linux/fs/f2fs/node.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11/* start node id of a node block dedicated to the given node id */
  12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13
  14/* node block offset on the NAT area dedicated to the given start node id */
  15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  16
  17/* # of pages to perform readahead before building free nids */
  18#define FREE_NID_PAGES 4
  19
  20/* maximum readahead size for node during getting data blocks */
  21#define MAX_RA_NODE             128
  22
  23/* control the memory footprint threshold (10MB per 1GB ram) */
  24#define DEF_RAM_THRESHOLD       10
  25
  26/* vector size for gang look-up from nat cache that consists of radix tree */
  27#define NATVEC_SIZE     64
  28
  29/* return value for read_node_page */
  30#define LOCKED_PAGE     1
  31
  32/*
  33 * For node information
  34 */
  35struct node_info {
  36        nid_t nid;              /* node id */
  37        nid_t ino;              /* inode number of the node's owner */
  38        block_t blk_addr;       /* block address of the node */
  39        unsigned char version;  /* version of the node */
  40};
  41
  42enum {
  43        IS_CHECKPOINTED,        /* is it checkpointed before? */
  44        HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  45        HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  46        IS_DIRTY,               /* this nat entry is dirty? */
  47};
  48
  49struct nat_entry {
  50        struct list_head list;  /* for clean or dirty nat list */
  51        unsigned char flag;     /* for node information bits */
  52        struct node_info ni;    /* in-memory node information */
  53};
  54
  55#define nat_get_nid(nat)                (nat->ni.nid)
  56#define nat_set_nid(nat, n)             (nat->ni.nid = n)
  57#define nat_get_blkaddr(nat)            (nat->ni.blk_addr)
  58#define nat_set_blkaddr(nat, b)         (nat->ni.blk_addr = b)
  59#define nat_get_ino(nat)                (nat->ni.ino)
  60#define nat_set_ino(nat, i)             (nat->ni.ino = i)
  61#define nat_get_version(nat)            (nat->ni.version)
  62#define nat_set_version(nat, v)         (nat->ni.version = v)
  63
  64#define inc_node_version(version)       (++version)
  65
  66static inline void set_nat_flag(struct nat_entry *ne,
  67                                unsigned int type, bool set)
  68{
  69        unsigned char mask = 0x01 << type;
  70        if (set)
  71                ne->flag |= mask;
  72        else
  73                ne->flag &= ~mask;
  74}
  75
  76static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  77{
  78        unsigned char mask = 0x01 << type;
  79        return ne->flag & mask;
  80}
  81
  82static inline void nat_reset_flag(struct nat_entry *ne)
  83{
  84        /* these states can be set only after checkpoint was done */
  85        set_nat_flag(ne, IS_CHECKPOINTED, true);
  86        set_nat_flag(ne, HAS_FSYNCED_INODE, false);
  87        set_nat_flag(ne, HAS_LAST_FSYNC, true);
  88}
  89
  90static inline void node_info_from_raw_nat(struct node_info *ni,
  91                                                struct f2fs_nat_entry *raw_ne)
  92{
  93        ni->ino = le32_to_cpu(raw_ne->ino);
  94        ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  95        ni->version = raw_ne->version;
  96}
  97
  98static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
  99                                                struct node_info *ni)
 100{
 101        raw_ne->ino = cpu_to_le32(ni->ino);
 102        raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 103        raw_ne->version = ni->version;
 104}
 105
 106enum mem_type {
 107        FREE_NIDS,      /* indicates the free nid list */
 108        NAT_ENTRIES,    /* indicates the cached nat entry */
 109        DIRTY_DENTS,    /* indicates dirty dentry pages */
 110        INO_ENTRIES,    /* indicates inode entries */
 111};
 112
 113struct nat_entry_set {
 114        struct list_head set_list;      /* link with other nat sets */
 115        struct list_head entry_list;    /* link with dirty nat entries */
 116        nid_t set;                      /* set number*/
 117        unsigned int entry_cnt;         /* the # of nat entries in set */
 118};
 119
 120/*
 121 * For free nid mangement
 122 */
 123enum nid_state {
 124        NID_NEW,        /* newly added to free nid list */
 125        NID_ALLOC       /* it is allocated */
 126};
 127
 128struct free_nid {
 129        struct list_head list;  /* for free node id list */
 130        nid_t nid;              /* node id */
 131        int state;              /* in use or not: NID_NEW or NID_ALLOC */
 132};
 133
 134static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 135{
 136        struct f2fs_nm_info *nm_i = NM_I(sbi);
 137        struct free_nid *fnid;
 138
 139        spin_lock(&nm_i->free_nid_list_lock);
 140        if (nm_i->fcnt <= 0) {
 141                spin_unlock(&nm_i->free_nid_list_lock);
 142                return;
 143        }
 144        fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
 145        *nid = fnid->nid;
 146        spin_unlock(&nm_i->free_nid_list_lock);
 147}
 148
 149/*
 150 * inline functions
 151 */
 152static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 153{
 154        struct f2fs_nm_info *nm_i = NM_I(sbi);
 155        memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 156}
 157
 158static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 159{
 160        struct f2fs_nm_info *nm_i = NM_I(sbi);
 161        pgoff_t block_off;
 162        pgoff_t block_addr;
 163        int seg_off;
 164
 165        block_off = NAT_BLOCK_OFFSET(start);
 166        seg_off = block_off >> sbi->log_blocks_per_seg;
 167
 168        block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 169                (seg_off << sbi->log_blocks_per_seg << 1) +
 170                (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
 171
 172        if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 173                block_addr += sbi->blocks_per_seg;
 174
 175        return block_addr;
 176}
 177
 178static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 179                                                pgoff_t block_addr)
 180{
 181        struct f2fs_nm_info *nm_i = NM_I(sbi);
 182
 183        block_addr -= nm_i->nat_blkaddr;
 184        if ((block_addr >> sbi->log_blocks_per_seg) % 2)
 185                block_addr -= sbi->blocks_per_seg;
 186        else
 187                block_addr += sbi->blocks_per_seg;
 188
 189        return block_addr + nm_i->nat_blkaddr;
 190}
 191
 192static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 193{
 194        unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 195
 196        f2fs_change_bit(block_off, nm_i->nat_bitmap);
 197}
 198
 199static inline void fill_node_footer(struct page *page, nid_t nid,
 200                                nid_t ino, unsigned int ofs, bool reset)
 201{
 202        struct f2fs_node *rn = F2FS_NODE(page);
 203        if (reset)
 204                memset(rn, 0, sizeof(*rn));
 205        rn->footer.nid = cpu_to_le32(nid);
 206        rn->footer.ino = cpu_to_le32(ino);
 207        rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
 208}
 209
 210static inline void copy_node_footer(struct page *dst, struct page *src)
 211{
 212        struct f2fs_node *src_rn = F2FS_NODE(src);
 213        struct f2fs_node *dst_rn = F2FS_NODE(dst);
 214        memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 215}
 216
 217static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 218{
 219        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 220        struct f2fs_node *rn = F2FS_NODE(page);
 221
 222        rn->footer.cp_ver = ckpt->checkpoint_ver;
 223        rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 224}
 225
 226static inline nid_t ino_of_node(struct page *node_page)
 227{
 228        struct f2fs_node *rn = F2FS_NODE(node_page);
 229        return le32_to_cpu(rn->footer.ino);
 230}
 231
 232static inline nid_t nid_of_node(struct page *node_page)
 233{
 234        struct f2fs_node *rn = F2FS_NODE(node_page);
 235        return le32_to_cpu(rn->footer.nid);
 236}
 237
 238static inline unsigned int ofs_of_node(struct page *node_page)
 239{
 240        struct f2fs_node *rn = F2FS_NODE(node_page);
 241        unsigned flag = le32_to_cpu(rn->footer.flag);
 242        return flag >> OFFSET_BIT_SHIFT;
 243}
 244
 245static inline unsigned long long cpver_of_node(struct page *node_page)
 246{
 247        struct f2fs_node *rn = F2FS_NODE(node_page);
 248        return le64_to_cpu(rn->footer.cp_ver);
 249}
 250
 251static inline block_t next_blkaddr_of_node(struct page *node_page)
 252{
 253        struct f2fs_node *rn = F2FS_NODE(node_page);
 254        return le32_to_cpu(rn->footer.next_blkaddr);
 255}
 256
 257/*
 258 * f2fs assigns the following node offsets described as (num).
 259 * N = NIDS_PER_BLOCK
 260 *
 261 *  Inode block (0)
 262 *    |- direct node (1)
 263 *    |- direct node (2)
 264 *    |- indirect node (3)
 265 *    |            `- direct node (4 => 4 + N - 1)
 266 *    |- indirect node (4 + N)
 267 *    |            `- direct node (5 + N => 5 + 2N - 1)
 268 *    `- double indirect node (5 + 2N)
 269 *                 `- indirect node (6 + 2N)
 270 *                       `- direct node
 271 *                 ......
 272 *                 `- indirect node ((6 + 2N) + x(N + 1))
 273 *                       `- direct node
 274 *                 ......
 275 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 276 *                       `- direct node
 277 */
 278static inline bool IS_DNODE(struct page *node_page)
 279{
 280        unsigned int ofs = ofs_of_node(node_page);
 281
 282        if (f2fs_has_xattr_block(ofs))
 283                return false;
 284
 285        if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 286                        ofs == 5 + 2 * NIDS_PER_BLOCK)
 287                return false;
 288        if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 289                ofs -= 6 + 2 * NIDS_PER_BLOCK;
 290                if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 291                        return false;
 292        }
 293        return true;
 294}
 295
 296static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
 297{
 298        struct f2fs_node *rn = F2FS_NODE(p);
 299
 300        f2fs_wait_on_page_writeback(p, NODE);
 301
 302        if (i)
 303                rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 304        else
 305                rn->in.nid[off] = cpu_to_le32(nid);
 306        set_page_dirty(p);
 307}
 308
 309static inline nid_t get_nid(struct page *p, int off, bool i)
 310{
 311        struct f2fs_node *rn = F2FS_NODE(p);
 312
 313        if (i)
 314                return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 315        return le32_to_cpu(rn->in.nid[off]);
 316}
 317
 318/*
 319 * Coldness identification:
 320 *  - Mark cold files in f2fs_inode_info
 321 *  - Mark cold node blocks in their node footer
 322 *  - Mark cold data pages in page cache
 323 */
 324static inline int is_file(struct inode *inode, int type)
 325{
 326        return F2FS_I(inode)->i_advise & type;
 327}
 328
 329static inline void set_file(struct inode *inode, int type)
 330{
 331        F2FS_I(inode)->i_advise |= type;
 332}
 333
 334static inline void clear_file(struct inode *inode, int type)
 335{
 336        F2FS_I(inode)->i_advise &= ~type;
 337}
 338
 339#define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
 340#define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
 341#define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
 342#define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
 343#define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
 344#define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
 345
 346static inline int is_cold_data(struct page *page)
 347{
 348        return PageChecked(page);
 349}
 350
 351static inline void set_cold_data(struct page *page)
 352{
 353        SetPageChecked(page);
 354}
 355
 356static inline void clear_cold_data(struct page *page)
 357{
 358        ClearPageChecked(page);
 359}
 360
 361static inline int is_node(struct page *page, int type)
 362{
 363        struct f2fs_node *rn = F2FS_NODE(page);
 364        return le32_to_cpu(rn->footer.flag) & (1 << type);
 365}
 366
 367#define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 368#define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 369#define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 370
 371static inline void set_cold_node(struct inode *inode, struct page *page)
 372{
 373        struct f2fs_node *rn = F2FS_NODE(page);
 374        unsigned int flag = le32_to_cpu(rn->footer.flag);
 375
 376        if (S_ISDIR(inode->i_mode))
 377                flag &= ~(0x1 << COLD_BIT_SHIFT);
 378        else
 379                flag |= (0x1 << COLD_BIT_SHIFT);
 380        rn->footer.flag = cpu_to_le32(flag);
 381}
 382
 383static inline void set_mark(struct page *page, int mark, int type)
 384{
 385        struct f2fs_node *rn = F2FS_NODE(page);
 386        unsigned int flag = le32_to_cpu(rn->footer.flag);
 387        if (mark)
 388                flag |= (0x1 << type);
 389        else
 390                flag &= ~(0x1 << type);
 391        rn->footer.flag = cpu_to_le32(flag);
 392}
 393#define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 394#define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)
 395