_exit(exit_btrfs_fs)
2204
2205MODULE_LICENSE("GPL");
2206