linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29
  30/* magic values for the inode_only field in btrfs_log_inode:
  31 *
  32 * LOG_INODE_ALL means to log everything
  33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  34 * during log replay
  35 */
  36#define LOG_INODE_ALL 0
  37#define LOG_INODE_EXISTS 1
  38
  39/*
  40 * directory trouble cases
  41 *
  42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  43 * log, we must force a full commit before doing an fsync of the directory
  44 * where the unlink was done.
  45 * ---> record transid of last unlink/rename per directory
  46 *
  47 * mkdir foo/some_dir
  48 * normal commit
  49 * rename foo/some_dir foo2/some_dir
  50 * mkdir foo/some_dir
  51 * fsync foo/some_dir/some_file
  52 *
  53 * The fsync above will unlink the original some_dir without recording
  54 * it in its new location (foo2).  After a crash, some_dir will be gone
  55 * unless the fsync of some_file forces a full commit
  56 *
  57 * 2) we must log any new names for any file or dir that is in the fsync
  58 * log. ---> check inode while renaming/linking.
  59 *
  60 * 2a) we must log any new names for any file or dir during rename
  61 * when the directory they are being removed from was logged.
  62 * ---> check inode and old parent dir during rename
  63 *
  64 *  2a is actually the more important variant.  With the extra logging
  65 *  a crash might unlink the old name without recreating the new one
  66 *
  67 * 3) after a crash, we must go through any directories with a link count
  68 * of zero and redo the rm -rf
  69 *
  70 * mkdir f1/foo
  71 * normal commit
  72 * rm -rf f1/foo
  73 * fsync(f1)
  74 *
  75 * The directory f1 was fully removed from the FS, but fsync was never
  76 * called on f1, only its parent dir.  After a crash the rm -rf must
  77 * be replayed.  This must be able to recurse down the entire
  78 * directory tree.  The inode link count fixup code takes care of the
  79 * ugly details.
  80 */
  81
  82/*
  83 * stages for the tree walking.  The first
  84 * stage (0) is to only pin down the blocks we find
  85 * the second stage (1) is to make sure that all the inodes
  86 * we find in the log are created in the subvolume.
  87 *
  88 * The last stage is to deal with directories and links and extents
  89 * and all the other fun semantics
  90 */
  91#define LOG_WALK_PIN_ONLY 0
  92#define LOG_WALK_REPLAY_INODES 1
  93#define LOG_WALK_REPLAY_DIR_INDEX 2
  94#define LOG_WALK_REPLAY_ALL 3
  95
  96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  97                           struct btrfs_root *root, struct inode *inode,
  98                           int inode_only,
  99                           const loff_t start,
 100                           const loff_t end,
 101                           struct btrfs_log_ctx *ctx);
 102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 103                             struct btrfs_root *root,
 104                             struct btrfs_path *path, u64 objectid);
 105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 106                                       struct btrfs_root *root,
 107                                       struct btrfs_root *log,
 108                                       struct btrfs_path *path,
 109                                       u64 dirid, int del_all);
 110
 111/*
 112 * tree logging is a special write ahead log used to make sure that
 113 * fsyncs and O_SYNCs can happen without doing full tree commits.
 114 *
 115 * Full tree commits are expensive because they require commonly
 116 * modified blocks to be recowed, creating many dirty pages in the
 117 * extent tree an 4x-6x higher write load than ext3.
 118 *
 119 * Instead of doing a tree commit on every fsync, we use the
 120 * key ranges and transaction ids to find items for a given file or directory
 121 * that have changed in this transaction.  Those items are copied into
 122 * a special tree (one per subvolume root), that tree is written to disk
 123 * and then the fsync is considered complete.
 124 *
 125 * After a crash, items are copied out of the log-tree back into the
 126 * subvolume tree.  Any file data extents found are recorded in the extent
 127 * allocation tree, and the log-tree freed.
 128 *
 129 * The log tree is read three times, once to pin down all the extents it is
 130 * using in ram and once, once to create all the inodes logged in the tree
 131 * and once to do all the other items.
 132 */
 133
 134/*
 135 * start a sub transaction and setup the log tree
 136 * this increments the log tree writer count to make the people
 137 * syncing the tree wait for us to finish
 138 */
 139static int start_log_trans(struct btrfs_trans_handle *trans,
 140                           struct btrfs_root *root,
 141                           struct btrfs_log_ctx *ctx)
 142{
 143        int index;
 144        int ret;
 145
 146        mutex_lock(&root->log_mutex);
 147        if (root->log_root) {
 148                if (btrfs_need_log_full_commit(root->fs_info, trans)) {
 149                        ret = -EAGAIN;
 150                        goto out;
 151                }
 152                if (!root->log_start_pid) {
 153                        root->log_start_pid = current->pid;
 154                        clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 155                } else if (root->log_start_pid != current->pid) {
 156                        set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 157                }
 158
 159                atomic_inc(&root->log_batch);
 160                atomic_inc(&root->log_writers);
 161                if (ctx) {
 162                        index = root->log_transid % 2;
 163                        list_add_tail(&ctx->list, &root->log_ctxs[index]);
 164                        ctx->log_transid = root->log_transid;
 165                }
 166                mutex_unlock(&root->log_mutex);
 167                return 0;
 168        }
 169
 170        ret = 0;
 171        mutex_lock(&root->fs_info->tree_log_mutex);
 172        if (!root->fs_info->log_root_tree)
 173                ret = btrfs_init_log_root_tree(trans, root->fs_info);
 174        mutex_unlock(&root->fs_info->tree_log_mutex);
 175        if (ret)
 176                goto out;
 177
 178        if (!root->log_root) {
 179                ret = btrfs_add_log_tree(trans, root);
 180                if (ret)
 181                        goto out;
 182        }
 183        clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 184        root->log_start_pid = current->pid;
 185        atomic_inc(&root->log_batch);
 186        atomic_inc(&root->log_writers);
 187        if (ctx) {
 188                index = root->log_transid % 2;
 189                list_add_tail(&ctx->list, &root->log_ctxs[index]);
 190                ctx->log_transid = root->log_transid;
 191        }
 192out:
 193        mutex_unlock(&root->log_mutex);
 194        return ret;
 195}
 196
 197/*
 198 * returns 0 if there was a log transaction running and we were able
 199 * to join, or returns -ENOENT if there were not transactions
 200 * in progress
 201 */
 202static int join_running_log_trans(struct btrfs_root *root)
 203{
 204        int ret = -ENOENT;
 205
 206        smp_mb();
 207        if (!root->log_root)
 208                return -ENOENT;
 209
 210        mutex_lock(&root->log_mutex);
 211        if (root->log_root) {
 212                ret = 0;
 213                atomic_inc(&root->log_writers);
 214        }
 215        mutex_unlock(&root->log_mutex);
 216        return ret;
 217}
 218
 219/*
 220 * This either makes the current running log transaction wait
 221 * until you call btrfs_end_log_trans() or it makes any future
 222 * log transactions wait until you call btrfs_end_log_trans()
 223 */
 224int btrfs_pin_log_trans(struct btrfs_root *root)
 225{
 226        int ret = -ENOENT;
 227
 228        mutex_lock(&root->log_mutex);
 229        atomic_inc(&root->log_writers);
 230        mutex_unlock(&root->log_mutex);
 231        return ret;
 232}
 233
 234/*
 235 * indicate we're done making changes to the log tree
 236 * and wake up anyone waiting to do a sync
 237 */
 238void btrfs_end_log_trans(struct btrfs_root *root)
 239{
 240        if (atomic_dec_and_test(&root->log_writers)) {
 241                smp_mb();
 242                if (waitqueue_active(&root->log_writer_wait))
 243                        wake_up(&root->log_writer_wait);
 244        }
 245}
 246
 247
 248/*
 249 * the walk control struct is used to pass state down the chain when
 250 * processing the log tree.  The stage field tells us which part
 251 * of the log tree processing we are currently doing.  The others
 252 * are state fields used for that specific part
 253 */
 254struct walk_control {
 255        /* should we free the extent on disk when done?  This is used
 256         * at transaction commit time while freeing a log tree
 257         */
 258        int free;
 259
 260        /* should we write out the extent buffer?  This is used
 261         * while flushing the log tree to disk during a sync
 262         */
 263        int write;
 264
 265        /* should we wait for the extent buffer io to finish?  Also used
 266         * while flushing the log tree to disk for a sync
 267         */
 268        int wait;
 269
 270        /* pin only walk, we record which extents on disk belong to the
 271         * log trees
 272         */
 273        int pin;
 274
 275        /* what stage of the replay code we're currently in */
 276        int stage;
 277
 278        /* the root we are currently replaying */
 279        struct btrfs_root *replay_dest;
 280
 281        /* the trans handle for the current replay */
 282        struct btrfs_trans_handle *trans;
 283
 284        /* the function that gets used to process blocks we find in the
 285         * tree.  Note the extent_buffer might not be up to date when it is
 286         * passed in, and it must be checked or read if you need the data
 287         * inside it
 288         */
 289        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 290                            struct walk_control *wc, u64 gen);
 291};
 292
 293/*
 294 * process_func used to pin down extents, write them or wait on them
 295 */
 296static int process_one_buffer(struct btrfs_root *log,
 297                              struct extent_buffer *eb,
 298                              struct walk_control *wc, u64 gen)
 299{
 300        int ret = 0;
 301
 302        /*
 303         * If this fs is mixed then we need to be able to process the leaves to
 304         * pin down any logged extents, so we have to read the block.
 305         */
 306        if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
 307                ret = btrfs_read_buffer(eb, gen);
 308                if (ret)
 309                        return ret;
 310        }
 311
 312        if (wc->pin)
 313                ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
 314                                                      eb->start, eb->len);
 315
 316        if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 317                if (wc->pin && btrfs_header_level(eb) == 0)
 318                        ret = btrfs_exclude_logged_extents(log, eb);
 319                if (wc->write)
 320                        btrfs_write_tree_block(eb);
 321                if (wc->wait)
 322                        btrfs_wait_tree_block_writeback(eb);
 323        }
 324        return ret;
 325}
 326
 327/*
 328 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 329 * to the src data we are copying out.
 330 *
 331 * root is the tree we are copying into, and path is a scratch
 332 * path for use in this function (it should be released on entry and
 333 * will be released on exit).
 334 *
 335 * If the key is already in the destination tree the existing item is
 336 * overwritten.  If the existing item isn't big enough, it is extended.
 337 * If it is too large, it is truncated.
 338 *
 339 * If the key isn't in the destination yet, a new item is inserted.
 340 */
 341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 342                                   struct btrfs_root *root,
 343                                   struct btrfs_path *path,
 344                                   struct extent_buffer *eb, int slot,
 345                                   struct btrfs_key *key)
 346{
 347        int ret;
 348        u32 item_size;
 349        u64 saved_i_size = 0;
 350        int save_old_i_size = 0;
 351        unsigned long src_ptr;
 352        unsigned long dst_ptr;
 353        int overwrite_root = 0;
 354        bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 355
 356        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 357                overwrite_root = 1;
 358
 359        item_size = btrfs_item_size_nr(eb, slot);
 360        src_ptr = btrfs_item_ptr_offset(eb, slot);
 361
 362        /* look for the key in the destination tree */
 363        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 364        if (ret < 0)
 365                return ret;
 366
 367        if (ret == 0) {
 368                char *src_copy;
 369                char *dst_copy;
 370                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 371                                                  path->slots[0]);
 372                if (dst_size != item_size)
 373                        goto insert;
 374
 375                if (item_size == 0) {
 376                        btrfs_release_path(path);
 377                        return 0;
 378                }
 379                dst_copy = kmalloc(item_size, GFP_NOFS);
 380                src_copy = kmalloc(item_size, GFP_NOFS);
 381                if (!dst_copy || !src_copy) {
 382                        btrfs_release_path(path);
 383                        kfree(dst_copy);
 384                        kfree(src_copy);
 385                        return -ENOMEM;
 386                }
 387
 388                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 389
 390                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 391                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 392                                   item_size);
 393                ret = memcmp(dst_copy, src_copy, item_size);
 394
 395                kfree(dst_copy);
 396                kfree(src_copy);
 397                /*
 398                 * they have the same contents, just return, this saves
 399                 * us from cowing blocks in the destination tree and doing
 400                 * extra writes that may not have been done by a previous
 401                 * sync
 402                 */
 403                if (ret == 0) {
 404                        btrfs_release_path(path);
 405                        return 0;
 406                }
 407
 408                /*
 409                 * We need to load the old nbytes into the inode so when we
 410                 * replay the extents we've logged we get the right nbytes.
 411                 */
 412                if (inode_item) {
 413                        struct btrfs_inode_item *item;
 414                        u64 nbytes;
 415                        u32 mode;
 416
 417                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 418                                              struct btrfs_inode_item);
 419                        nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 420                        item = btrfs_item_ptr(eb, slot,
 421                                              struct btrfs_inode_item);
 422                        btrfs_set_inode_nbytes(eb, item, nbytes);
 423
 424                        /*
 425                         * If this is a directory we need to reset the i_size to
 426                         * 0 so that we can set it up properly when replaying
 427                         * the rest of the items in this log.
 428                         */
 429                        mode = btrfs_inode_mode(eb, item);
 430                        if (S_ISDIR(mode))
 431                                btrfs_set_inode_size(eb, item, 0);
 432                }
 433        } else if (inode_item) {
 434                struct btrfs_inode_item *item;
 435                u32 mode;
 436
 437                /*
 438                 * New inode, set nbytes to 0 so that the nbytes comes out
 439                 * properly when we replay the extents.
 440                 */
 441                item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 442                btrfs_set_inode_nbytes(eb, item, 0);
 443
 444                /*
 445                 * If this is a directory we need to reset the i_size to 0 so
 446                 * that we can set it up properly when replaying the rest of
 447                 * the items in this log.
 448                 */
 449                mode = btrfs_inode_mode(eb, item);
 450                if (S_ISDIR(mode))
 451                        btrfs_set_inode_size(eb, item, 0);
 452        }
 453insert:
 454        btrfs_release_path(path);
 455        /* try to insert the key into the destination tree */
 456        ret = btrfs_insert_empty_item(trans, root, path,
 457                                      key, item_size);
 458
 459        /* make sure any existing item is the correct size */
 460        if (ret == -EEXIST) {
 461                u32 found_size;
 462                found_size = btrfs_item_size_nr(path->nodes[0],
 463                                                path->slots[0]);
 464                if (found_size > item_size)
 465                        btrfs_truncate_item(root, path, item_size, 1);
 466                else if (found_size < item_size)
 467                        btrfs_extend_item(root, path,
 468                                          item_size - found_size);
 469        } else if (ret) {
 470                return ret;
 471        }
 472        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 473                                        path->slots[0]);
 474
 475        /* don't overwrite an existing inode if the generation number
 476         * was logged as zero.  This is done when the tree logging code
 477         * is just logging an inode to make sure it exists after recovery.
 478         *
 479         * Also, don't overwrite i_size on directories during replay.
 480         * log replay inserts and removes directory items based on the
 481         * state of the tree found in the subvolume, and i_size is modified
 482         * as it goes
 483         */
 484        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 485                struct btrfs_inode_item *src_item;
 486                struct btrfs_inode_item *dst_item;
 487
 488                src_item = (struct btrfs_inode_item *)src_ptr;
 489                dst_item = (struct btrfs_inode_item *)dst_ptr;
 490
 491                if (btrfs_inode_generation(eb, src_item) == 0)
 492                        goto no_copy;
 493
 494                if (overwrite_root &&
 495                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 496                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 497                        save_old_i_size = 1;
 498                        saved_i_size = btrfs_inode_size(path->nodes[0],
 499                                                        dst_item);
 500                }
 501        }
 502
 503        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 504                           src_ptr, item_size);
 505
 506        if (save_old_i_size) {
 507                struct btrfs_inode_item *dst_item;
 508                dst_item = (struct btrfs_inode_item *)dst_ptr;
 509                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 510        }
 511
 512        /* make sure the generation is filled in */
 513        if (key->type == BTRFS_INODE_ITEM_KEY) {
 514                struct btrfs_inode_item *dst_item;
 515                dst_item = (struct btrfs_inode_item *)dst_ptr;
 516                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 517                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 518                                                   trans->transid);
 519                }
 520        }
 521no_copy:
 522        btrfs_mark_buffer_dirty(path->nodes[0]);
 523        btrfs_release_path(path);
 524        return 0;
 525}
 526
 527/*
 528 * simple helper to read an inode off the disk from a given root
 529 * This can only be called for subvolume roots and not for the log
 530 */
 531static noinline struct inode *read_one_inode(struct btrfs_root *root,
 532                                             u64 objectid)
 533{
 534        struct btrfs_key key;
 535        struct inode *inode;
 536
 537        key.objectid = objectid;
 538        key.type = BTRFS_INODE_ITEM_KEY;
 539        key.offset = 0;
 540        inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 541        if (IS_ERR(inode)) {
 542                inode = NULL;
 543        } else if (is_bad_inode(inode)) {
 544                iput(inode);
 545                inode = NULL;
 546        }
 547        return inode;
 548}
 549
 550/* replays a single extent in 'eb' at 'slot' with 'key' into the
 551 * subvolume 'root'.  path is released on entry and should be released
 552 * on exit.
 553 *
 554 * extents in the log tree have not been allocated out of the extent
 555 * tree yet.  So, this completes the allocation, taking a reference
 556 * as required if the extent already exists or creating a new extent
 557 * if it isn't in the extent allocation tree yet.
 558 *
 559 * The extent is inserted into the file, dropping any existing extents
 560 * from the file that overlap the new one.
 561 */
 562static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 563                                      struct btrfs_root *root,
 564                                      struct btrfs_path *path,
 565                                      struct extent_buffer *eb, int slot,
 566                                      struct btrfs_key *key)
 567{
 568        int found_type;
 569        u64 extent_end;
 570        u64 start = key->offset;
 571        u64 nbytes = 0;
 572        struct btrfs_file_extent_item *item;
 573        struct inode *inode = NULL;
 574        unsigned long size;
 575        int ret = 0;
 576
 577        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 578        found_type = btrfs_file_extent_type(eb, item);
 579
 580        if (found_type == BTRFS_FILE_EXTENT_REG ||
 581            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 582                nbytes = btrfs_file_extent_num_bytes(eb, item);
 583                extent_end = start + nbytes;
 584
 585                /*
 586                 * We don't add to the inodes nbytes if we are prealloc or a
 587                 * hole.
 588                 */
 589                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 590                        nbytes = 0;
 591        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 592                size = btrfs_file_extent_inline_len(eb, slot, item);
 593                nbytes = btrfs_file_extent_ram_bytes(eb, item);
 594                extent_end = ALIGN(start + size, root->sectorsize);
 595        } else {
 596                ret = 0;
 597                goto out;
 598        }
 599
 600        inode = read_one_inode(root, key->objectid);
 601        if (!inode) {
 602                ret = -EIO;
 603                goto out;
 604        }
 605
 606        /*
 607         * first check to see if we already have this extent in the
 608         * file.  This must be done before the btrfs_drop_extents run
 609         * so we don't try to drop this extent.
 610         */
 611        ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 612                                       start, 0);
 613
 614        if (ret == 0 &&
 615            (found_type == BTRFS_FILE_EXTENT_REG ||
 616             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 617                struct btrfs_file_extent_item cmp1;
 618                struct btrfs_file_extent_item cmp2;
 619                struct btrfs_file_extent_item *existing;
 620                struct extent_buffer *leaf;
 621
 622                leaf = path->nodes[0];
 623                existing = btrfs_item_ptr(leaf, path->slots[0],
 624                                          struct btrfs_file_extent_item);
 625
 626                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 627                                   sizeof(cmp1));
 628                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 629                                   sizeof(cmp2));
 630
 631                /*
 632                 * we already have a pointer to this exact extent,
 633                 * we don't have to do anything
 634                 */
 635                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 636                        btrfs_release_path(path);
 637                        goto out;
 638                }
 639        }
 640        btrfs_release_path(path);
 641
 642        /* drop any overlapping extents */
 643        ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 644        if (ret)
 645                goto out;
 646
 647        if (found_type == BTRFS_FILE_EXTENT_REG ||
 648            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 649                u64 offset;
 650                unsigned long dest_offset;
 651                struct btrfs_key ins;
 652
 653                ret = btrfs_insert_empty_item(trans, root, path, key,
 654                                              sizeof(*item));
 655                if (ret)
 656                        goto out;
 657                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 658                                                    path->slots[0]);
 659                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 660                                (unsigned long)item,  sizeof(*item));
 661
 662                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 663                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 664                ins.type = BTRFS_EXTENT_ITEM_KEY;
 665                offset = key->offset - btrfs_file_extent_offset(eb, item);
 666
 667                if (ins.objectid > 0) {
 668                        u64 csum_start;
 669                        u64 csum_end;
 670                        LIST_HEAD(ordered_sums);
 671                        /*
 672                         * is this extent already allocated in the extent
 673                         * allocation tree?  If so, just add a reference
 674                         */
 675                        ret = btrfs_lookup_data_extent(root, ins.objectid,
 676                                                ins.offset);
 677                        if (ret == 0) {
 678                                ret = btrfs_inc_extent_ref(trans, root,
 679                                                ins.objectid, ins.offset,
 680                                                0, root->root_key.objectid,
 681                                                key->objectid, offset, 0);
 682                                if (ret)
 683                                        goto out;
 684                        } else {
 685                                /*
 686                                 * insert the extent pointer in the extent
 687                                 * allocation tree
 688                                 */
 689                                ret = btrfs_alloc_logged_file_extent(trans,
 690                                                root, root->root_key.objectid,
 691                                                key->objectid, offset, &ins);
 692                                if (ret)
 693                                        goto out;
 694                        }
 695                        btrfs_release_path(path);
 696
 697                        if (btrfs_file_extent_compression(eb, item)) {
 698                                csum_start = ins.objectid;
 699                                csum_end = csum_start + ins.offset;
 700                        } else {
 701                                csum_start = ins.objectid +
 702                                        btrfs_file_extent_offset(eb, item);
 703                                csum_end = csum_start +
 704                                        btrfs_file_extent_num_bytes(eb, item);
 705                        }
 706
 707                        ret = btrfs_lookup_csums_range(root->log_root,
 708                                                csum_start, csum_end - 1,
 709                                                &ordered_sums, 0);
 710                        if (ret)
 711                                goto out;
 712                        while (!list_empty(&ordered_sums)) {
 713                                struct btrfs_ordered_sum *sums;
 714                                sums = list_entry(ordered_sums.next,
 715                                                struct btrfs_ordered_sum,
 716                                                list);
 717                                if (!ret)
 718                                        ret = btrfs_csum_file_blocks(trans,
 719                                                root->fs_info->csum_root,
 720                                                sums);
 721                                list_del(&sums->list);
 722                                kfree(sums);
 723                        }
 724                        if (ret)
 725                                goto out;
 726                } else {
 727                        btrfs_release_path(path);
 728                }
 729        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 730                /* inline extents are easy, we just overwrite them */
 731                ret = overwrite_item(trans, root, path, eb, slot, key);
 732                if (ret)
 733                        goto out;
 734        }
 735
 736        inode_add_bytes(inode, nbytes);
 737        ret = btrfs_update_inode(trans, root, inode);
 738out:
 739        if (inode)
 740                iput(inode);
 741        return ret;
 742}
 743
 744/*
 745 * when cleaning up conflicts between the directory names in the
 746 * subvolume, directory names in the log and directory names in the
 747 * inode back references, we may have to unlink inodes from directories.
 748 *
 749 * This is a helper function to do the unlink of a specific directory
 750 * item
 751 */
 752static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 753                                      struct btrfs_root *root,
 754                                      struct btrfs_path *path,
 755                                      struct inode *dir,
 756                                      struct btrfs_dir_item *di)
 757{
 758        struct inode *inode;
 759        char *name;
 760        int name_len;
 761        struct extent_buffer *leaf;
 762        struct btrfs_key location;
 763        int ret;
 764
 765        leaf = path->nodes[0];
 766
 767        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 768        name_len = btrfs_dir_name_len(leaf, di);
 769        name = kmalloc(name_len, GFP_NOFS);
 770        if (!name)
 771                return -ENOMEM;
 772
 773        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 774        btrfs_release_path(path);
 775
 776        inode = read_one_inode(root, location.objectid);
 777        if (!inode) {
 778                ret = -EIO;
 779                goto out;
 780        }
 781
 782        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 783        if (ret)
 784                goto out;
 785
 786        ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 787        if (ret)
 788                goto out;
 789        else
 790                ret = btrfs_run_delayed_items(trans, root);
 791out:
 792        kfree(name);
 793        iput(inode);
 794        return ret;
 795}
 796
 797/*
 798 * helper function to see if a given name and sequence number found
 799 * in an inode back reference are already in a directory and correctly
 800 * point to this inode
 801 */
 802static noinline int inode_in_dir(struct btrfs_root *root,
 803                                 struct btrfs_path *path,
 804                                 u64 dirid, u64 objectid, u64 index,
 805                                 const char *name, int name_len)
 806{
 807        struct btrfs_dir_item *di;
 808        struct btrfs_key location;
 809        int match = 0;
 810
 811        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 812                                         index, name, name_len, 0);
 813        if (di && !IS_ERR(di)) {
 814                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 815                if (location.objectid != objectid)
 816                        goto out;
 817        } else
 818                goto out;
 819        btrfs_release_path(path);
 820
 821        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 822        if (di && !IS_ERR(di)) {
 823                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 824                if (location.objectid != objectid)
 825                        goto out;
 826        } else
 827                goto out;
 828        match = 1;
 829out:
 830        btrfs_release_path(path);
 831        return match;
 832}
 833
 834/*
 835 * helper function to check a log tree for a named back reference in
 836 * an inode.  This is used to decide if a back reference that is
 837 * found in the subvolume conflicts with what we find in the log.
 838 *
 839 * inode backreferences may have multiple refs in a single item,
 840 * during replay we process one reference at a time, and we don't
 841 * want to delete valid links to a file from the subvolume if that
 842 * link is also in the log.
 843 */
 844static noinline int backref_in_log(struct btrfs_root *log,
 845                                   struct btrfs_key *key,
 846                                   u64 ref_objectid,
 847                                   char *name, int namelen)
 848{
 849        struct btrfs_path *path;
 850        struct btrfs_inode_ref *ref;
 851        unsigned long ptr;
 852        unsigned long ptr_end;
 853        unsigned long name_ptr;
 854        int found_name_len;
 855        int item_size;
 856        int ret;
 857        int match = 0;
 858
 859        path = btrfs_alloc_path();
 860        if (!path)
 861                return -ENOMEM;
 862
 863        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 864        if (ret != 0)
 865                goto out;
 866
 867        ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 868
 869        if (key->type == BTRFS_INODE_EXTREF_KEY) {
 870                if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 871                                                   name, namelen, NULL))
 872                        match = 1;
 873
 874                goto out;
 875        }
 876
 877        item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 878        ptr_end = ptr + item_size;
 879        while (ptr < ptr_end) {
 880                ref = (struct btrfs_inode_ref *)ptr;
 881                found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 882                if (found_name_len == namelen) {
 883                        name_ptr = (unsigned long)(ref + 1);
 884                        ret = memcmp_extent_buffer(path->nodes[0], name,
 885                                                   name_ptr, namelen);
 886                        if (ret == 0) {
 887                                match = 1;
 888                                goto out;
 889                        }
 890                }
 891                ptr = (unsigned long)(ref + 1) + found_name_len;
 892        }
 893out:
 894        btrfs_free_path(path);
 895        return match;
 896}
 897
 898static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 899                                  struct btrfs_root *root,
 900                                  struct btrfs_path *path,
 901                                  struct btrfs_root *log_root,
 902                                  struct inode *dir, struct inode *inode,
 903                                  struct extent_buffer *eb,
 904                                  u64 inode_objectid, u64 parent_objectid,
 905                                  u64 ref_index, char *name, int namelen,
 906                                  int *search_done)
 907{
 908        int ret;
 909        char *victim_name;
 910        int victim_name_len;
 911        struct extent_buffer *leaf;
 912        struct btrfs_dir_item *di;
 913        struct btrfs_key search_key;
 914        struct btrfs_inode_extref *extref;
 915
 916again:
 917        /* Search old style refs */
 918        search_key.objectid = inode_objectid;
 919        search_key.type = BTRFS_INODE_REF_KEY;
 920        search_key.offset = parent_objectid;
 921        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 922        if (ret == 0) {
 923                struct btrfs_inode_ref *victim_ref;
 924                unsigned long ptr;
 925                unsigned long ptr_end;
 926
 927                leaf = path->nodes[0];
 928
 929                /* are we trying to overwrite a back ref for the root directory
 930                 * if so, just jump out, we're done
 931                 */
 932                if (search_key.objectid == search_key.offset)
 933                        return 1;
 934
 935                /* check all the names in this back reference to see
 936                 * if they are in the log.  if so, we allow them to stay
 937                 * otherwise they must be unlinked as a conflict
 938                 */
 939                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 940                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 941                while (ptr < ptr_end) {
 942                        victim_ref = (struct btrfs_inode_ref *)ptr;
 943                        victim_name_len = btrfs_inode_ref_name_len(leaf,
 944                                                                   victim_ref);
 945                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
 946                        if (!victim_name)
 947                                return -ENOMEM;
 948
 949                        read_extent_buffer(leaf, victim_name,
 950                                           (unsigned long)(victim_ref + 1),
 951                                           victim_name_len);
 952
 953                        if (!backref_in_log(log_root, &search_key,
 954                                            parent_objectid,
 955                                            victim_name,
 956                                            victim_name_len)) {
 957                                inc_nlink(inode);
 958                                btrfs_release_path(path);
 959
 960                                ret = btrfs_unlink_inode(trans, root, dir,
 961                                                         inode, victim_name,
 962                                                         victim_name_len);
 963                                kfree(victim_name);
 964                                if (ret)
 965                                        return ret;
 966                                ret = btrfs_run_delayed_items(trans, root);
 967                                if (ret)
 968                                        return ret;
 969                                *search_done = 1;
 970                                goto again;
 971                        }
 972                        kfree(victim_name);
 973
 974                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 975                }
 976
 977                /*
 978                 * NOTE: we have searched root tree and checked the
 979                 * coresponding ref, it does not need to check again.
 980                 */
 981                *search_done = 1;
 982        }
 983        btrfs_release_path(path);
 984
 985        /* Same search but for extended refs */
 986        extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
 987                                           inode_objectid, parent_objectid, 0,
 988                                           0);
 989        if (!IS_ERR_OR_NULL(extref)) {
 990                u32 item_size;
 991                u32 cur_offset = 0;
 992                unsigned long base;
 993                struct inode *victim_parent;
 994
 995                leaf = path->nodes[0];
 996
 997                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 998                base = btrfs_item_ptr_offset(leaf, path->slots[0]);
 999
1000                while (cur_offset < item_size) {
1001                        extref = (struct btrfs_inode_extref *)base + cur_offset;
1002
1003                        victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1004
1005                        if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1006                                goto next;
1007
1008                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1009                        if (!victim_name)
1010                                return -ENOMEM;
1011                        read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1012                                           victim_name_len);
1013
1014                        search_key.objectid = inode_objectid;
1015                        search_key.type = BTRFS_INODE_EXTREF_KEY;
1016                        search_key.offset = btrfs_extref_hash(parent_objectid,
1017                                                              victim_name,
1018                                                              victim_name_len);
1019                        ret = 0;
1020                        if (!backref_in_log(log_root, &search_key,
1021                                            parent_objectid, victim_name,
1022                                            victim_name_len)) {
1023                                ret = -ENOENT;
1024                                victim_parent = read_one_inode(root,
1025                                                               parent_objectid);
1026                                if (victim_parent) {
1027                                        inc_nlink(inode);
1028                                        btrfs_release_path(path);
1029
1030                                        ret = btrfs_unlink_inode(trans, root,
1031                                                                 victim_parent,
1032                                                                 inode,
1033                                                                 victim_name,
1034                                                                 victim_name_len);
1035                                        if (!ret)
1036                                                ret = btrfs_run_delayed_items(
1037                                                                  trans, root);
1038                                }
1039                                iput(victim_parent);
1040                                kfree(victim_name);
1041                                if (ret)
1042                                        return ret;
1043                                *search_done = 1;
1044                                goto again;
1045                        }
1046                        kfree(victim_name);
1047                        if (ret)
1048                                return ret;
1049next:
1050                        cur_offset += victim_name_len + sizeof(*extref);
1051                }
1052                *search_done = 1;
1053        }
1054        btrfs_release_path(path);
1055
1056        /* look for a conflicting sequence number */
1057        di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1058                                         ref_index, name, namelen, 0);
1059        if (di && !IS_ERR(di)) {
1060                ret = drop_one_dir_item(trans, root, path, dir, di);
1061                if (ret)
1062                        return ret;
1063        }
1064        btrfs_release_path(path);
1065
1066        /* look for a conflicing name */
1067        di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1068                                   name, namelen, 0);
1069        if (di && !IS_ERR(di)) {
1070                ret = drop_one_dir_item(trans, root, path, dir, di);
1071                if (ret)
1072                        return ret;
1073        }
1074        btrfs_release_path(path);
1075
1076        return 0;
1077}
1078
1079static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1080                             u32 *namelen, char **name, u64 *index,
1081                             u64 *parent_objectid)
1082{
1083        struct btrfs_inode_extref *extref;
1084
1085        extref = (struct btrfs_inode_extref *)ref_ptr;
1086
1087        *namelen = btrfs_inode_extref_name_len(eb, extref);
1088        *name = kmalloc(*namelen, GFP_NOFS);
1089        if (*name == NULL)
1090                return -ENOMEM;
1091
1092        read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1093                           *namelen);
1094
1095        *index = btrfs_inode_extref_index(eb, extref);
1096        if (parent_objectid)
1097                *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1098
1099        return 0;
1100}
1101
1102static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1103                          u32 *namelen, char **name, u64 *index)
1104{
1105        struct btrfs_inode_ref *ref;
1106
1107        ref = (struct btrfs_inode_ref *)ref_ptr;
1108
1109        *namelen = btrfs_inode_ref_name_len(eb, ref);
1110        *name = kmalloc(*namelen, GFP_NOFS);
1111        if (*name == NULL)
1112                return -ENOMEM;
1113
1114        read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1115
1116        *index = btrfs_inode_ref_index(eb, ref);
1117
1118        return 0;
1119}
1120
1121/*
1122 * replay one inode back reference item found in the log tree.
1123 * eb, slot and key refer to the buffer and key found in the log tree.
1124 * root is the destination we are replaying into, and path is for temp
1125 * use by this function.  (it should be released on return).
1126 */
1127static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1128                                  struct btrfs_root *root,
1129                                  struct btrfs_root *log,
1130                                  struct btrfs_path *path,
1131                                  struct extent_buffer *eb, int slot,
1132                                  struct btrfs_key *key)
1133{
1134        struct inode *dir = NULL;
1135        struct inode *inode = NULL;
1136        unsigned long ref_ptr;
1137        unsigned long ref_end;
1138        char *name = NULL;
1139        int namelen;
1140        int ret;
1141        int search_done = 0;
1142        int log_ref_ver = 0;
1143        u64 parent_objectid;
1144        u64 inode_objectid;
1145        u64 ref_index = 0;
1146        int ref_struct_size;
1147
1148        ref_ptr = btrfs_item_ptr_offset(eb, slot);
1149        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1150
1151        if (key->type == BTRFS_INODE_EXTREF_KEY) {
1152                struct btrfs_inode_extref *r;
1153
1154                ref_struct_size = sizeof(struct btrfs_inode_extref);
1155                log_ref_ver = 1;
1156                r = (struct btrfs_inode_extref *)ref_ptr;
1157                parent_objectid = btrfs_inode_extref_parent(eb, r);
1158        } else {
1159                ref_struct_size = sizeof(struct btrfs_inode_ref);
1160                parent_objectid = key->offset;
1161        }
1162        inode_objectid = key->objectid;
1163
1164        /*
1165         * it is possible that we didn't log all the parent directories
1166         * for a given inode.  If we don't find the dir, just don't
1167         * copy the back ref in.  The link count fixup code will take
1168         * care of the rest
1169         */
1170        dir = read_one_inode(root, parent_objectid);
1171        if (!dir) {
1172                ret = -ENOENT;
1173                goto out;
1174        }
1175
1176        inode = read_one_inode(root, inode_objectid);
1177        if (!inode) {
1178                ret = -EIO;
1179                goto out;
1180        }
1181
1182        while (ref_ptr < ref_end) {
1183                if (log_ref_ver) {
1184                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1185                                                &ref_index, &parent_objectid);
1186                        /*
1187                         * parent object can change from one array
1188                         * item to another.
1189                         */
1190                        if (!dir)
1191                                dir = read_one_inode(root, parent_objectid);
1192                        if (!dir) {
1193                                ret = -ENOENT;
1194                                goto out;
1195                        }
1196                } else {
1197                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1198                                             &ref_index);
1199                }
1200                if (ret)
1201                        goto out;
1202
1203                /* if we already have a perfect match, we're done */
1204                if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1205                                  ref_index, name, namelen)) {
1206                        /*
1207                         * look for a conflicting back reference in the
1208                         * metadata. if we find one we have to unlink that name
1209                         * of the file before we add our new link.  Later on, we
1210                         * overwrite any existing back reference, and we don't
1211                         * want to create dangling pointers in the directory.
1212                         */
1213
1214                        if (!search_done) {
1215                                ret = __add_inode_ref(trans, root, path, log,
1216                                                      dir, inode, eb,
1217                                                      inode_objectid,
1218                                                      parent_objectid,
1219                                                      ref_index, name, namelen,
1220                                                      &search_done);
1221                                if (ret) {
1222                                        if (ret == 1)
1223                                                ret = 0;
1224                                        goto out;
1225                                }
1226                        }
1227
1228                        /* insert our name */
1229                        ret = btrfs_add_link(trans, dir, inode, name, namelen,
1230                                             0, ref_index);
1231                        if (ret)
1232                                goto out;
1233
1234                        btrfs_update_inode(trans, root, inode);
1235                }
1236
1237                ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1238                kfree(name);
1239                name = NULL;
1240                if (log_ref_ver) {
1241                        iput(dir);
1242                        dir = NULL;
1243                }
1244        }
1245
1246        /* finally write the back reference in the inode */
1247        ret = overwrite_item(trans, root, path, eb, slot, key);
1248out:
1249        btrfs_release_path(path);
1250        kfree(name);
1251        iput(dir);
1252        iput(inode);
1253        return ret;
1254}
1255
1256static int insert_orphan_item(struct btrfs_trans_handle *trans,
1257                              struct btrfs_root *root, u64 offset)
1258{
1259        int ret;
1260        ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1261                        offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1262        if (ret > 0)
1263                ret = btrfs_insert_orphan_item(trans, root, offset);
1264        return ret;
1265}
1266
1267static int count_inode_extrefs(struct btrfs_root *root,
1268                               struct inode *inode, struct btrfs_path *path)
1269{
1270        int ret = 0;
1271        int name_len;
1272        unsigned int nlink = 0;
1273        u32 item_size;
1274        u32 cur_offset = 0;
1275        u64 inode_objectid = btrfs_ino(inode);
1276        u64 offset = 0;
1277        unsigned long ptr;
1278        struct btrfs_inode_extref *extref;
1279        struct extent_buffer *leaf;
1280
1281        while (1) {
1282                ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1283                                            &extref, &offset);
1284                if (ret)
1285                        break;
1286
1287                leaf = path->nodes[0];
1288                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1289                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1290
1291                while (cur_offset < item_size) {
1292                        extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1293                        name_len = btrfs_inode_extref_name_len(leaf, extref);
1294
1295                        nlink++;
1296
1297                        cur_offset += name_len + sizeof(*extref);
1298                }
1299
1300                offset++;
1301                btrfs_release_path(path);
1302        }
1303        btrfs_release_path(path);
1304
1305        if (ret < 0)
1306                return ret;
1307        return nlink;
1308}
1309
1310static int count_inode_refs(struct btrfs_root *root,
1311                               struct inode *inode, struct btrfs_path *path)
1312{
1313        int ret;
1314        struct btrfs_key key;
1315        unsigned int nlink = 0;
1316        unsigned long ptr;
1317        unsigned long ptr_end;
1318        int name_len;
1319        u64 ino = btrfs_ino(inode);
1320
1321        key.objectid = ino;
1322        key.type = BTRFS_INODE_REF_KEY;
1323        key.offset = (u64)-1;
1324
1325        while (1) {
1326                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1327                if (ret < 0)
1328                        break;
1329                if (ret > 0) {
1330                        if (path->slots[0] == 0)
1331                                break;
1332                        path->slots[0]--;
1333                }
1334process_slot:
1335                btrfs_item_key_to_cpu(path->nodes[0], &key,
1336                                      path->slots[0]);
1337                if (key.objectid != ino ||
1338                    key.type != BTRFS_INODE_REF_KEY)
1339                        break;
1340                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1341                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1342                                                   path->slots[0]);
1343                while (ptr < ptr_end) {
1344                        struct btrfs_inode_ref *ref;
1345
1346                        ref = (struct btrfs_inode_ref *)ptr;
1347                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1348                                                            ref);
1349                        ptr = (unsigned long)(ref + 1) + name_len;
1350                        nlink++;
1351                }
1352
1353                if (key.offset == 0)
1354                        break;
1355                if (path->slots[0] > 0) {
1356                        path->slots[0]--;
1357                        goto process_slot;
1358                }
1359                key.offset--;
1360                btrfs_release_path(path);
1361        }
1362        btrfs_release_path(path);
1363
1364        return nlink;
1365}
1366
1367/*
1368 * There are a few corners where the link count of the file can't
1369 * be properly maintained during replay.  So, instead of adding
1370 * lots of complexity to the log code, we just scan the backrefs
1371 * for any file that has been through replay.
1372 *
1373 * The scan will update the link count on the inode to reflect the
1374 * number of back refs found.  If it goes down to zero, the iput
1375 * will free the inode.
1376 */
1377static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1378                                           struct btrfs_root *root,
1379                                           struct inode *inode)
1380{
1381        struct btrfs_path *path;
1382        int ret;
1383        u64 nlink = 0;
1384        u64 ino = btrfs_ino(inode);
1385
1386        path = btrfs_alloc_path();
1387        if (!path)
1388                return -ENOMEM;
1389
1390        ret = count_inode_refs(root, inode, path);
1391        if (ret < 0)
1392                goto out;
1393
1394        nlink = ret;
1395
1396        ret = count_inode_extrefs(root, inode, path);
1397        if (ret == -ENOENT)
1398                ret = 0;
1399
1400        if (ret < 0)
1401                goto out;
1402
1403        nlink += ret;
1404
1405        ret = 0;
1406
1407        if (nlink != inode->i_nlink) {
1408                set_nlink(inode, nlink);
1409                btrfs_update_inode(trans, root, inode);
1410        }
1411        BTRFS_I(inode)->index_cnt = (u64)-1;
1412
1413        if (inode->i_nlink == 0) {
1414                if (S_ISDIR(inode->i_mode)) {
1415                        ret = replay_dir_deletes(trans, root, NULL, path,
1416                                                 ino, 1);
1417                        if (ret)
1418                                goto out;
1419                }
1420                ret = insert_orphan_item(trans, root, ino);
1421        }
1422
1423out:
1424        btrfs_free_path(path);
1425        return ret;
1426}
1427
1428static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1429                                            struct btrfs_root *root,
1430                                            struct btrfs_path *path)
1431{
1432        int ret;
1433        struct btrfs_key key;
1434        struct inode *inode;
1435
1436        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1437        key.type = BTRFS_ORPHAN_ITEM_KEY;
1438        key.offset = (u64)-1;
1439        while (1) {
1440                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1441                if (ret < 0)
1442                        break;
1443
1444                if (ret == 1) {
1445                        if (path->slots[0] == 0)
1446                                break;
1447                        path->slots[0]--;
1448                }
1449
1450                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1451                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1452                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1453                        break;
1454
1455                ret = btrfs_del_item(trans, root, path);
1456                if (ret)
1457                        goto out;
1458
1459                btrfs_release_path(path);
1460                inode = read_one_inode(root, key.offset);
1461                if (!inode)
1462                        return -EIO;
1463
1464                ret = fixup_inode_link_count(trans, root, inode);
1465                iput(inode);
1466                if (ret)
1467                        goto out;
1468
1469                /*
1470                 * fixup on a directory may create new entries,
1471                 * make sure we always look for the highset possible
1472                 * offset
1473                 */
1474                key.offset = (u64)-1;
1475        }
1476        ret = 0;
1477out:
1478        btrfs_release_path(path);
1479        return ret;
1480}
1481
1482
1483/*
1484 * record a given inode in the fixup dir so we can check its link
1485 * count when replay is done.  The link count is incremented here
1486 * so the inode won't go away until we check it
1487 */
1488static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1489                                      struct btrfs_root *root,
1490                                      struct btrfs_path *path,
1491                                      u64 objectid)
1492{
1493        struct btrfs_key key;
1494        int ret = 0;
1495        struct inode *inode;
1496
1497        inode = read_one_inode(root, objectid);
1498        if (!inode)
1499                return -EIO;
1500
1501        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1502        key.type = BTRFS_ORPHAN_ITEM_KEY;
1503        key.offset = objectid;
1504
1505        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1506
1507        btrfs_release_path(path);
1508        if (ret == 0) {
1509                if (!inode->i_nlink)
1510                        set_nlink(inode, 1);
1511                else
1512                        inc_nlink(inode);
1513                ret = btrfs_update_inode(trans, root, inode);
1514        } else if (ret == -EEXIST) {
1515                ret = 0;
1516        } else {
1517                BUG(); /* Logic Error */
1518        }
1519        iput(inode);
1520
1521        return ret;
1522}
1523
1524/*
1525 * when replaying the log for a directory, we only insert names
1526 * for inodes that actually exist.  This means an fsync on a directory
1527 * does not implicitly fsync all the new files in it
1528 */
1529static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1530                                    struct btrfs_root *root,
1531                                    struct btrfs_path *path,
1532                                    u64 dirid, u64 index,
1533                                    char *name, int name_len, u8 type,
1534                                    struct btrfs_key *location)
1535{
1536        struct inode *inode;
1537        struct inode *dir;
1538        int ret;
1539
1540        inode = read_one_inode(root, location->objectid);
1541        if (!inode)
1542                return -ENOENT;
1543
1544        dir = read_one_inode(root, dirid);
1545        if (!dir) {
1546                iput(inode);
1547                return -EIO;
1548        }
1549
1550        ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1551
1552        /* FIXME, put inode into FIXUP list */
1553
1554        iput(inode);
1555        iput(dir);
1556        return ret;
1557}
1558
1559/*
1560 * take a single entry in a log directory item and replay it into
1561 * the subvolume.
1562 *
1563 * if a conflicting item exists in the subdirectory already,
1564 * the inode it points to is unlinked and put into the link count
1565 * fix up tree.
1566 *
1567 * If a name from the log points to a file or directory that does
1568 * not exist in the FS, it is skipped.  fsyncs on directories
1569 * do not force down inodes inside that directory, just changes to the
1570 * names or unlinks in a directory.
1571 */
1572static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1573                                    struct btrfs_root *root,
1574                                    struct btrfs_path *path,
1575                                    struct extent_buffer *eb,
1576                                    struct btrfs_dir_item *di,
1577                                    struct btrfs_key *key)
1578{
1579        char *name;
1580        int name_len;
1581        struct btrfs_dir_item *dst_di;
1582        struct btrfs_key found_key;
1583        struct btrfs_key log_key;
1584        struct inode *dir;
1585        u8 log_type;
1586        int exists;
1587        int ret = 0;
1588        bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1589
1590        dir = read_one_inode(root, key->objectid);
1591        if (!dir)
1592                return -EIO;
1593
1594        name_len = btrfs_dir_name_len(eb, di);
1595        name = kmalloc(name_len, GFP_NOFS);
1596        if (!name) {
1597                ret = -ENOMEM;
1598                goto out;
1599        }
1600
1601        log_type = btrfs_dir_type(eb, di);
1602        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1603                   name_len);
1604
1605        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1606        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1607        if (exists == 0)
1608                exists = 1;
1609        else
1610                exists = 0;
1611        btrfs_release_path(path);
1612
1613        if (key->type == BTRFS_DIR_ITEM_KEY) {
1614                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1615                                       name, name_len, 1);
1616        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1617                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1618                                                     key->objectid,
1619                                                     key->offset, name,
1620                                                     name_len, 1);
1621        } else {
1622                /* Corruption */
1623                ret = -EINVAL;
1624                goto out;
1625        }
1626        if (IS_ERR_OR_NULL(dst_di)) {
1627                /* we need a sequence number to insert, so we only
1628                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1629                 */
1630                if (key->type != BTRFS_DIR_INDEX_KEY)
1631                        goto out;
1632                goto insert;
1633        }
1634
1635        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1636        /* the existing item matches the logged item */
1637        if (found_key.objectid == log_key.objectid &&
1638            found_key.type == log_key.type &&
1639            found_key.offset == log_key.offset &&
1640            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1641                update_size = false;
1642                goto out;
1643        }
1644
1645        /*
1646         * don't drop the conflicting directory entry if the inode
1647         * for the new entry doesn't exist
1648         */
1649        if (!exists)
1650                goto out;
1651
1652        ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1653        if (ret)
1654                goto out;
1655
1656        if (key->type == BTRFS_DIR_INDEX_KEY)
1657                goto insert;
1658out:
1659        btrfs_release_path(path);
1660        if (!ret && update_size) {
1661                btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662                ret = btrfs_update_inode(trans, root, dir);
1663        }
1664        kfree(name);
1665        iput(dir);
1666        return ret;
1667
1668insert:
1669        btrfs_release_path(path);
1670        ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671                              name, name_len, log_type, &log_key);
1672        if (ret && ret != -ENOENT)
1673                goto out;
1674        update_size = false;
1675        ret = 0;
1676        goto out;
1677}
1678
1679/*
1680 * find all the names in a directory item and reconcile them into
1681 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1682 * one name in a directory item, but the same code gets used for
1683 * both directory index types
1684 */
1685static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686                                        struct btrfs_root *root,
1687                                        struct btrfs_path *path,
1688                                        struct extent_buffer *eb, int slot,
1689                                        struct btrfs_key *key)
1690{
1691        int ret;
1692        u32 item_size = btrfs_item_size_nr(eb, slot);
1693        struct btrfs_dir_item *di;
1694        int name_len;
1695        unsigned long ptr;
1696        unsigned long ptr_end;
1697
1698        ptr = btrfs_item_ptr_offset(eb, slot);
1699        ptr_end = ptr + item_size;
1700        while (ptr < ptr_end) {
1701                di = (struct btrfs_dir_item *)ptr;
1702                if (verify_dir_item(root, eb, di))
1703                        return -EIO;
1704                name_len = btrfs_dir_name_len(eb, di);
1705                ret = replay_one_name(trans, root, path, eb, di, key);
1706                if (ret)
1707                        return ret;
1708                ptr = (unsigned long)(di + 1);
1709                ptr += name_len;
1710        }
1711        return 0;
1712}
1713
1714/*
1715 * directory replay has two parts.  There are the standard directory
1716 * items in the log copied from the subvolume, and range items
1717 * created in the log while the subvolume was logged.
1718 *
1719 * The range items tell us which parts of the key space the log
1720 * is authoritative for.  During replay, if a key in the subvolume
1721 * directory is in a logged range item, but not actually in the log
1722 * that means it was deleted from the directory before the fsync
1723 * and should be removed.
1724 */
1725static noinline int find_dir_range(struct btrfs_root *root,
1726                                   struct btrfs_path *path,
1727                                   u64 dirid, int key_type,
1728                                   u64 *start_ret, u64 *end_ret)
1729{
1730        struct btrfs_key key;
1731        u64 found_end;
1732        struct btrfs_dir_log_item *item;
1733        int ret;
1734        int nritems;
1735
1736        if (*start_ret == (u64)-1)
1737                return 1;
1738
1739        key.objectid = dirid;
1740        key.type = key_type;
1741        key.offset = *start_ret;
1742
1743        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744        if (ret < 0)
1745                goto out;
1746        if (ret > 0) {
1747                if (path->slots[0] == 0)
1748                        goto out;
1749                path->slots[0]--;
1750        }
1751        if (ret != 0)
1752                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753
1754        if (key.type != key_type || key.objectid != dirid) {
1755                ret = 1;
1756                goto next;
1757        }
1758        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759                              struct btrfs_dir_log_item);
1760        found_end = btrfs_dir_log_end(path->nodes[0], item);
1761
1762        if (*start_ret >= key.offset && *start_ret <= found_end) {
1763                ret = 0;
1764                *start_ret = key.offset;
1765                *end_ret = found_end;
1766                goto out;
1767        }
1768        ret = 1;
1769next:
1770        /* check the next slot in the tree to see if it is a valid item */
1771        nritems = btrfs_header_nritems(path->nodes[0]);
1772        if (path->slots[0] >= nritems) {
1773                ret = btrfs_next_leaf(root, path);
1774                if (ret)
1775                        goto out;
1776        } else {
1777                path->slots[0]++;
1778        }
1779
1780        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781
1782        if (key.type != key_type || key.objectid != dirid) {
1783                ret = 1;
1784                goto out;
1785        }
1786        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787                              struct btrfs_dir_log_item);
1788        found_end = btrfs_dir_log_end(path->nodes[0], item);
1789        *start_ret = key.offset;
1790        *end_ret = found_end;
1791        ret = 0;
1792out:
1793        btrfs_release_path(path);
1794        return ret;
1795}
1796
1797/*
1798 * this looks for a given directory item in the log.  If the directory
1799 * item is not in the log, the item is removed and the inode it points
1800 * to is unlinked
1801 */
1802static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803                                      struct btrfs_root *root,
1804                                      struct btrfs_root *log,
1805                                      struct btrfs_path *path,
1806                                      struct btrfs_path *log_path,
1807                                      struct inode *dir,
1808                                      struct btrfs_key *dir_key)
1809{
1810        int ret;
1811        struct extent_buffer *eb;
1812        int slot;
1813        u32 item_size;
1814        struct btrfs_dir_item *di;
1815        struct btrfs_dir_item *log_di;
1816        int name_len;
1817        unsigned long ptr;
1818        unsigned long ptr_end;
1819        char *name;
1820        struct inode *inode;
1821        struct btrfs_key location;
1822
1823again:
1824        eb = path->nodes[0];
1825        slot = path->slots[0];
1826        item_size = btrfs_item_size_nr(eb, slot);
1827        ptr = btrfs_item_ptr_offset(eb, slot);
1828        ptr_end = ptr + item_size;
1829        while (ptr < ptr_end) {
1830                di = (struct btrfs_dir_item *)ptr;
1831                if (verify_dir_item(root, eb, di)) {
1832                        ret = -EIO;
1833                        goto out;
1834                }
1835
1836                name_len = btrfs_dir_name_len(eb, di);
1837                name = kmalloc(name_len, GFP_NOFS);
1838                if (!name) {
1839                        ret = -ENOMEM;
1840                        goto out;
1841                }
1842                read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843                                  name_len);
1844                log_di = NULL;
1845                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1846                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847                                                       dir_key->objectid,
1848                                                       name, name_len, 0);
1849                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1850                        log_di = btrfs_lookup_dir_index_item(trans, log,
1851                                                     log_path,
1852                                                     dir_key->objectid,
1853                                                     dir_key->offset,
1854                                                     name, name_len, 0);
1855                }
1856                if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1857                        btrfs_dir_item_key_to_cpu(eb, di, &location);
1858                        btrfs_release_path(path);
1859                        btrfs_release_path(log_path);
1860                        inode = read_one_inode(root, location.objectid);
1861                        if (!inode) {
1862                                kfree(name);
1863                                return -EIO;
1864                        }
1865
1866                        ret = link_to_fixup_dir(trans, root,
1867                                                path, location.objectid);
1868                        if (ret) {
1869                                kfree(name);
1870                                iput(inode);
1871                                goto out;
1872                        }
1873
1874                        inc_nlink(inode);
1875                        ret = btrfs_unlink_inode(trans, root, dir, inode,
1876                                                 name, name_len);
1877                        if (!ret)
1878                                ret = btrfs_run_delayed_items(trans, root);
1879                        kfree(name);
1880                        iput(inode);
1881                        if (ret)
1882                                goto out;
1883
1884                        /* there might still be more names under this key
1885                         * check and repeat if required
1886                         */
1887                        ret = btrfs_search_slot(NULL, root, dir_key, path,
1888                                                0, 0);
1889                        if (ret == 0)
1890                                goto again;
1891                        ret = 0;
1892                        goto out;
1893                } else if (IS_ERR(log_di)) {
1894                        kfree(name);
1895                        return PTR_ERR(log_di);
1896                }
1897                btrfs_release_path(log_path);
1898                kfree(name);
1899
1900                ptr = (unsigned long)(di + 1);
1901                ptr += name_len;
1902        }
1903        ret = 0;
1904out:
1905        btrfs_release_path(path);
1906        btrfs_release_path(log_path);
1907        return ret;
1908}
1909
1910/*
1911 * deletion replay happens before we copy any new directory items
1912 * out of the log or out of backreferences from inodes.  It
1913 * scans the log to find ranges of keys that log is authoritative for,
1914 * and then scans the directory to find items in those ranges that are
1915 * not present in the log.
1916 *
1917 * Anything we don't find in the log is unlinked and removed from the
1918 * directory.
1919 */
1920static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921                                       struct btrfs_root *root,
1922                                       struct btrfs_root *log,
1923                                       struct btrfs_path *path,
1924                                       u64 dirid, int del_all)
1925{
1926        u64 range_start;
1927        u64 range_end;
1928        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929        int ret = 0;
1930        struct btrfs_key dir_key;
1931        struct btrfs_key found_key;
1932        struct btrfs_path *log_path;
1933        struct inode *dir;
1934
1935        dir_key.objectid = dirid;
1936        dir_key.type = BTRFS_DIR_ITEM_KEY;
1937        log_path = btrfs_alloc_path();
1938        if (!log_path)
1939                return -ENOMEM;
1940
1941        dir = read_one_inode(root, dirid);
1942        /* it isn't an error if the inode isn't there, that can happen
1943         * because we replay the deletes before we copy in the inode item
1944         * from the log
1945         */
1946        if (!dir) {
1947                btrfs_free_path(log_path);
1948                return 0;
1949        }
1950again:
1951        range_start = 0;
1952        range_end = 0;
1953        while (1) {
1954                if (del_all)
1955                        range_end = (u64)-1;
1956                else {
1957                        ret = find_dir_range(log, path, dirid, key_type,
1958                                             &range_start, &range_end);
1959                        if (ret != 0)
1960                                break;
1961                }
1962
1963                dir_key.offset = range_start;
1964                while (1) {
1965                        int nritems;
1966                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967                                                0, 0);
1968                        if (ret < 0)
1969                                goto out;
1970
1971                        nritems = btrfs_header_nritems(path->nodes[0]);
1972                        if (path->slots[0] >= nritems) {
1973                                ret = btrfs_next_leaf(root, path);
1974                                if (ret)
1975                                        break;
1976                        }
1977                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978                                              path->slots[0]);
1979                        if (found_key.objectid != dirid ||
1980                            found_key.type != dir_key.type)
1981                                goto next_type;
1982
1983                        if (found_key.offset > range_end)
1984                                break;
1985
1986                        ret = check_item_in_log(trans, root, log, path,
1987                                                log_path, dir,
1988                                                &found_key);
1989                        if (ret)
1990                                goto out;
1991                        if (found_key.offset == (u64)-1)
1992                                break;
1993                        dir_key.offset = found_key.offset + 1;
1994                }
1995                btrfs_release_path(path);
1996                if (range_end == (u64)-1)
1997                        break;
1998                range_start = range_end + 1;
1999        }
2000
2001next_type:
2002        ret = 0;
2003        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004                key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005                dir_key.type = BTRFS_DIR_INDEX_KEY;
2006                btrfs_release_path(path);
2007                goto again;
2008        }
2009out:
2010        btrfs_release_path(path);
2011        btrfs_free_path(log_path);
2012        iput(dir);
2013        return ret;
2014}
2015
2016/*
2017 * the process_func used to replay items from the log tree.  This
2018 * gets called in two different stages.  The first stage just looks
2019 * for inodes and makes sure they are all copied into the subvolume.
2020 *
2021 * The second stage copies all the other item types from the log into
2022 * the subvolume.  The two stage approach is slower, but gets rid of
2023 * lots of complexity around inodes referencing other inodes that exist
2024 * only in the log (references come from either directory items or inode
2025 * back refs).
2026 */
2027static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028                             struct walk_control *wc, u64 gen)
2029{
2030        int nritems;
2031        struct btrfs_path *path;
2032        struct btrfs_root *root = wc->replay_dest;
2033        struct btrfs_key key;
2034        int level;
2035        int i;
2036        int ret;
2037
2038        ret = btrfs_read_buffer(eb, gen);
2039        if (ret)
2040                return ret;
2041
2042        level = btrfs_header_level(eb);
2043
2044        if (level != 0)
2045                return 0;
2046
2047        path = btrfs_alloc_path();
2048        if (!path)
2049                return -ENOMEM;
2050
2051        nritems = btrfs_header_nritems(eb);
2052        for (i = 0; i < nritems; i++) {
2053                btrfs_item_key_to_cpu(eb, &key, i);
2054
2055                /* inode keys are done during the first stage */
2056                if (key.type == BTRFS_INODE_ITEM_KEY &&
2057                    wc->stage == LOG_WALK_REPLAY_INODES) {
2058                        struct btrfs_inode_item *inode_item;
2059                        u32 mode;
2060
2061                        inode_item = btrfs_item_ptr(eb, i,
2062                                            struct btrfs_inode_item);
2063                        mode = btrfs_inode_mode(eb, inode_item);
2064                        if (S_ISDIR(mode)) {
2065                                ret = replay_dir_deletes(wc->trans,
2066                                         root, log, path, key.objectid, 0);
2067                                if (ret)
2068                                        break;
2069                        }
2070                        ret = overwrite_item(wc->trans, root, path,
2071                                             eb, i, &key);
2072                        if (ret)
2073                                break;
2074
2075                        /* for regular files, make sure corresponding
2076                         * orhpan item exist. extents past the new EOF
2077                         * will be truncated later by orphan cleanup.
2078                         */
2079                        if (S_ISREG(mode)) {
2080                                ret = insert_orphan_item(wc->trans, root,
2081                                                         key.objectid);
2082                                if (ret)
2083                                        break;
2084                        }
2085
2086                        ret = link_to_fixup_dir(wc->trans, root,
2087                                                path, key.objectid);
2088                        if (ret)
2089                                break;
2090                }
2091
2092                if (key.type == BTRFS_DIR_INDEX_KEY &&
2093                    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094                        ret = replay_one_dir_item(wc->trans, root, path,
2095                                                  eb, i, &key);
2096                        if (ret)
2097                                break;
2098                }
2099
2100                if (wc->stage < LOG_WALK_REPLAY_ALL)
2101                        continue;
2102
2103                /* these keys are simply copied */
2104                if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105                        ret = overwrite_item(wc->trans, root, path,
2106                                             eb, i, &key);
2107                        if (ret)
2108                                break;
2109                } else if (key.type == BTRFS_INODE_REF_KEY ||
2110                           key.type == BTRFS_INODE_EXTREF_KEY) {
2111                        ret = add_inode_ref(wc->trans, root, log, path,
2112                                            eb, i, &key);
2113                        if (ret && ret != -ENOENT)
2114                                break;
2115                        ret = 0;
2116                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117                        ret = replay_one_extent(wc->trans, root, path,
2118                                                eb, i, &key);
2119                        if (ret)
2120                                break;
2121                } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2122                        ret = replay_one_dir_item(wc->trans, root, path,
2123                                                  eb, i, &key);
2124                        if (ret)
2125                                break;
2126                }
2127        }
2128        btrfs_free_path(path);
2129        return ret;
2130}
2131
2132static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2133                                   struct btrfs_root *root,
2134                                   struct btrfs_path *path, int *level,
2135                                   struct walk_control *wc)
2136{
2137        u64 root_owner;
2138        u64 bytenr;
2139        u64 ptr_gen;
2140        struct extent_buffer *next;
2141        struct extent_buffer *cur;
2142        struct extent_buffer *parent;
2143        u32 blocksize;
2144        int ret = 0;
2145
2146        WARN_ON(*level < 0);
2147        WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148
2149        while (*level > 0) {
2150                WARN_ON(*level < 0);
2151                WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152                cur = path->nodes[*level];
2153
2154                WARN_ON(btrfs_header_level(cur) != *level);
2155
2156                if (path->slots[*level] >=
2157                    btrfs_header_nritems(cur))
2158                        break;
2159
2160                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162                blocksize = root->nodesize;
2163
2164                parent = path->nodes[*level];
2165                root_owner = btrfs_header_owner(parent);
2166
2167                next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2168                if (!next)
2169                        return -ENOMEM;
2170
2171                if (*level == 1) {
2172                        ret = wc->process_func(root, next, wc, ptr_gen);
2173                        if (ret) {
2174                                free_extent_buffer(next);
2175                                return ret;
2176                        }
2177
2178                        path->slots[*level]++;
2179                        if (wc->free) {
2180                                ret = btrfs_read_buffer(next, ptr_gen);
2181                                if (ret) {
2182                                        free_extent_buffer(next);
2183                                        return ret;
2184                                }
2185
2186                                if (trans) {
2187                                        btrfs_tree_lock(next);
2188                                        btrfs_set_lock_blocking(next);
2189                                        clean_tree_block(trans, root, next);
2190                                        btrfs_wait_tree_block_writeback(next);
2191                                        btrfs_tree_unlock(next);
2192                                }
2193
2194                                WARN_ON(root_owner !=
2195                                        BTRFS_TREE_LOG_OBJECTID);
2196                                ret = btrfs_free_and_pin_reserved_extent(root,
2197                                                         bytenr, blocksize);
2198                                if (ret) {
2199                                        free_extent_buffer(next);
2200                                        return ret;
2201                                }
2202                        }
2203                        free_extent_buffer(next);
2204                        continue;
2205                }
2206                ret = btrfs_read_buffer(next, ptr_gen);
2207                if (ret) {
2208                        free_extent_buffer(next);
2209                        return ret;
2210                }
2211
2212                WARN_ON(*level <= 0);
2213                if (path->nodes[*level-1])
2214                        free_extent_buffer(path->nodes[*level-1]);
2215                path->nodes[*level-1] = next;
2216                *level = btrfs_header_level(next);
2217                path->slots[*level] = 0;
2218                cond_resched();
2219        }
2220        WARN_ON(*level < 0);
2221        WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222
2223        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2224
2225        cond_resched();
2226        return 0;
2227}
2228
2229static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2230                                 struct btrfs_root *root,
2231                                 struct btrfs_path *path, int *level,
2232                                 struct walk_control *wc)
2233{
2234        u64 root_owner;
2235        int i;
2236        int slot;
2237        int ret;
2238
2239        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2240                slot = path->slots[i];
2241                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2242                        path->slots[i]++;
2243                        *level = i;
2244                        WARN_ON(*level == 0);
2245                        return 0;
2246                } else {
2247                        struct extent_buffer *parent;
2248                        if (path->nodes[*level] == root->node)
2249                                parent = path->nodes[*level];
2250                        else
2251                                parent = path->nodes[*level + 1];
2252
2253                        root_owner = btrfs_header_owner(parent);
2254                        ret = wc->process_func(root, path->nodes[*level], wc,
2255                                 btrfs_header_generation(path->nodes[*level]));
2256                        if (ret)
2257                                return ret;
2258
2259                        if (wc->free) {
2260                                struct extent_buffer *next;
2261
2262                                next = path->nodes[*level];
2263
2264                                if (trans) {
2265                                        btrfs_tree_lock(next);
2266                                        btrfs_set_lock_blocking(next);
2267                                        clean_tree_block(trans, root, next);
2268                                        btrfs_wait_tree_block_writeback(next);
2269                                        btrfs_tree_unlock(next);
2270                                }
2271
2272                                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2273                                ret = btrfs_free_and_pin_reserved_extent(root,
2274                                                path->nodes[*level]->start,
2275                                                path->nodes[*level]->len);
2276                                if (ret)
2277                                        return ret;
2278                        }
2279                        free_extent_buffer(path->nodes[*level]);
2280                        path->nodes[*level] = NULL;
2281                        *level = i + 1;
2282                }
2283        }
2284        return 1;
2285}
2286
2287/*
2288 * drop the reference count on the tree rooted at 'snap'.  This traverses
2289 * the tree freeing any blocks that have a ref count of zero after being
2290 * decremented.
2291 */
2292static int walk_log_tree(struct btrfs_trans_handle *trans,
2293                         struct btrfs_root *log, struct walk_control *wc)
2294{
2295        int ret = 0;
2296        int wret;
2297        int level;
2298        struct btrfs_path *path;
2299        int orig_level;
2300
2301        path = btrfs_alloc_path();
2302        if (!path)
2303                return -ENOMEM;
2304
2305        level = btrfs_header_level(log->node);
2306        orig_level = level;
2307        path->nodes[level] = log->node;
2308        extent_buffer_get(log->node);
2309        path->slots[level] = 0;
2310
2311        while (1) {
2312                wret = walk_down_log_tree(trans, log, path, &level, wc);
2313                if (wret > 0)
2314                        break;
2315                if (wret < 0) {
2316                        ret = wret;
2317                        goto out;
2318                }
2319
2320                wret = walk_up_log_tree(trans, log, path, &level, wc);
2321                if (wret > 0)
2322                        break;
2323                if (wret < 0) {
2324                        ret = wret;
2325                        goto out;
2326                }
2327        }
2328
2329        /* was the root node processed? if not, catch it here */
2330        if (path->nodes[orig_level]) {
2331                ret = wc->process_func(log, path->nodes[orig_level], wc,
2332                         btrfs_header_generation(path->nodes[orig_level]));
2333                if (ret)
2334                        goto out;
2335                if (wc->free) {
2336                        struct extent_buffer *next;
2337
2338                        next = path->nodes[orig_level];
2339
2340                        if (trans) {
2341                                btrfs_tree_lock(next);
2342                                btrfs_set_lock_blocking(next);
2343                                clean_tree_block(trans, log, next);
2344                                btrfs_wait_tree_block_writeback(next);
2345                                btrfs_tree_unlock(next);
2346                        }
2347
2348                        WARN_ON(log->root_key.objectid !=
2349                                BTRFS_TREE_LOG_OBJECTID);
2350                        ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2351                                                         next->len);
2352                        if (ret)
2353                                goto out;
2354                }
2355        }
2356
2357out:
2358        btrfs_free_path(path);
2359        return ret;
2360}
2361
2362/*
2363 * helper function to update the item for a given subvolumes log root
2364 * in the tree of log roots
2365 */
2366static int update_log_root(struct btrfs_trans_handle *trans,
2367                           struct btrfs_root *log)
2368{
2369        int ret;
2370
2371        if (log->log_transid == 1) {
2372                /* insert root item on the first sync */
2373                ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374                                &log->root_key, &log->root_item);
2375        } else {
2376                ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377                                &log->root_key, &log->root_item);
2378        }
2379        return ret;
2380}
2381
2382static void wait_log_commit(struct btrfs_trans_handle *trans,
2383                            struct btrfs_root *root, int transid)
2384{
2385        DEFINE_WAIT(wait);
2386        int index = transid % 2;
2387
2388        /*
2389         * we only allow two pending log transactions at a time,
2390         * so we know that if ours is more than 2 older than the
2391         * current transaction, we're done
2392         */
2393        do {
2394                prepare_to_wait(&root->log_commit_wait[index],
2395                                &wait, TASK_UNINTERRUPTIBLE);
2396                mutex_unlock(&root->log_mutex);
2397
2398                if (root->log_transid_committed < transid &&
2399                    atomic_read(&root->log_commit[index]))
2400                        schedule();
2401
2402                finish_wait(&root->log_commit_wait[index], &wait);
2403                mutex_lock(&root->log_mutex);
2404        } while (root->log_transid_committed < transid &&
2405                 atomic_read(&root->log_commit[index]));
2406}
2407
2408static void wait_for_writer(struct btrfs_trans_handle *trans,
2409                            struct btrfs_root *root)
2410{
2411        DEFINE_WAIT(wait);
2412
2413        while (atomic_read(&root->log_writers)) {
2414                prepare_to_wait(&root->log_writer_wait,
2415                                &wait, TASK_UNINTERRUPTIBLE);
2416                mutex_unlock(&root->log_mutex);
2417                if (atomic_read(&root->log_writers))
2418                        schedule();
2419                mutex_lock(&root->log_mutex);
2420                finish_wait(&root->log_writer_wait, &wait);
2421        }
2422}
2423
2424static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425                                        struct btrfs_log_ctx *ctx)
2426{
2427        if (!ctx)
2428                return;
2429
2430        mutex_lock(&root->log_mutex);
2431        list_del_init(&ctx->list);
2432        mutex_unlock(&root->log_mutex);
2433}
2434
2435/* 
2436 * Invoked in log mutex context, or be sure there is no other task which
2437 * can access the list.
2438 */
2439static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440                                             int index, int error)
2441{
2442        struct btrfs_log_ctx *ctx;
2443
2444        if (!error) {
2445                INIT_LIST_HEAD(&root->log_ctxs[index]);
2446                return;
2447        }
2448
2449        list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450                ctx->log_ret = error;
2451
2452        INIT_LIST_HEAD(&root->log_ctxs[index]);
2453}
2454
2455/*
2456 * btrfs_sync_log does sends a given tree log down to the disk and
2457 * updates the super blocks to record it.  When this call is done,
2458 * you know that any inodes previously logged are safely on disk only
2459 * if it returns 0.
2460 *
2461 * Any other return value means you need to call btrfs_commit_transaction.
2462 * Some of the edge cases for fsyncing directories that have had unlinks
2463 * or renames done in the past mean that sometimes the only safe
2464 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2465 * that has happened.
2466 */
2467int btrfs_sync_log(struct btrfs_trans_handle *trans,
2468                   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2469{
2470        int index1;
2471        int index2;
2472        int mark;
2473        int ret;
2474        struct btrfs_root *log = root->log_root;
2475        struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2476        int log_transid = 0;
2477        struct btrfs_log_ctx root_log_ctx;
2478        struct blk_plug plug;
2479
2480        mutex_lock(&root->log_mutex);
2481        log_transid = ctx->log_transid;
2482        if (root->log_transid_committed >= log_transid) {
2483                mutex_unlock(&root->log_mutex);
2484                return ctx->log_ret;
2485        }
2486
2487        index1 = log_transid % 2;
2488        if (atomic_read(&root->log_commit[index1])) {
2489                wait_log_commit(trans, root, log_transid);
2490                mutex_unlock(&root->log_mutex);
2491                return ctx->log_ret;
2492        }
2493        ASSERT(log_transid == root->log_transid);
2494        atomic_set(&root->log_commit[index1], 1);
2495
2496        /* wait for previous tree log sync to complete */
2497        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2498                wait_log_commit(trans, root, log_transid - 1);
2499
2500        while (1) {
2501                int batch = atomic_read(&root->log_batch);
2502                /* when we're on an ssd, just kick the log commit out */
2503                if (!btrfs_test_opt(root, SSD) &&
2504                    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2505                        mutex_unlock(&root->log_mutex);
2506                        schedule_timeout_uninterruptible(1);
2507                        mutex_lock(&root->log_mutex);
2508                }
2509                wait_for_writer(trans, root);
2510                if (batch == atomic_read(&root->log_batch))
2511                        break;
2512        }
2513
2514        /* bail out if we need to do a full commit */
2515        if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2516                ret = -EAGAIN;
2517                btrfs_free_logged_extents(log, log_transid);
2518                mutex_unlock(&root->log_mutex);
2519                goto out;
2520        }
2521
2522        if (log_transid % 2 == 0)
2523                mark = EXTENT_DIRTY;
2524        else
2525                mark = EXTENT_NEW;
2526
2527        /* we start IO on  all the marked extents here, but we don't actually
2528         * wait for them until later.
2529         */
2530        blk_start_plug(&plug);
2531        ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2532        if (ret) {
2533                blk_finish_plug(&plug);
2534                btrfs_abort_transaction(trans, root, ret);
2535                btrfs_free_logged_extents(log, log_transid);
2536                btrfs_set_log_full_commit(root->fs_info, trans);
2537                mutex_unlock(&root->log_mutex);
2538                goto out;
2539        }
2540
2541        btrfs_set_root_node(&log->root_item, log->node);
2542
2543        root->log_transid++;
2544        log->log_transid = root->log_transid;
2545        root->log_start_pid = 0;
2546        /*
2547         * IO has been started, blocks of the log tree have WRITTEN flag set
2548         * in their headers. new modifications of the log will be written to
2549         * new positions. so it's safe to allow log writers to go in.
2550         */
2551        mutex_unlock(&root->log_mutex);
2552
2553        btrfs_init_log_ctx(&root_log_ctx);
2554
2555        mutex_lock(&log_root_tree->log_mutex);
2556        atomic_inc(&log_root_tree->log_batch);
2557        atomic_inc(&log_root_tree->log_writers);
2558
2559        index2 = log_root_tree->log_transid % 2;
2560        list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2561        root_log_ctx.log_transid = log_root_tree->log_transid;
2562
2563        mutex_unlock(&log_root_tree->log_mutex);
2564
2565        ret = update_log_root(trans, log);
2566
2567        mutex_lock(&log_root_tree->log_mutex);
2568        if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2569                smp_mb();
2570                if (waitqueue_active(&log_root_tree->log_writer_wait))
2571                        wake_up(&log_root_tree->log_writer_wait);
2572        }
2573
2574        if (ret) {
2575                if (!list_empty(&root_log_ctx.list))
2576                        list_del_init(&root_log_ctx.list);
2577
2578                blk_finish_plug(&plug);
2579                btrfs_set_log_full_commit(root->fs_info, trans);
2580
2581                if (ret != -ENOSPC) {
2582                        btrfs_abort_transaction(trans, root, ret);
2583                        mutex_unlock(&log_root_tree->log_mutex);
2584                        goto out;
2585                }
2586                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2587                btrfs_free_logged_extents(log, log_transid);
2588                mutex_unlock(&log_root_tree->log_mutex);
2589                ret = -EAGAIN;
2590                goto out;
2591        }
2592
2593        if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2594                blk_finish_plug(&plug);
2595                mutex_unlock(&log_root_tree->log_mutex);
2596                ret = root_log_ctx.log_ret;
2597                goto out;
2598        }
2599
2600        index2 = root_log_ctx.log_transid % 2;
2601        if (atomic_read(&log_root_tree->log_commit[index2])) {
2602                blk_finish_plug(&plug);
2603                ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2604                                                mark);
2605                btrfs_wait_logged_extents(trans, log, log_transid);
2606                wait_log_commit(trans, log_root_tree,
2607                                root_log_ctx.log_transid);
2608                mutex_unlock(&log_root_tree->log_mutex);
2609                if (!ret)
2610                        ret = root_log_ctx.log_ret;
2611                goto out;
2612        }
2613        ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2614        atomic_set(&log_root_tree->log_commit[index2], 1);
2615
2616        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2617                wait_log_commit(trans, log_root_tree,
2618                                root_log_ctx.log_transid - 1);
2619        }
2620
2621        wait_for_writer(trans, log_root_tree);
2622
2623        /*
2624         * now that we've moved on to the tree of log tree roots,
2625         * check the full commit flag again
2626         */
2627        if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2628                blk_finish_plug(&plug);
2629                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2630                btrfs_free_logged_extents(log, log_transid);
2631                mutex_unlock(&log_root_tree->log_mutex);
2632                ret = -EAGAIN;
2633                goto out_wake_log_root;
2634        }
2635
2636        ret = btrfs_write_marked_extents(log_root_tree,
2637                                         &log_root_tree->dirty_log_pages,
2638                                         EXTENT_DIRTY | EXTENT_NEW);
2639        blk_finish_plug(&plug);
2640        if (ret) {
2641                btrfs_set_log_full_commit(root->fs_info, trans);
2642                btrfs_abort_transaction(trans, root, ret);
2643                btrfs_free_logged_extents(log, log_transid);
2644                mutex_unlock(&log_root_tree->log_mutex);
2645                goto out_wake_log_root;
2646        }
2647        ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2648        if (!ret)
2649                ret = btrfs_wait_marked_extents(log_root_tree,
2650                                                &log_root_tree->dirty_log_pages,
2651                                                EXTENT_NEW | EXTENT_DIRTY);
2652        if (ret) {
2653                btrfs_set_log_full_commit(root->fs_info, trans);
2654                btrfs_free_logged_extents(log, log_transid);
2655                mutex_unlock(&log_root_tree->log_mutex);
2656                goto out_wake_log_root;
2657        }
2658        btrfs_wait_logged_extents(trans, log, log_transid);
2659
2660        btrfs_set_super_log_root(root->fs_info->super_for_commit,
2661                                log_root_tree->node->start);
2662        btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2663                                btrfs_header_level(log_root_tree->node));
2664
2665        log_root_tree->log_transid++;
2666        mutex_unlock(&log_root_tree->log_mutex);
2667
2668        /*
2669         * nobody else is going to jump in and write the the ctree
2670         * super here because the log_commit atomic below is protecting
2671         * us.  We must be called with a transaction handle pinning
2672         * the running transaction open, so a full commit can't hop
2673         * in and cause problems either.
2674         */
2675        ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2676        if (ret) {
2677                btrfs_set_log_full_commit(root->fs_info, trans);
2678                btrfs_abort_transaction(trans, root, ret);
2679                goto out_wake_log_root;
2680        }
2681
2682        mutex_lock(&root->log_mutex);
2683        if (root->last_log_commit < log_transid)
2684                root->last_log_commit = log_transid;
2685        mutex_unlock(&root->log_mutex);
2686
2687out_wake_log_root:
2688        /*
2689         * We needn't get log_mutex here because we are sure all
2690         * the other tasks are blocked.
2691         */
2692        btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2693
2694        mutex_lock(&log_root_tree->log_mutex);
2695        log_root_tree->log_transid_committed++;
2696        atomic_set(&log_root_tree->log_commit[index2], 0);
2697        mutex_unlock(&log_root_tree->log_mutex);
2698
2699        if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2700                wake_up(&log_root_tree->log_commit_wait[index2]);
2701out:
2702        /* See above. */
2703        btrfs_remove_all_log_ctxs(root, index1, ret);
2704
2705        mutex_lock(&root->log_mutex);
2706        root->log_transid_committed++;
2707        atomic_set(&root->log_commit[index1], 0);
2708        mutex_unlock(&root->log_mutex);
2709
2710        if (waitqueue_active(&root->log_commit_wait[index1]))
2711                wake_up(&root->log_commit_wait[index1]);
2712        return ret;
2713}
2714
2715static void free_log_tree(struct btrfs_trans_handle *trans,
2716                          struct btrfs_root *log)
2717{
2718        int ret;
2719        u64 start;
2720        u64 end;
2721        struct walk_control wc = {
2722                .free = 1,
2723                .process_func = process_one_buffer
2724        };
2725
2726        ret = walk_log_tree(trans, log, &wc);
2727        /* I don't think this can happen but just in case */
2728        if (ret)
2729                btrfs_abort_transaction(trans, log, ret);
2730
2731        while (1) {
2732                ret = find_first_extent_bit(&log->dirty_log_pages,
2733                                0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2734                                NULL);
2735                if (ret)
2736                        break;
2737
2738                clear_extent_bits(&log->dirty_log_pages, start, end,
2739                                  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2740        }
2741
2742        /*
2743         * We may have short-circuited the log tree with the full commit logic
2744         * and left ordered extents on our list, so clear these out to keep us
2745         * from leaking inodes and memory.
2746         */
2747        btrfs_free_logged_extents(log, 0);
2748        btrfs_free_logged_extents(log, 1);
2749
2750        free_extent_buffer(log->node);
2751        kfree(log);
2752}
2753
2754/*
2755 * free all the extents used by the tree log.  This should be called
2756 * at commit time of the full transaction
2757 */
2758int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2759{
2760        if (root->log_root) {
2761                free_log_tree(trans, root->log_root);
2762                root->log_root = NULL;
2763        }
2764        return 0;
2765}
2766
2767int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2768                             struct btrfs_fs_info *fs_info)
2769{
2770        if (fs_info->log_root_tree) {
2771                free_log_tree(trans, fs_info->log_root_tree);
2772                fs_info->log_root_tree = NULL;
2773        }
2774        return 0;
2775}
2776
2777/*
2778 * If both a file and directory are logged, and unlinks or renames are
2779 * mixed in, we have a few interesting corners:
2780 *
2781 * create file X in dir Y
2782 * link file X to X.link in dir Y
2783 * fsync file X
2784 * unlink file X but leave X.link
2785 * fsync dir Y
2786 *
2787 * After a crash we would expect only X.link to exist.  But file X
2788 * didn't get fsync'd again so the log has back refs for X and X.link.
2789 *
2790 * We solve this by removing directory entries and inode backrefs from the
2791 * log when a file that was logged in the current transaction is
2792 * unlinked.  Any later fsync will include the updated log entries, and
2793 * we'll be able to reconstruct the proper directory items from backrefs.
2794 *
2795 * This optimizations allows us to avoid relogging the entire inode
2796 * or the entire directory.
2797 */
2798int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2799                                 struct btrfs_root *root,
2800                                 const char *name, int name_len,
2801                                 struct inode *dir, u64 index)
2802{
2803        struct btrfs_root *log;
2804        struct btrfs_dir_item *di;
2805        struct btrfs_path *path;
2806        int ret;
2807        int err = 0;
2808        int bytes_del = 0;
2809        u64 dir_ino = btrfs_ino(dir);
2810
2811        if (BTRFS_I(dir)->logged_trans < trans->transid)
2812                return 0;
2813
2814        ret = join_running_log_trans(root);
2815        if (ret)
2816                return 0;
2817
2818        mutex_lock(&BTRFS_I(dir)->log_mutex);
2819
2820        log = root->log_root;
2821        path = btrfs_alloc_path();
2822        if (!path) {
2823                err = -ENOMEM;
2824                goto out_unlock;
2825        }
2826
2827        di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2828                                   name, name_len, -1);
2829        if (IS_ERR(di)) {
2830                err = PTR_ERR(di);
2831                goto fail;
2832        }
2833        if (di) {
2834                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2835                bytes_del += name_len;
2836                if (ret) {
2837                        err = ret;
2838                        goto fail;
2839                }
2840        }
2841        btrfs_release_path(path);
2842        di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2843                                         index, name, name_len, -1);
2844        if (IS_ERR(di)) {
2845                err = PTR_ERR(di);
2846                goto fail;
2847        }
2848        if (di) {
2849                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2850                bytes_del += name_len;
2851                if (ret) {
2852                        err = ret;
2853                        goto fail;
2854                }
2855        }
2856
2857        /* update the directory size in the log to reflect the names
2858         * we have removed
2859         */
2860        if (bytes_del) {
2861                struct btrfs_key key;
2862
2863                key.objectid = dir_ino;
2864                key.offset = 0;
2865                key.type = BTRFS_INODE_ITEM_KEY;
2866                btrfs_release_path(path);
2867
2868                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2869                if (ret < 0) {
2870                        err = ret;
2871                        goto fail;
2872                }
2873                if (ret == 0) {
2874                        struct btrfs_inode_item *item;
2875                        u64 i_size;
2876
2877                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2878                                              struct btrfs_inode_item);
2879                        i_size = btrfs_inode_size(path->nodes[0], item);
2880                        if (i_size > bytes_del)
2881                                i_size -= bytes_del;
2882                        else
2883                                i_size = 0;
2884                        btrfs_set_inode_size(path->nodes[0], item, i_size);
2885                        btrfs_mark_buffer_dirty(path->nodes[0]);
2886                } else
2887                        ret = 0;
2888                btrfs_release_path(path);
2889        }
2890fail:
2891        btrfs_free_path(path);
2892out_unlock:
2893        mutex_unlock(&BTRFS_I(dir)->log_mutex);
2894        if (ret == -ENOSPC) {
2895                btrfs_set_log_full_commit(root->fs_info, trans);
2896                ret = 0;
2897        } else if (ret < 0)
2898                btrfs_abort_transaction(trans, root, ret);
2899
2900        btrfs_end_log_trans(root);
2901
2902        return err;
2903}
2904
2905/* see comments for btrfs_del_dir_entries_in_log */
2906int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2907                               struct btrfs_root *root,
2908                               const char *name, int name_len,
2909                               struct inode *inode, u64 dirid)
2910{
2911        struct btrfs_root *log;
2912        u64 index;
2913        int ret;
2914
2915        if (BTRFS_I(inode)->logged_trans < trans->transid)
2916                return 0;
2917
2918        ret = join_running_log_trans(root);
2919        if (ret)
2920                return 0;
2921        log = root->log_root;
2922        mutex_lock(&BTRFS_I(inode)->log_mutex);
2923
2924        ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2925                                  dirid, &index);
2926        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2927        if (ret == -ENOSPC) {
2928                btrfs_set_log_full_commit(root->fs_info, trans);
2929                ret = 0;
2930        } else if (ret < 0 && ret != -ENOENT)
2931                btrfs_abort_transaction(trans, root, ret);
2932        btrfs_end_log_trans(root);
2933
2934        return ret;
2935}
2936
2937/*
2938 * creates a range item in the log for 'dirid'.  first_offset and
2939 * last_offset tell us which parts of the key space the log should
2940 * be considered authoritative for.
2941 */
2942static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2943                                       struct btrfs_root *log,
2944                                       struct btrfs_path *path,
2945                                       int key_type, u64 dirid,
2946                                       u64 first_offset, u64 last_offset)
2947{
2948        int ret;
2949        struct btrfs_key key;
2950        struct btrfs_dir_log_item *item;
2951
2952        key.objectid = dirid;
2953        key.offset = first_offset;
2954        if (key_type == BTRFS_DIR_ITEM_KEY)
2955                key.type = BTRFS_DIR_LOG_ITEM_KEY;
2956        else
2957                key.type = BTRFS_DIR_LOG_INDEX_KEY;
2958        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2959        if (ret)
2960                return ret;
2961
2962        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2963                              struct btrfs_dir_log_item);
2964        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2965        btrfs_mark_buffer_dirty(path->nodes[0]);
2966        btrfs_release_path(path);
2967        return 0;
2968}
2969
2970/*
2971 * log all the items included in the current transaction for a given
2972 * directory.  This also creates the range items in the log tree required
2973 * to replay anything deleted before the fsync
2974 */
2975static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2976                          struct btrfs_root *root, struct inode *inode,
2977                          struct btrfs_path *path,
2978                          struct btrfs_path *dst_path, int key_type,
2979                          u64 min_offset, u64 *last_offset_ret)
2980{
2981        struct btrfs_key min_key;
2982        struct btrfs_root *log = root->log_root;
2983        struct extent_buffer *src;
2984        int err = 0;
2985        int ret;
2986        int i;
2987        int nritems;
2988        u64 first_offset = min_offset;
2989        u64 last_offset = (u64)-1;
2990        u64 ino = btrfs_ino(inode);
2991
2992        log = root->log_root;
2993
2994        min_key.objectid = ino;
2995        min_key.type = key_type;
2996        min_key.offset = min_offset;
2997
2998        ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2999
3000        /*
3001         * we didn't find anything from this transaction, see if there
3002         * is anything at all
3003         */
3004        if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3005                min_key.objectid = ino;
3006                min_key.type = key_type;
3007                min_key.offset = (u64)-1;
3008                btrfs_release_path(path);
3009                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3010                if (ret < 0) {
3011                        btrfs_release_path(path);
3012                        return ret;
3013                }
3014                ret = btrfs_previous_item(root, path, ino, key_type);
3015
3016                /* if ret == 0 there are items for this type,
3017                 * create a range to tell us the last key of this type.
3018                 * otherwise, there are no items in this directory after
3019                 * *min_offset, and we create a range to indicate that.
3020                 */
3021                if (ret == 0) {
3022                        struct btrfs_key tmp;
3023                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3024                                              path->slots[0]);
3025                        if (key_type == tmp.type)
3026                                first_offset = max(min_offset, tmp.offset) + 1;
3027                }
3028                goto done;
3029        }
3030
3031        /* go backward to find any previous key */
3032        ret = btrfs_previous_item(root, path, ino, key_type);
3033        if (ret == 0) {
3034                struct btrfs_key tmp;
3035                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3036                if (key_type == tmp.type) {
3037                        first_offset = tmp.offset;
3038                        ret = overwrite_item(trans, log, dst_path,
3039                                             path->nodes[0], path->slots[0],
3040                                             &tmp);
3041                        if (ret) {
3042                                err = ret;
3043                                goto done;
3044                        }
3045                }
3046        }
3047        btrfs_release_path(path);
3048
3049        /* find the first key from this transaction again */
3050        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3051        if (WARN_ON(ret != 0))
3052                goto done;
3053
3054        /*
3055         * we have a block from this transaction, log every item in it
3056         * from our directory
3057         */
3058        while (1) {
3059                struct btrfs_key tmp;
3060                src = path->nodes[0];
3061                nritems = btrfs_header_nritems(src);
3062                for (i = path->slots[0]; i < nritems; i++) {
3063                        btrfs_item_key_to_cpu(src, &min_key, i);
3064
3065                        if (min_key.objectid != ino || min_key.type != key_type)
3066                                goto done;
3067                        ret = overwrite_item(trans, log, dst_path, src, i,
3068                                             &min_key);
3069                        if (ret) {
3070                                err = ret;
3071                                goto done;
3072                        }
3073                }
3074                path->slots[0] = nritems;
3075
3076                /*
3077                 * look ahead to the next item and see if it is also
3078                 * from this directory and from this transaction
3079                 */
3080                ret = btrfs_next_leaf(root, path);
3081                if (ret == 1) {
3082                        last_offset = (u64)-1;
3083                        goto done;
3084                }
3085                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3086                if (tmp.objectid != ino || tmp.type != key_type) {
3087                        last_offset = (u64)-1;
3088                        goto done;
3089                }
3090                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3091                        ret = overwrite_item(trans, log, dst_path,
3092                                             path->nodes[0], path->slots[0],
3093                                             &tmp);
3094                        if (ret)
3095                                err = ret;
3096                        else
3097                                last_offset = tmp.offset;
3098                        goto done;
3099                }
3100        }
3101done:
3102        btrfs_release_path(path);
3103        btrfs_release_path(dst_path);
3104
3105        if (err == 0) {
3106                *last_offset_ret = last_offset;
3107                /*
3108                 * insert the log range keys to indicate where the log
3109                 * is valid
3110                 */
3111                ret = insert_dir_log_key(trans, log, path, key_type,
3112                                         ino, first_offset, last_offset);
3113                if (ret)
3114                        err = ret;
3115        }
3116        return err;
3117}
3118
3119/*
3120 * logging directories is very similar to logging inodes, We find all the items
3121 * from the current transaction and write them to the log.
3122 *
3123 * The recovery code scans the directory in the subvolume, and if it finds a
3124 * key in the range logged that is not present in the log tree, then it means
3125 * that dir entry was unlinked during the transaction.
3126 *
3127 * In order for that scan to work, we must include one key smaller than
3128 * the smallest logged by this transaction and one key larger than the largest
3129 * key logged by this transaction.
3130 */
3131static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3132                          struct btrfs_root *root, struct inode *inode,
3133                          struct btrfs_path *path,
3134                          struct btrfs_path *dst_path)
3135{
3136        u64 min_key;
3137        u64 max_key;
3138        int ret;
3139        int key_type = BTRFS_DIR_ITEM_KEY;
3140
3141again:
3142        min_key = 0;
3143        max_key = 0;
3144        while (1) {
3145                ret = log_dir_items(trans, root, inode, path,
3146                                    dst_path, key_type, min_key,
3147                                    &max_key);
3148                if (ret)
3149                        return ret;
3150                if (max_key == (u64)-1)
3151                        break;
3152                min_key = max_key + 1;
3153        }
3154
3155        if (key_type == BTRFS_DIR_ITEM_KEY) {
3156                key_type = BTRFS_DIR_INDEX_KEY;
3157                goto again;
3158        }
3159        return 0;
3160}
3161
3162/*
3163 * a helper function to drop items from the log before we relog an
3164 * inode.  max_key_type indicates the highest item type to remove.
3165 * This cannot be run for file data extents because it does not
3166 * free the extents they point to.
3167 */
3168static int drop_objectid_items(struct btrfs_trans_handle *trans,
3169                                  struct btrfs_root *log,
3170                                  struct btrfs_path *path,
3171                                  u64 objectid, int max_key_type)
3172{
3173        int ret;
3174        struct btrfs_key key;
3175        struct btrfs_key found_key;
3176        int start_slot;
3177
3178        key.objectid = objectid;
3179        key.type = max_key_type;
3180        key.offset = (u64)-1;
3181
3182        while (1) {
3183                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3184                BUG_ON(ret == 0); /* Logic error */
3185                if (ret < 0)
3186                        break;
3187
3188                if (path->slots[0] == 0)
3189                        break;
3190
3191                path->slots[0]--;
3192                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3193                                      path->slots[0]);
3194
3195                if (found_key.objectid != objectid)
3196                        break;
3197
3198                found_key.offset = 0;
3199                found_key.type = 0;
3200                ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3201                                       &start_slot);
3202
3203                ret = btrfs_del_items(trans, log, path, start_slot,
3204                                      path->slots[0] - start_slot + 1);
3205                /*
3206                 * If start slot isn't 0 then we don't need to re-search, we've
3207                 * found the last guy with the objectid in this tree.
3208                 */
3209                if (ret || start_slot != 0)
3210                        break;
3211                btrfs_release_path(path);
3212        }
3213        btrfs_release_path(path);
3214        if (ret > 0)
3215                ret = 0;
3216        return ret;
3217}
3218
3219static void fill_inode_item(struct btrfs_trans_handle *trans,
3220                            struct extent_buffer *leaf,
3221                            struct btrfs_inode_item *item,
3222                            struct inode *inode, int log_inode_only)
3223{
3224        struct btrfs_map_token token;
3225
3226        btrfs_init_map_token(&token);
3227
3228        if (log_inode_only) {
3229                /* set the generation to zero so the recover code
3230                 * can tell the difference between an logging
3231                 * just to say 'this inode exists' and a logging
3232                 * to say 'update this inode with these values'
3233                 */
3234                btrfs_set_token_inode_generation(leaf, item, 0, &token);
3235                btrfs_set_token_inode_size(leaf, item, 0, &token);
3236        } else {
3237                btrfs_set_token_inode_generation(leaf, item,
3238                                                 BTRFS_I(inode)->generation,
3239                                                 &token);
3240                btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3241        }
3242
3243        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3244        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3245        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3246        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3247
3248        btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3249                                     inode->i_atime.tv_sec, &token);
3250        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3251                                      inode->i_atime.tv_nsec, &token);
3252
3253        btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3254                                     inode->i_mtime.tv_sec, &token);
3255        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3256                                      inode->i_mtime.tv_nsec, &token);
3257
3258        btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3259                                     inode->i_ctime.tv_sec, &token);
3260        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3261                                      inode->i_ctime.tv_nsec, &token);
3262
3263        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3264                                     &token);
3265
3266        btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3267        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3268        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3269        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3270        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3271}
3272
3273static int log_inode_item(struct btrfs_trans_handle *trans,
3274                          struct btrfs_root *log, struct btrfs_path *path,
3275                          struct inode *inode)
3276{
3277        struct btrfs_inode_item *inode_item;
3278        int ret;
3279
3280        ret = btrfs_insert_empty_item(trans, log, path,
3281                                      &BTRFS_I(inode)->location,
3282                                      sizeof(*inode_item));
3283        if (ret && ret != -EEXIST)
3284                return ret;
3285        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286                                    struct btrfs_inode_item);
3287        fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3288        btrfs_release_path(path);
3289        return 0;
3290}
3291
3292static noinline int copy_items(struct btrfs_trans_handle *trans,
3293                               struct inode *inode,
3294                               struct btrfs_path *dst_path,
3295                               struct btrfs_path *src_path, u64 *last_extent,
3296                               int start_slot, int nr, int inode_only)
3297{
3298        unsigned long src_offset;
3299        unsigned long dst_offset;
3300        struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3301        struct btrfs_file_extent_item *extent;
3302        struct btrfs_inode_item *inode_item;
3303        struct extent_buffer *src = src_path->nodes[0];
3304        struct btrfs_key first_key, last_key, key;
3305        int ret;
3306        struct btrfs_key *ins_keys;
3307        u32 *ins_sizes;
3308        char *ins_data;
3309        int i;
3310        struct list_head ordered_sums;
3311        int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3312        bool has_extents = false;
3313        bool need_find_last_extent = true;
3314        bool done = false;
3315
3316        INIT_LIST_HEAD(&ordered_sums);
3317
3318        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3319                           nr * sizeof(u32), GFP_NOFS);
3320        if (!ins_data)
3321                return -ENOMEM;
3322
3323        first_key.objectid = (u64)-1;
3324
3325        ins_sizes = (u32 *)ins_data;
3326        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3327
3328        for (i = 0; i < nr; i++) {
3329                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3330                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3331        }
3332        ret = btrfs_insert_empty_items(trans, log, dst_path,
3333                                       ins_keys, ins_sizes, nr);
3334        if (ret) {
3335                kfree(ins_data);
3336                return ret;
3337        }
3338
3339        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3340                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3341                                                   dst_path->slots[0]);
3342
3343                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3344
3345                if ((i == (nr - 1)))
3346                        last_key = ins_keys[i];
3347
3348                if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3349                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
3350                                                    dst_path->slots[0],
3351                                                    struct btrfs_inode_item);
3352                        fill_inode_item(trans, dst_path->nodes[0], inode_item,
3353                                        inode, inode_only == LOG_INODE_EXISTS);
3354                } else {
3355                        copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3356                                           src_offset, ins_sizes[i]);
3357                }
3358
3359                /*
3360                 * We set need_find_last_extent here in case we know we were
3361                 * processing other items and then walk into the first extent in
3362                 * the inode.  If we don't hit an extent then nothing changes,
3363                 * we'll do the last search the next time around.
3364                 */
3365                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3366                        has_extents = true;
3367                        if (first_key.objectid == (u64)-1)
3368                                first_key = ins_keys[i];
3369                } else {
3370                        need_find_last_extent = false;
3371                }
3372
3373                /* take a reference on file data extents so that truncates
3374                 * or deletes of this inode don't have to relog the inode
3375                 * again
3376                 */
3377                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3378                    !skip_csum) {
3379                        int found_type;
3380                        extent = btrfs_item_ptr(src, start_slot + i,
3381                                                struct btrfs_file_extent_item);
3382
3383                        if (btrfs_file_extent_generation(src, extent) < trans->transid)
3384                                continue;
3385
3386                        found_type = btrfs_file_extent_type(src, extent);
3387                        if (found_type == BTRFS_FILE_EXTENT_REG) {
3388                                u64 ds, dl, cs, cl;
3389                                ds = btrfs_file_extent_disk_bytenr(src,
3390                                                                extent);
3391                                /* ds == 0 is a hole */
3392                                if (ds == 0)
3393                                        continue;
3394
3395                                dl = btrfs_file_extent_disk_num_bytes(src,
3396                                                                extent);
3397                                cs = btrfs_file_extent_offset(src, extent);
3398                                cl = btrfs_file_extent_num_bytes(src,
3399                                                                extent);
3400                                if (btrfs_file_extent_compression(src,
3401                                                                  extent)) {
3402                                        cs = 0;
3403                                        cl = dl;
3404                                }
3405
3406                                ret = btrfs_lookup_csums_range(
3407                                                log->fs_info->csum_root,
3408                                                ds + cs, ds + cs + cl - 1,
3409                                                &ordered_sums, 0);
3410                                if (ret) {
3411                                        btrfs_release_path(dst_path);
3412                                        kfree(ins_data);
3413                                        return ret;
3414                                }
3415                        }
3416                }
3417        }
3418
3419        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3420        btrfs_release_path(dst_path);
3421        kfree(ins_data);
3422
3423        /*
3424         * we have to do this after the loop above to avoid changing the
3425         * log tree while trying to change the log tree.
3426         */
3427        ret = 0;
3428        while (!list_empty(&ordered_sums)) {
3429                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3430                                                   struct btrfs_ordered_sum,
3431                                                   list);
3432                if (!ret)
3433                        ret = btrfs_csum_file_blocks(trans, log, sums);
3434                list_del(&sums->list);
3435                kfree(sums);
3436        }
3437
3438        if (!has_extents)
3439                return ret;
3440
3441        if (need_find_last_extent && *last_extent == first_key.offset) {
3442                /*
3443                 * We don't have any leafs between our current one and the one
3444                 * we processed before that can have file extent items for our
3445                 * inode (and have a generation number smaller than our current
3446                 * transaction id).
3447                 */
3448                need_find_last_extent = false;
3449        }
3450
3451        /*
3452         * Because we use btrfs_search_forward we could skip leaves that were
3453         * not modified and then assume *last_extent is valid when it really
3454         * isn't.  So back up to the previous leaf and read the end of the last
3455         * extent before we go and fill in holes.
3456         */
3457        if (need_find_last_extent) {
3458                u64 len;
3459
3460                ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3461                if (ret < 0)
3462                        return ret;
3463                if (ret)
3464                        goto fill_holes;
3465                if (src_path->slots[0])
3466                        src_path->slots[0]--;
3467                src = src_path->nodes[0];
3468                btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3469                if (key.objectid != btrfs_ino(inode) ||
3470                    key.type != BTRFS_EXTENT_DATA_KEY)
3471                        goto fill_holes;
3472                extent = btrfs_item_ptr(src, src_path->slots[0],
3473                                        struct btrfs_file_extent_item);
3474                if (btrfs_file_extent_type(src, extent) ==
3475                    BTRFS_FILE_EXTENT_INLINE) {
3476                        len = btrfs_file_extent_inline_len(src,
3477                                                           src_path->slots[0],
3478                                                           extent);
3479                        *last_extent = ALIGN(key.offset + len,
3480                                             log->sectorsize);
3481                } else {
3482                        len = btrfs_file_extent_num_bytes(src, extent);
3483                        *last_extent = key.offset + len;
3484                }
3485        }
3486fill_holes:
3487        /* So we did prev_leaf, now we need to move to the next leaf, but a few
3488         * things could have happened
3489         *
3490         * 1) A merge could have happened, so we could currently be on a leaf
3491         * that holds what we were copying in the first place.
3492         * 2) A split could have happened, and now not all of the items we want
3493         * are on the same leaf.
3494         *
3495         * So we need to adjust how we search for holes, we need to drop the
3496         * path and re-search for the first extent key we found, and then walk
3497         * forward until we hit the last one we copied.
3498         */
3499        if (need_find_last_extent) {
3500                /* btrfs_prev_leaf could return 1 without releasing the path */
3501                btrfs_release_path(src_path);
3502                ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3503                                        src_path, 0, 0);
3504                if (ret < 0)
3505                        return ret;
3506                ASSERT(ret == 0);
3507                src = src_path->nodes[0];
3508                i = src_path->slots[0];
3509        } else {
3510                i = start_slot;
3511        }
3512
3513        /*
3514         * Ok so here we need to go through and fill in any holes we may have
3515         * to make sure that holes are punched for those areas in case they had
3516         * extents previously.
3517         */
3518        while (!done) {
3519                u64 offset, len;
3520                u64 extent_end;
3521
3522                if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3523                        ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3524                        if (ret < 0)
3525                                return ret;
3526                        ASSERT(ret == 0);
3527                        src = src_path->nodes[0];
3528                        i = 0;
3529                }
3530
3531                btrfs_item_key_to_cpu(src, &key, i);
3532                if (!btrfs_comp_cpu_keys(&key, &last_key))
3533                        done = true;
3534                if (key.objectid != btrfs_ino(inode) ||
3535                    key.type != BTRFS_EXTENT_DATA_KEY) {
3536                        i++;
3537                        continue;
3538                }
3539                extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3540                if (btrfs_file_extent_type(src, extent) ==
3541                    BTRFS_FILE_EXTENT_INLINE) {
3542                        len = btrfs_file_extent_inline_len(src, i, extent);
3543                        extent_end = ALIGN(key.offset + len, log->sectorsize);
3544                } else {
3545                        len = btrfs_file_extent_num_bytes(src, extent);
3546                        extent_end = key.offset + len;
3547                }
3548                i++;
3549
3550                if (*last_extent == key.offset) {
3551                        *last_extent = extent_end;
3552                        continue;
3553                }
3554                offset = *last_extent;
3555                len = key.offset - *last_extent;
3556                ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3557                                               offset, 0, 0, len, 0, len, 0,
3558                                               0, 0);
3559                if (ret)
3560                        break;
3561                *last_extent = extent_end;
3562        }
3563        /*
3564         * Need to let the callers know we dropped the path so they should
3565         * re-search.
3566         */
3567        if (!ret && need_find_last_extent)
3568                ret = 1;
3569        return ret;
3570}
3571
3572static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3573{
3574        struct extent_map *em1, *em2;
3575
3576        em1 = list_entry(a, struct extent_map, list);
3577        em2 = list_entry(b, struct extent_map, list);
3578
3579        if (em1->start < em2->start)
3580                return -1;
3581        else if (em1->start > em2->start)
3582                return 1;
3583        return 0;
3584}
3585
3586static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3587                                struct inode *inode,
3588                                struct btrfs_root *root,
3589                                const struct extent_map *em,
3590                                const struct list_head *logged_list,
3591                                bool *ordered_io_error)
3592{
3593        struct btrfs_ordered_extent *ordered;
3594        struct btrfs_root *log = root->log_root;
3595        u64 mod_start = em->mod_start;
3596        u64 mod_len = em->mod_len;
3597        const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3598        u64 csum_offset;
3599        u64 csum_len;
3600        LIST_HEAD(ordered_sums);
3601        int ret = 0;
3602
3603        *ordered_io_error = false;
3604
3605        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3606            em->block_start == EXTENT_MAP_HOLE)
3607                return 0;
3608
3609        /*
3610         * Wait far any ordered extent that covers our extent map. If it
3611         * finishes without an error, first check and see if our csums are on
3612         * our outstanding ordered extents.
3613         */
3614        list_for_each_entry(ordered, logged_list, log_list) {
3615                struct btrfs_ordered_sum *sum;
3616
3617                if (!mod_len)
3618                        break;
3619
3620                if (ordered->file_offset + ordered->len <= mod_start ||
3621                    mod_start + mod_len <= ordered->file_offset)
3622                        continue;
3623
3624                if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3625                    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3626                    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3627                        const u64 start = ordered->file_offset;
3628                        const u64 end = ordered->file_offset + ordered->len - 1;
3629
3630                        WARN_ON(ordered->inode != inode);
3631                        filemap_fdatawrite_range(inode->i_mapping, start, end);
3632                }
3633
3634                wait_event(ordered->wait,
3635                           (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3636                            test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3637
3638                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3639                        /*
3640                         * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3641                         * i_mapping flags, so that the next fsync won't get
3642                         * an outdated io error too.
3643                         */
3644                        btrfs_inode_check_errors(inode);
3645                        *ordered_io_error = true;
3646                        break;
3647                }
3648                /*
3649                 * We are going to copy all the csums on this ordered extent, so
3650                 * go ahead and adjust mod_start and mod_len in case this
3651                 * ordered extent has already been logged.
3652                 */
3653                if (ordered->file_offset > mod_start) {
3654                        if (ordered->file_offset + ordered->len >=
3655                            mod_start + mod_len)
3656                                mod_len = ordered->file_offset - mod_start;
3657                        /*
3658                         * If we have this case
3659                         *
3660                         * |--------- logged extent ---------|
3661                         *       |----- ordered extent ----|
3662                         *
3663                         * Just don't mess with mod_start and mod_len, we'll
3664                         * just end up logging more csums than we need and it
3665                         * will be ok.
3666                         */
3667                } else {
3668                        if (ordered->file_offset + ordered->len <
3669                            mod_start + mod_len) {
3670                                mod_len = (mod_start + mod_len) -
3671                                        (ordered->file_offset + ordered->len);
3672                                mod_start = ordered->file_offset +
3673                                        ordered->len;
3674                        } else {
3675                                mod_len = 0;
3676                        }
3677                }
3678
3679                if (skip_csum)
3680                        continue;
3681
3682                /*
3683                 * To keep us from looping for the above case of an ordered
3684                 * extent that falls inside of the logged extent.
3685                 */
3686                if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3687                                     &ordered->flags))
3688                        continue;
3689
3690                if (ordered->csum_bytes_left) {
3691                        btrfs_start_ordered_extent(inode, ordered, 0);
3692                        wait_event(ordered->wait,
3693                                   ordered->csum_bytes_left == 0);
3694                }
3695
3696                list_for_each_entry(sum, &ordered->list, list) {
3697                        ret = btrfs_csum_file_blocks(trans, log, sum);
3698                        if (ret)
3699                                break;
3700                }
3701        }
3702
3703        if (*ordered_io_error || !mod_len || ret || skip_csum)
3704                return ret;
3705
3706        if (em->compress_type) {
3707                csum_offset = 0;
3708                csum_len = max(em->block_len, em->orig_block_len);
3709        } else {
3710                csum_offset = mod_start - em->start;
3711                csum_len = mod_len;
3712        }
3713
3714        /* block start is already adjusted for the file extent offset. */
3715        ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3716                                       em->block_start + csum_offset,
3717                                       em->block_start + csum_offset +
3718                                       csum_len - 1, &ordered_sums, 0);
3719        if (ret)
3720                return ret;
3721
3722        while (!list_empty(&ordered_sums)) {
3723                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3724                                                   struct btrfs_ordered_sum,
3725                                                   list);
3726                if (!ret)
3727                        ret = btrfs_csum_file_blocks(trans, log, sums);
3728                list_del(&sums->list);
3729                kfree(sums);
3730        }
3731
3732        return ret;
3733}
3734
3735static int log_one_extent(struct btrfs_trans_handle *trans,
3736                          struct inode *inode, struct btrfs_root *root,
3737                          const struct extent_map *em,
3738                          struct btrfs_path *path,
3739                          const struct list_head *logged_list,
3740                          struct btrfs_log_ctx *ctx)
3741{
3742        struct btrfs_root *log = root->log_root;
3743        struct btrfs_file_extent_item *fi;
3744        struct extent_buffer *leaf;
3745        struct btrfs_map_token token;
3746        struct btrfs_key key;
3747        u64 extent_offset = em->start - em->orig_start;
3748        u64 block_len;
3749        int ret;
3750        int extent_inserted = 0;
3751        bool ordered_io_err = false;
3752
3753        ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3754                                   &ordered_io_err);
3755        if (ret)
3756                return ret;
3757
3758        if (ordered_io_err) {
3759                ctx->io_err = -EIO;
3760                return 0;
3761        }
3762
3763        btrfs_init_map_token(&token);
3764
3765        ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3766                                   em->start + em->len, NULL, 0, 1,
3767                                   sizeof(*fi), &extent_inserted);
3768        if (ret)
3769                return ret;
3770
3771        if (!extent_inserted) {
3772                key.objectid = btrfs_ino(inode);
3773                key.type = BTRFS_EXTENT_DATA_KEY;
3774                key.offset = em->start;
3775
3776                ret = btrfs_insert_empty_item(trans, log, path, &key,
3777                                              sizeof(*fi));
3778                if (ret)
3779                        return ret;
3780        }
3781        leaf = path->nodes[0];
3782        fi = btrfs_item_ptr(leaf, path->slots[0],
3783                            struct btrfs_file_extent_item);
3784
3785        btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3786                                               &token);
3787        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3788                btrfs_set_token_file_extent_type(leaf, fi,
3789                                                 BTRFS_FILE_EXTENT_PREALLOC,
3790                                                 &token);
3791        else
3792                btrfs_set_token_file_extent_type(leaf, fi,
3793                                                 BTRFS_FILE_EXTENT_REG,
3794                                                 &token);
3795
3796        block_len = max(em->block_len, em->orig_block_len);
3797        if (em->compress_type != BTRFS_COMPRESS_NONE) {
3798                btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3799                                                        em->block_start,
3800                                                        &token);
3801                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3802                                                           &token);
3803        } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3804                btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3805                                                        em->block_start -
3806                                                        extent_offset, &token);
3807                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3808                                                           &token);
3809        } else {
3810                btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3811                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3812                                                           &token);
3813        }
3814
3815        btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3816        btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3817        btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3818        btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3819                                                &token);
3820        btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3821        btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3822        btrfs_mark_buffer_dirty(leaf);
3823
3824        btrfs_release_path(path);
3825
3826        return ret;
3827}
3828
3829static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3830                                     struct btrfs_root *root,
3831                                     struct inode *inode,
3832                                     struct btrfs_path *path,
3833                                     struct list_head *logged_list,
3834                                     struct btrfs_log_ctx *ctx)
3835{
3836        struct extent_map *em, *n;
3837        struct list_head extents;
3838        struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3839        u64 test_gen;
3840        int ret = 0;
3841        int num = 0;
3842
3843        INIT_LIST_HEAD(&extents);
3844
3845        write_lock(&tree->lock);
3846        test_gen = root->fs_info->last_trans_committed;
3847
3848        list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3849                list_del_init(&em->list);
3850
3851                /*
3852                 * Just an arbitrary number, this can be really CPU intensive
3853                 * once we start getting a lot of extents, and really once we
3854                 * have a bunch of extents we just want to commit since it will
3855                 * be faster.
3856                 */
3857                if (++num > 32768) {
3858                        list_del_init(&tree->modified_extents);
3859                        ret = -EFBIG;
3860                        goto process;
3861                }
3862
3863                if (em->generation <= test_gen)
3864                        continue;
3865                /* Need a ref to keep it from getting evicted from cache */
3866                atomic_inc(&em->refs);
3867                set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3868                list_add_tail(&em->list, &extents);
3869                num++;
3870        }
3871
3872        list_sort(NULL, &extents, extent_cmp);
3873
3874process:
3875        while (!list_empty(&extents)) {
3876                em = list_entry(extents.next, struct extent_map, list);
3877
3878                list_del_init(&em->list);
3879
3880                /*
3881                 * If we had an error we just need to delete everybody from our
3882                 * private list.
3883                 */
3884                if (ret) {
3885                        clear_em_logging(tree, em);
3886                        free_extent_map(em);
3887                        continue;
3888                }
3889
3890                write_unlock(&tree->lock);
3891
3892                ret = log_one_extent(trans, inode, root, em, path, logged_list,
3893                                     ctx);
3894                write_lock(&tree->lock);
3895                clear_em_logging(tree, em);
3896                free_extent_map(em);
3897        }
3898        WARN_ON(!list_empty(&extents));
3899        write_unlock(&tree->lock);
3900
3901        btrfs_release_path(path);
3902        return ret;
3903}
3904
3905/* log a single inode in the tree log.
3906 * At least one parent directory for this inode must exist in the tree
3907 * or be logged already.
3908 *
3909 * Any items from this inode changed by the current transaction are copied
3910 * to the log tree.  An extra reference is taken on any extents in this
3911 * file, allowing us to avoid a whole pile of corner cases around logging
3912 * blocks that have been removed from the tree.
3913 *
3914 * See LOG_INODE_ALL and related defines for a description of what inode_only
3915 * does.
3916 *
3917 * This handles both files and directories.
3918 */
3919static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3920                           struct btrfs_root *root, struct inode *inode,
3921                           int inode_only,
3922                           const loff_t start,
3923                           const loff_t end,
3924                           struct btrfs_log_ctx *ctx)
3925{
3926        struct btrfs_path *path;
3927        struct btrfs_path *dst_path;
3928        struct btrfs_key min_key;
3929        struct btrfs_key max_key;
3930        struct btrfs_root *log = root->log_root;
3931        struct extent_buffer *src = NULL;
3932        LIST_HEAD(logged_list);
3933        u64 last_extent = 0;
3934        int err = 0;
3935        int ret;
3936        int nritems;
3937        int ins_start_slot = 0;
3938        int ins_nr;
3939        bool fast_search = false;
3940        u64 ino = btrfs_ino(inode);
3941        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3942
3943        path = btrfs_alloc_path();
3944        if (!path)
3945                return -ENOMEM;
3946        dst_path = btrfs_alloc_path();
3947        if (!dst_path) {
3948                btrfs_free_path(path);
3949                return -ENOMEM;
3950        }
3951
3952        min_key.objectid = ino;
3953        min_key.type = BTRFS_INODE_ITEM_KEY;
3954        min_key.offset = 0;
3955
3956        max_key.objectid = ino;
3957
3958
3959        /* today the code can only do partial logging of directories */
3960        if (S_ISDIR(inode->i_mode) ||
3961            (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3962                       &BTRFS_I(inode)->runtime_flags) &&
3963             inode_only == LOG_INODE_EXISTS))
3964                max_key.type = BTRFS_XATTR_ITEM_KEY;
3965        else
3966                max_key.type = (u8)-1;
3967        max_key.offset = (u64)-1;
3968
3969        /* Only run delayed items if we are a dir or a new file */
3970        if (S_ISDIR(inode->i_mode) ||
3971            BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3972                ret = btrfs_commit_inode_delayed_items(trans, inode);
3973                if (ret) {
3974                        btrfs_free_path(path);
3975                        btrfs_free_path(dst_path);
3976                        return ret;
3977                }
3978        }
3979
3980        mutex_lock(&BTRFS_I(inode)->log_mutex);
3981
3982        btrfs_get_logged_extents(inode, &logged_list, start, end);
3983
3984        /*
3985         * a brute force approach to making sure we get the most uptodate
3986         * copies of everything.
3987         */
3988        if (S_ISDIR(inode->i_mode)) {
3989                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3990
3991                if (inode_only == LOG_INODE_EXISTS)
3992                        max_key_type = BTRFS_XATTR_ITEM_KEY;
3993                ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3994        } else {
3995                if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3996                                       &BTRFS_I(inode)->runtime_flags)) {
3997                        clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3998                                  &BTRFS_I(inode)->runtime_flags);
3999                        ret = btrfs_truncate_inode_items(trans, log,
4000                                                         inode, 0, 0);
4001                } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4002                                              &BTRFS_I(inode)->runtime_flags) ||
4003                           inode_only == LOG_INODE_EXISTS) {
4004                        if (inode_only == LOG_INODE_ALL)
4005                                fast_search = true;
4006                        max_key.type = BTRFS_XATTR_ITEM_KEY;
4007                        ret = drop_objectid_items(trans, log, path, ino,
4008                                                  max_key.type);
4009                } else {
4010                        if (inode_only == LOG_INODE_ALL)
4011                                fast_search = true;
4012                        ret = log_inode_item(trans, log, dst_path, inode);
4013                        if (ret) {
4014                                err = ret;
4015                                goto out_unlock;
4016                        }
4017                        goto log_extents;
4018                }
4019
4020        }
4021        if (ret) {
4022                err = ret;
4023                goto out_unlock;
4024        }
4025
4026        while (1) {
4027                ins_nr = 0;
4028                ret = btrfs_search_forward(root, &min_key,
4029                                           path, trans->transid);
4030                if (ret != 0)
4031                        break;
4032again:
4033                /* note, ins_nr might be > 0 here, cleanup outside the loop */
4034                if (min_key.objectid != ino)
4035                        break;
4036                if (min_key.type > max_key.type)
4037                        break;
4038
4039                src = path->nodes[0];
4040                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4041                        ins_nr++;
4042                        goto next_slot;
4043                } else if (!ins_nr) {
4044                        ins_start_slot = path->slots[0];
4045                        ins_nr = 1;
4046                        goto next_slot;
4047                }
4048
4049                ret = copy_items(trans, inode, dst_path, path, &last_extent,
4050                                 ins_start_slot, ins_nr, inode_only);
4051                if (ret < 0) {
4052                        err = ret;
4053                        goto out_unlock;
4054                }
4055                if (ret) {
4056                        ins_nr = 0;
4057                        btrfs_release_path(path);
4058                        continue;
4059                }
4060                ins_nr = 1;
4061                ins_start_slot = path->slots[0];
4062next_slot:
4063
4064                nritems = btrfs_header_nritems(path->nodes[0]);
4065                path->slots[0]++;
4066                if (path->slots[0] < nritems) {
4067                        btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4068                                              path->slots[0]);
4069                        goto again;
4070                }
4071                if (ins_nr) {
4072                        ret = copy_items(trans, inode, dst_path, path,
4073                                         &last_extent, ins_start_slot,
4074                                         ins_nr, inode_only);
4075                        if (ret < 0) {
4076                                err = ret;
4077                                goto out_unlock;
4078                        }
4079                        ret = 0;
4080                        ins_nr = 0;
4081                }
4082                btrfs_release_path(path);
4083
4084                if (min_key.offset < (u64)-1) {
4085                        min_key.offset++;
4086                } else if (min_key.type < max_key.type) {
4087                        min_key.type++;
4088                        min_key.offset = 0;
4089                } else {
4090                        break;
4091                }
4092        }
4093        if (ins_nr) {
4094                ret = copy_items(trans, inode, dst_path, path, &last_extent,
4095                                 ins_start_slot, ins_nr, inode_only);
4096                if (ret < 0) {
4097                        err = ret;
4098                        goto out_unlock;
4099                }
4100                ret = 0;
4101                ins_nr = 0;
4102        }
4103
4104log_extents:
4105        btrfs_release_path(path);
4106        btrfs_release_path(dst_path);
4107        if (fast_search) {
4108                /*
4109                 * Some ordered extents started by fsync might have completed
4110                 * before we collected the ordered extents in logged_list, which
4111                 * means they're gone, not in our logged_list nor in the inode's
4112                 * ordered tree. We want the application/user space to know an
4113                 * error happened while attempting to persist file data so that
4114                 * it can take proper action. If such error happened, we leave
4115                 * without writing to the log tree and the fsync must report the
4116                 * file data write error and not commit the current transaction.
4117                 */
4118                err = btrfs_inode_check_errors(inode);
4119                if (err) {
4120                        ctx->io_err = err;
4121                        goto out_unlock;
4122                }
4123                ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4124                                                &logged_list, ctx);
4125                if (ret) {
4126                        err = ret;
4127                        goto out_unlock;
4128                }
4129        } else if (inode_only == LOG_INODE_ALL) {
4130                struct extent_map *em, *n;
4131
4132                write_lock(&em_tree->lock);
4133                /*
4134                 * We can't just remove every em if we're called for a ranged
4135                 * fsync - that is, one that doesn't cover the whole possible
4136                 * file range (0 to LLONG_MAX). This is because we can have
4137                 * em's that fall outside the range we're logging and therefore
4138                 * their ordered operations haven't completed yet
4139                 * (btrfs_finish_ordered_io() not invoked yet). This means we
4140                 * didn't get their respective file extent item in the fs/subvol
4141                 * tree yet, and need to let the next fast fsync (one which
4142                 * consults the list of modified extent maps) find the em so
4143                 * that it logs a matching file extent item and waits for the
4144                 * respective ordered operation to complete (if it's still
4145                 * running).
4146                 *
4147                 * Removing every em outside the range we're logging would make
4148                 * the next fast fsync not log their matching file extent items,
4149                 * therefore making us lose data after a log replay.
4150                 */
4151                list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4152                                         list) {
4153                        const u64 mod_end = em->mod_start + em->mod_len - 1;
4154
4155                        if (em->mod_start >= start && mod_end <= end)
4156                                list_del_init(&em->list);
4157                }
4158                write_unlock(&em_tree->lock);
4159        }
4160
4161        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4162                ret = log_directory_changes(trans, root, inode, path, dst_path);
4163                if (ret) {
4164                        err = ret;
4165                        goto out_unlock;
4166                }
4167        }
4168
4169        BTRFS_I(inode)->logged_trans = trans->transid;
4170        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4171out_unlock:
4172        if (unlikely(err))
4173                btrfs_put_logged_extents(&logged_list);
4174        else
4175                btrfs_submit_logged_extents(&logged_list, log);
4176        mutex_unlock(&BTRFS_I(inode)->log_mutex);
4177
4178        btrfs_free_path(path);
4179        btrfs_free_path(dst_path);
4180        return err;
4181}
4182
4183/*
4184 * follow the dentry parent pointers up the chain and see if any
4185 * of the directories in it require a full commit before they can
4186 * be logged.  Returns zero if nothing special needs to be done or 1 if
4187 * a full commit is required.
4188 */
4189static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4190                                               struct inode *inode,
4191                                               struct dentry *parent,
4192                                               struct super_block *sb,
4193                                               u64 last_committed)
4194{
4195        int ret = 0;
4196        struct btrfs_root *root;
4197        struct dentry *old_parent = NULL;
4198        struct inode *orig_inode = inode;
4199
4200        /*
4201         * for regular files, if its inode is already on disk, we don't
4202         * have to worry about the parents at all.  This is because
4203         * we can use the last_unlink_trans field to record renames
4204         * and other fun in this file.
4205         */
4206        if (S_ISREG(inode->i_mode) &&
4207            BTRFS_I(inode)->generation <= last_committed &&
4208            BTRFS_I(inode)->last_unlink_trans <= last_committed)
4209                        goto out;
4210
4211        if (!S_ISDIR(inode->i_mode)) {
4212                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4213                        goto out;
4214                inode = parent->d_inode;
4215        }
4216
4217        while (1) {
4218                /*
4219                 * If we are logging a directory then we start with our inode,
4220                 * not our parents inode, so we need to skipp setting the
4221                 * logged_trans so that further down in the log code we don't
4222                 * think this inode has already been logged.
4223                 */
4224                if (inode != orig_inode)
4225                        BTRFS_I(inode)->logged_trans = trans->transid;
4226                smp_mb();
4227
4228                if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4229                        root = BTRFS_I(inode)->root;
4230
4231                        /*
4232                         * make sure any commits to the log are forced
4233                         * to be full commits
4234                         */
4235                        btrfs_set_log_full_commit(root->fs_info, trans);
4236                        ret = 1;
4237                        break;
4238                }
4239
4240                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4241                        break;
4242
4243                if (IS_ROOT(parent))
4244                        break;
4245
4246                parent = dget_parent(parent);
4247                dput(old_parent);
4248                old_parent = parent;
4249                inode = parent->d_inode;
4250
4251        }
4252        dput(old_parent);
4253out:
4254        return ret;
4255}
4256
4257/*
4258 * helper function around btrfs_log_inode to make sure newly created
4259 * parent directories also end up in the log.  A minimal inode and backref
4260 * only logging is done of any parent directories that are older than
4261 * the last committed transaction
4262 */
4263static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4264                                  struct btrfs_root *root, struct inode *inode,
4265                                  struct dentry *parent,
4266                                  const loff_t start,
4267                                  const loff_t end,
4268                                  int exists_only,
4269                                  struct btrfs_log_ctx *ctx)
4270{
4271        int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4272        struct super_block *sb;
4273        struct dentry *old_parent = NULL;
4274        int ret = 0;
4275        u64 last_committed = root->fs_info->last_trans_committed;
4276
4277        sb = inode->i_sb;
4278
4279        if (btrfs_test_opt(root, NOTREELOG)) {
4280                ret = 1;
4281                goto end_no_trans;
4282        }
4283
4284        /*
4285         * The prev transaction commit doesn't complete, we need do
4286         * full commit by ourselves.
4287         */
4288        if (root->fs_info->last_trans_log_full_commit >
4289            root->fs_info->last_trans_committed) {
4290                ret = 1;
4291                goto end_no_trans;
4292        }
4293
4294        if (root != BTRFS_I(inode)->root ||
4295            btrfs_root_refs(&root->root_item) == 0) {
4296                ret = 1;
4297                goto end_no_trans;
4298        }
4299
4300        ret = check_parent_dirs_for_sync(trans, inode, parent,
4301                                         sb, last_committed);
4302        if (ret)
4303                goto end_no_trans;
4304
4305        if (btrfs_inode_in_log(inode, trans->transid)) {
4306                ret = BTRFS_NO_LOG_SYNC;
4307                goto end_no_trans;
4308        }
4309
4310        ret = start_log_trans(trans, root, ctx);
4311        if (ret)
4312                goto end_no_trans;
4313
4314        ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4315        if (ret)
4316                goto end_trans;
4317
4318        /*
4319         * for regular files, if its inode is already on disk, we don't
4320         * have to worry about the parents at all.  This is because
4321         * we can use the last_unlink_trans field to record renames
4322         * and other fun in this file.
4323         */
4324        if (S_ISREG(inode->i_mode) &&
4325            BTRFS_I(inode)->generation <= last_committed &&
4326            BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4327                ret = 0;
4328                goto end_trans;
4329        }
4330
4331        inode_only = LOG_INODE_EXISTS;
4332        while (1) {
4333                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4334                        break;
4335
4336                inode = parent->d_inode;
4337                if (root != BTRFS_I(inode)->root)
4338                        break;
4339
4340                if (BTRFS_I(inode)->generation >
4341                    root->fs_info->last_trans_committed) {
4342                        ret = btrfs_log_inode(trans, root, inode, inode_only,
4343                                              0, LLONG_MAX, ctx);
4344                        if (ret)
4345                                goto end_trans;
4346                }
4347                if (IS_ROOT(parent))
4348                        break;
4349
4350                parent = dget_parent(parent);
4351                dput(old_parent);
4352                old_parent = parent;
4353        }
4354        ret = 0;
4355end_trans:
4356        dput(old_parent);
4357        if (ret < 0) {
4358                btrfs_set_log_full_commit(root->fs_info, trans);
4359                ret = 1;
4360        }
4361
4362        if (ret)
4363                btrfs_remove_log_ctx(root, ctx);
4364        btrfs_end_log_trans(root);
4365end_no_trans:
4366        return ret;
4367}
4368
4369/*
4370 * it is not safe to log dentry if the chunk root has added new
4371 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4372 * If this returns 1, you must commit the transaction to safely get your
4373 * data on disk.
4374 */
4375int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4376                          struct btrfs_root *root, struct dentry *dentry,
4377                          const loff_t start,
4378                          const loff_t end,
4379                          struct btrfs_log_ctx *ctx)
4380{
4381        struct dentry *parent = dget_parent(dentry);
4382        int ret;
4383
4384        ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4385                                     start, end, 0, ctx);
4386        dput(parent);
4387
4388        return ret;
4389}
4390
4391/*
4392 * should be called during mount to recover any replay any log trees
4393 * from the FS
4394 */
4395int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4396{
4397        int ret;
4398        struct btrfs_path *path;
4399        struct btrfs_trans_handle *trans;
4400        struct btrfs_key key;
4401        struct btrfs_key found_key;
4402        struct btrfs_key tmp_key;
4403        struct btrfs_root *log;
4404        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4405        struct walk_control wc = {
4406                .process_func = process_one_buffer,
4407                .stage = 0,
4408        };
4409
4410        path = btrfs_alloc_path();
4411        if (!path)
4412                return -ENOMEM;
4413
4414        fs_info->log_root_recovering = 1;
4415
4416        trans = btrfs_start_transaction(fs_info->tree_root, 0);
4417        if (IS_ERR(trans)) {
4418                ret = PTR_ERR(trans);
4419                goto error;
4420        }
4421
4422        wc.trans = trans;
4423        wc.pin = 1;
4424
4425        ret = walk_log_tree(trans, log_root_tree, &wc);
4426        if (ret) {
4427                btrfs_error(fs_info, ret, "Failed to pin buffers while "
4428                            "recovering log root tree.");
4429                goto error;
4430        }
4431
4432again:
4433        key.objectid = BTRFS_TREE_LOG_OBJECTID;
4434        key.offset = (u64)-1;
4435        key.type = BTRFS_ROOT_ITEM_KEY;
4436
4437        while (1) {
4438                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4439
4440                if (ret < 0) {
4441                        btrfs_error(fs_info, ret,
4442                                    "Couldn't find tree log root.");
4443                        goto error;
4444                }
4445                if (ret > 0) {
4446                        if (path->slots[0] == 0)
4447                                break;
4448                        path->slots[0]--;
4449                }
4450                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4451                                      path->slots[0]);
4452                btrfs_release_path(path);
4453                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4454                        break;
4455
4456                log = btrfs_read_fs_root(log_root_tree, &found_key);
4457                if (IS_ERR(log)) {
4458                        ret = PTR_ERR(log);
4459                        btrfs_error(fs_info, ret,
4460                                    "Couldn't read tree log root.");
4461                        goto error;
4462                }
4463
4464                tmp_key.objectid = found_key.offset;
4465                tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4466                tmp_key.offset = (u64)-1;
4467
4468                wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4469                if (IS_ERR(wc.replay_dest)) {
4470                        ret = PTR_ERR(wc.replay_dest);
4471                        free_extent_buffer(log->node);
4472                        free_extent_buffer(log->commit_root);
4473                        kfree(log);
4474                        btrfs_error(fs_info, ret, "Couldn't read target root "
4475                                    "for tree log recovery.");
4476                        goto error;
4477                }
4478
4479                wc.replay_dest->log_root = log;
4480                btrfs_record_root_in_trans(trans, wc.replay_dest);
4481                ret = walk_log_tree(trans, log, &wc);
4482
4483                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4484                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
4485                                                      path);
4486                }
4487
4488                key.offset = found_key.offset - 1;
4489                wc.replay_dest->log_root = NULL;
4490                free_extent_buffer(log->node);
4491                free_extent_buffer(log->commit_root);
4492                kfree(log);
4493
4494                if (ret)
4495                        goto error;
4496
4497                if (found_key.offset == 0)
4498                        break;
4499        }
4500        btrfs_release_path(path);
4501
4502        /* step one is to pin it all, step two is to replay just inodes */
4503        if (wc.pin) {
4504                wc.pin = 0;
4505                wc.process_func = replay_one_buffer;
4506                wc.stage = LOG_WALK_REPLAY_INODES;
4507                goto again;
4508        }
4509        /* step three is to replay everything */
4510        if (wc.stage < LOG_WALK_REPLAY_ALL) {
4511                wc.stage++;
4512                goto again;
4513        }
4514
4515        btrfs_free_path(path);
4516
4517        /* step 4: commit the transaction, which also unpins the blocks */
4518        ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4519        if (ret)
4520                return ret;
4521
4522        free_extent_buffer(log_root_tree->node);
4523        log_root_tree->log_root = NULL;
4524        fs_info->log_root_recovering = 0;
4525        kfree(log_root_tree);
4526
4527        return 0;
4528error:
4529        if (wc.trans)
4530                btrfs_end_transaction(wc.trans, fs_info->tree_root);
4531        btrfs_free_path(path);
4532        return ret;
4533}
4534
4535/*
4536 * there are some corner cases where we want to force a full
4537 * commit instead of allowing a directory to be logged.
4538 *
4539 * They revolve around files there were unlinked from the directory, and
4540 * this function updates the parent directory so that a full commit is
4541 * properly done if it is fsync'd later after the unlinks are done.
4542 */
4543void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4544                             struct inode *dir, struct inode *inode,
4545                             int for_rename)
4546{
4547        /*
4548         * when we're logging a file, if it hasn't been renamed
4549         * or unlinked, and its inode is fully committed on disk,
4550         * we don't have to worry about walking up the directory chain
4551         * to log its parents.
4552         *
4553         * So, we use the last_unlink_trans field to put this transid
4554         * into the file.  When the file is logged we check it and
4555         * don't log the parents if the file is fully on disk.
4556         */
4557        if (S_ISREG(inode->i_mode))
4558                BTRFS_I(inode)->last_unlink_trans = trans->transid;
4559
4560        /*
4561         * if this directory was already logged any new
4562         * names for this file/dir will get recorded
4563         */
4564        smp_mb();
4565        if (BTRFS_I(dir)->logged_trans == trans->transid)
4566                return;
4567
4568        /*
4569         * if the inode we're about to unlink was logged,
4570         * the log will be properly updated for any new names
4571         */
4572        if (BTRFS_I(inode)->logged_trans == trans->transid)
4573                return;
4574
4575        /*
4576         * when renaming files across directories, if the directory
4577         * there we're unlinking from gets fsync'd later on, there's
4578         * no way to find the destination directory later and fsync it
4579         * properly.  So, we have to be conservative and force commits
4580         * so the new name gets discovered.
4581         */
4582        if (for_rename)
4583                goto record;
4584
4585        /* we can safely do the unlink without any special recording */
4586        return;
4587
4588record:
4589        BTRFS_I(dir)->last_unlink_trans = trans->transid;
4590}
4591
4592/*
4593 * Call this after adding a new name for a file and it will properly
4594 * update the log to reflect the new name.
4595 *
4596 * It will return zero if all goes well, and it will return 1 if a
4597 * full transaction commit is required.
4598 */
4599int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4600                        struct inode *inode, struct inode *old_dir,
4601                        struct dentry *parent)
4602{
4603        struct btrfs_root * root = BTRFS_I(inode)->root;
4604
4605        /*
4606         * this will force the logging code to walk the dentry chain
4607         * up for the file
4608         */
4609        if (S_ISREG(inode->i_mode))
4610                BTRFS_I(inode)->last_unlink_trans = trans->transid;
4611
4612        /*
4613         * if this inode hasn't been logged and directory we're renaming it
4614         * from hasn't been logged, we don't need to log it
4615         */
4616        if (BTRFS_I(inode)->logged_trans <=
4617            root->fs_info->last_trans_committed &&
4618            (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4619                    root->fs_info->last_trans_committed))
4620                return 0;
4621
4622        return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4623                                      LLONG_MAX, 1, NULL);
4624}
4625
4626