linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *      (jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
  40#include <linux/aio.h>
  41#include <linux/bitops.h>
  42
  43#include "ext4_jbd2.h"
  44#include "xattr.h"
  45#include "acl.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53                              struct ext4_inode_info *ei)
  54{
  55        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56        __u16 csum_lo;
  57        __u16 csum_hi = 0;
  58        __u32 csum;
  59
  60        csum_lo = le16_to_cpu(raw->i_checksum_lo);
  61        raw->i_checksum_lo = 0;
  62        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  63            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  64                csum_hi = le16_to_cpu(raw->i_checksum_hi);
  65                raw->i_checksum_hi = 0;
  66        }
  67
  68        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  69                           EXT4_INODE_SIZE(inode->i_sb));
  70
  71        raw->i_checksum_lo = cpu_to_le16(csum_lo);
  72        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  73            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  74                raw->i_checksum_hi = cpu_to_le16(csum_hi);
  75
  76        return csum;
  77}
  78
  79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  80                                  struct ext4_inode_info *ei)
  81{
  82        __u32 provided, calculated;
  83
  84        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  85            cpu_to_le32(EXT4_OS_LINUX) ||
  86            !ext4_has_metadata_csum(inode->i_sb))
  87                return 1;
  88
  89        provided = le16_to_cpu(raw->i_checksum_lo);
  90        calculated = ext4_inode_csum(inode, raw, ei);
  91        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  92            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  93                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  94        else
  95                calculated &= 0xFFFF;
  96
  97        return provided == calculated;
  98}
  99
 100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 101                                struct ext4_inode_info *ei)
 102{
 103        __u32 csum;
 104
 105        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 106            cpu_to_le32(EXT4_OS_LINUX) ||
 107            !ext4_has_metadata_csum(inode->i_sb))
 108                return;
 109
 110        csum = ext4_inode_csum(inode, raw, ei);
 111        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 112        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 113            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 114                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 115}
 116
 117static inline int ext4_begin_ordered_truncate(struct inode *inode,
 118                                              loff_t new_size)
 119{
 120        trace_ext4_begin_ordered_truncate(inode, new_size);
 121        /*
 122         * If jinode is zero, then we never opened the file for
 123         * writing, so there's no need to call
 124         * jbd2_journal_begin_ordered_truncate() since there's no
 125         * outstanding writes we need to flush.
 126         */
 127        if (!EXT4_I(inode)->jinode)
 128                return 0;
 129        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 130                                                   EXT4_I(inode)->jinode,
 131                                                   new_size);
 132}
 133
 134static void ext4_invalidatepage(struct page *page, unsigned int offset,
 135                                unsigned int length);
 136static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 137static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 138static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 139                                  int pextents);
 140
 141/*
 142 * Test whether an inode is a fast symlink.
 143 */
 144static int ext4_inode_is_fast_symlink(struct inode *inode)
 145{
 146        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 147                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 148
 149        if (ext4_has_inline_data(inode))
 150                return 0;
 151
 152        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 153}
 154
 155/*
 156 * Restart the transaction associated with *handle.  This does a commit,
 157 * so before we call here everything must be consistently dirtied against
 158 * this transaction.
 159 */
 160int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 161                                 int nblocks)
 162{
 163        int ret;
 164
 165        /*
 166         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 167         * moment, get_block can be called only for blocks inside i_size since
 168         * page cache has been already dropped and writes are blocked by
 169         * i_mutex. So we can safely drop the i_data_sem here.
 170         */
 171        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 172        jbd_debug(2, "restarting handle %p\n", handle);
 173        up_write(&EXT4_I(inode)->i_data_sem);
 174        ret = ext4_journal_restart(handle, nblocks);
 175        down_write(&EXT4_I(inode)->i_data_sem);
 176        ext4_discard_preallocations(inode);
 177
 178        return ret;
 179}
 180
 181/*
 182 * Called at the last iput() if i_nlink is zero.
 183 */
 184void ext4_evict_inode(struct inode *inode)
 185{
 186        handle_t *handle;
 187        int err;
 188
 189        trace_ext4_evict_inode(inode);
 190
 191        if (inode->i_nlink) {
 192                /*
 193                 * When journalling data dirty buffers are tracked only in the
 194                 * journal. So although mm thinks everything is clean and
 195                 * ready for reaping the inode might still have some pages to
 196                 * write in the running transaction or waiting to be
 197                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 198                 * (via truncate_inode_pages()) to discard these buffers can
 199                 * cause data loss. Also even if we did not discard these
 200                 * buffers, we would have no way to find them after the inode
 201                 * is reaped and thus user could see stale data if he tries to
 202                 * read them before the transaction is checkpointed. So be
 203                 * careful and force everything to disk here... We use
 204                 * ei->i_datasync_tid to store the newest transaction
 205                 * containing inode's data.
 206                 *
 207                 * Note that directories do not have this problem because they
 208                 * don't use page cache.
 209                 */
 210                if (ext4_should_journal_data(inode) &&
 211                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 212                    inode->i_ino != EXT4_JOURNAL_INO) {
 213                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 214                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 215
 216                        jbd2_complete_transaction(journal, commit_tid);
 217                        filemap_write_and_wait(&inode->i_data);
 218                }
 219                truncate_inode_pages_final(&inode->i_data);
 220
 221                WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
 222                goto no_delete;
 223        }
 224
 225        if (is_bad_inode(inode))
 226                goto no_delete;
 227        dquot_initialize(inode);
 228
 229        if (ext4_should_order_data(inode))
 230                ext4_begin_ordered_truncate(inode, 0);
 231        truncate_inode_pages_final(&inode->i_data);
 232
 233        WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
 234
 235        /*
 236         * Protect us against freezing - iput() caller didn't have to have any
 237         * protection against it
 238         */
 239        sb_start_intwrite(inode->i_sb);
 240        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 241                                    ext4_blocks_for_truncate(inode)+3);
 242        if (IS_ERR(handle)) {
 243                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 244                /*
 245                 * If we're going to skip the normal cleanup, we still need to
 246                 * make sure that the in-core orphan linked list is properly
 247                 * cleaned up.
 248                 */
 249                ext4_orphan_del(NULL, inode);
 250                sb_end_intwrite(inode->i_sb);
 251                goto no_delete;
 252        }
 253
 254        if (IS_SYNC(inode))
 255                ext4_handle_sync(handle);
 256        inode->i_size = 0;
 257        err = ext4_mark_inode_dirty(handle, inode);
 258        if (err) {
 259                ext4_warning(inode->i_sb,
 260                             "couldn't mark inode dirty (err %d)", err);
 261                goto stop_handle;
 262        }
 263        if (inode->i_blocks)
 264                ext4_truncate(inode);
 265
 266        /*
 267         * ext4_ext_truncate() doesn't reserve any slop when it
 268         * restarts journal transactions; therefore there may not be
 269         * enough credits left in the handle to remove the inode from
 270         * the orphan list and set the dtime field.
 271         */
 272        if (!ext4_handle_has_enough_credits(handle, 3)) {
 273                err = ext4_journal_extend(handle, 3);
 274                if (err > 0)
 275                        err = ext4_journal_restart(handle, 3);
 276                if (err != 0) {
 277                        ext4_warning(inode->i_sb,
 278                                     "couldn't extend journal (err %d)", err);
 279                stop_handle:
 280                        ext4_journal_stop(handle);
 281                        ext4_orphan_del(NULL, inode);
 282                        sb_end_intwrite(inode->i_sb);
 283                        goto no_delete;
 284                }
 285        }
 286
 287        /*
 288         * Kill off the orphan record which ext4_truncate created.
 289         * AKPM: I think this can be inside the above `if'.
 290         * Note that ext4_orphan_del() has to be able to cope with the
 291         * deletion of a non-existent orphan - this is because we don't
 292         * know if ext4_truncate() actually created an orphan record.
 293         * (Well, we could do this if we need to, but heck - it works)
 294         */
 295        ext4_orphan_del(handle, inode);
 296        EXT4_I(inode)->i_dtime  = get_seconds();
 297
 298        /*
 299         * One subtle ordering requirement: if anything has gone wrong
 300         * (transaction abort, IO errors, whatever), then we can still
 301         * do these next steps (the fs will already have been marked as
 302         * having errors), but we can't free the inode if the mark_dirty
 303         * fails.
 304         */
 305        if (ext4_mark_inode_dirty(handle, inode))
 306                /* If that failed, just do the required in-core inode clear. */
 307                ext4_clear_inode(inode);
 308        else
 309                ext4_free_inode(handle, inode);
 310        ext4_journal_stop(handle);
 311        sb_end_intwrite(inode->i_sb);
 312        return;
 313no_delete:
 314        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 315}
 316
 317#ifdef CONFIG_QUOTA
 318qsize_t *ext4_get_reserved_space(struct inode *inode)
 319{
 320        return &EXT4_I(inode)->i_reserved_quota;
 321}
 322#endif
 323
 324/*
 325 * Called with i_data_sem down, which is important since we can call
 326 * ext4_discard_preallocations() from here.
 327 */
 328void ext4_da_update_reserve_space(struct inode *inode,
 329                                        int used, int quota_claim)
 330{
 331        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 332        struct ext4_inode_info *ei = EXT4_I(inode);
 333
 334        spin_lock(&ei->i_block_reservation_lock);
 335        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 336        if (unlikely(used > ei->i_reserved_data_blocks)) {
 337                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 338                         "with only %d reserved data blocks",
 339                         __func__, inode->i_ino, used,
 340                         ei->i_reserved_data_blocks);
 341                WARN_ON(1);
 342                used = ei->i_reserved_data_blocks;
 343        }
 344
 345        /* Update per-inode reservations */
 346        ei->i_reserved_data_blocks -= used;
 347        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 348
 349        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 350
 351        /* Update quota subsystem for data blocks */
 352        if (quota_claim)
 353                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 354        else {
 355                /*
 356                 * We did fallocate with an offset that is already delayed
 357                 * allocated. So on delayed allocated writeback we should
 358                 * not re-claim the quota for fallocated blocks.
 359                 */
 360                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 361        }
 362
 363        /*
 364         * If we have done all the pending block allocations and if
 365         * there aren't any writers on the inode, we can discard the
 366         * inode's preallocations.
 367         */
 368        if ((ei->i_reserved_data_blocks == 0) &&
 369            (atomic_read(&inode->i_writecount) == 0))
 370                ext4_discard_preallocations(inode);
 371}
 372
 373static int __check_block_validity(struct inode *inode, const char *func,
 374                                unsigned int line,
 375                                struct ext4_map_blocks *map)
 376{
 377        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 378                                   map->m_len)) {
 379                ext4_error_inode(inode, func, line, map->m_pblk,
 380                                 "lblock %lu mapped to illegal pblock "
 381                                 "(length %d)", (unsigned long) map->m_lblk,
 382                                 map->m_len);
 383                return -EIO;
 384        }
 385        return 0;
 386}
 387
 388#define check_block_validity(inode, map)        \
 389        __check_block_validity((inode), __func__, __LINE__, (map))
 390
 391#ifdef ES_AGGRESSIVE_TEST
 392static void ext4_map_blocks_es_recheck(handle_t *handle,
 393                                       struct inode *inode,
 394                                       struct ext4_map_blocks *es_map,
 395                                       struct ext4_map_blocks *map,
 396                                       int flags)
 397{
 398        int retval;
 399
 400        map->m_flags = 0;
 401        /*
 402         * There is a race window that the result is not the same.
 403         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 404         * is that we lookup a block mapping in extent status tree with
 405         * out taking i_data_sem.  So at the time the unwritten extent
 406         * could be converted.
 407         */
 408        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 409                down_read(&EXT4_I(inode)->i_data_sem);
 410        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 411                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 412                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 413        } else {
 414                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 415                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 416        }
 417        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 418                up_read((&EXT4_I(inode)->i_data_sem));
 419
 420        /*
 421         * We don't check m_len because extent will be collpased in status
 422         * tree.  So the m_len might not equal.
 423         */
 424        if (es_map->m_lblk != map->m_lblk ||
 425            es_map->m_flags != map->m_flags ||
 426            es_map->m_pblk != map->m_pblk) {
 427                printk("ES cache assertion failed for inode: %lu "
 428                       "es_cached ex [%d/%d/%llu/%x] != "
 429                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 430                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 431                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 432                       map->m_len, map->m_pblk, map->m_flags,
 433                       retval, flags);
 434        }
 435}
 436#endif /* ES_AGGRESSIVE_TEST */
 437
 438/*
 439 * The ext4_map_blocks() function tries to look up the requested blocks,
 440 * and returns if the blocks are already mapped.
 441 *
 442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 443 * and store the allocated blocks in the result buffer head and mark it
 444 * mapped.
 445 *
 446 * If file type is extents based, it will call ext4_ext_map_blocks(),
 447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 448 * based files
 449 *
 450 * On success, it returns the number of blocks being mapped or allocated.
 451 * if create==0 and the blocks are pre-allocated and unwritten block,
 452 * the result buffer head is unmapped. If the create ==1, it will make sure
 453 * the buffer head is mapped.
 454 *
 455 * It returns 0 if plain look up failed (blocks have not been allocated), in
 456 * that case, buffer head is unmapped
 457 *
 458 * It returns the error in case of allocation failure.
 459 */
 460int ext4_map_blocks(handle_t *handle, struct inode *inode,
 461                    struct ext4_map_blocks *map, int flags)
 462{
 463        struct extent_status es;
 464        int retval;
 465        int ret = 0;
 466#ifdef ES_AGGRESSIVE_TEST
 467        struct ext4_map_blocks orig_map;
 468
 469        memcpy(&orig_map, map, sizeof(*map));
 470#endif
 471
 472        map->m_flags = 0;
 473        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 474                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 475                  (unsigned long) map->m_lblk);
 476
 477        /*
 478         * ext4_map_blocks returns an int, and m_len is an unsigned int
 479         */
 480        if (unlikely(map->m_len > INT_MAX))
 481                map->m_len = INT_MAX;
 482
 483        /* We can handle the block number less than EXT_MAX_BLOCKS */
 484        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 485                return -EIO;
 486
 487        /* Lookup extent status tree firstly */
 488        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 489                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 490                        map->m_pblk = ext4_es_pblock(&es) +
 491                                        map->m_lblk - es.es_lblk;
 492                        map->m_flags |= ext4_es_is_written(&es) ?
 493                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 494                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 495                        if (retval > map->m_len)
 496                                retval = map->m_len;
 497                        map->m_len = retval;
 498                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 499                        retval = 0;
 500                } else {
 501                        BUG_ON(1);
 502                }
 503#ifdef ES_AGGRESSIVE_TEST
 504                ext4_map_blocks_es_recheck(handle, inode, map,
 505                                           &orig_map, flags);
 506#endif
 507                goto found;
 508        }
 509
 510        /*
 511         * Try to see if we can get the block without requesting a new
 512         * file system block.
 513         */
 514        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 515                down_read(&EXT4_I(inode)->i_data_sem);
 516        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 517                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 518                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 519        } else {
 520                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 521                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 522        }
 523        if (retval > 0) {
 524                unsigned int status;
 525
 526                if (unlikely(retval != map->m_len)) {
 527                        ext4_warning(inode->i_sb,
 528                                     "ES len assertion failed for inode "
 529                                     "%lu: retval %d != map->m_len %d",
 530                                     inode->i_ino, retval, map->m_len);
 531                        WARN_ON(1);
 532                }
 533
 534                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 535                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 536                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 537                    ext4_find_delalloc_range(inode, map->m_lblk,
 538                                             map->m_lblk + map->m_len - 1))
 539                        status |= EXTENT_STATUS_DELAYED;
 540                ret = ext4_es_insert_extent(inode, map->m_lblk,
 541                                            map->m_len, map->m_pblk, status);
 542                if (ret < 0)
 543                        retval = ret;
 544        }
 545        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 546                up_read((&EXT4_I(inode)->i_data_sem));
 547
 548found:
 549        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 550                ret = check_block_validity(inode, map);
 551                if (ret != 0)
 552                        return ret;
 553        }
 554
 555        /* If it is only a block(s) look up */
 556        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 557                return retval;
 558
 559        /*
 560         * Returns if the blocks have already allocated
 561         *
 562         * Note that if blocks have been preallocated
 563         * ext4_ext_get_block() returns the create = 0
 564         * with buffer head unmapped.
 565         */
 566        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 567                /*
 568                 * If we need to convert extent to unwritten
 569                 * we continue and do the actual work in
 570                 * ext4_ext_map_blocks()
 571                 */
 572                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 573                        return retval;
 574
 575        /*
 576         * Here we clear m_flags because after allocating an new extent,
 577         * it will be set again.
 578         */
 579        map->m_flags &= ~EXT4_MAP_FLAGS;
 580
 581        /*
 582         * New blocks allocate and/or writing to unwritten extent
 583         * will possibly result in updating i_data, so we take
 584         * the write lock of i_data_sem, and call get_block()
 585         * with create == 1 flag.
 586         */
 587        down_write(&EXT4_I(inode)->i_data_sem);
 588
 589        /*
 590         * We need to check for EXT4 here because migrate
 591         * could have changed the inode type in between
 592         */
 593        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 594                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 595        } else {
 596                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 597
 598                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 599                        /*
 600                         * We allocated new blocks which will result in
 601                         * i_data's format changing.  Force the migrate
 602                         * to fail by clearing migrate flags
 603                         */
 604                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 605                }
 606
 607                /*
 608                 * Update reserved blocks/metadata blocks after successful
 609                 * block allocation which had been deferred till now. We don't
 610                 * support fallocate for non extent files. So we can update
 611                 * reserve space here.
 612                 */
 613                if ((retval > 0) &&
 614                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 615                        ext4_da_update_reserve_space(inode, retval, 1);
 616        }
 617
 618        if (retval > 0) {
 619                unsigned int status;
 620
 621                if (unlikely(retval != map->m_len)) {
 622                        ext4_warning(inode->i_sb,
 623                                     "ES len assertion failed for inode "
 624                                     "%lu: retval %d != map->m_len %d",
 625                                     inode->i_ino, retval, map->m_len);
 626                        WARN_ON(1);
 627                }
 628
 629                /*
 630                 * If the extent has been zeroed out, we don't need to update
 631                 * extent status tree.
 632                 */
 633                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 634                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 635                        if (ext4_es_is_written(&es))
 636                                goto has_zeroout;
 637                }
 638                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 639                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 640                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 641                    ext4_find_delalloc_range(inode, map->m_lblk,
 642                                             map->m_lblk + map->m_len - 1))
 643                        status |= EXTENT_STATUS_DELAYED;
 644                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 645                                            map->m_pblk, status);
 646                if (ret < 0)
 647                        retval = ret;
 648        }
 649
 650has_zeroout:
 651        up_write((&EXT4_I(inode)->i_data_sem));
 652        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 653                ret = check_block_validity(inode, map);
 654                if (ret != 0)
 655                        return ret;
 656        }
 657        return retval;
 658}
 659
 660/* Maximum number of blocks we map for direct IO at once. */
 661#define DIO_MAX_BLOCKS 4096
 662
 663static int _ext4_get_block(struct inode *inode, sector_t iblock,
 664                           struct buffer_head *bh, int flags)
 665{
 666        handle_t *handle = ext4_journal_current_handle();
 667        struct ext4_map_blocks map;
 668        int ret = 0, started = 0;
 669        int dio_credits;
 670
 671        if (ext4_has_inline_data(inode))
 672                return -ERANGE;
 673
 674        map.m_lblk = iblock;
 675        map.m_len = bh->b_size >> inode->i_blkbits;
 676
 677        if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
 678                /* Direct IO write... */
 679                if (map.m_len > DIO_MAX_BLOCKS)
 680                        map.m_len = DIO_MAX_BLOCKS;
 681                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 682                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
 683                                            dio_credits);
 684                if (IS_ERR(handle)) {
 685                        ret = PTR_ERR(handle);
 686                        return ret;
 687                }
 688                started = 1;
 689        }
 690
 691        ret = ext4_map_blocks(handle, inode, &map, flags);
 692        if (ret > 0) {
 693                ext4_io_end_t *io_end = ext4_inode_aio(inode);
 694
 695                map_bh(bh, inode->i_sb, map.m_pblk);
 696                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 697                if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
 698                        set_buffer_defer_completion(bh);
 699                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 700                ret = 0;
 701        }
 702        if (started)
 703                ext4_journal_stop(handle);
 704        return ret;
 705}
 706
 707int ext4_get_block(struct inode *inode, sector_t iblock,
 708                   struct buffer_head *bh, int create)
 709{
 710        return _ext4_get_block(inode, iblock, bh,
 711                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 712}
 713
 714/*
 715 * `handle' can be NULL if create is zero
 716 */
 717struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 718                                ext4_lblk_t block, int create)
 719{
 720        struct ext4_map_blocks map;
 721        struct buffer_head *bh;
 722        int err;
 723
 724        J_ASSERT(handle != NULL || create == 0);
 725
 726        map.m_lblk = block;
 727        map.m_len = 1;
 728        err = ext4_map_blocks(handle, inode, &map,
 729                              create ? EXT4_GET_BLOCKS_CREATE : 0);
 730
 731        if (err == 0)
 732                return create ? ERR_PTR(-ENOSPC) : NULL;
 733        if (err < 0)
 734                return ERR_PTR(err);
 735
 736        bh = sb_getblk(inode->i_sb, map.m_pblk);
 737        if (unlikely(!bh))
 738                return ERR_PTR(-ENOMEM);
 739        if (map.m_flags & EXT4_MAP_NEW) {
 740                J_ASSERT(create != 0);
 741                J_ASSERT(handle != NULL);
 742
 743                /*
 744                 * Now that we do not always journal data, we should
 745                 * keep in mind whether this should always journal the
 746                 * new buffer as metadata.  For now, regular file
 747                 * writes use ext4_get_block instead, so it's not a
 748                 * problem.
 749                 */
 750                lock_buffer(bh);
 751                BUFFER_TRACE(bh, "call get_create_access");
 752                err = ext4_journal_get_create_access(handle, bh);
 753                if (unlikely(err)) {
 754                        unlock_buffer(bh);
 755                        goto errout;
 756                }
 757                if (!buffer_uptodate(bh)) {
 758                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 759                        set_buffer_uptodate(bh);
 760                }
 761                unlock_buffer(bh);
 762                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 763                err = ext4_handle_dirty_metadata(handle, inode, bh);
 764                if (unlikely(err))
 765                        goto errout;
 766        } else
 767                BUFFER_TRACE(bh, "not a new buffer");
 768        return bh;
 769errout:
 770        brelse(bh);
 771        return ERR_PTR(err);
 772}
 773
 774struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 775                               ext4_lblk_t block, int create)
 776{
 777        struct buffer_head *bh;
 778
 779        bh = ext4_getblk(handle, inode, block, create);
 780        if (IS_ERR(bh))
 781                return bh;
 782        if (!bh || buffer_uptodate(bh))
 783                return bh;
 784        ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 785        wait_on_buffer(bh);
 786        if (buffer_uptodate(bh))
 787                return bh;
 788        put_bh(bh);
 789        return ERR_PTR(-EIO);
 790}
 791
 792int ext4_walk_page_buffers(handle_t *handle,
 793                           struct buffer_head *head,
 794                           unsigned from,
 795                           unsigned to,
 796                           int *partial,
 797                           int (*fn)(handle_t *handle,
 798                                     struct buffer_head *bh))
 799{
 800        struct buffer_head *bh;
 801        unsigned block_start, block_end;
 802        unsigned blocksize = head->b_size;
 803        int err, ret = 0;
 804        struct buffer_head *next;
 805
 806        for (bh = head, block_start = 0;
 807             ret == 0 && (bh != head || !block_start);
 808             block_start = block_end, bh = next) {
 809                next = bh->b_this_page;
 810                block_end = block_start + blocksize;
 811                if (block_end <= from || block_start >= to) {
 812                        if (partial && !buffer_uptodate(bh))
 813                                *partial = 1;
 814                        continue;
 815                }
 816                err = (*fn)(handle, bh);
 817                if (!ret)
 818                        ret = err;
 819        }
 820        return ret;
 821}
 822
 823/*
 824 * To preserve ordering, it is essential that the hole instantiation and
 825 * the data write be encapsulated in a single transaction.  We cannot
 826 * close off a transaction and start a new one between the ext4_get_block()
 827 * and the commit_write().  So doing the jbd2_journal_start at the start of
 828 * prepare_write() is the right place.
 829 *
 830 * Also, this function can nest inside ext4_writepage().  In that case, we
 831 * *know* that ext4_writepage() has generated enough buffer credits to do the
 832 * whole page.  So we won't block on the journal in that case, which is good,
 833 * because the caller may be PF_MEMALLOC.
 834 *
 835 * By accident, ext4 can be reentered when a transaction is open via
 836 * quota file writes.  If we were to commit the transaction while thus
 837 * reentered, there can be a deadlock - we would be holding a quota
 838 * lock, and the commit would never complete if another thread had a
 839 * transaction open and was blocking on the quota lock - a ranking
 840 * violation.
 841 *
 842 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 843 * will _not_ run commit under these circumstances because handle->h_ref
 844 * is elevated.  We'll still have enough credits for the tiny quotafile
 845 * write.
 846 */
 847int do_journal_get_write_access(handle_t *handle,
 848                                struct buffer_head *bh)
 849{
 850        int dirty = buffer_dirty(bh);
 851        int ret;
 852
 853        if (!buffer_mapped(bh) || buffer_freed(bh))
 854                return 0;
 855        /*
 856         * __block_write_begin() could have dirtied some buffers. Clean
 857         * the dirty bit as jbd2_journal_get_write_access() could complain
 858         * otherwise about fs integrity issues. Setting of the dirty bit
 859         * by __block_write_begin() isn't a real problem here as we clear
 860         * the bit before releasing a page lock and thus writeback cannot
 861         * ever write the buffer.
 862         */
 863        if (dirty)
 864                clear_buffer_dirty(bh);
 865        BUFFER_TRACE(bh, "get write access");
 866        ret = ext4_journal_get_write_access(handle, bh);
 867        if (!ret && dirty)
 868                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 869        return ret;
 870}
 871
 872static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
 873                   struct buffer_head *bh_result, int create);
 874static int ext4_write_begin(struct file *file, struct address_space *mapping,
 875                            loff_t pos, unsigned len, unsigned flags,
 876                            struct page **pagep, void **fsdata)
 877{
 878        struct inode *inode = mapping->host;
 879        int ret, needed_blocks;
 880        handle_t *handle;
 881        int retries = 0;
 882        struct page *page;
 883        pgoff_t index;
 884        unsigned from, to;
 885
 886        trace_ext4_write_begin(inode, pos, len, flags);
 887        /*
 888         * Reserve one block more for addition to orphan list in case
 889         * we allocate blocks but write fails for some reason
 890         */
 891        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 892        index = pos >> PAGE_CACHE_SHIFT;
 893        from = pos & (PAGE_CACHE_SIZE - 1);
 894        to = from + len;
 895
 896        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
 897                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
 898                                                    flags, pagep);
 899                if (ret < 0)
 900                        return ret;
 901                if (ret == 1)
 902                        return 0;
 903        }
 904
 905        /*
 906         * grab_cache_page_write_begin() can take a long time if the
 907         * system is thrashing due to memory pressure, or if the page
 908         * is being written back.  So grab it first before we start
 909         * the transaction handle.  This also allows us to allocate
 910         * the page (if needed) without using GFP_NOFS.
 911         */
 912retry_grab:
 913        page = grab_cache_page_write_begin(mapping, index, flags);
 914        if (!page)
 915                return -ENOMEM;
 916        unlock_page(page);
 917
 918retry_journal:
 919        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
 920        if (IS_ERR(handle)) {
 921                page_cache_release(page);
 922                return PTR_ERR(handle);
 923        }
 924
 925        lock_page(page);
 926        if (page->mapping != mapping) {
 927                /* The page got truncated from under us */
 928                unlock_page(page);
 929                page_cache_release(page);
 930                ext4_journal_stop(handle);
 931                goto retry_grab;
 932        }
 933        /* In case writeback began while the page was unlocked */
 934        wait_for_stable_page(page);
 935
 936        if (ext4_should_dioread_nolock(inode))
 937                ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 938        else
 939                ret = __block_write_begin(page, pos, len, ext4_get_block);
 940
 941        if (!ret && ext4_should_journal_data(inode)) {
 942                ret = ext4_walk_page_buffers(handle, page_buffers(page),
 943                                             from, to, NULL,
 944                                             do_journal_get_write_access);
 945        }
 946
 947        if (ret) {
 948                unlock_page(page);
 949                /*
 950                 * __block_write_begin may have instantiated a few blocks
 951                 * outside i_size.  Trim these off again. Don't need
 952                 * i_size_read because we hold i_mutex.
 953                 *
 954                 * Add inode to orphan list in case we crash before
 955                 * truncate finishes
 956                 */
 957                if (pos + len > inode->i_size && ext4_can_truncate(inode))
 958                        ext4_orphan_add(handle, inode);
 959
 960                ext4_journal_stop(handle);
 961                if (pos + len > inode->i_size) {
 962                        ext4_truncate_failed_write(inode);
 963                        /*
 964                         * If truncate failed early the inode might
 965                         * still be on the orphan list; we need to
 966                         * make sure the inode is removed from the
 967                         * orphan list in that case.
 968                         */
 969                        if (inode->i_nlink)
 970                                ext4_orphan_del(NULL, inode);
 971                }
 972
 973                if (ret == -ENOSPC &&
 974                    ext4_should_retry_alloc(inode->i_sb, &retries))
 975                        goto retry_journal;
 976                page_cache_release(page);
 977                return ret;
 978        }
 979        *pagep = page;
 980        return ret;
 981}
 982
 983/* For write_end() in data=journal mode */
 984static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 985{
 986        int ret;
 987        if (!buffer_mapped(bh) || buffer_freed(bh))
 988                return 0;
 989        set_buffer_uptodate(bh);
 990        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 991        clear_buffer_meta(bh);
 992        clear_buffer_prio(bh);
 993        return ret;
 994}
 995
 996/*
 997 * We need to pick up the new inode size which generic_commit_write gave us
 998 * `file' can be NULL - eg, when called from page_symlink().
 999 *
1000 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1001 * buffers are managed internally.
1002 */
1003static int ext4_write_end(struct file *file,
1004                          struct address_space *mapping,
1005                          loff_t pos, unsigned len, unsigned copied,
1006                          struct page *page, void *fsdata)
1007{
1008        handle_t *handle = ext4_journal_current_handle();
1009        struct inode *inode = mapping->host;
1010        int ret = 0, ret2;
1011        int i_size_changed = 0;
1012
1013        trace_ext4_write_end(inode, pos, len, copied);
1014        if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1015                ret = ext4_jbd2_file_inode(handle, inode);
1016                if (ret) {
1017                        unlock_page(page);
1018                        page_cache_release(page);
1019                        goto errout;
1020                }
1021        }
1022
1023        if (ext4_has_inline_data(inode)) {
1024                ret = ext4_write_inline_data_end(inode, pos, len,
1025                                                 copied, page);
1026                if (ret < 0)
1027                        goto errout;
1028                copied = ret;
1029        } else
1030                copied = block_write_end(file, mapping, pos,
1031                                         len, copied, page, fsdata);
1032        /*
1033         * it's important to update i_size while still holding page lock:
1034         * page writeout could otherwise come in and zero beyond i_size.
1035         */
1036        i_size_changed = ext4_update_inode_size(inode, pos + copied);
1037        unlock_page(page);
1038        page_cache_release(page);
1039
1040        /*
1041         * Don't mark the inode dirty under page lock. First, it unnecessarily
1042         * makes the holding time of page lock longer. Second, it forces lock
1043         * ordering of page lock and transaction start for journaling
1044         * filesystems.
1045         */
1046        if (i_size_changed)
1047                ext4_mark_inode_dirty(handle, inode);
1048
1049        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1050                /* if we have allocated more blocks and copied
1051                 * less. We will have blocks allocated outside
1052                 * inode->i_size. So truncate them
1053                 */
1054                ext4_orphan_add(handle, inode);
1055errout:
1056        ret2 = ext4_journal_stop(handle);
1057        if (!ret)
1058                ret = ret2;
1059
1060        if (pos + len > inode->i_size) {
1061                ext4_truncate_failed_write(inode);
1062                /*
1063                 * If truncate failed early the inode might still be
1064                 * on the orphan list; we need to make sure the inode
1065                 * is removed from the orphan list in that case.
1066                 */
1067                if (inode->i_nlink)
1068                        ext4_orphan_del(NULL, inode);
1069        }
1070
1071        return ret ? ret : copied;
1072}
1073
1074static int ext4_journalled_write_end(struct file *file,
1075                                     struct address_space *mapping,
1076                                     loff_t pos, unsigned len, unsigned copied,
1077                                     struct page *page, void *fsdata)
1078{
1079        handle_t *handle = ext4_journal_current_handle();
1080        struct inode *inode = mapping->host;
1081        int ret = 0, ret2;
1082        int partial = 0;
1083        unsigned from, to;
1084        int size_changed = 0;
1085
1086        trace_ext4_journalled_write_end(inode, pos, len, copied);
1087        from = pos & (PAGE_CACHE_SIZE - 1);
1088        to = from + len;
1089
1090        BUG_ON(!ext4_handle_valid(handle));
1091
1092        if (ext4_has_inline_data(inode))
1093                copied = ext4_write_inline_data_end(inode, pos, len,
1094                                                    copied, page);
1095        else {
1096                if (copied < len) {
1097                        if (!PageUptodate(page))
1098                                copied = 0;
1099                        page_zero_new_buffers(page, from+copied, to);
1100                }
1101
1102                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1103                                             to, &partial, write_end_fn);
1104                if (!partial)
1105                        SetPageUptodate(page);
1106        }
1107        size_changed = ext4_update_inode_size(inode, pos + copied);
1108        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1109        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1110        unlock_page(page);
1111        page_cache_release(page);
1112
1113        if (size_changed) {
1114                ret2 = ext4_mark_inode_dirty(handle, inode);
1115                if (!ret)
1116                        ret = ret2;
1117        }
1118
1119        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120                /* if we have allocated more blocks and copied
1121                 * less. We will have blocks allocated outside
1122                 * inode->i_size. So truncate them
1123                 */
1124                ext4_orphan_add(handle, inode);
1125
1126        ret2 = ext4_journal_stop(handle);
1127        if (!ret)
1128                ret = ret2;
1129        if (pos + len > inode->i_size) {
1130                ext4_truncate_failed_write(inode);
1131                /*
1132                 * If truncate failed early the inode might still be
1133                 * on the orphan list; we need to make sure the inode
1134                 * is removed from the orphan list in that case.
1135                 */
1136                if (inode->i_nlink)
1137                        ext4_orphan_del(NULL, inode);
1138        }
1139
1140        return ret ? ret : copied;
1141}
1142
1143/*
1144 * Reserve a single cluster located at lblock
1145 */
1146static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1147{
1148        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149        struct ext4_inode_info *ei = EXT4_I(inode);
1150        unsigned int md_needed;
1151        int ret;
1152
1153        /*
1154         * We will charge metadata quota at writeout time; this saves
1155         * us from metadata over-estimation, though we may go over by
1156         * a small amount in the end.  Here we just reserve for data.
1157         */
1158        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1159        if (ret)
1160                return ret;
1161
1162        /*
1163         * recalculate the amount of metadata blocks to reserve
1164         * in order to allocate nrblocks
1165         * worse case is one extent per block
1166         */
1167        spin_lock(&ei->i_block_reservation_lock);
1168        /*
1169         * ext4_calc_metadata_amount() has side effects, which we have
1170         * to be prepared undo if we fail to claim space.
1171         */
1172        md_needed = 0;
1173        trace_ext4_da_reserve_space(inode, 0);
1174
1175        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1176                spin_unlock(&ei->i_block_reservation_lock);
1177                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1178                return -ENOSPC;
1179        }
1180        ei->i_reserved_data_blocks++;
1181        spin_unlock(&ei->i_block_reservation_lock);
1182
1183        return 0;       /* success */
1184}
1185
1186static void ext4_da_release_space(struct inode *inode, int to_free)
1187{
1188        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1189        struct ext4_inode_info *ei = EXT4_I(inode);
1190
1191        if (!to_free)
1192                return;         /* Nothing to release, exit */
1193
1194        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1195
1196        trace_ext4_da_release_space(inode, to_free);
1197        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1198                /*
1199                 * if there aren't enough reserved blocks, then the
1200                 * counter is messed up somewhere.  Since this
1201                 * function is called from invalidate page, it's
1202                 * harmless to return without any action.
1203                 */
1204                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1205                         "ino %lu, to_free %d with only %d reserved "
1206                         "data blocks", inode->i_ino, to_free,
1207                         ei->i_reserved_data_blocks);
1208                WARN_ON(1);
1209                to_free = ei->i_reserved_data_blocks;
1210        }
1211        ei->i_reserved_data_blocks -= to_free;
1212
1213        /* update fs dirty data blocks counter */
1214        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1215
1216        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1217
1218        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1219}
1220
1221static void ext4_da_page_release_reservation(struct page *page,
1222                                             unsigned int offset,
1223                                             unsigned int length)
1224{
1225        int to_release = 0;
1226        struct buffer_head *head, *bh;
1227        unsigned int curr_off = 0;
1228        struct inode *inode = page->mapping->host;
1229        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1230        unsigned int stop = offset + length;
1231        int num_clusters;
1232        ext4_fsblk_t lblk;
1233
1234        BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1235
1236        head = page_buffers(page);
1237        bh = head;
1238        do {
1239                unsigned int next_off = curr_off + bh->b_size;
1240
1241                if (next_off > stop)
1242                        break;
1243
1244                if ((offset <= curr_off) && (buffer_delay(bh))) {
1245                        to_release++;
1246                        clear_buffer_delay(bh);
1247                }
1248                curr_off = next_off;
1249        } while ((bh = bh->b_this_page) != head);
1250
1251        if (to_release) {
1252                lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1253                ext4_es_remove_extent(inode, lblk, to_release);
1254        }
1255
1256        /* If we have released all the blocks belonging to a cluster, then we
1257         * need to release the reserved space for that cluster. */
1258        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1259        while (num_clusters > 0) {
1260                lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1261                        ((num_clusters - 1) << sbi->s_cluster_bits);
1262                if (sbi->s_cluster_ratio == 1 ||
1263                    !ext4_find_delalloc_cluster(inode, lblk))
1264                        ext4_da_release_space(inode, 1);
1265
1266                num_clusters--;
1267        }
1268}
1269
1270/*
1271 * Delayed allocation stuff
1272 */
1273
1274struct mpage_da_data {
1275        struct inode *inode;
1276        struct writeback_control *wbc;
1277
1278        pgoff_t first_page;     /* The first page to write */
1279        pgoff_t next_page;      /* Current page to examine */
1280        pgoff_t last_page;      /* Last page to examine */
1281        /*
1282         * Extent to map - this can be after first_page because that can be
1283         * fully mapped. We somewhat abuse m_flags to store whether the extent
1284         * is delalloc or unwritten.
1285         */
1286        struct ext4_map_blocks map;
1287        struct ext4_io_submit io_submit;        /* IO submission data */
1288};
1289
1290static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1291                                       bool invalidate)
1292{
1293        int nr_pages, i;
1294        pgoff_t index, end;
1295        struct pagevec pvec;
1296        struct inode *inode = mpd->inode;
1297        struct address_space *mapping = inode->i_mapping;
1298
1299        /* This is necessary when next_page == 0. */
1300        if (mpd->first_page >= mpd->next_page)
1301                return;
1302
1303        index = mpd->first_page;
1304        end   = mpd->next_page - 1;
1305        if (invalidate) {
1306                ext4_lblk_t start, last;
1307                start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1308                last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1309                ext4_es_remove_extent(inode, start, last - start + 1);
1310        }
1311
1312        pagevec_init(&pvec, 0);
1313        while (index <= end) {
1314                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1315                if (nr_pages == 0)
1316                        break;
1317                for (i = 0; i < nr_pages; i++) {
1318                        struct page *page = pvec.pages[i];
1319                        if (page->index > end)
1320                                break;
1321                        BUG_ON(!PageLocked(page));
1322                        BUG_ON(PageWriteback(page));
1323                        if (invalidate) {
1324                                block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1325                                ClearPageUptodate(page);
1326                        }
1327                        unlock_page(page);
1328                }
1329                index = pvec.pages[nr_pages - 1]->index + 1;
1330                pagevec_release(&pvec);
1331        }
1332}
1333
1334static void ext4_print_free_blocks(struct inode *inode)
1335{
1336        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1337        struct super_block *sb = inode->i_sb;
1338        struct ext4_inode_info *ei = EXT4_I(inode);
1339
1340        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1341               EXT4_C2B(EXT4_SB(inode->i_sb),
1342                        ext4_count_free_clusters(sb)));
1343        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1344        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1345               (long long) EXT4_C2B(EXT4_SB(sb),
1346                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1347        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1348               (long long) EXT4_C2B(EXT4_SB(sb),
1349                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1350        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1351        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1352                 ei->i_reserved_data_blocks);
1353        return;
1354}
1355
1356static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1357{
1358        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1359}
1360
1361/*
1362 * This function is grabs code from the very beginning of
1363 * ext4_map_blocks, but assumes that the caller is from delayed write
1364 * time. This function looks up the requested blocks and sets the
1365 * buffer delay bit under the protection of i_data_sem.
1366 */
1367static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1368                              struct ext4_map_blocks *map,
1369                              struct buffer_head *bh)
1370{
1371        struct extent_status es;
1372        int retval;
1373        sector_t invalid_block = ~((sector_t) 0xffff);
1374#ifdef ES_AGGRESSIVE_TEST
1375        struct ext4_map_blocks orig_map;
1376
1377        memcpy(&orig_map, map, sizeof(*map));
1378#endif
1379
1380        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1381                invalid_block = ~0;
1382
1383        map->m_flags = 0;
1384        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1385                  "logical block %lu\n", inode->i_ino, map->m_len,
1386                  (unsigned long) map->m_lblk);
1387
1388        /* Lookup extent status tree firstly */
1389        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1390                if (ext4_es_is_hole(&es)) {
1391                        retval = 0;
1392                        down_read(&EXT4_I(inode)->i_data_sem);
1393                        goto add_delayed;
1394                }
1395
1396                /*
1397                 * Delayed extent could be allocated by fallocate.
1398                 * So we need to check it.
1399                 */
1400                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1401                        map_bh(bh, inode->i_sb, invalid_block);
1402                        set_buffer_new(bh);
1403                        set_buffer_delay(bh);
1404                        return 0;
1405                }
1406
1407                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1408                retval = es.es_len - (iblock - es.es_lblk);
1409                if (retval > map->m_len)
1410                        retval = map->m_len;
1411                map->m_len = retval;
1412                if (ext4_es_is_written(&es))
1413                        map->m_flags |= EXT4_MAP_MAPPED;
1414                else if (ext4_es_is_unwritten(&es))
1415                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1416                else
1417                        BUG_ON(1);
1418
1419#ifdef ES_AGGRESSIVE_TEST
1420                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1421#endif
1422                return retval;
1423        }
1424
1425        /*
1426         * Try to see if we can get the block without requesting a new
1427         * file system block.
1428         */
1429        down_read(&EXT4_I(inode)->i_data_sem);
1430        if (ext4_has_inline_data(inode))
1431                retval = 0;
1432        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1433                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1434        else
1435                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1436
1437add_delayed:
1438        if (retval == 0) {
1439                int ret;
1440                /*
1441                 * XXX: __block_prepare_write() unmaps passed block,
1442                 * is it OK?
1443                 */
1444                /*
1445                 * If the block was allocated from previously allocated cluster,
1446                 * then we don't need to reserve it again. However we still need
1447                 * to reserve metadata for every block we're going to write.
1448                 */
1449                if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1450                    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1451                        ret = ext4_da_reserve_space(inode, iblock);
1452                        if (ret) {
1453                                /* not enough space to reserve */
1454                                retval = ret;
1455                                goto out_unlock;
1456                        }
1457                }
1458
1459                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1460                                            ~0, EXTENT_STATUS_DELAYED);
1461                if (ret) {
1462                        retval = ret;
1463                        goto out_unlock;
1464                }
1465
1466                map_bh(bh, inode->i_sb, invalid_block);
1467                set_buffer_new(bh);
1468                set_buffer_delay(bh);
1469        } else if (retval > 0) {
1470                int ret;
1471                unsigned int status;
1472
1473                if (unlikely(retval != map->m_len)) {
1474                        ext4_warning(inode->i_sb,
1475                                     "ES len assertion failed for inode "
1476                                     "%lu: retval %d != map->m_len %d",
1477                                     inode->i_ino, retval, map->m_len);
1478                        WARN_ON(1);
1479                }
1480
1481                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1482                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1483                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484                                            map->m_pblk, status);
1485                if (ret != 0)
1486                        retval = ret;
1487        }
1488
1489out_unlock:
1490        up_read((&EXT4_I(inode)->i_data_sem));
1491
1492        return retval;
1493}
1494
1495/*
1496 * This is a special get_block_t callback which is used by
1497 * ext4_da_write_begin().  It will either return mapped block or
1498 * reserve space for a single block.
1499 *
1500 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1501 * We also have b_blocknr = -1 and b_bdev initialized properly
1502 *
1503 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1504 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1505 * initialized properly.
1506 */
1507int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1508                           struct buffer_head *bh, int create)
1509{
1510        struct ext4_map_blocks map;
1511        int ret = 0;
1512
1513        BUG_ON(create == 0);
1514        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1515
1516        map.m_lblk = iblock;
1517        map.m_len = 1;
1518
1519        /*
1520         * first, we need to know whether the block is allocated already
1521         * preallocated blocks are unmapped but should treated
1522         * the same as allocated blocks.
1523         */
1524        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1525        if (ret <= 0)
1526                return ret;
1527
1528        map_bh(bh, inode->i_sb, map.m_pblk);
1529        bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1530
1531        if (buffer_unwritten(bh)) {
1532                /* A delayed write to unwritten bh should be marked
1533                 * new and mapped.  Mapped ensures that we don't do
1534                 * get_block multiple times when we write to the same
1535                 * offset and new ensures that we do proper zero out
1536                 * for partial write.
1537                 */
1538                set_buffer_new(bh);
1539                set_buffer_mapped(bh);
1540        }
1541        return 0;
1542}
1543
1544static int bget_one(handle_t *handle, struct buffer_head *bh)
1545{
1546        get_bh(bh);
1547        return 0;
1548}
1549
1550static int bput_one(handle_t *handle, struct buffer_head *bh)
1551{
1552        put_bh(bh);
1553        return 0;
1554}
1555
1556static int __ext4_journalled_writepage(struct page *page,
1557                                       unsigned int len)
1558{
1559        struct address_space *mapping = page->mapping;
1560        struct inode *inode = mapping->host;
1561        struct buffer_head *page_bufs = NULL;
1562        handle_t *handle = NULL;
1563        int ret = 0, err = 0;
1564        int inline_data = ext4_has_inline_data(inode);
1565        struct buffer_head *inode_bh = NULL;
1566
1567        ClearPageChecked(page);
1568
1569        if (inline_data) {
1570                BUG_ON(page->index != 0);
1571                BUG_ON(len > ext4_get_max_inline_size(inode));
1572                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1573                if (inode_bh == NULL)
1574                        goto out;
1575        } else {
1576                page_bufs = page_buffers(page);
1577                if (!page_bufs) {
1578                        BUG();
1579                        goto out;
1580                }
1581                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1582                                       NULL, bget_one);
1583        }
1584        /* As soon as we unlock the page, it can go away, but we have
1585         * references to buffers so we are safe */
1586        unlock_page(page);
1587
1588        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1589                                    ext4_writepage_trans_blocks(inode));
1590        if (IS_ERR(handle)) {
1591                ret = PTR_ERR(handle);
1592                goto out;
1593        }
1594
1595        BUG_ON(!ext4_handle_valid(handle));
1596
1597        if (inline_data) {
1598                BUFFER_TRACE(inode_bh, "get write access");
1599                ret = ext4_journal_get_write_access(handle, inode_bh);
1600
1601                err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1602
1603        } else {
1604                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1605                                             do_journal_get_write_access);
1606
1607                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1608                                             write_end_fn);
1609        }
1610        if (ret == 0)
1611                ret = err;
1612        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1613        err = ext4_journal_stop(handle);
1614        if (!ret)
1615                ret = err;
1616
1617        if (!ext4_has_inline_data(inode))
1618                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1619                                       NULL, bput_one);
1620        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1621out:
1622        brelse(inode_bh);
1623        return ret;
1624}
1625
1626/*
1627 * Note that we don't need to start a transaction unless we're journaling data
1628 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1629 * need to file the inode to the transaction's list in ordered mode because if
1630 * we are writing back data added by write(), the inode is already there and if
1631 * we are writing back data modified via mmap(), no one guarantees in which
1632 * transaction the data will hit the disk. In case we are journaling data, we
1633 * cannot start transaction directly because transaction start ranks above page
1634 * lock so we have to do some magic.
1635 *
1636 * This function can get called via...
1637 *   - ext4_writepages after taking page lock (have journal handle)
1638 *   - journal_submit_inode_data_buffers (no journal handle)
1639 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1640 *   - grab_page_cache when doing write_begin (have journal handle)
1641 *
1642 * We don't do any block allocation in this function. If we have page with
1643 * multiple blocks we need to write those buffer_heads that are mapped. This
1644 * is important for mmaped based write. So if we do with blocksize 1K
1645 * truncate(f, 1024);
1646 * a = mmap(f, 0, 4096);
1647 * a[0] = 'a';
1648 * truncate(f, 4096);
1649 * we have in the page first buffer_head mapped via page_mkwrite call back
1650 * but other buffer_heads would be unmapped but dirty (dirty done via the
1651 * do_wp_page). So writepage should write the first block. If we modify
1652 * the mmap area beyond 1024 we will again get a page_fault and the
1653 * page_mkwrite callback will do the block allocation and mark the
1654 * buffer_heads mapped.
1655 *
1656 * We redirty the page if we have any buffer_heads that is either delay or
1657 * unwritten in the page.
1658 *
1659 * We can get recursively called as show below.
1660 *
1661 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1662 *              ext4_writepage()
1663 *
1664 * But since we don't do any block allocation we should not deadlock.
1665 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1666 */
1667static int ext4_writepage(struct page *page,
1668                          struct writeback_control *wbc)
1669{
1670        int ret = 0;
1671        loff_t size;
1672        unsigned int len;
1673        struct buffer_head *page_bufs = NULL;
1674        struct inode *inode = page->mapping->host;
1675        struct ext4_io_submit io_submit;
1676        bool keep_towrite = false;
1677
1678        trace_ext4_writepage(page);
1679        size = i_size_read(inode);
1680        if (page->index == size >> PAGE_CACHE_SHIFT)
1681                len = size & ~PAGE_CACHE_MASK;
1682        else
1683                len = PAGE_CACHE_SIZE;
1684
1685        page_bufs = page_buffers(page);
1686        /*
1687         * We cannot do block allocation or other extent handling in this
1688         * function. If there are buffers needing that, we have to redirty
1689         * the page. But we may reach here when we do a journal commit via
1690         * journal_submit_inode_data_buffers() and in that case we must write
1691         * allocated buffers to achieve data=ordered mode guarantees.
1692         */
1693        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1694                                   ext4_bh_delay_or_unwritten)) {
1695                redirty_page_for_writepage(wbc, page);
1696                if (current->flags & PF_MEMALLOC) {
1697                        /*
1698                         * For memory cleaning there's no point in writing only
1699                         * some buffers. So just bail out. Warn if we came here
1700                         * from direct reclaim.
1701                         */
1702                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1703                                                        == PF_MEMALLOC);
1704                        unlock_page(page);
1705                        return 0;
1706                }
1707                keep_towrite = true;
1708        }
1709
1710        if (PageChecked(page) && ext4_should_journal_data(inode))
1711                /*
1712                 * It's mmapped pagecache.  Add buffers and journal it.  There
1713                 * doesn't seem much point in redirtying the page here.
1714                 */
1715                return __ext4_journalled_writepage(page, len);
1716
1717        ext4_io_submit_init(&io_submit, wbc);
1718        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1719        if (!io_submit.io_end) {
1720                redirty_page_for_writepage(wbc, page);
1721                unlock_page(page);
1722                return -ENOMEM;
1723        }
1724        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1725        ext4_io_submit(&io_submit);
1726        /* Drop io_end reference we got from init */
1727        ext4_put_io_end_defer(io_submit.io_end);
1728        return ret;
1729}
1730
1731static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1732{
1733        int len;
1734        loff_t size = i_size_read(mpd->inode);
1735        int err;
1736
1737        BUG_ON(page->index != mpd->first_page);
1738        if (page->index == size >> PAGE_CACHE_SHIFT)
1739                len = size & ~PAGE_CACHE_MASK;
1740        else
1741                len = PAGE_CACHE_SIZE;
1742        clear_page_dirty_for_io(page);
1743        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1744        if (!err)
1745                mpd->wbc->nr_to_write--;
1746        mpd->first_page++;
1747
1748        return err;
1749}
1750
1751#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1752
1753/*
1754 * mballoc gives us at most this number of blocks...
1755 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1756 * The rest of mballoc seems to handle chunks up to full group size.
1757 */
1758#define MAX_WRITEPAGES_EXTENT_LEN 2048
1759
1760/*
1761 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1762 *
1763 * @mpd - extent of blocks
1764 * @lblk - logical number of the block in the file
1765 * @bh - buffer head we want to add to the extent
1766 *
1767 * The function is used to collect contig. blocks in the same state. If the
1768 * buffer doesn't require mapping for writeback and we haven't started the
1769 * extent of buffers to map yet, the function returns 'true' immediately - the
1770 * caller can write the buffer right away. Otherwise the function returns true
1771 * if the block has been added to the extent, false if the block couldn't be
1772 * added.
1773 */
1774static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1775                                   struct buffer_head *bh)
1776{
1777        struct ext4_map_blocks *map = &mpd->map;
1778
1779        /* Buffer that doesn't need mapping for writeback? */
1780        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1781            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1782                /* So far no extent to map => we write the buffer right away */
1783                if (map->m_len == 0)
1784                        return true;
1785                return false;
1786        }
1787
1788        /* First block in the extent? */
1789        if (map->m_len == 0) {
1790                map->m_lblk = lblk;
1791                map->m_len = 1;
1792                map->m_flags = bh->b_state & BH_FLAGS;
1793                return true;
1794        }
1795
1796        /* Don't go larger than mballoc is willing to allocate */
1797        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1798                return false;
1799
1800        /* Can we merge the block to our big extent? */
1801        if (lblk == map->m_lblk + map->m_len &&
1802            (bh->b_state & BH_FLAGS) == map->m_flags) {
1803                map->m_len++;
1804                return true;
1805        }
1806        return false;
1807}
1808
1809/*
1810 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1811 *
1812 * @mpd - extent of blocks for mapping
1813 * @head - the first buffer in the page
1814 * @bh - buffer we should start processing from
1815 * @lblk - logical number of the block in the file corresponding to @bh
1816 *
1817 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1818 * the page for IO if all buffers in this page were mapped and there's no
1819 * accumulated extent of buffers to map or add buffers in the page to the
1820 * extent of buffers to map. The function returns 1 if the caller can continue
1821 * by processing the next page, 0 if it should stop adding buffers to the
1822 * extent to map because we cannot extend it anymore. It can also return value
1823 * < 0 in case of error during IO submission.
1824 */
1825static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1826                                   struct buffer_head *head,
1827                                   struct buffer_head *bh,
1828                                   ext4_lblk_t lblk)
1829{
1830        struct inode *inode = mpd->inode;
1831        int err;
1832        ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1833                                                        >> inode->i_blkbits;
1834
1835        do {
1836                BUG_ON(buffer_locked(bh));
1837
1838                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1839                        /* Found extent to map? */
1840                        if (mpd->map.m_len)
1841                                return 0;
1842                        /* Everything mapped so far and we hit EOF */
1843                        break;
1844                }
1845        } while (lblk++, (bh = bh->b_this_page) != head);
1846        /* So far everything mapped? Submit the page for IO. */
1847        if (mpd->map.m_len == 0) {
1848                err = mpage_submit_page(mpd, head->b_page);
1849                if (err < 0)
1850                        return err;
1851        }
1852        return lblk < blocks;
1853}
1854
1855/*
1856 * mpage_map_buffers - update buffers corresponding to changed extent and
1857 *                     submit fully mapped pages for IO
1858 *
1859 * @mpd - description of extent to map, on return next extent to map
1860 *
1861 * Scan buffers corresponding to changed extent (we expect corresponding pages
1862 * to be already locked) and update buffer state according to new extent state.
1863 * We map delalloc buffers to their physical location, clear unwritten bits,
1864 * and mark buffers as uninit when we perform writes to unwritten extents
1865 * and do extent conversion after IO is finished. If the last page is not fully
1866 * mapped, we update @map to the next extent in the last page that needs
1867 * mapping. Otherwise we submit the page for IO.
1868 */
1869static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1870{
1871        struct pagevec pvec;
1872        int nr_pages, i;
1873        struct inode *inode = mpd->inode;
1874        struct buffer_head *head, *bh;
1875        int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1876        pgoff_t start, end;
1877        ext4_lblk_t lblk;
1878        sector_t pblock;
1879        int err;
1880
1881        start = mpd->map.m_lblk >> bpp_bits;
1882        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1883        lblk = start << bpp_bits;
1884        pblock = mpd->map.m_pblk;
1885
1886        pagevec_init(&pvec, 0);
1887        while (start <= end) {
1888                nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1889                                          PAGEVEC_SIZE);
1890                if (nr_pages == 0)
1891                        break;
1892                for (i = 0; i < nr_pages; i++) {
1893                        struct page *page = pvec.pages[i];
1894
1895                        if (page->index > end)
1896                                break;
1897                        /* Up to 'end' pages must be contiguous */
1898                        BUG_ON(page->index != start);
1899                        bh = head = page_buffers(page);
1900                        do {
1901                                if (lblk < mpd->map.m_lblk)
1902                                        continue;
1903                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1904                                        /*
1905                                         * Buffer after end of mapped extent.
1906                                         * Find next buffer in the page to map.
1907                                         */
1908                                        mpd->map.m_len = 0;
1909                                        mpd->map.m_flags = 0;
1910                                        /*
1911                                         * FIXME: If dioread_nolock supports
1912                                         * blocksize < pagesize, we need to make
1913                                         * sure we add size mapped so far to
1914                                         * io_end->size as the following call
1915                                         * can submit the page for IO.
1916                                         */
1917                                        err = mpage_process_page_bufs(mpd, head,
1918                                                                      bh, lblk);
1919                                        pagevec_release(&pvec);
1920                                        if (err > 0)
1921                                                err = 0;
1922                                        return err;
1923                                }
1924                                if (buffer_delay(bh)) {
1925                                        clear_buffer_delay(bh);
1926                                        bh->b_blocknr = pblock++;
1927                                }
1928                                clear_buffer_unwritten(bh);
1929                        } while (lblk++, (bh = bh->b_this_page) != head);
1930
1931                        /*
1932                         * FIXME: This is going to break if dioread_nolock
1933                         * supports blocksize < pagesize as we will try to
1934                         * convert potentially unmapped parts of inode.
1935                         */
1936                        mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1937                        /* Page fully mapped - let IO run! */
1938                        err = mpage_submit_page(mpd, page);
1939                        if (err < 0) {
1940                                pagevec_release(&pvec);
1941                                return err;
1942                        }
1943                        start++;
1944                }
1945                pagevec_release(&pvec);
1946        }
1947        /* Extent fully mapped and matches with page boundary. We are done. */
1948        mpd->map.m_len = 0;
1949        mpd->map.m_flags = 0;
1950        return 0;
1951}
1952
1953static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1954{
1955        struct inode *inode = mpd->inode;
1956        struct ext4_map_blocks *map = &mpd->map;
1957        int get_blocks_flags;
1958        int err, dioread_nolock;
1959
1960        trace_ext4_da_write_pages_extent(inode, map);
1961        /*
1962         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1963         * to convert an unwritten extent to be initialized (in the case
1964         * where we have written into one or more preallocated blocks).  It is
1965         * possible that we're going to need more metadata blocks than
1966         * previously reserved. However we must not fail because we're in
1967         * writeback and there is nothing we can do about it so it might result
1968         * in data loss.  So use reserved blocks to allocate metadata if
1969         * possible.
1970         *
1971         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1972         * the blocks in question are delalloc blocks.  This indicates
1973         * that the blocks and quotas has already been checked when
1974         * the data was copied into the page cache.
1975         */
1976        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1977                           EXT4_GET_BLOCKS_METADATA_NOFAIL;
1978        dioread_nolock = ext4_should_dioread_nolock(inode);
1979        if (dioread_nolock)
1980                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1981        if (map->m_flags & (1 << BH_Delay))
1982                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1983
1984        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
1985        if (err < 0)
1986                return err;
1987        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
1988                if (!mpd->io_submit.io_end->handle &&
1989                    ext4_handle_valid(handle)) {
1990                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
1991                        handle->h_rsv_handle = NULL;
1992                }
1993                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
1994        }
1995
1996        BUG_ON(map->m_len == 0);
1997        if (map->m_flags & EXT4_MAP_NEW) {
1998                struct block_device *bdev = inode->i_sb->s_bdev;
1999                int i;
2000
2001                for (i = 0; i < map->m_len; i++)
2002                        unmap_underlying_metadata(bdev, map->m_pblk + i);
2003        }
2004        return 0;
2005}
2006
2007/*
2008 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2009 *                               mpd->len and submit pages underlying it for IO
2010 *
2011 * @handle - handle for journal operations
2012 * @mpd - extent to map
2013 * @give_up_on_write - we set this to true iff there is a fatal error and there
2014 *                     is no hope of writing the data. The caller should discard
2015 *                     dirty pages to avoid infinite loops.
2016 *
2017 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2018 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2019 * them to initialized or split the described range from larger unwritten
2020 * extent. Note that we need not map all the described range since allocation
2021 * can return less blocks or the range is covered by more unwritten extents. We
2022 * cannot map more because we are limited by reserved transaction credits. On
2023 * the other hand we always make sure that the last touched page is fully
2024 * mapped so that it can be written out (and thus forward progress is
2025 * guaranteed). After mapping we submit all mapped pages for IO.
2026 */
2027static int mpage_map_and_submit_extent(handle_t *handle,
2028                                       struct mpage_da_data *mpd,
2029                                       bool *give_up_on_write)
2030{
2031        struct inode *inode = mpd->inode;
2032        struct ext4_map_blocks *map = &mpd->map;
2033        int err;
2034        loff_t disksize;
2035        int progress = 0;
2036
2037        mpd->io_submit.io_end->offset =
2038                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2039        do {
2040                err = mpage_map_one_extent(handle, mpd);
2041                if (err < 0) {
2042                        struct super_block *sb = inode->i_sb;
2043
2044                        if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2045                                goto invalidate_dirty_pages;
2046                        /*
2047                         * Let the uper layers retry transient errors.
2048                         * In the case of ENOSPC, if ext4_count_free_blocks()
2049                         * is non-zero, a commit should free up blocks.
2050                         */
2051                        if ((err == -ENOMEM) ||
2052                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2053                                if (progress)
2054                                        goto update_disksize;
2055                                return err;
2056                        }
2057                        ext4_msg(sb, KERN_CRIT,
2058                                 "Delayed block allocation failed for "
2059                                 "inode %lu at logical offset %llu with"
2060                                 " max blocks %u with error %d",
2061                                 inode->i_ino,
2062                                 (unsigned long long)map->m_lblk,
2063                                 (unsigned)map->m_len, -err);
2064                        ext4_msg(sb, KERN_CRIT,
2065                                 "This should not happen!! Data will "
2066                                 "be lost\n");
2067                        if (err == -ENOSPC)
2068                                ext4_print_free_blocks(inode);
2069                invalidate_dirty_pages:
2070                        *give_up_on_write = true;
2071                        return err;
2072                }
2073                progress = 1;
2074                /*
2075                 * Update buffer state, submit mapped pages, and get us new
2076                 * extent to map
2077                 */
2078                err = mpage_map_and_submit_buffers(mpd);
2079                if (err < 0)
2080                        goto update_disksize;
2081        } while (map->m_len);
2082
2083update_disksize:
2084        /*
2085         * Update on-disk size after IO is submitted.  Races with
2086         * truncate are avoided by checking i_size under i_data_sem.
2087         */
2088        disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2089        if (disksize > EXT4_I(inode)->i_disksize) {
2090                int err2;
2091                loff_t i_size;
2092
2093                down_write(&EXT4_I(inode)->i_data_sem);
2094                i_size = i_size_read(inode);
2095                if (disksize > i_size)
2096                        disksize = i_size;
2097                if (disksize > EXT4_I(inode)->i_disksize)
2098                        EXT4_I(inode)->i_disksize = disksize;
2099                err2 = ext4_mark_inode_dirty(handle, inode);
2100                up_write(&EXT4_I(inode)->i_data_sem);
2101                if (err2)
2102                        ext4_error(inode->i_sb,
2103                                   "Failed to mark inode %lu dirty",
2104                                   inode->i_ino);
2105                if (!err)
2106                        err = err2;
2107        }
2108        return err;
2109}
2110
2111/*
2112 * Calculate the total number of credits to reserve for one writepages
2113 * iteration. This is called from ext4_writepages(). We map an extent of
2114 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2115 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2116 * bpp - 1 blocks in bpp different extents.
2117 */
2118static int ext4_da_writepages_trans_blocks(struct inode *inode)
2119{
2120        int bpp = ext4_journal_blocks_per_page(inode);
2121
2122        return ext4_meta_trans_blocks(inode,
2123                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2124}
2125
2126/*
2127 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2128 *                               and underlying extent to map
2129 *
2130 * @mpd - where to look for pages
2131 *
2132 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2133 * IO immediately. When we find a page which isn't mapped we start accumulating
2134 * extent of buffers underlying these pages that needs mapping (formed by
2135 * either delayed or unwritten buffers). We also lock the pages containing
2136 * these buffers. The extent found is returned in @mpd structure (starting at
2137 * mpd->lblk with length mpd->len blocks).
2138 *
2139 * Note that this function can attach bios to one io_end structure which are
2140 * neither logically nor physically contiguous. Although it may seem as an
2141 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2142 * case as we need to track IO to all buffers underlying a page in one io_end.
2143 */
2144static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2145{
2146        struct address_space *mapping = mpd->inode->i_mapping;
2147        struct pagevec pvec;
2148        unsigned int nr_pages;
2149        long left = mpd->wbc->nr_to_write;
2150        pgoff_t index = mpd->first_page;
2151        pgoff_t end = mpd->last_page;
2152        int tag;
2153        int i, err = 0;
2154        int blkbits = mpd->inode->i_blkbits;
2155        ext4_lblk_t lblk;
2156        struct buffer_head *head;
2157
2158        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2159                tag = PAGECACHE_TAG_TOWRITE;
2160        else
2161                tag = PAGECACHE_TAG_DIRTY;
2162
2163        pagevec_init(&pvec, 0);
2164        mpd->map.m_len = 0;
2165        mpd->next_page = index;
2166        while (index <= end) {
2167                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2168                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2169                if (nr_pages == 0)
2170                        goto out;
2171
2172                for (i = 0; i < nr_pages; i++) {
2173                        struct page *page = pvec.pages[i];
2174
2175                        /*
2176                         * At this point, the page may be truncated or
2177                         * invalidated (changing page->mapping to NULL), or
2178                         * even swizzled back from swapper_space to tmpfs file
2179                         * mapping. However, page->index will not change
2180                         * because we have a reference on the page.
2181                         */
2182                        if (page->index > end)
2183                                goto out;
2184
2185                        /*
2186                         * Accumulated enough dirty pages? This doesn't apply
2187                         * to WB_SYNC_ALL mode. For integrity sync we have to
2188                         * keep going because someone may be concurrently
2189                         * dirtying pages, and we might have synced a lot of
2190                         * newly appeared dirty pages, but have not synced all
2191                         * of the old dirty pages.
2192                         */
2193                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2194                                goto out;
2195
2196                        /* If we can't merge this page, we are done. */
2197                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2198                                goto out;
2199
2200                        lock_page(page);
2201                        /*
2202                         * If the page is no longer dirty, or its mapping no
2203                         * longer corresponds to inode we are writing (which
2204                         * means it has been truncated or invalidated), or the
2205                         * page is already under writeback and we are not doing
2206                         * a data integrity writeback, skip the page
2207                         */
2208                        if (!PageDirty(page) ||
2209                            (PageWriteback(page) &&
2210                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2211                            unlikely(page->mapping != mapping)) {
2212                                unlock_page(page);
2213                                continue;
2214                        }
2215
2216                        wait_on_page_writeback(page);
2217                        BUG_ON(PageWriteback(page));
2218
2219                        if (mpd->map.m_len == 0)
2220                                mpd->first_page = page->index;
2221                        mpd->next_page = page->index + 1;
2222                        /* Add all dirty buffers to mpd */
2223                        lblk = ((ext4_lblk_t)page->index) <<
2224                                (PAGE_CACHE_SHIFT - blkbits);
2225                        head = page_buffers(page);
2226                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2227                        if (err <= 0)
2228                                goto out;
2229                        err = 0;
2230                        left--;
2231                }
2232                pagevec_release(&pvec);
2233                cond_resched();
2234        }
2235        return 0;
2236out:
2237        pagevec_release(&pvec);
2238        return err;
2239}
2240
2241static int __writepage(struct page *page, struct writeback_control *wbc,
2242                       void *data)
2243{
2244        struct address_space *mapping = data;
2245        int ret = ext4_writepage(page, wbc);
2246        mapping_set_error(mapping, ret);
2247        return ret;
2248}
2249
2250static int ext4_writepages(struct address_space *mapping,
2251                           struct writeback_control *wbc)
2252{
2253        pgoff_t writeback_index = 0;
2254        long nr_to_write = wbc->nr_to_write;
2255        int range_whole = 0;
2256        int cycled = 1;
2257        handle_t *handle = NULL;
2258        struct mpage_da_data mpd;
2259        struct inode *inode = mapping->host;
2260        int needed_blocks, rsv_blocks = 0, ret = 0;
2261        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2262        bool done;
2263        struct blk_plug plug;
2264        bool give_up_on_write = false;
2265
2266        trace_ext4_writepages(inode, wbc);
2267
2268        /*
2269         * No pages to write? This is mainly a kludge to avoid starting
2270         * a transaction for special inodes like journal inode on last iput()
2271         * because that could violate lock ordering on umount
2272         */
2273        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2274                goto out_writepages;
2275
2276        if (ext4_should_journal_data(inode)) {
2277                struct blk_plug plug;
2278
2279                blk_start_plug(&plug);
2280                ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2281                blk_finish_plug(&plug);
2282                goto out_writepages;
2283        }
2284
2285        /*
2286         * If the filesystem has aborted, it is read-only, so return
2287         * right away instead of dumping stack traces later on that
2288         * will obscure the real source of the problem.  We test
2289         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2290         * the latter could be true if the filesystem is mounted
2291         * read-only, and in that case, ext4_writepages should
2292         * *never* be called, so if that ever happens, we would want
2293         * the stack trace.
2294         */
2295        if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2296                ret = -EROFS;
2297                goto out_writepages;
2298        }
2299
2300        if (ext4_should_dioread_nolock(inode)) {
2301                /*
2302                 * We may need to convert up to one extent per block in
2303                 * the page and we may dirty the inode.
2304                 */
2305                rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2306        }
2307
2308        /*
2309         * If we have inline data and arrive here, it means that
2310         * we will soon create the block for the 1st page, so
2311         * we'd better clear the inline data here.
2312         */
2313        if (ext4_has_inline_data(inode)) {
2314                /* Just inode will be modified... */
2315                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2316                if (IS_ERR(handle)) {
2317                        ret = PTR_ERR(handle);
2318                        goto out_writepages;
2319                }
2320                BUG_ON(ext4_test_inode_state(inode,
2321                                EXT4_STATE_MAY_INLINE_DATA));
2322                ext4_destroy_inline_data(handle, inode);
2323                ext4_journal_stop(handle);
2324        }
2325
2326        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2327                range_whole = 1;
2328
2329        if (wbc->range_cyclic) {
2330                writeback_index = mapping->writeback_index;
2331                if (writeback_index)
2332                        cycled = 0;
2333                mpd.first_page = writeback_index;
2334                mpd.last_page = -1;
2335        } else {
2336                mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2337                mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2338        }
2339
2340        mpd.inode = inode;
2341        mpd.wbc = wbc;
2342        ext4_io_submit_init(&mpd.io_submit, wbc);
2343retry:
2344        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2346        done = false;
2347        blk_start_plug(&plug);
2348        while (!done && mpd.first_page <= mpd.last_page) {
2349                /* For each extent of pages we use new io_end */
2350                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2351                if (!mpd.io_submit.io_end) {
2352                        ret = -ENOMEM;
2353                        break;
2354                }
2355
2356                /*
2357                 * We have two constraints: We find one extent to map and we
2358                 * must always write out whole page (makes a difference when
2359                 * blocksize < pagesize) so that we don't block on IO when we
2360                 * try to write out the rest of the page. Journalled mode is
2361                 * not supported by delalloc.
2362                 */
2363                BUG_ON(ext4_should_journal_data(inode));
2364                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2365
2366                /* start a new transaction */
2367                handle = ext4_journal_start_with_reserve(inode,
2368                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2369                if (IS_ERR(handle)) {
2370                        ret = PTR_ERR(handle);
2371                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2372                               "%ld pages, ino %lu; err %d", __func__,
2373                                wbc->nr_to_write, inode->i_ino, ret);
2374                        /* Release allocated io_end */
2375                        ext4_put_io_end(mpd.io_submit.io_end);
2376                        break;
2377                }
2378
2379                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2380                ret = mpage_prepare_extent_to_map(&mpd);
2381                if (!ret) {
2382                        if (mpd.map.m_len)
2383                                ret = mpage_map_and_submit_extent(handle, &mpd,
2384                                        &give_up_on_write);
2385                        else {
2386                                /*
2387                                 * We scanned the whole range (or exhausted
2388                                 * nr_to_write), submitted what was mapped and
2389                                 * didn't find anything needing mapping. We are
2390                                 * done.
2391                                 */
2392                                done = true;
2393                        }
2394                }
2395                ext4_journal_stop(handle);
2396                /* Submit prepared bio */
2397                ext4_io_submit(&mpd.io_submit);
2398                /* Unlock pages we didn't use */
2399                mpage_release_unused_pages(&mpd, give_up_on_write);
2400                /* Drop our io_end reference we got from init */
2401                ext4_put_io_end(mpd.io_submit.io_end);
2402
2403                if (ret == -ENOSPC && sbi->s_journal) {
2404                        /*
2405                         * Commit the transaction which would
2406                         * free blocks released in the transaction
2407                         * and try again
2408                         */
2409                        jbd2_journal_force_commit_nested(sbi->s_journal);
2410                        ret = 0;
2411                        continue;
2412                }
2413                /* Fatal error - ENOMEM, EIO... */
2414                if (ret)
2415                        break;
2416        }
2417        blk_finish_plug(&plug);
2418        if (!ret && !cycled && wbc->nr_to_write > 0) {
2419                cycled = 1;
2420                mpd.last_page = writeback_index - 1;
2421                mpd.first_page = 0;
2422                goto retry;
2423        }
2424
2425        /* Update index */
2426        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2427                /*
2428                 * Set the writeback_index so that range_cyclic
2429                 * mode will write it back later
2430                 */
2431                mapping->writeback_index = mpd.first_page;
2432
2433out_writepages:
2434        trace_ext4_writepages_result(inode, wbc, ret,
2435                                     nr_to_write - wbc->nr_to_write);
2436        return ret;
2437}
2438
2439static int ext4_nonda_switch(struct super_block *sb)
2440{
2441        s64 free_clusters, dirty_clusters;
2442        struct ext4_sb_info *sbi = EXT4_SB(sb);
2443
2444        /*
2445         * switch to non delalloc mode if we are running low
2446         * on free block. The free block accounting via percpu
2447         * counters can get slightly wrong with percpu_counter_batch getting
2448         * accumulated on each CPU without updating global counters
2449         * Delalloc need an accurate free block accounting. So switch
2450         * to non delalloc when we are near to error range.
2451         */
2452        free_clusters =
2453                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2454        dirty_clusters =
2455                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456        /*
2457         * Start pushing delalloc when 1/2 of free blocks are dirty.
2458         */
2459        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2460                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2461
2462        if (2 * free_clusters < 3 * dirty_clusters ||
2463            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2464                /*
2465                 * free block count is less than 150% of dirty blocks
2466                 * or free blocks is less than watermark
2467                 */
2468                return 1;
2469        }
2470        return 0;
2471}
2472
2473/* We always reserve for an inode update; the superblock could be there too */
2474static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2475{
2476        if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2477                                EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2478                return 1;
2479
2480        if (pos + len <= 0x7fffffffULL)
2481                return 1;
2482
2483        /* We might need to update the superblock to set LARGE_FILE */
2484        return 2;
2485}
2486
2487static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2488                               loff_t pos, unsigned len, unsigned flags,
2489                               struct page **pagep, void **fsdata)
2490{
2491        int ret, retries = 0;
2492        struct page *page;
2493        pgoff_t index;
2494        struct inode *inode = mapping->host;
2495        handle_t *handle;
2496
2497        index = pos >> PAGE_CACHE_SHIFT;
2498
2499        if (ext4_nonda_switch(inode->i_sb)) {
2500                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2501                return ext4_write_begin(file, mapping, pos,
2502                                        len, flags, pagep, fsdata);
2503        }
2504        *fsdata = (void *)0;
2505        trace_ext4_da_write_begin(inode, pos, len, flags);
2506
2507        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2508                ret = ext4_da_write_inline_data_begin(mapping, inode,
2509                                                      pos, len, flags,
2510                                                      pagep, fsdata);
2511                if (ret < 0)
2512                        return ret;
2513                if (ret == 1)
2514                        return 0;
2515        }
2516
2517        /*
2518         * grab_cache_page_write_begin() can take a long time if the
2519         * system is thrashing due to memory pressure, or if the page
2520         * is being written back.  So grab it first before we start
2521         * the transaction handle.  This also allows us to allocate
2522         * the page (if needed) without using GFP_NOFS.
2523         */
2524retry_grab:
2525        page = grab_cache_page_write_begin(mapping, index, flags);
2526        if (!page)
2527                return -ENOMEM;
2528        unlock_page(page);
2529
2530        /*
2531         * With delayed allocation, we don't log the i_disksize update
2532         * if there is delayed block allocation. But we still need
2533         * to journalling the i_disksize update if writes to the end
2534         * of file which has an already mapped buffer.
2535         */
2536retry_journal:
2537        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2538                                ext4_da_write_credits(inode, pos, len));
2539        if (IS_ERR(handle)) {
2540                page_cache_release(page);
2541                return PTR_ERR(handle);
2542        }
2543
2544        lock_page(page);
2545        if (page->mapping != mapping) {
2546                /* The page got truncated from under us */
2547                unlock_page(page);
2548                page_cache_release(page);
2549                ext4_journal_stop(handle);
2550                goto retry_grab;
2551        }
2552        /* In case writeback began while the page was unlocked */
2553        wait_for_stable_page(page);
2554
2555        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2556        if (ret < 0) {
2557                unlock_page(page);
2558                ext4_journal_stop(handle);
2559                /*
2560                 * block_write_begin may have instantiated a few blocks
2561                 * outside i_size.  Trim these off again. Don't need
2562                 * i_size_read because we hold i_mutex.
2563                 */
2564                if (pos + len > inode->i_size)
2565                        ext4_truncate_failed_write(inode);
2566
2567                if (ret == -ENOSPC &&
2568                    ext4_should_retry_alloc(inode->i_sb, &retries))
2569                        goto retry_journal;
2570
2571                page_cache_release(page);
2572                return ret;
2573        }
2574
2575        *pagep = page;
2576        return ret;
2577}
2578
2579/*
2580 * Check if we should update i_disksize
2581 * when write to the end of file but not require block allocation
2582 */
2583static int ext4_da_should_update_i_disksize(struct page *page,
2584                                            unsigned long offset)
2585{
2586        struct buffer_head *bh;
2587        struct inode *inode = page->mapping->host;
2588        unsigned int idx;
2589        int i;
2590
2591        bh = page_buffers(page);
2592        idx = offset >> inode->i_blkbits;
2593
2594        for (i = 0; i < idx; i++)
2595                bh = bh->b_this_page;
2596
2597        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2598                return 0;
2599        return 1;
2600}
2601
2602static int ext4_da_write_end(struct file *file,
2603                             struct address_space *mapping,
2604                             loff_t pos, unsigned len, unsigned copied,
2605                             struct page *page, void *fsdata)
2606{
2607        struct inode *inode = mapping->host;
2608        int ret = 0, ret2;
2609        handle_t *handle = ext4_journal_current_handle();
2610        loff_t new_i_size;
2611        unsigned long start, end;
2612        int write_mode = (int)(unsigned long)fsdata;
2613
2614        if (write_mode == FALL_BACK_TO_NONDELALLOC)
2615                return ext4_write_end(file, mapping, pos,
2616                                      len, copied, page, fsdata);
2617
2618        trace_ext4_da_write_end(inode, pos, len, copied);
2619        start = pos & (PAGE_CACHE_SIZE - 1);
2620        end = start + copied - 1;
2621
2622        /*
2623         * generic_write_end() will run mark_inode_dirty() if i_size
2624         * changes.  So let's piggyback the i_disksize mark_inode_dirty
2625         * into that.
2626         */
2627        new_i_size = pos + copied;
2628        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2629                if (ext4_has_inline_data(inode) ||
2630                    ext4_da_should_update_i_disksize(page, end)) {
2631                        ext4_update_i_disksize(inode, new_i_size);
2632                        /* We need to mark inode dirty even if
2633                         * new_i_size is less that inode->i_size
2634                         * bu greater than i_disksize.(hint delalloc)
2635                         */
2636                        ext4_mark_inode_dirty(handle, inode);
2637                }
2638        }
2639
2640        if (write_mode != CONVERT_INLINE_DATA &&
2641            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2642            ext4_has_inline_data(inode))
2643                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2644                                                     page);
2645        else
2646                ret2 = generic_write_end(file, mapping, pos, len, copied,
2647                                                        page, fsdata);
2648
2649        copied = ret2;
2650        if (ret2 < 0)
2651                ret = ret2;
2652        ret2 = ext4_journal_stop(handle);
2653        if (!ret)
2654                ret = ret2;
2655
2656        return ret ? ret : copied;
2657}
2658
2659static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2660                                   unsigned int length)
2661{
2662        /*
2663         * Drop reserved blocks
2664         */
2665        BUG_ON(!PageLocked(page));
2666        if (!page_has_buffers(page))
2667                goto out;
2668
2669        ext4_da_page_release_reservation(page, offset, length);
2670
2671out:
2672        ext4_invalidatepage(page, offset, length);
2673
2674        return;
2675}
2676
2677/*
2678 * Force all delayed allocation blocks to be allocated for a given inode.
2679 */
2680int ext4_alloc_da_blocks(struct inode *inode)
2681{
2682        trace_ext4_alloc_da_blocks(inode);
2683
2684        if (!EXT4_I(inode)->i_reserved_data_blocks)
2685                return 0;
2686
2687        /*
2688         * We do something simple for now.  The filemap_flush() will
2689         * also start triggering a write of the data blocks, which is
2690         * not strictly speaking necessary (and for users of
2691         * laptop_mode, not even desirable).  However, to do otherwise
2692         * would require replicating code paths in:
2693         *
2694         * ext4_writepages() ->
2695         *    write_cache_pages() ---> (via passed in callback function)
2696         *        __mpage_da_writepage() -->
2697         *           mpage_add_bh_to_extent()
2698         *           mpage_da_map_blocks()
2699         *
2700         * The problem is that write_cache_pages(), located in
2701         * mm/page-writeback.c, marks pages clean in preparation for
2702         * doing I/O, which is not desirable if we're not planning on
2703         * doing I/O at all.
2704         *
2705         * We could call write_cache_pages(), and then redirty all of
2706         * the pages by calling redirty_page_for_writepage() but that
2707         * would be ugly in the extreme.  So instead we would need to
2708         * replicate parts of the code in the above functions,
2709         * simplifying them because we wouldn't actually intend to
2710         * write out the pages, but rather only collect contiguous
2711         * logical block extents, call the multi-block allocator, and
2712         * then update the buffer heads with the block allocations.
2713         *
2714         * For now, though, we'll cheat by calling filemap_flush(),
2715         * which will map the blocks, and start the I/O, but not
2716         * actually wait for the I/O to complete.
2717         */
2718        return filemap_flush(inode->i_mapping);
2719}
2720
2721/*
2722 * bmap() is special.  It gets used by applications such as lilo and by
2723 * the swapper to find the on-disk block of a specific piece of data.
2724 *
2725 * Naturally, this is dangerous if the block concerned is still in the
2726 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2727 * filesystem and enables swap, then they may get a nasty shock when the
2728 * data getting swapped to that swapfile suddenly gets overwritten by
2729 * the original zero's written out previously to the journal and
2730 * awaiting writeback in the kernel's buffer cache.
2731 *
2732 * So, if we see any bmap calls here on a modified, data-journaled file,
2733 * take extra steps to flush any blocks which might be in the cache.
2734 */
2735static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2736{
2737        struct inode *inode = mapping->host;
2738        journal_t *journal;
2739        int err;
2740
2741        /*
2742         * We can get here for an inline file via the FIBMAP ioctl
2743         */
2744        if (ext4_has_inline_data(inode))
2745                return 0;
2746
2747        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2748                        test_opt(inode->i_sb, DELALLOC)) {
2749                /*
2750                 * With delalloc we want to sync the file
2751                 * so that we can make sure we allocate
2752                 * blocks for file
2753                 */
2754                filemap_write_and_wait(mapping);
2755        }
2756
2757        if (EXT4_JOURNAL(inode) &&
2758            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2759                /*
2760                 * This is a REALLY heavyweight approach, but the use of
2761                 * bmap on dirty files is expected to be extremely rare:
2762                 * only if we run lilo or swapon on a freshly made file
2763                 * do we expect this to happen.
2764                 *
2765                 * (bmap requires CAP_SYS_RAWIO so this does not
2766                 * represent an unprivileged user DOS attack --- we'd be
2767                 * in trouble if mortal users could trigger this path at
2768                 * will.)
2769                 *
2770                 * NB. EXT4_STATE_JDATA is not set on files other than
2771                 * regular files.  If somebody wants to bmap a directory
2772                 * or symlink and gets confused because the buffer
2773                 * hasn't yet been flushed to disk, they deserve
2774                 * everything they get.
2775                 */
2776
2777                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2778                journal = EXT4_JOURNAL(inode);
2779                jbd2_journal_lock_updates(journal);
2780                err = jbd2_journal_flush(journal);
2781                jbd2_journal_unlock_updates(journal);
2782
2783                if (err)
2784                        return 0;
2785        }
2786
2787        return generic_block_bmap(mapping, block, ext4_get_block);
2788}
2789
2790static int ext4_readpage(struct file *file, struct page *page)
2791{
2792        int ret = -EAGAIN;
2793        struct inode *inode = page->mapping->host;
2794
2795        trace_ext4_readpage(page);
2796
2797        if (ext4_has_inline_data(inode))
2798                ret = ext4_readpage_inline(inode, page);
2799
2800        if (ret == -EAGAIN)
2801                return mpage_readpage(page, ext4_get_block);
2802
2803        return ret;
2804}
2805
2806static int
2807ext4_readpages(struct file *file, struct address_space *mapping,
2808                struct list_head *pages, unsigned nr_pages)
2809{
2810        struct inode *inode = mapping->host;
2811
2812        /* If the file has inline data, no need to do readpages. */
2813        if (ext4_has_inline_data(inode))
2814                return 0;
2815
2816        return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2817}
2818
2819static void ext4_invalidatepage(struct page *page, unsigned int offset,
2820                                unsigned int length)
2821{
2822        trace_ext4_invalidatepage(page, offset, length);
2823
2824        /* No journalling happens on data buffers when this function is used */
2825        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2826
2827        block_invalidatepage(page, offset, length);
2828}
2829
2830static int __ext4_journalled_invalidatepage(struct page *page,
2831                                            unsigned int offset,
2832                                            unsigned int length)
2833{
2834        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2835
2836        trace_ext4_journalled_invalidatepage(page, offset, length);
2837
2838        /*
2839         * If it's a full truncate we just forget about the pending dirtying
2840         */
2841        if (offset == 0 && length == PAGE_CACHE_SIZE)
2842                ClearPageChecked(page);
2843
2844        return jbd2_journal_invalidatepage(journal, page, offset, length);
2845}
2846
2847/* Wrapper for aops... */
2848static void ext4_journalled_invalidatepage(struct page *page,
2849                                           unsigned int offset,
2850                                           unsigned int length)
2851{
2852        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2853}
2854
2855static int ext4_releasepage(struct page *page, gfp_t wait)
2856{
2857        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859        trace_ext4_releasepage(page);
2860
2861        /* Page has dirty journalled data -> cannot release */
2862        if (PageChecked(page))
2863                return 0;
2864        if (journal)
2865                return jbd2_journal_try_to_free_buffers(journal, page, wait);
2866        else
2867                return try_to_free_buffers(page);
2868}
2869
2870/*
2871 * ext4_get_block used when preparing for a DIO write or buffer write.
2872 * We allocate an uinitialized extent if blocks haven't been allocated.
2873 * The extent will be converted to initialized after the IO is complete.
2874 */
2875int ext4_get_block_write(struct inode *inode, sector_t iblock,
2876                   struct buffer_head *bh_result, int create)
2877{
2878        ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2879                   inode->i_ino, create);
2880        return _ext4_get_block(inode, iblock, bh_result,
2881                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
2882}
2883
2884static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2885                   struct buffer_head *bh_result, int create)
2886{
2887        ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2888                   inode->i_ino, create);
2889        return _ext4_get_block(inode, iblock, bh_result,
2890                               EXT4_GET_BLOCKS_NO_LOCK);
2891}
2892
2893static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2894                            ssize_t size, void *private)
2895{
2896        ext4_io_end_t *io_end = iocb->private;
2897
2898        /* if not async direct IO just return */
2899        if (!io_end)
2900                return;
2901
2902        ext_debug("ext4_end_io_dio(): io_end 0x%p "
2903                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2904                  iocb->private, io_end->inode->i_ino, iocb, offset,
2905                  size);
2906
2907        iocb->private = NULL;
2908        io_end->offset = offset;
2909        io_end->size = size;
2910        ext4_put_io_end(io_end);
2911}
2912
2913/*
2914 * For ext4 extent files, ext4 will do direct-io write to holes,
2915 * preallocated extents, and those write extend the file, no need to
2916 * fall back to buffered IO.
2917 *
2918 * For holes, we fallocate those blocks, mark them as unwritten
2919 * If those blocks were preallocated, we mark sure they are split, but
2920 * still keep the range to write as unwritten.
2921 *
2922 * The unwritten extents will be converted to written when DIO is completed.
2923 * For async direct IO, since the IO may still pending when return, we
2924 * set up an end_io call back function, which will do the conversion
2925 * when async direct IO completed.
2926 *
2927 * If the O_DIRECT write will extend the file then add this inode to the
2928 * orphan list.  So recovery will truncate it back to the original size
2929 * if the machine crashes during the write.
2930 *
2931 */
2932static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2933                              struct iov_iter *iter, loff_t offset)
2934{
2935        struct file *file = iocb->ki_filp;
2936        struct inode *inode = file->f_mapping->host;
2937        ssize_t ret;
2938        size_t count = iov_iter_count(iter);
2939        int overwrite = 0;
2940        get_block_t *get_block_func = NULL;
2941        int dio_flags = 0;
2942        loff_t final_size = offset + count;
2943        ext4_io_end_t *io_end = NULL;
2944
2945        /* Use the old path for reads and writes beyond i_size. */
2946        if (rw != WRITE || final_size > inode->i_size)
2947                return ext4_ind_direct_IO(rw, iocb, iter, offset);
2948
2949        BUG_ON(iocb->private == NULL);
2950
2951        /*
2952         * Make all waiters for direct IO properly wait also for extent
2953         * conversion. This also disallows race between truncate() and
2954         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2955         */
2956        if (rw == WRITE)
2957                atomic_inc(&inode->i_dio_count);
2958
2959        /* If we do a overwrite dio, i_mutex locking can be released */
2960        overwrite = *((int *)iocb->private);
2961
2962        if (overwrite) {
2963                down_read(&EXT4_I(inode)->i_data_sem);
2964                mutex_unlock(&inode->i_mutex);
2965        }
2966
2967        /*
2968         * We could direct write to holes and fallocate.
2969         *
2970         * Allocated blocks to fill the hole are marked as
2971         * unwritten to prevent parallel buffered read to expose
2972         * the stale data before DIO complete the data IO.
2973         *
2974         * As to previously fallocated extents, ext4 get_block will
2975         * just simply mark the buffer mapped but still keep the
2976         * extents unwritten.
2977         *
2978         * For non AIO case, we will convert those unwritten extents
2979         * to written after return back from blockdev_direct_IO.
2980         *
2981         * For async DIO, the conversion needs to be deferred when the
2982         * IO is completed. The ext4 end_io callback function will be
2983         * called to take care of the conversion work.  Here for async
2984         * case, we allocate an io_end structure to hook to the iocb.
2985         */
2986        iocb->private = NULL;
2987        ext4_inode_aio_set(inode, NULL);
2988        if (!is_sync_kiocb(iocb)) {
2989                io_end = ext4_init_io_end(inode, GFP_NOFS);
2990                if (!io_end) {
2991                        ret = -ENOMEM;
2992                        goto retake_lock;
2993                }
2994                /*
2995                 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
2996                 */
2997                iocb->private = ext4_get_io_end(io_end);
2998                /*
2999                 * we save the io structure for current async direct
3000                 * IO, so that later ext4_map_blocks() could flag the
3001                 * io structure whether there is a unwritten extents
3002                 * needs to be converted when IO is completed.
3003                 */
3004                ext4_inode_aio_set(inode, io_end);
3005        }
3006
3007        if (overwrite) {
3008                get_block_func = ext4_get_block_write_nolock;
3009        } else {
3010                get_block_func = ext4_get_block_write;
3011                dio_flags = DIO_LOCKING;
3012        }
3013        ret = __blockdev_direct_IO(rw, iocb, inode,
3014                                   inode->i_sb->s_bdev, iter,
3015                                   offset,
3016                                   get_block_func,
3017                                   ext4_end_io_dio,
3018                                   NULL,
3019                                   dio_flags);
3020
3021        /*
3022         * Put our reference to io_end. This can free the io_end structure e.g.
3023         * in sync IO case or in case of error. It can even perform extent
3024         * conversion if all bios we submitted finished before we got here.
3025         * Note that in that case iocb->private can be already set to NULL
3026         * here.
3027         */
3028        if (io_end) {
3029                ext4_inode_aio_set(inode, NULL);
3030                ext4_put_io_end(io_end);
3031                /*
3032                 * When no IO was submitted ext4_end_io_dio() was not
3033                 * called so we have to put iocb's reference.
3034                 */
3035                if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3036                        WARN_ON(iocb->private != io_end);
3037                        WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3038                        ext4_put_io_end(io_end);
3039                        iocb->private = NULL;
3040                }
3041        }
3042        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3043                                                EXT4_STATE_DIO_UNWRITTEN)) {
3044                int err;
3045                /*
3046                 * for non AIO case, since the IO is already
3047                 * completed, we could do the conversion right here
3048                 */
3049                err = ext4_convert_unwritten_extents(NULL, inode,
3050                                                     offset, ret);
3051                if (err < 0)
3052                        ret = err;
3053                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3054        }
3055
3056retake_lock:
3057        if (rw == WRITE)
3058                inode_dio_done(inode);
3059        /* take i_mutex locking again if we do a ovewrite dio */
3060        if (overwrite) {
3061                up_read(&EXT4_I(inode)->i_data_sem);
3062                mutex_lock(&inode->i_mutex);
3063        }
3064
3065        return ret;
3066}
3067
3068static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3069                              struct iov_iter *iter, loff_t offset)
3070{
3071        struct file *file = iocb->ki_filp;
3072        struct inode *inode = file->f_mapping->host;
3073        size_t count = iov_iter_count(iter);
3074        ssize_t ret;
3075
3076        /*
3077         * If we are doing data journalling we don't support O_DIRECT
3078         */
3079        if (ext4_should_journal_data(inode))
3080                return 0;
3081
3082        /* Let buffer I/O handle the inline data case. */
3083        if (ext4_has_inline_data(inode))
3084                return 0;
3085
3086        trace_ext4_direct_IO_enter(inode, offset, count, rw);
3087        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3088                ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3089        else
3090                ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3091        trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3092        return ret;
3093}
3094
3095/*
3096 * Pages can be marked dirty completely asynchronously from ext4's journalling
3097 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3098 * much here because ->set_page_dirty is called under VFS locks.  The page is
3099 * not necessarily locked.
3100 *
3101 * We cannot just dirty the page and leave attached buffers clean, because the
3102 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3103 * or jbddirty because all the journalling code will explode.
3104 *
3105 * So what we do is to mark the page "pending dirty" and next time writepage
3106 * is called, propagate that into the buffers appropriately.
3107 */
3108static int ext4_journalled_set_page_dirty(struct page *page)
3109{
3110        SetPageChecked(page);
3111        return __set_page_dirty_nobuffers(page);
3112}
3113
3114static const struct address_space_operations ext4_aops = {
3115        .readpage               = ext4_readpage,
3116        .readpages              = ext4_readpages,
3117        .writepage              = ext4_writepage,
3118        .writepages             = ext4_writepages,
3119        .write_begin            = ext4_write_begin,
3120        .write_end              = ext4_write_end,
3121        .bmap                   = ext4_bmap,
3122        .invalidatepage         = ext4_invalidatepage,
3123        .releasepage            = ext4_releasepage,
3124        .direct_IO              = ext4_direct_IO,
3125        .migratepage            = buffer_migrate_page,
3126        .is_partially_uptodate  = block_is_partially_uptodate,
3127        .error_remove_page      = generic_error_remove_page,
3128};
3129
3130static const struct address_space_operations ext4_journalled_aops = {
3131        .readpage               = ext4_readpage,
3132        .readpages              = ext4_readpages,
3133        .writepage              = ext4_writepage,
3134        .writepages             = ext4_writepages,
3135        .write_begin            = ext4_write_begin,
3136        .write_end              = ext4_journalled_write_end,
3137        .set_page_dirty         = ext4_journalled_set_page_dirty,
3138        .bmap                   = ext4_bmap,
3139        .invalidatepage         = ext4_journalled_invalidatepage,
3140        .releasepage            = ext4_releasepage,
3141        .direct_IO              = ext4_direct_IO,
3142        .is_partially_uptodate  = block_is_partially_uptodate,
3143        .error_remove_page      = generic_error_remove_page,
3144};
3145
3146static const struct address_space_operations ext4_da_aops = {
3147        .readpage               = ext4_readpage,
3148        .readpages              = ext4_readpages,
3149        .writepage              = ext4_writepage,
3150        .writepages             = ext4_writepages,
3151        .write_begin            = ext4_da_write_begin,
3152        .write_end              = ext4_da_write_end,
3153        .bmap                   = ext4_bmap,
3154        .invalidatepage         = ext4_da_invalidatepage,
3155        .releasepage            = ext4_releasepage,
3156        .direct_IO              = ext4_direct_IO,
3157        .migratepage            = buffer_migrate_page,
3158        .is_partially_uptodate  = block_is_partially_uptodate,
3159        .error_remove_page      = generic_error_remove_page,
3160};
3161
3162void ext4_set_aops(struct inode *inode)
3163{
3164        switch (ext4_inode_journal_mode(inode)) {
3165        case EXT4_INODE_ORDERED_DATA_MODE:
3166                ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3167                break;
3168        case EXT4_INODE_WRITEBACK_DATA_MODE:
3169                ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3170                break;
3171        case EXT4_INODE_JOURNAL_DATA_MODE:
3172                inode->i_mapping->a_ops = &ext4_journalled_aops;
3173                return;
3174        default:
3175                BUG();
3176        }
3177        if (test_opt(inode->i_sb, DELALLOC))
3178                inode->i_mapping->a_ops = &ext4_da_aops;
3179        else
3180                inode->i_mapping->a_ops = &ext4_aops;
3181}
3182
3183/*
3184 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3185 * starting from file offset 'from'.  The range to be zero'd must
3186 * be contained with in one block.  If the specified range exceeds
3187 * the end of the block it will be shortened to end of the block
3188 * that cooresponds to 'from'
3189 */
3190static int ext4_block_zero_page_range(handle_t *handle,
3191                struct address_space *mapping, loff_t from, loff_t length)
3192{
3193        ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3194        unsigned offset = from & (PAGE_CACHE_SIZE-1);
3195        unsigned blocksize, max, pos;
3196        ext4_lblk_t iblock;
3197        struct inode *inode = mapping->host;
3198        struct buffer_head *bh;
3199        struct page *page;
3200        int err = 0;
3201
3202        page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3203                                   mapping_gfp_mask(mapping) & ~__GFP_FS);
3204        if (!page)
3205                return -ENOMEM;
3206
3207        blocksize = inode->i_sb->s_blocksize;
3208        max = blocksize - (offset & (blocksize - 1));
3209
3210        /*
3211         * correct length if it does not fall between
3212         * 'from' and the end of the block
3213         */
3214        if (length > max || length < 0)
3215                length = max;
3216
3217        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3218
3219        if (!page_has_buffers(page))
3220                create_empty_buffers(page, blocksize, 0);
3221
3222        /* Find the buffer that contains "offset" */
3223        bh = page_buffers(page);
3224        pos = blocksize;
3225        while (offset >= pos) {
3226                bh = bh->b_this_page;
3227                iblock++;
3228                pos += blocksize;
3229        }
3230        if (buffer_freed(bh)) {
3231                BUFFER_TRACE(bh, "freed: skip");
3232                goto unlock;
3233        }
3234        if (!buffer_mapped(bh)) {
3235                BUFFER_TRACE(bh, "unmapped");
3236                ext4_get_block(inode, iblock, bh, 0);
3237                /* unmapped? It's a hole - nothing to do */
3238                if (!buffer_mapped(bh)) {
3239                        BUFFER_TRACE(bh, "still unmapped");
3240                        goto unlock;
3241                }
3242        }
3243
3244        /* Ok, it's mapped. Make sure it's up-to-date */
3245        if (PageUptodate(page))
3246                set_buffer_uptodate(bh);
3247
3248        if (!buffer_uptodate(bh)) {
3249                err = -EIO;
3250                ll_rw_block(READ, 1, &bh);
3251                wait_on_buffer(bh);
3252                /* Uhhuh. Read error. Complain and punt. */
3253                if (!buffer_uptodate(bh))
3254                        goto unlock;
3255        }
3256        if (ext4_should_journal_data(inode)) {
3257                BUFFER_TRACE(bh, "get write access");
3258                err = ext4_journal_get_write_access(handle, bh);
3259                if (err)
3260                        goto unlock;
3261        }
3262        zero_user(page, offset, length);
3263        BUFFER_TRACE(bh, "zeroed end of block");
3264
3265        if (ext4_should_journal_data(inode)) {
3266                err = ext4_handle_dirty_metadata(handle, inode, bh);
3267        } else {
3268                err = 0;
3269                mark_buffer_dirty(bh);
3270                if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3271                        err = ext4_jbd2_file_inode(handle, inode);
3272        }
3273
3274unlock:
3275        unlock_page(page);
3276        page_cache_release(page);
3277        return err;
3278}
3279
3280/*
3281 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3282 * up to the end of the block which corresponds to `from'.
3283 * This required during truncate. We need to physically zero the tail end
3284 * of that block so it doesn't yield old data if the file is later grown.
3285 */
3286static int ext4_block_truncate_page(handle_t *handle,
3287                struct address_space *mapping, loff_t from)
3288{
3289        unsigned offset = from & (PAGE_CACHE_SIZE-1);
3290        unsigned length;
3291        unsigned blocksize;
3292        struct inode *inode = mapping->host;
3293
3294        blocksize = inode->i_sb->s_blocksize;
3295        length = blocksize - (offset & (blocksize - 1));
3296
3297        return ext4_block_zero_page_range(handle, mapping, from, length);
3298}
3299
3300int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3301                             loff_t lstart, loff_t length)
3302{
3303        struct super_block *sb = inode->i_sb;
3304        struct address_space *mapping = inode->i_mapping;
3305        unsigned partial_start, partial_end;
3306        ext4_fsblk_t start, end;
3307        loff_t byte_end = (lstart + length - 1);
3308        int err = 0;
3309
3310        partial_start = lstart & (sb->s_blocksize - 1);
3311        partial_end = byte_end & (sb->s_blocksize - 1);
3312
3313        start = lstart >> sb->s_blocksize_bits;
3314        end = byte_end >> sb->s_blocksize_bits;
3315
3316        /* Handle partial zero within the single block */
3317        if (start == end &&
3318            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3319                err = ext4_block_zero_page_range(handle, mapping,
3320                                                 lstart, length);
3321                return err;
3322        }
3323        /* Handle partial zero out on the start of the range */
3324        if (partial_start) {
3325                err = ext4_block_zero_page_range(handle, mapping,
3326                                                 lstart, sb->s_blocksize);
3327                if (err)
3328                        return err;
3329        }
3330        /* Handle partial zero out on the end of the range */
3331        if (partial_end != sb->s_blocksize - 1)
3332                err = ext4_block_zero_page_range(handle, mapping,
3333                                                 byte_end - partial_end,
3334                                                 partial_end + 1);
3335        return err;
3336}
3337
3338int ext4_can_truncate(struct inode *inode)
3339{
3340        if (S_ISREG(inode->i_mode))
3341                return 1;
3342        if (S_ISDIR(inode->i_mode))
3343                return 1;
3344        if (S_ISLNK(inode->i_mode))
3345                return !ext4_inode_is_fast_symlink(inode);
3346        return 0;
3347}
3348
3349/*
3350 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3351 * associated with the given offset and length
3352 *
3353 * @inode:  File inode
3354 * @offset: The offset where the hole will begin
3355 * @len:    The length of the hole
3356 *
3357 * Returns: 0 on success or negative on failure
3358 */
3359
3360int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3361{
3362        struct super_block *sb = inode->i_sb;
3363        ext4_lblk_t first_block, stop_block;
3364        struct address_space *mapping = inode->i_mapping;
3365        loff_t first_block_offset, last_block_offset;
3366        handle_t *handle;
3367        unsigned int credits;
3368        int ret = 0;
3369
3370        if (!S_ISREG(inode->i_mode))
3371                return -EOPNOTSUPP;
3372
3373        trace_ext4_punch_hole(inode, offset, length, 0);
3374
3375        /*
3376         * Write out all dirty pages to avoid race conditions
3377         * Then release them.
3378         */
3379        if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3380                ret = filemap_write_and_wait_range(mapping, offset,
3381                                                   offset + length - 1);
3382                if (ret)
3383                        return ret;
3384        }
3385
3386        mutex_lock(&inode->i_mutex);
3387
3388        /* No need to punch hole beyond i_size */
3389        if (offset >= inode->i_size)
3390                goto out_mutex;
3391
3392        /*
3393         * If the hole extends beyond i_size, set the hole
3394         * to end after the page that contains i_size
3395         */
3396        if (offset + length > inode->i_size) {
3397                length = inode->i_size +
3398                   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3399                   offset;
3400        }
3401
3402        if (offset & (sb->s_blocksize - 1) ||
3403            (offset + length) & (sb->s_blocksize - 1)) {
3404                /*
3405                 * Attach jinode to inode for jbd2 if we do any zeroing of
3406                 * partial block
3407                 */
3408                ret = ext4_inode_attach_jinode(inode);
3409                if (ret < 0)
3410                        goto out_mutex;
3411
3412        }
3413
3414        first_block_offset = round_up(offset, sb->s_blocksize);
3415        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3416
3417        /* Now release the pages and zero block aligned part of pages*/
3418        if (last_block_offset > first_block_offset)
3419                truncate_pagecache_range(inode, first_block_offset,
3420                                         last_block_offset);
3421
3422        /* Wait all existing dio workers, newcomers will block on i_mutex */
3423        ext4_inode_block_unlocked_dio(inode);
3424        inode_dio_wait(inode);
3425
3426        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3427                credits = ext4_writepage_trans_blocks(inode);
3428        else
3429                credits = ext4_blocks_for_truncate(inode);
3430        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3431        if (IS_ERR(handle)) {
3432                ret = PTR_ERR(handle);
3433                ext4_std_error(sb, ret);
3434                goto out_dio;
3435        }
3436
3437        ret = ext4_zero_partial_blocks(handle, inode, offset,
3438                                       length);
3439        if (ret)
3440                goto out_stop;
3441
3442        first_block = (offset + sb->s_blocksize - 1) >>
3443                EXT4_BLOCK_SIZE_BITS(sb);
3444        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3445
3446        /* If there are no blocks to remove, return now */
3447        if (first_block >= stop_block)
3448                goto out_stop;
3449
3450        down_write(&EXT4_I(inode)->i_data_sem);
3451        ext4_discard_preallocations(inode);
3452
3453        ret = ext4_es_remove_extent(inode, first_block,
3454                                    stop_block - first_block);
3455        if (ret) {
3456                up_write(&EXT4_I(inode)->i_data_sem);
3457                goto out_stop;
3458        }
3459
3460        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461                ret = ext4_ext_remove_space(inode, first_block,
3462                                            stop_block - 1);
3463        else
3464                ret = ext4_ind_remove_space(handle, inode, first_block,
3465                                            stop_block);
3466
3467        up_write(&EXT4_I(inode)->i_data_sem);
3468        if (IS_SYNC(inode))
3469                ext4_handle_sync(handle);
3470
3471        /* Now release the pages again to reduce race window */
3472        if (last_block_offset > first_block_offset)
3473                truncate_pagecache_range(inode, first_block_offset,
3474                                         last_block_offset);
3475
3476        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3477        ext4_mark_inode_dirty(handle, inode);
3478out_stop:
3479        ext4_journal_stop(handle);
3480out_dio:
3481        ext4_inode_resume_unlocked_dio(inode);
3482out_mutex:
3483        mutex_unlock(&inode->i_mutex);
3484        return ret;
3485}
3486
3487int ext4_inode_attach_jinode(struct inode *inode)
3488{
3489        struct ext4_inode_info *ei = EXT4_I(inode);
3490        struct jbd2_inode *jinode;
3491
3492        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3493                return 0;
3494
3495        jinode = jbd2_alloc_inode(GFP_KERNEL);
3496        spin_lock(&inode->i_lock);
3497        if (!ei->jinode) {
3498                if (!jinode) {
3499                        spin_unlock(&inode->i_lock);
3500                        return -ENOMEM;
3501                }
3502                ei->jinode = jinode;
3503                jbd2_journal_init_jbd_inode(ei->jinode, inode);
3504                jinode = NULL;
3505        }
3506        spin_unlock(&inode->i_lock);
3507        if (unlikely(jinode != NULL))
3508                jbd2_free_inode(jinode);
3509        return 0;
3510}
3511
3512/*
3513 * ext4_truncate()
3514 *
3515 * We block out ext4_get_block() block instantiations across the entire
3516 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3517 * simultaneously on behalf of the same inode.
3518 *
3519 * As we work through the truncate and commit bits of it to the journal there
3520 * is one core, guiding principle: the file's tree must always be consistent on
3521 * disk.  We must be able to restart the truncate after a crash.
3522 *
3523 * The file's tree may be transiently inconsistent in memory (although it
3524 * probably isn't), but whenever we close off and commit a journal transaction,
3525 * the contents of (the filesystem + the journal) must be consistent and
3526 * restartable.  It's pretty simple, really: bottom up, right to left (although
3527 * left-to-right works OK too).
3528 *
3529 * Note that at recovery time, journal replay occurs *before* the restart of
3530 * truncate against the orphan inode list.
3531 *
3532 * The committed inode has the new, desired i_size (which is the same as
3533 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3534 * that this inode's truncate did not complete and it will again call
3535 * ext4_truncate() to have another go.  So there will be instantiated blocks
3536 * to the right of the truncation point in a crashed ext4 filesystem.  But
3537 * that's fine - as long as they are linked from the inode, the post-crash
3538 * ext4_truncate() run will find them and release them.
3539 */
3540void ext4_truncate(struct inode *inode)
3541{
3542        struct ext4_inode_info *ei = EXT4_I(inode);
3543        unsigned int credits;
3544        handle_t *handle;
3545        struct address_space *mapping = inode->i_mapping;
3546
3547        /*
3548         * There is a possibility that we're either freeing the inode
3549         * or it's a completely new inode. In those cases we might not
3550         * have i_mutex locked because it's not necessary.
3551         */
3552        if (!(inode->i_state & (I_NEW|I_FREEING)))
3553                WARN_ON(!mutex_is_locked(&inode->i_mutex));
3554        trace_ext4_truncate_enter(inode);
3555
3556        if (!ext4_can_truncate(inode))
3557                return;
3558
3559        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3560
3561        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3562                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3563
3564        if (ext4_has_inline_data(inode)) {
3565                int has_inline = 1;
3566
3567                ext4_inline_data_truncate(inode, &has_inline);
3568                if (has_inline)
3569                        return;
3570        }
3571
3572        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3573        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3574                if (ext4_inode_attach_jinode(inode) < 0)
3575                        return;
3576        }
3577
3578        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579                credits = ext4_writepage_trans_blocks(inode);
3580        else
3581                credits = ext4_blocks_for_truncate(inode);
3582
3583        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584        if (IS_ERR(handle)) {
3585                ext4_std_error(inode->i_sb, PTR_ERR(handle));
3586                return;
3587        }
3588
3589        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3590                ext4_block_truncate_page(handle, mapping, inode->i_size);
3591
3592        /*
3593         * We add the inode to the orphan list, so that if this
3594         * truncate spans multiple transactions, and we crash, we will
3595         * resume the truncate when the filesystem recovers.  It also
3596         * marks the inode dirty, to catch the new size.
3597         *
3598         * Implication: the file must always be in a sane, consistent
3599         * truncatable state while each transaction commits.
3600         */
3601        if (ext4_orphan_add(handle, inode))
3602                goto out_stop;
3603
3604        down_write(&EXT4_I(inode)->i_data_sem);
3605
3606        ext4_discard_preallocations(inode);
3607
3608        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3609                ext4_ext_truncate(handle, inode);
3610        else
3611                ext4_ind_truncate(handle, inode);
3612
3613        up_write(&ei->i_data_sem);
3614
3615        if (IS_SYNC(inode))
3616                ext4_handle_sync(handle);
3617
3618out_stop:
3619        /*
3620         * If this was a simple ftruncate() and the file will remain alive,
3621         * then we need to clear up the orphan record which we created above.
3622         * However, if this was a real unlink then we were called by
3623         * ext4_evict_inode(), and we allow that function to clean up the
3624         * orphan info for us.
3625         */
3626        if (inode->i_nlink)
3627                ext4_orphan_del(handle, inode);
3628
3629        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630        ext4_mark_inode_dirty(handle, inode);
3631        ext4_journal_stop(handle);
3632
3633        trace_ext4_truncate_exit(inode);
3634}
3635
3636/*
3637 * ext4_get_inode_loc returns with an extra refcount against the inode's
3638 * underlying buffer_head on success. If 'in_mem' is true, we have all
3639 * data in memory that is needed to recreate the on-disk version of this
3640 * inode.
3641 */
3642static int __ext4_get_inode_loc(struct inode *inode,
3643                                struct ext4_iloc *iloc, int in_mem)
3644{
3645        struct ext4_group_desc  *gdp;
3646        struct buffer_head      *bh;
3647        struct super_block      *sb = inode->i_sb;
3648        ext4_fsblk_t            block;
3649        int                     inodes_per_block, inode_offset;
3650
3651        iloc->bh = NULL;
3652        if (!ext4_valid_inum(sb, inode->i_ino))
3653                return -EIO;
3654
3655        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3656        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3657        if (!gdp)
3658                return -EIO;
3659
3660        /*
3661         * Figure out the offset within the block group inode table
3662         */
3663        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3664        inode_offset = ((inode->i_ino - 1) %
3665                        EXT4_INODES_PER_GROUP(sb));
3666        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3667        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3668
3669        bh = sb_getblk(sb, block);
3670        if (unlikely(!bh))
3671                return -ENOMEM;
3672        if (!buffer_uptodate(bh)) {
3673                lock_buffer(bh);
3674
3675                /*
3676                 * If the buffer has the write error flag, we have failed
3677                 * to write out another inode in the same block.  In this
3678                 * case, we don't have to read the block because we may
3679                 * read the old inode data successfully.
3680                 */
3681                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3682                        set_buffer_uptodate(bh);
3683
3684                if (buffer_uptodate(bh)) {
3685                        /* someone brought it uptodate while we waited */
3686                        unlock_buffer(bh);
3687                        goto has_buffer;
3688                }
3689
3690                /*
3691                 * If we have all information of the inode in memory and this
3692                 * is the only valid inode in the block, we need not read the
3693                 * block.
3694                 */
3695                if (in_mem) {
3696                        struct buffer_head *bitmap_bh;
3697                        int i, start;
3698
3699                        start = inode_offset & ~(inodes_per_block - 1);
3700
3701                        /* Is the inode bitmap in cache? */
3702                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3703                        if (unlikely(!bitmap_bh))
3704                                goto make_io;
3705
3706                        /*
3707                         * If the inode bitmap isn't in cache then the
3708                         * optimisation may end up performing two reads instead
3709                         * of one, so skip it.
3710                         */
3711                        if (!buffer_uptodate(bitmap_bh)) {
3712                                brelse(bitmap_bh);
3713                                goto make_io;
3714                        }
3715                        for (i = start; i < start + inodes_per_block; i++) {
3716                                if (i == inode_offset)
3717                                        continue;
3718                                if (ext4_test_bit(i, bitmap_bh->b_data))
3719                                        break;
3720                        }
3721                        brelse(bitmap_bh);
3722                        if (i == start + inodes_per_block) {
3723                                /* all other inodes are free, so skip I/O */
3724                                memset(bh->b_data, 0, bh->b_size);
3725                                set_buffer_uptodate(bh);
3726                                unlock_buffer(bh);
3727                                goto has_buffer;
3728                        }
3729                }
3730
3731make_io:
3732                /*
3733                 * If we need to do any I/O, try to pre-readahead extra
3734                 * blocks from the inode table.
3735                 */
3736                if (EXT4_SB(sb)->s_inode_readahead_blks) {
3737                        ext4_fsblk_t b, end, table;
3738                        unsigned num;
3739                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3740
3741                        table = ext4_inode_table(sb, gdp);
3742                        /* s_inode_readahead_blks is always a power of 2 */
3743                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
3744                        if (table > b)
3745                                b = table;
3746                        end = b + ra_blks;
3747                        num = EXT4_INODES_PER_GROUP(sb);
3748                        if (ext4_has_group_desc_csum(sb))
3749                                num -= ext4_itable_unused_count(sb, gdp);
3750                        table += num / inodes_per_block;
3751                        if (end > table)
3752                                end = table;
3753                        while (b <= end)
3754                                sb_breadahead(sb, b++);
3755                }
3756
3757                /*
3758                 * There are other valid inodes in the buffer, this inode
3759                 * has in-inode xattrs, or we don't have this inode in memory.
3760                 * Read the block from disk.
3761                 */
3762                trace_ext4_load_inode(inode);
3763                get_bh(bh);
3764                bh->b_end_io = end_buffer_read_sync;
3765                submit_bh(READ | REQ_META | REQ_PRIO, bh);
3766                wait_on_buffer(bh);
3767                if (!buffer_uptodate(bh)) {
3768                        EXT4_ERROR_INODE_BLOCK(inode, block,
3769                                               "unable to read itable block");
3770                        brelse(bh);
3771                        return -EIO;
3772                }
3773        }
3774has_buffer:
3775        iloc->bh = bh;
3776        return 0;
3777}
3778
3779int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3780{
3781        /* We have all inode data except xattrs in memory here. */
3782        return __ext4_get_inode_loc(inode, iloc,
3783                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3784}
3785
3786void ext4_set_inode_flags(struct inode *inode)
3787{
3788        unsigned int flags = EXT4_I(inode)->i_flags;
3789        unsigned int new_fl = 0;
3790
3791        if (flags & EXT4_SYNC_FL)
3792                new_fl |= S_SYNC;
3793        if (flags & EXT4_APPEND_FL)
3794                new_fl |= S_APPEND;
3795        if (flags & EXT4_IMMUTABLE_FL)
3796                new_fl |= S_IMMUTABLE;
3797        if (flags & EXT4_NOATIME_FL)
3798                new_fl |= S_NOATIME;
3799        if (flags & EXT4_DIRSYNC_FL)
3800                new_fl |= S_DIRSYNC;
3801        inode_set_flags(inode, new_fl,
3802                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3803}
3804
3805/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3806void ext4_get_inode_flags(struct ext4_inode_info *ei)
3807{
3808        unsigned int vfs_fl;
3809        unsigned long old_fl, new_fl;
3810
3811        do {
3812                vfs_fl = ei->vfs_inode.i_flags;
3813                old_fl = ei->i_flags;
3814                new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3815                                EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3816                                EXT4_DIRSYNC_FL);
3817                if (vfs_fl & S_SYNC)
3818                        new_fl |= EXT4_SYNC_FL;
3819                if (vfs_fl & S_APPEND)
3820                        new_fl |= EXT4_APPEND_FL;
3821                if (vfs_fl & S_IMMUTABLE)
3822                        new_fl |= EXT4_IMMUTABLE_FL;
3823                if (vfs_fl & S_NOATIME)
3824                        new_fl |= EXT4_NOATIME_FL;
3825                if (vfs_fl & S_DIRSYNC)
3826                        new_fl |= EXT4_DIRSYNC_FL;
3827        } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3828}
3829
3830static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3831                                  struct ext4_inode_info *ei)
3832{
3833        blkcnt_t i_blocks ;
3834        struct inode *inode = &(ei->vfs_inode);
3835        struct super_block *sb = inode->i_sb;
3836
3837        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3838                                EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3839                /* we are using combined 48 bit field */
3840                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3841                                        le32_to_cpu(raw_inode->i_blocks_lo);
3842                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3843                        /* i_blocks represent file system block size */
3844                        return i_blocks  << (inode->i_blkbits - 9);
3845                } else {
3846                        return i_blocks;
3847                }
3848        } else {
3849                return le32_to_cpu(raw_inode->i_blocks_lo);
3850        }
3851}
3852
3853static inline void ext4_iget_extra_inode(struct inode *inode,
3854                                         struct ext4_inode *raw_inode,
3855                                         struct ext4_inode_info *ei)
3856{
3857        __le32 *magic = (void *)raw_inode +
3858                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3859        if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3860                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3861                ext4_find_inline_data_nolock(inode);
3862        } else
3863                EXT4_I(inode)->i_inline_off = 0;
3864}
3865
3866struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3867{
3868        struct ext4_iloc iloc;
3869        struct ext4_inode *raw_inode;
3870        struct ext4_inode_info *ei;
3871        struct inode *inode;
3872        journal_t *journal = EXT4_SB(sb)->s_journal;
3873        long ret;
3874        int block;
3875        uid_t i_uid;
3876        gid_t i_gid;
3877
3878        inode = iget_locked(sb, ino);
3879        if (!inode)
3880                return ERR_PTR(-ENOMEM);
3881        if (!(inode->i_state & I_NEW))
3882                return inode;
3883
3884        ei = EXT4_I(inode);
3885        iloc.bh = NULL;
3886
3887        ret = __ext4_get_inode_loc(inode, &iloc, 0);
3888        if (ret < 0)
3889                goto bad_inode;
3890        raw_inode = ext4_raw_inode(&iloc);
3891
3892        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3894                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3895                    EXT4_INODE_SIZE(inode->i_sb)) {
3896                        EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3897                                EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3898                                EXT4_INODE_SIZE(inode->i_sb));
3899                        ret = -EIO;
3900                        goto bad_inode;
3901                }
3902        } else
3903                ei->i_extra_isize = 0;
3904
3905        /* Precompute checksum seed for inode metadata */
3906        if (ext4_has_metadata_csum(sb)) {
3907                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3908                __u32 csum;
3909                __le32 inum = cpu_to_le32(inode->i_ino);
3910                __le32 gen = raw_inode->i_generation;
3911                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3912                                   sizeof(inum));
3913                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3914                                              sizeof(gen));
3915        }
3916
3917        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3918                EXT4_ERROR_INODE(inode, "checksum invalid");
3919                ret = -EIO;
3920                goto bad_inode;
3921        }
3922
3923        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3924        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3925        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3926        if (!(test_opt(inode->i_sb, NO_UID32))) {
3927                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3928                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3929        }
3930        i_uid_write(inode, i_uid);
3931        i_gid_write(inode, i_gid);
3932        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3933
3934        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3935        ei->i_inline_off = 0;
3936        ei->i_dir_start_lookup = 0;
3937        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3938        /* We now have enough fields to check if the inode was active or not.
3939         * This is needed because nfsd might try to access dead inodes
3940         * the test is that same one that e2fsck uses
3941         * NeilBrown 1999oct15
3942         */
3943        if (inode->i_nlink == 0) {
3944                if ((inode->i_mode == 0 ||
3945                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3946                    ino != EXT4_BOOT_LOADER_INO) {
3947                        /* this inode is deleted */
3948                        ret = -ESTALE;
3949                        goto bad_inode;
3950                }
3951                /* The only unlinked inodes we let through here have
3952                 * valid i_mode and are being read by the orphan
3953                 * recovery code: that's fine, we're about to complete
3954                 * the process of deleting those.
3955                 * OR it is the EXT4_BOOT_LOADER_INO which is
3956                 * not initialized on a new filesystem. */
3957        }
3958        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3959        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3960        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3961        if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3962                ei->i_file_acl |=
3963                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3964        inode->i_size = ext4_isize(raw_inode);
3965        ei->i_disksize = inode->i_size;
3966#ifdef CONFIG_QUOTA
3967        ei->i_reserved_quota = 0;
3968#endif
3969        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3970        ei->i_block_group = iloc.block_group;
3971        ei->i_last_alloc_group = ~0;
3972        /*
3973         * NOTE! The in-memory inode i_data array is in little-endian order
3974         * even on big-endian machines: we do NOT byteswap the block numbers!
3975         */
3976        for (block = 0; block < EXT4_N_BLOCKS; block++)
3977                ei->i_data[block] = raw_inode->i_block[block];
3978        INIT_LIST_HEAD(&ei->i_orphan);
3979
3980        /*
3981         * Set transaction id's of transactions that have to be committed
3982         * to finish f[data]sync. We set them to currently running transaction
3983         * as we cannot be sure that the inode or some of its metadata isn't
3984         * part of the transaction - the inode could have been reclaimed and
3985         * now it is reread from disk.
3986         */
3987        if (journal) {
3988                transaction_t *transaction;
3989                tid_t tid;
3990
3991                read_lock(&journal->j_state_lock);
3992                if (journal->j_running_transaction)
3993                        transaction = journal->j_running_transaction;
3994                else
3995                        transaction = journal->j_committing_transaction;
3996                if (transaction)
3997                        tid = transaction->t_tid;
3998                else
3999                        tid = journal->j_commit_sequence;
4000                read_unlock(&journal->j_state_lock);
4001                ei->i_sync_tid = tid;
4002                ei->i_datasync_tid = tid;
4003        }
4004
4005        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006                if (ei->i_extra_isize == 0) {
4007                        /* The extra space is currently unused. Use it. */
4008                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4009                                            EXT4_GOOD_OLD_INODE_SIZE;
4010                } else {
4011                        ext4_iget_extra_inode(inode, raw_inode, ei);
4012                }
4013        }
4014
4015        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4016        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4017        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4018        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4019
4020        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4021                inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4022                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4023                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4024                                inode->i_version |=
4025                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4026                }
4027        }
4028
4029        ret = 0;
4030        if (ei->i_file_acl &&
4031            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4032                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4033                                 ei->i_file_acl);
4034                ret = -EIO;
4035                goto bad_inode;
4036        } else if (!ext4_has_inline_data(inode)) {
4037                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4038                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4039                            (S_ISLNK(inode->i_mode) &&
4040                             !ext4_inode_is_fast_symlink(inode))))
4041                                /* Validate extent which is part of inode */
4042                                ret = ext4_ext_check_inode(inode);
4043                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4044                           (S_ISLNK(inode->i_mode) &&
4045                            !ext4_inode_is_fast_symlink(inode))) {
4046                        /* Validate block references which are part of inode */
4047                        ret = ext4_ind_check_inode(inode);
4048                }
4049        }
4050        if (ret)
4051                goto bad_inode;
4052
4053        if (S_ISREG(inode->i_mode)) {
4054                inode->i_op = &ext4_file_inode_operations;
4055                inode->i_fop = &ext4_file_operations;
4056                ext4_set_aops(inode);
4057        } else if (S_ISDIR(inode->i_mode)) {
4058                inode->i_op = &ext4_dir_inode_operations;
4059                inode->i_fop = &ext4_dir_operations;
4060        } else if (S_ISLNK(inode->i_mode)) {
4061                if (ext4_inode_is_fast_symlink(inode)) {
4062                        inode->i_op = &ext4_fast_symlink_inode_operations;
4063                        nd_terminate_link(ei->i_data, inode->i_size,
4064                                sizeof(ei->i_data) - 1);
4065                } else {
4066                        inode->i_op = &ext4_symlink_inode_operations;
4067                        ext4_set_aops(inode);
4068                }
4069        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4070              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4071                inode->i_op = &ext4_special_inode_operations;
4072                if (raw_inode->i_block[0])
4073                        init_special_inode(inode, inode->i_mode,
4074                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4075                else
4076                        init_special_inode(inode, inode->i_mode,
4077                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4078        } else if (ino == EXT4_BOOT_LOADER_INO) {
4079                make_bad_inode(inode);
4080        } else {
4081                ret = -EIO;
4082                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4083                goto bad_inode;
4084        }
4085        brelse(iloc.bh);
4086        ext4_set_inode_flags(inode);
4087        unlock_new_inode(inode);
4088        return inode;
4089
4090bad_inode:
4091        brelse(iloc.bh);
4092        iget_failed(inode);
4093        return ERR_PTR(ret);
4094}
4095
4096struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4097{
4098        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4099                return ERR_PTR(-EIO);
4100        return ext4_iget(sb, ino);
4101}
4102
4103static int ext4_inode_blocks_set(handle_t *handle,
4104                                struct ext4_inode *raw_inode,
4105                                struct ext4_inode_info *ei)
4106{
4107        struct inode *inode = &(ei->vfs_inode);
4108        u64 i_blocks = inode->i_blocks;
4109        struct super_block *sb = inode->i_sb;
4110
4111        if (i_blocks <= ~0U) {
4112                /*
4113                 * i_blocks can be represented in a 32 bit variable
4114                 * as multiple of 512 bytes
4115                 */
4116                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4117                raw_inode->i_blocks_high = 0;
4118                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4119                return 0;
4120        }
4121        if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4122                return -EFBIG;
4123
4124        if (i_blocks <= 0xffffffffffffULL) {
4125                /*
4126                 * i_blocks can be represented in a 48 bit variable
4127                 * as multiple of 512 bytes
4128                 */
4129                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4130                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4131                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132        } else {
4133                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134                /* i_block is stored in file system block size */
4135                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4136                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4137                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4138        }
4139        return 0;
4140}
4141
4142/*
4143 * Post the struct inode info into an on-disk inode location in the
4144 * buffer-cache.  This gobbles the caller's reference to the
4145 * buffer_head in the inode location struct.
4146 *
4147 * The caller must have write access to iloc->bh.
4148 */
4149static int ext4_do_update_inode(handle_t *handle,
4150                                struct inode *inode,
4151                                struct ext4_iloc *iloc)
4152{
4153        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4154        struct ext4_inode_info *ei = EXT4_I(inode);
4155        struct buffer_head *bh = iloc->bh;
4156        struct super_block *sb = inode->i_sb;
4157        int err = 0, rc, block;
4158        int need_datasync = 0, set_large_file = 0;
4159        uid_t i_uid;
4160        gid_t i_gid;
4161
4162        spin_lock(&ei->i_raw_lock);
4163
4164        /* For fields not tracked in the in-memory inode,
4165         * initialise them to zero for new inodes. */
4166        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4167                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4168
4169        ext4_get_inode_flags(ei);
4170        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4171        i_uid = i_uid_read(inode);
4172        i_gid = i_gid_read(inode);
4173        if (!(test_opt(inode->i_sb, NO_UID32))) {
4174                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4175                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4176/*
4177 * Fix up interoperability with old kernels. Otherwise, old inodes get
4178 * re-used with the upper 16 bits of the uid/gid intact
4179 */
4180                if (!ei->i_dtime) {
4181                        raw_inode->i_uid_high =
4182                                cpu_to_le16(high_16_bits(i_uid));
4183                        raw_inode->i_gid_high =
4184                                cpu_to_le16(high_16_bits(i_gid));
4185                } else {
4186                        raw_inode->i_uid_high = 0;
4187                        raw_inode->i_gid_high = 0;
4188                }
4189        } else {
4190                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4191                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4192                raw_inode->i_uid_high = 0;
4193                raw_inode->i_gid_high = 0;
4194        }
4195        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4196
4197        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4198        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4199        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4200        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4201
4202        err = ext4_inode_blocks_set(handle, raw_inode, ei);
4203        if (err) {
4204                spin_unlock(&ei->i_raw_lock);
4205                goto out_brelse;
4206        }
4207        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4208        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4209        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4210                raw_inode->i_file_acl_high =
4211                        cpu_to_le16(ei->i_file_acl >> 32);
4212        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4213        if (ei->i_disksize != ext4_isize(raw_inode)) {
4214                ext4_isize_set(raw_inode, ei->i_disksize);
4215                need_datasync = 1;
4216        }
4217        if (ei->i_disksize > 0x7fffffffULL) {
4218                if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4219                                EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4220                                EXT4_SB(sb)->s_es->s_rev_level ==
4221                    cpu_to_le32(EXT4_GOOD_OLD_REV))
4222                        set_large_file = 1;
4223        }
4224        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4225        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4226                if (old_valid_dev(inode->i_rdev)) {
4227                        raw_inode->i_block[0] =
4228                                cpu_to_le32(old_encode_dev(inode->i_rdev));
4229                        raw_inode->i_block[1] = 0;
4230                } else {
4231                        raw_inode->i_block[0] = 0;
4232                        raw_inode->i_block[1] =
4233                                cpu_to_le32(new_encode_dev(inode->i_rdev));
4234                        raw_inode->i_block[2] = 0;
4235                }
4236        } else if (!ext4_has_inline_data(inode)) {
4237                for (block = 0; block < EXT4_N_BLOCKS; block++)
4238                        raw_inode->i_block[block] = ei->i_data[block];
4239        }
4240
4241        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4242                raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4243                if (ei->i_extra_isize) {
4244                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4245                                raw_inode->i_version_hi =
4246                                        cpu_to_le32(inode->i_version >> 32);
4247                        raw_inode->i_extra_isize =
4248                                cpu_to_le16(ei->i_extra_isize);
4249                }
4250        }
4251
4252        ext4_inode_csum_set(inode, raw_inode, ei);
4253
4254        spin_unlock(&ei->i_raw_lock);
4255
4256        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4257        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4258        if (!err)
4259                err = rc;
4260        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4261        if (set_large_file) {
4262                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4263                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4264                if (err)
4265                        goto out_brelse;
4266                ext4_update_dynamic_rev(sb);
4267                EXT4_SET_RO_COMPAT_FEATURE(sb,
4268                                           EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4269                ext4_handle_sync(handle);
4270                err = ext4_handle_dirty_super(handle, sb);
4271        }
4272        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4273out_brelse:
4274        brelse(bh);
4275        ext4_std_error(inode->i_sb, err);
4276        return err;
4277}
4278
4279/*
4280 * ext4_write_inode()
4281 *
4282 * We are called from a few places:
4283 *
4284 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4285 *   Here, there will be no transaction running. We wait for any running
4286 *   transaction to commit.
4287 *
4288 * - Within flush work (sys_sync(), kupdate and such).
4289 *   We wait on commit, if told to.
4290 *
4291 * - Within iput_final() -> write_inode_now()
4292 *   We wait on commit, if told to.
4293 *
4294 * In all cases it is actually safe for us to return without doing anything,
4295 * because the inode has been copied into a raw inode buffer in
4296 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4297 * writeback.
4298 *
4299 * Note that we are absolutely dependent upon all inode dirtiers doing the
4300 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4301 * which we are interested.
4302 *
4303 * It would be a bug for them to not do this.  The code:
4304 *
4305 *      mark_inode_dirty(inode)
4306 *      stuff();
4307 *      inode->i_size = expr;
4308 *
4309 * is in error because write_inode() could occur while `stuff()' is running,
4310 * and the new i_size will be lost.  Plus the inode will no longer be on the
4311 * superblock's dirty inode list.
4312 */
4313int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4314{
4315        int err;
4316
4317        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4318                return 0;
4319
4320        if (EXT4_SB(inode->i_sb)->s_journal) {
4321                if (ext4_journal_current_handle()) {
4322                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4323                        dump_stack();
4324                        return -EIO;
4325                }
4326
4327                /*
4328                 * No need to force transaction in WB_SYNC_NONE mode. Also
4329                 * ext4_sync_fs() will force the commit after everything is
4330                 * written.
4331                 */
4332                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4333                        return 0;
4334
4335                err = ext4_force_commit(inode->i_sb);
4336        } else {
4337                struct ext4_iloc iloc;
4338
4339                err = __ext4_get_inode_loc(inode, &iloc, 0);
4340                if (err)
4341                        return err;
4342                /*
4343                 * sync(2) will flush the whole buffer cache. No need to do
4344                 * it here separately for each inode.
4345                 */
4346                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4347                        sync_dirty_buffer(iloc.bh);
4348                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4349                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4350                                         "IO error syncing inode");
4351                        err = -EIO;
4352                }
4353                brelse(iloc.bh);
4354        }
4355        return err;
4356}
4357
4358/*
4359 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4360 * buffers that are attached to a page stradding i_size and are undergoing
4361 * commit. In that case we have to wait for commit to finish and try again.
4362 */
4363static void ext4_wait_for_tail_page_commit(struct inode *inode)
4364{
4365        struct page *page;
4366        unsigned offset;
4367        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4368        tid_t commit_tid = 0;
4369        int ret;
4370
4371        offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4372        /*
4373         * All buffers in the last page remain valid? Then there's nothing to
4374         * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4375         * blocksize case
4376         */
4377        if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4378                return;
4379        while (1) {
4380                page = find_lock_page(inode->i_mapping,
4381                                      inode->i_size >> PAGE_CACHE_SHIFT);
4382                if (!page)
4383                        return;
4384                ret = __ext4_journalled_invalidatepage(page, offset,
4385                                                PAGE_CACHE_SIZE - offset);
4386                unlock_page(page);
4387                page_cache_release(page);
4388                if (ret != -EBUSY)
4389                        return;
4390                commit_tid = 0;
4391                read_lock(&journal->j_state_lock);
4392                if (journal->j_committing_transaction)
4393                        commit_tid = journal->j_committing_transaction->t_tid;
4394                read_unlock(&journal->j_state_lock);
4395                if (commit_tid)
4396                        jbd2_log_wait_commit(journal, commit_tid);
4397        }
4398}
4399
4400/*
4401 * ext4_setattr()
4402 *
4403 * Called from notify_change.
4404 *
4405 * We want to trap VFS attempts to truncate the file as soon as
4406 * possible.  In particular, we want to make sure that when the VFS
4407 * shrinks i_size, we put the inode on the orphan list and modify
4408 * i_disksize immediately, so that during the subsequent flushing of
4409 * dirty pages and freeing of disk blocks, we can guarantee that any
4410 * commit will leave the blocks being flushed in an unused state on
4411 * disk.  (On recovery, the inode will get truncated and the blocks will
4412 * be freed, so we have a strong guarantee that no future commit will
4413 * leave these blocks visible to the user.)
4414 *
4415 * Another thing we have to assure is that if we are in ordered mode
4416 * and inode is still attached to the committing transaction, we must
4417 * we start writeout of all the dirty pages which are being truncated.
4418 * This way we are sure that all the data written in the previous
4419 * transaction are already on disk (truncate waits for pages under
4420 * writeback).
4421 *
4422 * Called with inode->i_mutex down.
4423 */
4424int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4425{
4426        struct inode *inode = dentry->d_inode;
4427        int error, rc = 0;
4428        int orphan = 0;
4429        const unsigned int ia_valid = attr->ia_valid;
4430
4431        error = inode_change_ok(inode, attr);
4432        if (error)
4433                return error;
4434
4435        if (is_quota_modification(inode, attr))
4436                dquot_initialize(inode);
4437        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4438            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4439                handle_t *handle;
4440
4441                /* (user+group)*(old+new) structure, inode write (sb,
4442                 * inode block, ? - but truncate inode update has it) */
4443                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4444                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4445                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4446                if (IS_ERR(handle)) {
4447                        error = PTR_ERR(handle);
4448                        goto err_out;
4449                }
4450                error = dquot_transfer(inode, attr);
4451                if (error) {
4452                        ext4_journal_stop(handle);
4453                        return error;
4454                }
4455                /* Update corresponding info in inode so that everything is in
4456                 * one transaction */
4457                if (attr->ia_valid & ATTR_UID)
4458                        inode->i_uid = attr->ia_uid;
4459                if (attr->ia_valid & ATTR_GID)
4460                        inode->i_gid = attr->ia_gid;
4461                error = ext4_mark_inode_dirty(handle, inode);
4462                ext4_journal_stop(handle);
4463        }
4464
4465        if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4466                handle_t *handle;
4467
4468                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4469                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4470
4471                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
4472                                return -EFBIG;
4473                }
4474
4475                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4476                        inode_inc_iversion(inode);
4477
4478                if (S_ISREG(inode->i_mode) &&
4479                    (attr->ia_size < inode->i_size)) {
4480                        if (ext4_should_order_data(inode)) {
4481                                error = ext4_begin_ordered_truncate(inode,
4482                                                            attr->ia_size);
4483                                if (error)
4484                                        goto err_out;
4485                        }
4486                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4487                        if (IS_ERR(handle)) {
4488                                error = PTR_ERR(handle);
4489                                goto err_out;
4490                        }
4491                        if (ext4_handle_valid(handle)) {
4492                                error = ext4_orphan_add(handle, inode);
4493                                orphan = 1;
4494                        }
4495                        down_write(&EXT4_I(inode)->i_data_sem);
4496                        EXT4_I(inode)->i_disksize = attr->ia_size;
4497                        rc = ext4_mark_inode_dirty(handle, inode);
4498                        if (!error)
4499                                error = rc;
4500                        /*
4501                         * We have to update i_size under i_data_sem together
4502                         * with i_disksize to avoid races with writeback code
4503                         * running ext4_wb_update_i_disksize().
4504                         */
4505                        if (!error)
4506                                i_size_write(inode, attr->ia_size);
4507                        up_write(&EXT4_I(inode)->i_data_sem);
4508                        ext4_journal_stop(handle);
4509                        if (error) {
4510                                ext4_orphan_del(NULL, inode);
4511                                goto err_out;
4512                        }
4513                } else {
4514                        loff_t oldsize = inode->i_size;
4515
4516                        i_size_write(inode, attr->ia_size);
4517                        pagecache_isize_extended(inode, oldsize, inode->i_size);
4518                }
4519
4520                /*
4521                 * Blocks are going to be removed from the inode. Wait
4522                 * for dio in flight.  Temporarily disable
4523                 * dioread_nolock to prevent livelock.
4524                 */
4525                if (orphan) {
4526                        if (!ext4_should_journal_data(inode)) {
4527                                ext4_inode_block_unlocked_dio(inode);
4528                                inode_dio_wait(inode);
4529                                ext4_inode_resume_unlocked_dio(inode);
4530                        } else
4531                                ext4_wait_for_tail_page_commit(inode);
4532                }
4533                /*
4534                 * Truncate pagecache after we've waited for commit
4535                 * in data=journal mode to make pages freeable.
4536                 */
4537                        truncate_pagecache(inode, inode->i_size);
4538        }
4539        /*
4540         * We want to call ext4_truncate() even if attr->ia_size ==
4541         * inode->i_size for cases like truncation of fallocated space
4542         */
4543        if (attr->ia_valid & ATTR_SIZE)
4544                ext4_truncate(inode);
4545
4546        if (!rc) {
4547                setattr_copy(inode, attr);
4548                mark_inode_dirty(inode);
4549        }
4550
4551        /*
4552         * If the call to ext4_truncate failed to get a transaction handle at
4553         * all, we need to clean up the in-core orphan list manually.
4554         */
4555        if (orphan && inode->i_nlink)
4556                ext4_orphan_del(NULL, inode);
4557
4558        if (!rc && (ia_valid & ATTR_MODE))
4559                rc = posix_acl_chmod(inode, inode->i_mode);
4560
4561err_out:
4562        ext4_std_error(inode->i_sb, error);
4563        if (!error)
4564                error = rc;
4565        return error;
4566}
4567
4568int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4569                 struct kstat *stat)
4570{
4571        struct inode *inode;
4572        unsigned long long delalloc_blocks;
4573
4574        inode = dentry->d_inode;
4575        generic_fillattr(inode, stat);
4576
4577        /*
4578         * If there is inline data in the inode, the inode will normally not
4579         * have data blocks allocated (it may have an external xattr block).
4580         * Report at least one sector for such files, so tools like tar, rsync,
4581         * others doen't incorrectly think the file is completely sparse.
4582         */
4583        if (unlikely(ext4_has_inline_data(inode)))
4584                stat->blocks += (stat->size + 511) >> 9;
4585
4586        /*
4587         * We can't update i_blocks if the block allocation is delayed
4588         * otherwise in the case of system crash before the real block
4589         * allocation is done, we will have i_blocks inconsistent with
4590         * on-disk file blocks.
4591         * We always keep i_blocks updated together with real
4592         * allocation. But to not confuse with user, stat
4593         * will return the blocks that include the delayed allocation
4594         * blocks for this file.
4595         */
4596        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4597                                   EXT4_I(inode)->i_reserved_data_blocks);
4598        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4599        return 0;
4600}
4601
4602static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4603                                   int pextents)
4604{
4605        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4606                return ext4_ind_trans_blocks(inode, lblocks);
4607        return ext4_ext_index_trans_blocks(inode, pextents);
4608}
4609
4610/*
4611 * Account for index blocks, block groups bitmaps and block group
4612 * descriptor blocks if modify datablocks and index blocks
4613 * worse case, the indexs blocks spread over different block groups
4614 *
4615 * If datablocks are discontiguous, they are possible to spread over
4616 * different block groups too. If they are contiguous, with flexbg,
4617 * they could still across block group boundary.
4618 *
4619 * Also account for superblock, inode, quota and xattr blocks
4620 */
4621static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4622                                  int pextents)
4623{
4624        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4625        int gdpblocks;
4626        int idxblocks;
4627        int ret = 0;
4628
4629        /*
4630         * How many index blocks need to touch to map @lblocks logical blocks
4631         * to @pextents physical extents?
4632         */
4633        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4634
4635        ret = idxblocks;
4636
4637        /*
4638         * Now let's see how many group bitmaps and group descriptors need
4639         * to account
4640         */
4641        groups = idxblocks + pextents;
4642        gdpblocks = groups;
4643        if (groups > ngroups)
4644                groups = ngroups;
4645        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4646                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4647
4648        /* bitmaps and block group descriptor blocks */
4649        ret += groups + gdpblocks;
4650
4651        /* Blocks for super block, inode, quota and xattr blocks */
4652        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4653
4654        return ret;
4655}
4656
4657/*
4658 * Calculate the total number of credits to reserve to fit
4659 * the modification of a single pages into a single transaction,
4660 * which may include multiple chunks of block allocations.
4661 *
4662 * This could be called via ext4_write_begin()
4663 *
4664 * We need to consider the worse case, when
4665 * one new block per extent.
4666 */
4667int ext4_writepage_trans_blocks(struct inode *inode)
4668{
4669        int bpp = ext4_journal_blocks_per_page(inode);
4670        int ret;
4671
4672        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4673
4674        /* Account for data blocks for journalled mode */
4675        if (ext4_should_journal_data(inode))
4676                ret += bpp;
4677        return ret;
4678}
4679
4680/*
4681 * Calculate the journal credits for a chunk of data modification.
4682 *
4683 * This is called from DIO, fallocate or whoever calling
4684 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4685 *
4686 * journal buffers for data blocks are not included here, as DIO
4687 * and fallocate do no need to journal data buffers.
4688 */
4689int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4690{
4691        return ext4_meta_trans_blocks(inode, nrblocks, 1);
4692}
4693
4694/*
4695 * The caller must have previously called ext4_reserve_inode_write().
4696 * Give this, we know that the caller already has write access to iloc->bh.
4697 */
4698int ext4_mark_iloc_dirty(handle_t *handle,
4699                         struct inode *inode, struct ext4_iloc *iloc)
4700{
4701        int err = 0;
4702
4703        if (IS_I_VERSION(inode))
4704                inode_inc_iversion(inode);
4705
4706        /* the do_update_inode consumes one bh->b_count */
4707        get_bh(iloc->bh);
4708
4709        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4710        err = ext4_do_update_inode(handle, inode, iloc);
4711        put_bh(iloc->bh);
4712        return err;
4713}
4714
4715/*
4716 * On success, We end up with an outstanding reference count against
4717 * iloc->bh.  This _must_ be cleaned up later.
4718 */
4719
4720int
4721ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4722                         struct ext4_iloc *iloc)
4723{
4724        int err;
4725
4726        err = ext4_get_inode_loc(inode, iloc);
4727        if (!err) {
4728                BUFFER_TRACE(iloc->bh, "get_write_access");
4729                err = ext4_journal_get_write_access(handle, iloc->bh);
4730                if (err) {
4731                        brelse(iloc->bh);
4732                        iloc->bh = NULL;
4733                }
4734        }
4735        ext4_std_error(inode->i_sb, err);
4736        return err;
4737}
4738
4739/*
4740 * Expand an inode by new_extra_isize bytes.
4741 * Returns 0 on success or negative error number on failure.
4742 */
4743static int ext4_expand_extra_isize(struct inode *inode,
4744                                   unsigned int new_extra_isize,
4745                                   struct ext4_iloc iloc,
4746                                   handle_t *handle)
4747{
4748        struct ext4_inode *raw_inode;
4749        struct ext4_xattr_ibody_header *header;
4750
4751        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4752                return 0;
4753
4754        raw_inode = ext4_raw_inode(&iloc);
4755
4756        header = IHDR(inode, raw_inode);
4757
4758        /* No extended attributes present */
4759        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4760            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4761                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4762                        new_extra_isize);
4763                EXT4_I(inode)->i_extra_isize = new_extra_isize;
4764                return 0;
4765        }
4766
4767        /* try to expand with EAs present */
4768        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4769                                          raw_inode, handle);
4770}
4771
4772/*
4773 * What we do here is to mark the in-core inode as clean with respect to inode
4774 * dirtiness (it may still be data-dirty).
4775 * This means that the in-core inode may be reaped by prune_icache
4776 * without having to perform any I/O.  This is a very good thing,
4777 * because *any* task may call prune_icache - even ones which
4778 * have a transaction open against a different journal.
4779 *
4780 * Is this cheating?  Not really.  Sure, we haven't written the
4781 * inode out, but prune_icache isn't a user-visible syncing function.
4782 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4783 * we start and wait on commits.
4784 */
4785int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786{
4787        struct ext4_iloc iloc;
4788        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789        static unsigned int mnt_count;
4790        int err, ret;
4791
4792        might_sleep();
4793        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4794        err = ext4_reserve_inode_write(handle, inode, &iloc);
4795        if (ext4_handle_valid(handle) &&
4796            EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4797            !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4798                /*
4799                 * We need extra buffer credits since we may write into EA block
4800                 * with this same handle. If journal_extend fails, then it will
4801                 * only result in a minor loss of functionality for that inode.
4802                 * If this is felt to be critical, then e2fsck should be run to
4803                 * force a large enough s_min_extra_isize.
4804                 */
4805                if ((jbd2_journal_extend(handle,
4806                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4807                        ret = ext4_expand_extra_isize(inode,
4808                                                      sbi->s_want_extra_isize,
4809                                                      iloc, handle);
4810                        if (ret) {
4811                                ext4_set_inode_state(inode,
4812                                                     EXT4_STATE_NO_EXPAND);
4813                                if (mnt_count !=
4814                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
4815                                        ext4_warning(inode->i_sb,
4816                                        "Unable to expand inode %lu. Delete"
4817                                        " some EAs or run e2fsck.",
4818                                        inode->i_ino);
4819                                        mnt_count =
4820                                          le16_to_cpu(sbi->s_es->s_mnt_count);
4821                                }
4822                        }
4823                }
4824        }
4825        if (!err)
4826                err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4827        return err;
4828}
4829
4830/*
4831 * ext4_dirty_inode() is called from __mark_inode_dirty()
4832 *
4833 * We're really interested in the case where a file is being extended.
4834 * i_size has been changed by generic_commit_write() and we thus need
4835 * to include the updated inode in the current transaction.
4836 *
4837 * Also, dquot_alloc_block() will always dirty the inode when blocks
4838 * are allocated to the file.
4839 *
4840 * If the inode is marked synchronous, we don't honour that here - doing
4841 * so would cause a commit on atime updates, which we don't bother doing.
4842 * We handle synchronous inodes at the highest possible level.
4843 */
4844void ext4_dirty_inode(struct inode *inode, int flags)
4845{
4846        handle_t *handle;
4847
4848        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4849        if (IS_ERR(handle))
4850                goto out;
4851
4852        ext4_mark_inode_dirty(handle, inode);
4853
4854        ext4_journal_stop(handle);
4855out:
4856        return;
4857}
4858
4859#if 0
4860/*
4861 * Bind an inode's backing buffer_head into this transaction, to prevent
4862 * it from being flushed to disk early.  Unlike
4863 * ext4_reserve_inode_write, this leaves behind no bh reference and
4864 * returns no iloc structure, so the caller needs to repeat the iloc
4865 * lookup to mark the inode dirty later.
4866 */
4867static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4868{
4869        struct ext4_iloc iloc;
4870
4871        int err = 0;
4872        if (handle) {
4873                err = ext4_get_inode_loc(inode, &iloc);
4874                if (!err) {
4875                        BUFFER_TRACE(iloc.bh, "get_write_access");
4876                        err = jbd2_journal_get_write_access(handle, iloc.bh);
4877                        if (!err)
4878                                err = ext4_handle_dirty_metadata(handle,
4879                                                                 NULL,
4880                                                                 iloc.bh);
4881                        brelse(iloc.bh);
4882                }
4883        }
4884        ext4_std_error(inode->i_sb, err);
4885        return err;
4886}
4887#endif
4888
4889int ext4_change_inode_journal_flag(struct inode *inode, int val)
4890{
4891        journal_t *journal;
4892        handle_t *handle;
4893        int err;
4894
4895        /*
4896         * We have to be very careful here: changing a data block's
4897         * journaling status dynamically is dangerous.  If we write a
4898         * data block to the journal, change the status and then delete
4899         * that block, we risk forgetting to revoke the old log record
4900         * from the journal and so a subsequent replay can corrupt data.
4901         * So, first we make sure that the journal is empty and that
4902         * nobody is changing anything.
4903         */
4904
4905        journal = EXT4_JOURNAL(inode);
4906        if (!journal)
4907                return 0;
4908        if (is_journal_aborted(journal))
4909                return -EROFS;
4910        /* We have to allocate physical blocks for delalloc blocks
4911         * before flushing journal. otherwise delalloc blocks can not
4912         * be allocated any more. even more truncate on delalloc blocks
4913         * could trigger BUG by flushing delalloc blocks in journal.
4914         * There is no delalloc block in non-journal data mode.
4915         */
4916        if (val && test_opt(inode->i_sb, DELALLOC)) {
4917                err = ext4_alloc_da_blocks(inode);
4918                if (err < 0)
4919                        return err;
4920        }
4921
4922        /* Wait for all existing dio workers */
4923        ext4_inode_block_unlocked_dio(inode);
4924        inode_dio_wait(inode);
4925
4926        jbd2_journal_lock_updates(journal);
4927
4928        /*
4929         * OK, there are no updates running now, and all cached data is
4930         * synced to disk.  We are now in a completely consistent state
4931         * which doesn't have anything in the journal, and we know that
4932         * no filesystem updates are running, so it is safe to modify
4933         * the inode's in-core data-journaling state flag now.
4934         */
4935
4936        if (val)
4937                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4938        else {
4939                err = jbd2_journal_flush(journal);
4940                if (err < 0) {
4941                        jbd2_journal_unlock_updates(journal);
4942                        ext4_inode_resume_unlocked_dio(inode);
4943                        return err;
4944                }
4945                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4946        }
4947        ext4_set_aops(inode);
4948
4949        jbd2_journal_unlock_updates(journal);
4950        ext4_inode_resume_unlocked_dio(inode);
4951
4952        /* Finally we can mark the inode as dirty. */
4953
4954        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4955        if (IS_ERR(handle))
4956                return PTR_ERR(handle);
4957
4958        err = ext4_mark_inode_dirty(handle, inode);
4959        ext4_handle_sync(handle);
4960        ext4_journal_stop(handle);
4961        ext4_std_error(inode->i_sb, err);
4962
4963        return err;
4964}
4965
4966static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4967{
4968        return !buffer_mapped(bh);
4969}
4970
4971int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4972{
4973        struct page *page = vmf->page;
4974        loff_t size;
4975        unsigned long len;
4976        int ret;
4977        struct file *file = vma->vm_file;
4978        struct inode *inode = file_inode(file);
4979        struct address_space *mapping = inode->i_mapping;
4980        handle_t *handle;
4981        get_block_t *get_block;
4982        int retries = 0;
4983
4984        sb_start_pagefault(inode->i_sb);
4985        file_update_time(vma->vm_file);
4986        /* Delalloc case is easy... */
4987        if (test_opt(inode->i_sb, DELALLOC) &&
4988            !ext4_should_journal_data(inode) &&
4989            !ext4_nonda_switch(inode->i_sb)) {
4990                do {
4991                        ret = __block_page_mkwrite(vma, vmf,
4992                                                   ext4_da_get_block_prep);
4993                } while (ret == -ENOSPC &&
4994                       ext4_should_retry_alloc(inode->i_sb, &retries));
4995                goto out_ret;
4996        }
4997
4998        lock_page(page);
4999        size = i_size_read(inode);
5000        /* Page got truncated from under us? */
5001        if (page->mapping != mapping || page_offset(page) > size) {
5002                unlock_page(page);
5003                ret = VM_FAULT_NOPAGE;
5004                goto out;
5005        }
5006
5007        if (page->index == size >> PAGE_CACHE_SHIFT)
5008                len = size & ~PAGE_CACHE_MASK;
5009        else
5010                len = PAGE_CACHE_SIZE;
5011        /*
5012         * Return if we have all the buffers mapped. This avoids the need to do
5013         * journal_start/journal_stop which can block and take a long time
5014         */
5015        if (page_has_buffers(page)) {
5016                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5017                                            0, len, NULL,
5018                                            ext4_bh_unmapped)) {
5019                        /* Wait so that we don't change page under IO */
5020                        wait_for_stable_page(page);
5021                        ret = VM_FAULT_LOCKED;
5022                        goto out;
5023                }
5024        }
5025        unlock_page(page);
5026        /* OK, we need to fill the hole... */
5027        if (ext4_should_dioread_nolock(inode))
5028                get_block = ext4_get_block_write;
5029        else
5030                get_block = ext4_get_block;
5031retry_alloc:
5032        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5033                                    ext4_writepage_trans_blocks(inode));
5034        if (IS_ERR(handle)) {
5035                ret = VM_FAULT_SIGBUS;
5036                goto out;
5037        }
5038        ret = __block_page_mkwrite(vma, vmf, get_block);
5039        if (!ret && ext4_should_journal_data(inode)) {
5040                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5041                          PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5042                        unlock_page(page);
5043                        ret = VM_FAULT_SIGBUS;
5044                        ext4_journal_stop(handle);
5045                        goto out;
5046                }
5047                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5048        }
5049        ext4_journal_stop(handle);
5050        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5051                goto retry_alloc;
5052out_ret:
5053        ret = block_page_mkwrite_return(ret);
5054out:
5055        sb_end_pagefault(inode->i_sb);
5056        return ret;
5057}
5058