linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>         /* init_rootfs */
  20#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  21#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  22#include <linux/uaccess.h>
  23#include <linux/proc_ns.h>
  24#include <linux/magic.h>
  25#include <linux/bootmem.h>
  26#include <linux/task_work.h>
  27#include "pnode.h"
  28#include "internal.h"
  29
  30static unsigned int m_hash_mask __read_mostly;
  31static unsigned int m_hash_shift __read_mostly;
  32static unsigned int mp_hash_mask __read_mostly;
  33static unsigned int mp_hash_shift __read_mostly;
  34
  35static __initdata unsigned long mhash_entries;
  36static int __init set_mhash_entries(char *str)
  37{
  38        if (!str)
  39                return 0;
  40        mhash_entries = simple_strtoul(str, &str, 0);
  41        return 1;
  42}
  43__setup("mhash_entries=", set_mhash_entries);
  44
  45static __initdata unsigned long mphash_entries;
  46static int __init set_mphash_entries(char *str)
  47{
  48        if (!str)
  49                return 0;
  50        mphash_entries = simple_strtoul(str, &str, 0);
  51        return 1;
  52}
  53__setup("mphash_entries=", set_mphash_entries);
  54
  55static u64 event;
  56static DEFINE_IDA(mnt_id_ida);
  57static DEFINE_IDA(mnt_group_ida);
  58static DEFINE_SPINLOCK(mnt_id_lock);
  59static int mnt_id_start = 0;
  60static int mnt_group_start = 1;
  61
  62static struct hlist_head *mount_hashtable __read_mostly;
  63static struct hlist_head *mountpoint_hashtable __read_mostly;
  64static struct kmem_cache *mnt_cache __read_mostly;
  65static DECLARE_RWSEM(namespace_sem);
  66
  67/* /sys/fs */
  68struct kobject *fs_kobj;
  69EXPORT_SYMBOL_GPL(fs_kobj);
  70
  71/*
  72 * vfsmount lock may be taken for read to prevent changes to the
  73 * vfsmount hash, ie. during mountpoint lookups or walking back
  74 * up the tree.
  75 *
  76 * It should be taken for write in all cases where the vfsmount
  77 * tree or hash is modified or when a vfsmount structure is modified.
  78 */
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  80
  81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  82{
  83        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  84        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  85        tmp = tmp + (tmp >> m_hash_shift);
  86        return &mount_hashtable[tmp & m_hash_mask];
  87}
  88
  89static inline struct hlist_head *mp_hash(struct dentry *dentry)
  90{
  91        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  92        tmp = tmp + (tmp >> mp_hash_shift);
  93        return &mountpoint_hashtable[tmp & mp_hash_mask];
  94}
  95
  96/*
  97 * allocation is serialized by namespace_sem, but we need the spinlock to
  98 * serialize with freeing.
  99 */
 100static int mnt_alloc_id(struct mount *mnt)
 101{
 102        int res;
 103
 104retry:
 105        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 106        spin_lock(&mnt_id_lock);
 107        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 108        if (!res)
 109                mnt_id_start = mnt->mnt_id + 1;
 110        spin_unlock(&mnt_id_lock);
 111        if (res == -EAGAIN)
 112                goto retry;
 113
 114        return res;
 115}
 116
 117static void mnt_free_id(struct mount *mnt)
 118{
 119        int id = mnt->mnt_id;
 120        spin_lock(&mnt_id_lock);
 121        ida_remove(&mnt_id_ida, id);
 122        if (mnt_id_start > id)
 123                mnt_id_start = id;
 124        spin_unlock(&mnt_id_lock);
 125}
 126
 127/*
 128 * Allocate a new peer group ID
 129 *
 130 * mnt_group_ida is protected by namespace_sem
 131 */
 132static int mnt_alloc_group_id(struct mount *mnt)
 133{
 134        int res;
 135
 136        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 137                return -ENOMEM;
 138
 139        res = ida_get_new_above(&mnt_group_ida,
 140                                mnt_group_start,
 141                                &mnt->mnt_group_id);
 142        if (!res)
 143                mnt_group_start = mnt->mnt_group_id + 1;
 144
 145        return res;
 146}
 147
 148/*
 149 * Release a peer group ID
 150 */
 151void mnt_release_group_id(struct mount *mnt)
 152{
 153        int id = mnt->mnt_group_id;
 154        ida_remove(&mnt_group_ida, id);
 155        if (mnt_group_start > id)
 156                mnt_group_start = id;
 157        mnt->mnt_group_id = 0;
 158}
 159
 160/*
 161 * vfsmount lock must be held for read
 162 */
 163static inline void mnt_add_count(struct mount *mnt, int n)
 164{
 165#ifdef CONFIG_SMP
 166        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 167#else
 168        preempt_disable();
 169        mnt->mnt_count += n;
 170        preempt_enable();
 171#endif
 172}
 173
 174/*
 175 * vfsmount lock must be held for write
 176 */
 177unsigned int mnt_get_count(struct mount *mnt)
 178{
 179#ifdef CONFIG_SMP
 180        unsigned int count = 0;
 181        int cpu;
 182
 183        for_each_possible_cpu(cpu) {
 184                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 185        }
 186
 187        return count;
 188#else
 189        return mnt->mnt_count;
 190#endif
 191}
 192
 193static struct mount *alloc_vfsmnt(const char *name)
 194{
 195        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 196        if (mnt) {
 197                int err;
 198
 199                err = mnt_alloc_id(mnt);
 200                if (err)
 201                        goto out_free_cache;
 202
 203                if (name) {
 204                        mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
 205                        if (!mnt->mnt_devname)
 206                                goto out_free_id;
 207                }
 208
 209#ifdef CONFIG_SMP
 210                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 211                if (!mnt->mnt_pcp)
 212                        goto out_free_devname;
 213
 214                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 215#else
 216                mnt->mnt_count = 1;
 217                mnt->mnt_writers = 0;
 218#endif
 219
 220                INIT_HLIST_NODE(&mnt->mnt_hash);
 221                INIT_LIST_HEAD(&mnt->mnt_child);
 222                INIT_LIST_HEAD(&mnt->mnt_mounts);
 223                INIT_LIST_HEAD(&mnt->mnt_list);
 224                INIT_LIST_HEAD(&mnt->mnt_expire);
 225                INIT_LIST_HEAD(&mnt->mnt_share);
 226                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 227                INIT_LIST_HEAD(&mnt->mnt_slave);
 228                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 229#ifdef CONFIG_FSNOTIFY
 230                INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
 231#endif
 232        }
 233        return mnt;
 234
 235#ifdef CONFIG_SMP
 236out_free_devname:
 237        kfree(mnt->mnt_devname);
 238#endif
 239out_free_id:
 240        mnt_free_id(mnt);
 241out_free_cache:
 242        kmem_cache_free(mnt_cache, mnt);
 243        return NULL;
 244}
 245
 246/*
 247 * Most r/o checks on a fs are for operations that take
 248 * discrete amounts of time, like a write() or unlink().
 249 * We must keep track of when those operations start
 250 * (for permission checks) and when they end, so that
 251 * we can determine when writes are able to occur to
 252 * a filesystem.
 253 */
 254/*
 255 * __mnt_is_readonly: check whether a mount is read-only
 256 * @mnt: the mount to check for its write status
 257 *
 258 * This shouldn't be used directly ouside of the VFS.
 259 * It does not guarantee that the filesystem will stay
 260 * r/w, just that it is right *now*.  This can not and
 261 * should not be used in place of IS_RDONLY(inode).
 262 * mnt_want/drop_write() will _keep_ the filesystem
 263 * r/w.
 264 */
 265int __mnt_is_readonly(struct vfsmount *mnt)
 266{
 267        if (mnt->mnt_flags & MNT_READONLY)
 268                return 1;
 269        if (mnt->mnt_sb->s_flags & MS_RDONLY)
 270                return 1;
 271        return 0;
 272}
 273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 274
 275static inline void mnt_inc_writers(struct mount *mnt)
 276{
 277#ifdef CONFIG_SMP
 278        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 279#else
 280        mnt->mnt_writers++;
 281#endif
 282}
 283
 284static inline void mnt_dec_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 288#else
 289        mnt->mnt_writers--;
 290#endif
 291}
 292
 293static unsigned int mnt_get_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296        unsigned int count = 0;
 297        int cpu;
 298
 299        for_each_possible_cpu(cpu) {
 300                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 301        }
 302
 303        return count;
 304#else
 305        return mnt->mnt_writers;
 306#endif
 307}
 308
 309static int mnt_is_readonly(struct vfsmount *mnt)
 310{
 311        if (mnt->mnt_sb->s_readonly_remount)
 312                return 1;
 313        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 314        smp_rmb();
 315        return __mnt_is_readonly(mnt);
 316}
 317
 318/*
 319 * Most r/o & frozen checks on a fs are for operations that take discrete
 320 * amounts of time, like a write() or unlink().  We must keep track of when
 321 * those operations start (for permission checks) and when they end, so that we
 322 * can determine when writes are able to occur to a filesystem.
 323 */
 324/**
 325 * __mnt_want_write - get write access to a mount without freeze protection
 326 * @m: the mount on which to take a write
 327 *
 328 * This tells the low-level filesystem that a write is about to be performed to
 329 * it, and makes sure that writes are allowed (mnt it read-write) before
 330 * returning success. This operation does not protect against filesystem being
 331 * frozen. When the write operation is finished, __mnt_drop_write() must be
 332 * called. This is effectively a refcount.
 333 */
 334int __mnt_want_write(struct vfsmount *m)
 335{
 336        struct mount *mnt = real_mount(m);
 337        int ret = 0;
 338
 339        preempt_disable();
 340        mnt_inc_writers(mnt);
 341        /*
 342         * The store to mnt_inc_writers must be visible before we pass
 343         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 344         * incremented count after it has set MNT_WRITE_HOLD.
 345         */
 346        smp_mb();
 347        while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 348                cpu_relax();
 349        /*
 350         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 351         * be set to match its requirements. So we must not load that until
 352         * MNT_WRITE_HOLD is cleared.
 353         */
 354        smp_rmb();
 355        if (mnt_is_readonly(m)) {
 356                mnt_dec_writers(mnt);
 357                ret = -EROFS;
 358        }
 359        preempt_enable();
 360
 361        return ret;
 362}
 363
 364/**
 365 * mnt_want_write - get write access to a mount
 366 * @m: the mount on which to take a write
 367 *
 368 * This tells the low-level filesystem that a write is about to be performed to
 369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 370 * is not frozen) before returning success.  When the write operation is
 371 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 372 */
 373int mnt_want_write(struct vfsmount *m)
 374{
 375        int ret;
 376
 377        sb_start_write(m->mnt_sb);
 378        ret = __mnt_want_write(m);
 379        if (ret)
 380                sb_end_write(m->mnt_sb);
 381        return ret;
 382}
 383EXPORT_SYMBOL_GPL(mnt_want_write);
 384
 385/**
 386 * mnt_clone_write - get write access to a mount
 387 * @mnt: the mount on which to take a write
 388 *
 389 * This is effectively like mnt_want_write, except
 390 * it must only be used to take an extra write reference
 391 * on a mountpoint that we already know has a write reference
 392 * on it. This allows some optimisation.
 393 *
 394 * After finished, mnt_drop_write must be called as usual to
 395 * drop the reference.
 396 */
 397int mnt_clone_write(struct vfsmount *mnt)
 398{
 399        /* superblock may be r/o */
 400        if (__mnt_is_readonly(mnt))
 401                return -EROFS;
 402        preempt_disable();
 403        mnt_inc_writers(real_mount(mnt));
 404        preempt_enable();
 405        return 0;
 406}
 407EXPORT_SYMBOL_GPL(mnt_clone_write);
 408
 409/**
 410 * __mnt_want_write_file - get write access to a file's mount
 411 * @file: the file who's mount on which to take a write
 412 *
 413 * This is like __mnt_want_write, but it takes a file and can
 414 * do some optimisations if the file is open for write already
 415 */
 416int __mnt_want_write_file(struct file *file)
 417{
 418        if (!(file->f_mode & FMODE_WRITER))
 419                return __mnt_want_write(file->f_path.mnt);
 420        else
 421                return mnt_clone_write(file->f_path.mnt);
 422}
 423
 424/**
 425 * mnt_want_write_file - get write access to a file's mount
 426 * @file: the file who's mount on which to take a write
 427 *
 428 * This is like mnt_want_write, but it takes a file and can
 429 * do some optimisations if the file is open for write already
 430 */
 431int mnt_want_write_file(struct file *file)
 432{
 433        int ret;
 434
 435        sb_start_write(file->f_path.mnt->mnt_sb);
 436        ret = __mnt_want_write_file(file);
 437        if (ret)
 438                sb_end_write(file->f_path.mnt->mnt_sb);
 439        return ret;
 440}
 441EXPORT_SYMBOL_GPL(mnt_want_write_file);
 442
 443/**
 444 * __mnt_drop_write - give up write access to a mount
 445 * @mnt: the mount on which to give up write access
 446 *
 447 * Tells the low-level filesystem that we are done
 448 * performing writes to it.  Must be matched with
 449 * __mnt_want_write() call above.
 450 */
 451void __mnt_drop_write(struct vfsmount *mnt)
 452{
 453        preempt_disable();
 454        mnt_dec_writers(real_mount(mnt));
 455        preempt_enable();
 456}
 457
 458/**
 459 * mnt_drop_write - give up write access to a mount
 460 * @mnt: the mount on which to give up write access
 461 *
 462 * Tells the low-level filesystem that we are done performing writes to it and
 463 * also allows filesystem to be frozen again.  Must be matched with
 464 * mnt_want_write() call above.
 465 */
 466void mnt_drop_write(struct vfsmount *mnt)
 467{
 468        __mnt_drop_write(mnt);
 469        sb_end_write(mnt->mnt_sb);
 470}
 471EXPORT_SYMBOL_GPL(mnt_drop_write);
 472
 473void __mnt_drop_write_file(struct file *file)
 474{
 475        __mnt_drop_write(file->f_path.mnt);
 476}
 477
 478void mnt_drop_write_file(struct file *file)
 479{
 480        mnt_drop_write(file->f_path.mnt);
 481}
 482EXPORT_SYMBOL(mnt_drop_write_file);
 483
 484static int mnt_make_readonly(struct mount *mnt)
 485{
 486        int ret = 0;
 487
 488        lock_mount_hash();
 489        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 490        /*
 491         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 492         * should be visible before we do.
 493         */
 494        smp_mb();
 495
 496        /*
 497         * With writers on hold, if this value is zero, then there are
 498         * definitely no active writers (although held writers may subsequently
 499         * increment the count, they'll have to wait, and decrement it after
 500         * seeing MNT_READONLY).
 501         *
 502         * It is OK to have counter incremented on one CPU and decremented on
 503         * another: the sum will add up correctly. The danger would be when we
 504         * sum up each counter, if we read a counter before it is incremented,
 505         * but then read another CPU's count which it has been subsequently
 506         * decremented from -- we would see more decrements than we should.
 507         * MNT_WRITE_HOLD protects against this scenario, because
 508         * mnt_want_write first increments count, then smp_mb, then spins on
 509         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 510         * we're counting up here.
 511         */
 512        if (mnt_get_writers(mnt) > 0)
 513                ret = -EBUSY;
 514        else
 515                mnt->mnt.mnt_flags |= MNT_READONLY;
 516        /*
 517         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 518         * that become unheld will see MNT_READONLY.
 519         */
 520        smp_wmb();
 521        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 522        unlock_mount_hash();
 523        return ret;
 524}
 525
 526static void __mnt_unmake_readonly(struct mount *mnt)
 527{
 528        lock_mount_hash();
 529        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 530        unlock_mount_hash();
 531}
 532
 533int sb_prepare_remount_readonly(struct super_block *sb)
 534{
 535        struct mount *mnt;
 536        int err = 0;
 537
 538        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 539        if (atomic_long_read(&sb->s_remove_count))
 540                return -EBUSY;
 541
 542        lock_mount_hash();
 543        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 544                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 545                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 546                        smp_mb();
 547                        if (mnt_get_writers(mnt) > 0) {
 548                                err = -EBUSY;
 549                                break;
 550                        }
 551                }
 552        }
 553        if (!err && atomic_long_read(&sb->s_remove_count))
 554                err = -EBUSY;
 555
 556        if (!err) {
 557                sb->s_readonly_remount = 1;
 558                smp_wmb();
 559        }
 560        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 561                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 562                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 563        }
 564        unlock_mount_hash();
 565
 566        return err;
 567}
 568
 569static void free_vfsmnt(struct mount *mnt)
 570{
 571        kfree(mnt->mnt_devname);
 572#ifdef CONFIG_SMP
 573        free_percpu(mnt->mnt_pcp);
 574#endif
 575        kmem_cache_free(mnt_cache, mnt);
 576}
 577
 578static void delayed_free_vfsmnt(struct rcu_head *head)
 579{
 580        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 581}
 582
 583/* call under rcu_read_lock */
 584bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 585{
 586        struct mount *mnt;
 587        if (read_seqretry(&mount_lock, seq))
 588                return false;
 589        if (bastard == NULL)
 590                return true;
 591        mnt = real_mount(bastard);
 592        mnt_add_count(mnt, 1);
 593        if (likely(!read_seqretry(&mount_lock, seq)))
 594                return true;
 595        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 596                mnt_add_count(mnt, -1);
 597                return false;
 598        }
 599        rcu_read_unlock();
 600        mntput(bastard);
 601        rcu_read_lock();
 602        return false;
 603}
 604
 605/*
 606 * find the first mount at @dentry on vfsmount @mnt.
 607 * call under rcu_read_lock()
 608 */
 609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 610{
 611        struct hlist_head *head = m_hash(mnt, dentry);
 612        struct mount *p;
 613
 614        hlist_for_each_entry_rcu(p, head, mnt_hash)
 615                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 616                        return p;
 617        return NULL;
 618}
 619
 620/*
 621 * find the last mount at @dentry on vfsmount @mnt.
 622 * mount_lock must be held.
 623 */
 624struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
 625{
 626        struct mount *p, *res;
 627        res = p = __lookup_mnt(mnt, dentry);
 628        if (!p)
 629                goto out;
 630        hlist_for_each_entry_continue(p, mnt_hash) {
 631                if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
 632                        break;
 633                res = p;
 634        }
 635out:
 636        return res;
 637}
 638
 639/*
 640 * lookup_mnt - Return the first child mount mounted at path
 641 *
 642 * "First" means first mounted chronologically.  If you create the
 643 * following mounts:
 644 *
 645 * mount /dev/sda1 /mnt
 646 * mount /dev/sda2 /mnt
 647 * mount /dev/sda3 /mnt
 648 *
 649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 650 * return successively the root dentry and vfsmount of /dev/sda1, then
 651 * /dev/sda2, then /dev/sda3, then NULL.
 652 *
 653 * lookup_mnt takes a reference to the found vfsmount.
 654 */
 655struct vfsmount *lookup_mnt(struct path *path)
 656{
 657        struct mount *child_mnt;
 658        struct vfsmount *m;
 659        unsigned seq;
 660
 661        rcu_read_lock();
 662        do {
 663                seq = read_seqbegin(&mount_lock);
 664                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 665                m = child_mnt ? &child_mnt->mnt : NULL;
 666        } while (!legitimize_mnt(m, seq));
 667        rcu_read_unlock();
 668        return m;
 669}
 670
 671/*
 672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 673 *                         current mount namespace.
 674 *
 675 * The common case is dentries are not mountpoints at all and that
 676 * test is handled inline.  For the slow case when we are actually
 677 * dealing with a mountpoint of some kind, walk through all of the
 678 * mounts in the current mount namespace and test to see if the dentry
 679 * is a mountpoint.
 680 *
 681 * The mount_hashtable is not usable in the context because we
 682 * need to identify all mounts that may be in the current mount
 683 * namespace not just a mount that happens to have some specified
 684 * parent mount.
 685 */
 686bool __is_local_mountpoint(struct dentry *dentry)
 687{
 688        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 689        struct mount *mnt;
 690        bool is_covered = false;
 691
 692        if (!d_mountpoint(dentry))
 693                goto out;
 694
 695        down_read(&namespace_sem);
 696        list_for_each_entry(mnt, &ns->list, mnt_list) {
 697                is_covered = (mnt->mnt_mountpoint == dentry);
 698                if (is_covered)
 699                        break;
 700        }
 701        up_read(&namespace_sem);
 702out:
 703        return is_covered;
 704}
 705
 706static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 707{
 708        struct hlist_head *chain = mp_hash(dentry);
 709        struct mountpoint *mp;
 710
 711        hlist_for_each_entry(mp, chain, m_hash) {
 712                if (mp->m_dentry == dentry) {
 713                        /* might be worth a WARN_ON() */
 714                        if (d_unlinked(dentry))
 715                                return ERR_PTR(-ENOENT);
 716                        mp->m_count++;
 717                        return mp;
 718                }
 719        }
 720        return NULL;
 721}
 722
 723static struct mountpoint *new_mountpoint(struct dentry *dentry)
 724{
 725        struct hlist_head *chain = mp_hash(dentry);
 726        struct mountpoint *mp;
 727        int ret;
 728
 729        mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 730        if (!mp)
 731                return ERR_PTR(-ENOMEM);
 732
 733        ret = d_set_mounted(dentry);
 734        if (ret) {
 735                kfree(mp);
 736                return ERR_PTR(ret);
 737        }
 738
 739        mp->m_dentry = dentry;
 740        mp->m_count = 1;
 741        hlist_add_head(&mp->m_hash, chain);
 742        INIT_HLIST_HEAD(&mp->m_list);
 743        return mp;
 744}
 745
 746static void put_mountpoint(struct mountpoint *mp)
 747{
 748        if (!--mp->m_count) {
 749                struct dentry *dentry = mp->m_dentry;
 750                BUG_ON(!hlist_empty(&mp->m_list));
 751                spin_lock(&dentry->d_lock);
 752                dentry->d_flags &= ~DCACHE_MOUNTED;
 753                spin_unlock(&dentry->d_lock);
 754                hlist_del(&mp->m_hash);
 755                kfree(mp);
 756        }
 757}
 758
 759static inline int check_mnt(struct mount *mnt)
 760{
 761        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 762}
 763
 764/*
 765 * vfsmount lock must be held for write
 766 */
 767static void touch_mnt_namespace(struct mnt_namespace *ns)
 768{
 769        if (ns) {
 770                ns->event = ++event;
 771                wake_up_interruptible(&ns->poll);
 772        }
 773}
 774
 775/*
 776 * vfsmount lock must be held for write
 777 */
 778static void __touch_mnt_namespace(struct mnt_namespace *ns)
 779{
 780        if (ns && ns->event != event) {
 781                ns->event = event;
 782                wake_up_interruptible(&ns->poll);
 783        }
 784}
 785
 786/*
 787 * vfsmount lock must be held for write
 788 */
 789static void detach_mnt(struct mount *mnt, struct path *old_path)
 790{
 791        old_path->dentry = mnt->mnt_mountpoint;
 792        old_path->mnt = &mnt->mnt_parent->mnt;
 793        mnt->mnt_parent = mnt;
 794        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 795        list_del_init(&mnt->mnt_child);
 796        hlist_del_init_rcu(&mnt->mnt_hash);
 797        hlist_del_init(&mnt->mnt_mp_list);
 798        put_mountpoint(mnt->mnt_mp);
 799        mnt->mnt_mp = NULL;
 800}
 801
 802/*
 803 * vfsmount lock must be held for write
 804 */
 805void mnt_set_mountpoint(struct mount *mnt,
 806                        struct mountpoint *mp,
 807                        struct mount *child_mnt)
 808{
 809        mp->m_count++;
 810        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 811        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 812        child_mnt->mnt_parent = mnt;
 813        child_mnt->mnt_mp = mp;
 814        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 815}
 816
 817/*
 818 * vfsmount lock must be held for write
 819 */
 820static void attach_mnt(struct mount *mnt,
 821                        struct mount *parent,
 822                        struct mountpoint *mp)
 823{
 824        mnt_set_mountpoint(parent, mp, mnt);
 825        hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
 826        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 827}
 828
 829static void attach_shadowed(struct mount *mnt,
 830                        struct mount *parent,
 831                        struct mount *shadows)
 832{
 833        if (shadows) {
 834                hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
 835                list_add(&mnt->mnt_child, &shadows->mnt_child);
 836        } else {
 837                hlist_add_head_rcu(&mnt->mnt_hash,
 838                                m_hash(&parent->mnt, mnt->mnt_mountpoint));
 839                list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 840        }
 841}
 842
 843/*
 844 * vfsmount lock must be held for write
 845 */
 846static void commit_tree(struct mount *mnt, struct mount *shadows)
 847{
 848        struct mount *parent = mnt->mnt_parent;
 849        struct mount *m;
 850        LIST_HEAD(head);
 851        struct mnt_namespace *n = parent->mnt_ns;
 852
 853        BUG_ON(parent == mnt);
 854
 855        list_add_tail(&head, &mnt->mnt_list);
 856        list_for_each_entry(m, &head, mnt_list)
 857                m->mnt_ns = n;
 858
 859        list_splice(&head, n->list.prev);
 860
 861        attach_shadowed(mnt, parent, shadows);
 862        touch_mnt_namespace(n);
 863}
 864
 865static struct mount *next_mnt(struct mount *p, struct mount *root)
 866{
 867        struct list_head *next = p->mnt_mounts.next;
 868        if (next == &p->mnt_mounts) {
 869                while (1) {
 870                        if (p == root)
 871                                return NULL;
 872                        next = p->mnt_child.next;
 873                        if (next != &p->mnt_parent->mnt_mounts)
 874                                break;
 875                        p = p->mnt_parent;
 876                }
 877        }
 878        return list_entry(next, struct mount, mnt_child);
 879}
 880
 881static struct mount *skip_mnt_tree(struct mount *p)
 882{
 883        struct list_head *prev = p->mnt_mounts.prev;
 884        while (prev != &p->mnt_mounts) {
 885                p = list_entry(prev, struct mount, mnt_child);
 886                prev = p->mnt_mounts.prev;
 887        }
 888        return p;
 889}
 890
 891struct vfsmount *
 892vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
 893{
 894        struct mount *mnt;
 895        struct dentry *root;
 896
 897        if (!type)
 898                return ERR_PTR(-ENODEV);
 899
 900        mnt = alloc_vfsmnt(name);
 901        if (!mnt)
 902                return ERR_PTR(-ENOMEM);
 903
 904        if (flags & MS_KERNMOUNT)
 905                mnt->mnt.mnt_flags = MNT_INTERNAL;
 906
 907        root = mount_fs(type, flags, name, data);
 908        if (IS_ERR(root)) {
 909                mnt_free_id(mnt);
 910                free_vfsmnt(mnt);
 911                return ERR_CAST(root);
 912        }
 913
 914        mnt->mnt.mnt_root = root;
 915        mnt->mnt.mnt_sb = root->d_sb;
 916        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 917        mnt->mnt_parent = mnt;
 918        lock_mount_hash();
 919        list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
 920        unlock_mount_hash();
 921        return &mnt->mnt;
 922}
 923EXPORT_SYMBOL_GPL(vfs_kern_mount);
 924
 925static struct mount *clone_mnt(struct mount *old, struct dentry *root,
 926                                        int flag)
 927{
 928        struct super_block *sb = old->mnt.mnt_sb;
 929        struct mount *mnt;
 930        int err;
 931
 932        mnt = alloc_vfsmnt(old->mnt_devname);
 933        if (!mnt)
 934                return ERR_PTR(-ENOMEM);
 935
 936        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
 937                mnt->mnt_group_id = 0; /* not a peer of original */
 938        else
 939                mnt->mnt_group_id = old->mnt_group_id;
 940
 941        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 942                err = mnt_alloc_group_id(mnt);
 943                if (err)
 944                        goto out_free;
 945        }
 946
 947        mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
 948        /* Don't allow unprivileged users to change mount flags */
 949        if (flag & CL_UNPRIVILEGED) {
 950                mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
 951
 952                if (mnt->mnt.mnt_flags & MNT_READONLY)
 953                        mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
 954
 955                if (mnt->mnt.mnt_flags & MNT_NODEV)
 956                        mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
 957
 958                if (mnt->mnt.mnt_flags & MNT_NOSUID)
 959                        mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
 960
 961                if (mnt->mnt.mnt_flags & MNT_NOEXEC)
 962                        mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
 963        }
 964
 965        /* Don't allow unprivileged users to reveal what is under a mount */
 966        if ((flag & CL_UNPRIVILEGED) &&
 967            (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
 968                mnt->mnt.mnt_flags |= MNT_LOCKED;
 969
 970        atomic_inc(&sb->s_active);
 971        mnt->mnt.mnt_sb = sb;
 972        mnt->mnt.mnt_root = dget(root);
 973        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 974        mnt->mnt_parent = mnt;
 975        lock_mount_hash();
 976        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
 977        unlock_mount_hash();
 978
 979        if ((flag & CL_SLAVE) ||
 980            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
 981                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 982                mnt->mnt_master = old;
 983                CLEAR_MNT_SHARED(mnt);
 984        } else if (!(flag & CL_PRIVATE)) {
 985                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
 986                        list_add(&mnt->mnt_share, &old->mnt_share);
 987                if (IS_MNT_SLAVE(old))
 988                        list_add(&mnt->mnt_slave, &old->mnt_slave);
 989                mnt->mnt_master = old->mnt_master;
 990        }
 991        if (flag & CL_MAKE_SHARED)
 992                set_mnt_shared(mnt);
 993
 994        /* stick the duplicate mount on the same expiry list
 995         * as the original if that was on one */
 996        if (flag & CL_EXPIRE) {
 997                if (!list_empty(&old->mnt_expire))
 998                        list_add(&mnt->mnt_expire, &old->mnt_expire);
 999        }
1000
1001        return mnt;
1002
1003 out_free:
1004        mnt_free_id(mnt);
1005        free_vfsmnt(mnt);
1006        return ERR_PTR(err);
1007}
1008
1009static void cleanup_mnt(struct mount *mnt)
1010{
1011        /*
1012         * This probably indicates that somebody messed
1013         * up a mnt_want/drop_write() pair.  If this
1014         * happens, the filesystem was probably unable
1015         * to make r/w->r/o transitions.
1016         */
1017        /*
1018         * The locking used to deal with mnt_count decrement provides barriers,
1019         * so mnt_get_writers() below is safe.
1020         */
1021        WARN_ON(mnt_get_writers(mnt));
1022        if (unlikely(mnt->mnt_pins.first))
1023                mnt_pin_kill(mnt);
1024        fsnotify_vfsmount_delete(&mnt->mnt);
1025        dput(mnt->mnt.mnt_root);
1026        deactivate_super(mnt->mnt.mnt_sb);
1027        mnt_free_id(mnt);
1028        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1029}
1030
1031static void __cleanup_mnt(struct rcu_head *head)
1032{
1033        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1034}
1035
1036static LLIST_HEAD(delayed_mntput_list);
1037static void delayed_mntput(struct work_struct *unused)
1038{
1039        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1040        struct llist_node *next;
1041
1042        for (; node; node = next) {
1043                next = llist_next(node);
1044                cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1045        }
1046}
1047static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1048
1049static void mntput_no_expire(struct mount *mnt)
1050{
1051        rcu_read_lock();
1052        mnt_add_count(mnt, -1);
1053        if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1054                rcu_read_unlock();
1055                return;
1056        }
1057        lock_mount_hash();
1058        if (mnt_get_count(mnt)) {
1059                rcu_read_unlock();
1060                unlock_mount_hash();
1061                return;
1062        }
1063        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1064                rcu_read_unlock();
1065                unlock_mount_hash();
1066                return;
1067        }
1068        mnt->mnt.mnt_flags |= MNT_DOOMED;
1069        rcu_read_unlock();
1070
1071        list_del(&mnt->mnt_instance);
1072        unlock_mount_hash();
1073
1074        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1075                struct task_struct *task = current;
1076                if (likely(!(task->flags & PF_KTHREAD))) {
1077                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1078                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1079                                return;
1080                }
1081                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1082                        schedule_delayed_work(&delayed_mntput_work, 1);
1083                return;
1084        }
1085        cleanup_mnt(mnt);
1086}
1087
1088void mntput(struct vfsmount *mnt)
1089{
1090        if (mnt) {
1091                struct mount *m = real_mount(mnt);
1092                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1093                if (unlikely(m->mnt_expiry_mark))
1094                        m->mnt_expiry_mark = 0;
1095                mntput_no_expire(m);
1096        }
1097}
1098EXPORT_SYMBOL(mntput);
1099
1100struct vfsmount *mntget(struct vfsmount *mnt)
1101{
1102        if (mnt)
1103                mnt_add_count(real_mount(mnt), 1);
1104        return mnt;
1105}
1106EXPORT_SYMBOL(mntget);
1107
1108struct vfsmount *mnt_clone_internal(struct path *path)
1109{
1110        struct mount *p;
1111        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1112        if (IS_ERR(p))
1113                return ERR_CAST(p);
1114        p->mnt.mnt_flags |= MNT_INTERNAL;
1115        return &p->mnt;
1116}
1117
1118static inline void mangle(struct seq_file *m, const char *s)
1119{
1120        seq_escape(m, s, " \t\n\\");
1121}
1122
1123/*
1124 * Simple .show_options callback for filesystems which don't want to
1125 * implement more complex mount option showing.
1126 *
1127 * See also save_mount_options().
1128 */
1129int generic_show_options(struct seq_file *m, struct dentry *root)
1130{
1131        const char *options;
1132
1133        rcu_read_lock();
1134        options = rcu_dereference(root->d_sb->s_options);
1135
1136        if (options != NULL && options[0]) {
1137                seq_putc(m, ',');
1138                mangle(m, options);
1139        }
1140        rcu_read_unlock();
1141
1142        return 0;
1143}
1144EXPORT_SYMBOL(generic_show_options);
1145
1146/*
1147 * If filesystem uses generic_show_options(), this function should be
1148 * called from the fill_super() callback.
1149 *
1150 * The .remount_fs callback usually needs to be handled in a special
1151 * way, to make sure, that previous options are not overwritten if the
1152 * remount fails.
1153 *
1154 * Also note, that if the filesystem's .remount_fs function doesn't
1155 * reset all options to their default value, but changes only newly
1156 * given options, then the displayed options will not reflect reality
1157 * any more.
1158 */
1159void save_mount_options(struct super_block *sb, char *options)
1160{
1161        BUG_ON(sb->s_options);
1162        rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1163}
1164EXPORT_SYMBOL(save_mount_options);
1165
1166void replace_mount_options(struct super_block *sb, char *options)
1167{
1168        char *old = sb->s_options;
1169        rcu_assign_pointer(sb->s_options, options);
1170        if (old) {
1171                synchronize_rcu();
1172                kfree(old);
1173        }
1174}
1175EXPORT_SYMBOL(replace_mount_options);
1176
1177#ifdef CONFIG_PROC_FS
1178/* iterator; we want it to have access to namespace_sem, thus here... */
1179static void *m_start(struct seq_file *m, loff_t *pos)
1180{
1181        struct proc_mounts *p = proc_mounts(m);
1182
1183        down_read(&namespace_sem);
1184        if (p->cached_event == p->ns->event) {
1185                void *v = p->cached_mount;
1186                if (*pos == p->cached_index)
1187                        return v;
1188                if (*pos == p->cached_index + 1) {
1189                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1190                        return p->cached_mount = v;
1191                }
1192        }
1193
1194        p->cached_event = p->ns->event;
1195        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1196        p->cached_index = *pos;
1197        return p->cached_mount;
1198}
1199
1200static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1201{
1202        struct proc_mounts *p = proc_mounts(m);
1203
1204        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1205        p->cached_index = *pos;
1206        return p->cached_mount;
1207}
1208
1209static void m_stop(struct seq_file *m, void *v)
1210{
1211        up_read(&namespace_sem);
1212}
1213
1214static int m_show(struct seq_file *m, void *v)
1215{
1216        struct proc_mounts *p = proc_mounts(m);
1217        struct mount *r = list_entry(v, struct mount, mnt_list);
1218        return p->show(m, &r->mnt);
1219}
1220
1221const struct seq_operations mounts_op = {
1222        .start  = m_start,
1223        .next   = m_next,
1224        .stop   = m_stop,
1225        .show   = m_show,
1226};
1227#endif  /* CONFIG_PROC_FS */
1228
1229/**
1230 * may_umount_tree - check if a mount tree is busy
1231 * @mnt: root of mount tree
1232 *
1233 * This is called to check if a tree of mounts has any
1234 * open files, pwds, chroots or sub mounts that are
1235 * busy.
1236 */
1237int may_umount_tree(struct vfsmount *m)
1238{
1239        struct mount *mnt = real_mount(m);
1240        int actual_refs = 0;
1241        int minimum_refs = 0;
1242        struct mount *p;
1243        BUG_ON(!m);
1244
1245        /* write lock needed for mnt_get_count */
1246        lock_mount_hash();
1247        for (p = mnt; p; p = next_mnt(p, mnt)) {
1248                actual_refs += mnt_get_count(p);
1249                minimum_refs += 2;
1250        }
1251        unlock_mount_hash();
1252
1253        if (actual_refs > minimum_refs)
1254                return 0;
1255
1256        return 1;
1257}
1258
1259EXPORT_SYMBOL(may_umount_tree);
1260
1261/**
1262 * may_umount - check if a mount point is busy
1263 * @mnt: root of mount
1264 *
1265 * This is called to check if a mount point has any
1266 * open files, pwds, chroots or sub mounts. If the
1267 * mount has sub mounts this will return busy
1268 * regardless of whether the sub mounts are busy.
1269 *
1270 * Doesn't take quota and stuff into account. IOW, in some cases it will
1271 * give false negatives. The main reason why it's here is that we need
1272 * a non-destructive way to look for easily umountable filesystems.
1273 */
1274int may_umount(struct vfsmount *mnt)
1275{
1276        int ret = 1;
1277        down_read(&namespace_sem);
1278        lock_mount_hash();
1279        if (propagate_mount_busy(real_mount(mnt), 2))
1280                ret = 0;
1281        unlock_mount_hash();
1282        up_read(&namespace_sem);
1283        return ret;
1284}
1285
1286EXPORT_SYMBOL(may_umount);
1287
1288static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1289
1290static void namespace_unlock(void)
1291{
1292        struct mount *mnt;
1293        struct hlist_head head = unmounted;
1294
1295        if (likely(hlist_empty(&head))) {
1296                up_write(&namespace_sem);
1297                return;
1298        }
1299
1300        head.first->pprev = &head.first;
1301        INIT_HLIST_HEAD(&unmounted);
1302
1303        /* undo decrements we'd done in umount_tree() */
1304        hlist_for_each_entry(mnt, &head, mnt_hash)
1305                if (mnt->mnt_ex_mountpoint.mnt)
1306                        mntget(mnt->mnt_ex_mountpoint.mnt);
1307
1308        up_write(&namespace_sem);
1309
1310        synchronize_rcu();
1311
1312        while (!hlist_empty(&head)) {
1313                mnt = hlist_entry(head.first, struct mount, mnt_hash);
1314                hlist_del_init(&mnt->mnt_hash);
1315                if (mnt->mnt_ex_mountpoint.mnt)
1316                        path_put(&mnt->mnt_ex_mountpoint);
1317                mntput(&mnt->mnt);
1318        }
1319}
1320
1321static inline void namespace_lock(void)
1322{
1323        down_write(&namespace_sem);
1324}
1325
1326/*
1327 * mount_lock must be held
1328 * namespace_sem must be held for write
1329 * how = 0 => just this tree, don't propagate
1330 * how = 1 => propagate; we know that nobody else has reference to any victims
1331 * how = 2 => lazy umount
1332 */
1333void umount_tree(struct mount *mnt, int how)
1334{
1335        HLIST_HEAD(tmp_list);
1336        struct mount *p;
1337        struct mount *last = NULL;
1338
1339        for (p = mnt; p; p = next_mnt(p, mnt)) {
1340                hlist_del_init_rcu(&p->mnt_hash);
1341                hlist_add_head(&p->mnt_hash, &tmp_list);
1342        }
1343
1344        hlist_for_each_entry(p, &tmp_list, mnt_hash)
1345                list_del_init(&p->mnt_child);
1346
1347        if (how)
1348                propagate_umount(&tmp_list);
1349
1350        hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1351                list_del_init(&p->mnt_expire);
1352                list_del_init(&p->mnt_list);
1353                __touch_mnt_namespace(p->mnt_ns);
1354                p->mnt_ns = NULL;
1355                if (how < 2)
1356                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1357                if (mnt_has_parent(p)) {
1358                        hlist_del_init(&p->mnt_mp_list);
1359                        put_mountpoint(p->mnt_mp);
1360                        mnt_add_count(p->mnt_parent, -1);
1361                        /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1362                        p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1363                        p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1364                        p->mnt_mountpoint = p->mnt.mnt_root;
1365                        p->mnt_parent = p;
1366                        p->mnt_mp = NULL;
1367                }
1368                change_mnt_propagation(p, MS_PRIVATE);
1369                last = p;
1370        }
1371        if (last) {
1372                last->mnt_hash.next = unmounted.first;
1373                if (unmounted.first)
1374                        unmounted.first->pprev = &last->mnt_hash.next;
1375                unmounted.first = tmp_list.first;
1376                unmounted.first->pprev = &unmounted.first;
1377        }
1378}
1379
1380static void shrink_submounts(struct mount *mnt);
1381
1382static int do_umount(struct mount *mnt, int flags)
1383{
1384        struct super_block *sb = mnt->mnt.mnt_sb;
1385        int retval;
1386
1387        retval = security_sb_umount(&mnt->mnt, flags);
1388        if (retval)
1389                return retval;
1390
1391        /*
1392         * Allow userspace to request a mountpoint be expired rather than
1393         * unmounting unconditionally. Unmount only happens if:
1394         *  (1) the mark is already set (the mark is cleared by mntput())
1395         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1396         */
1397        if (flags & MNT_EXPIRE) {
1398                if (&mnt->mnt == current->fs->root.mnt ||
1399                    flags & (MNT_FORCE | MNT_DETACH))
1400                        return -EINVAL;
1401
1402                /*
1403                 * probably don't strictly need the lock here if we examined
1404                 * all race cases, but it's a slowpath.
1405                 */
1406                lock_mount_hash();
1407                if (mnt_get_count(mnt) != 2) {
1408                        unlock_mount_hash();
1409                        return -EBUSY;
1410                }
1411                unlock_mount_hash();
1412
1413                if (!xchg(&mnt->mnt_expiry_mark, 1))
1414                        return -EAGAIN;
1415        }
1416
1417        /*
1418         * If we may have to abort operations to get out of this
1419         * mount, and they will themselves hold resources we must
1420         * allow the fs to do things. In the Unix tradition of
1421         * 'Gee thats tricky lets do it in userspace' the umount_begin
1422         * might fail to complete on the first run through as other tasks
1423         * must return, and the like. Thats for the mount program to worry
1424         * about for the moment.
1425         */
1426
1427        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1428                sb->s_op->umount_begin(sb);
1429        }
1430
1431        /*
1432         * No sense to grab the lock for this test, but test itself looks
1433         * somewhat bogus. Suggestions for better replacement?
1434         * Ho-hum... In principle, we might treat that as umount + switch
1435         * to rootfs. GC would eventually take care of the old vfsmount.
1436         * Actually it makes sense, especially if rootfs would contain a
1437         * /reboot - static binary that would close all descriptors and
1438         * call reboot(9). Then init(8) could umount root and exec /reboot.
1439         */
1440        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1441                /*
1442                 * Special case for "unmounting" root ...
1443                 * we just try to remount it readonly.
1444                 */
1445                if (!capable(CAP_SYS_ADMIN))
1446                        return -EPERM;
1447                down_write(&sb->s_umount);
1448                if (!(sb->s_flags & MS_RDONLY))
1449                        retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1450                up_write(&sb->s_umount);
1451                return retval;
1452        }
1453
1454        namespace_lock();
1455        lock_mount_hash();
1456        event++;
1457
1458        if (flags & MNT_DETACH) {
1459                if (!list_empty(&mnt->mnt_list))
1460                        umount_tree(mnt, 2);
1461                retval = 0;
1462        } else {
1463                shrink_submounts(mnt);
1464                retval = -EBUSY;
1465                if (!propagate_mount_busy(mnt, 2)) {
1466                        if (!list_empty(&mnt->mnt_list))
1467                                umount_tree(mnt, 1);
1468                        retval = 0;
1469                }
1470        }
1471        unlock_mount_hash();
1472        namespace_unlock();
1473        return retval;
1474}
1475
1476/*
1477 * __detach_mounts - lazily unmount all mounts on the specified dentry
1478 *
1479 * During unlink, rmdir, and d_drop it is possible to loose the path
1480 * to an existing mountpoint, and wind up leaking the mount.
1481 * detach_mounts allows lazily unmounting those mounts instead of
1482 * leaking them.
1483 *
1484 * The caller may hold dentry->d_inode->i_mutex.
1485 */
1486void __detach_mounts(struct dentry *dentry)
1487{
1488        struct mountpoint *mp;
1489        struct mount *mnt;
1490
1491        namespace_lock();
1492        mp = lookup_mountpoint(dentry);
1493        if (!mp)
1494                goto out_unlock;
1495
1496        lock_mount_hash();
1497        while (!hlist_empty(&mp->m_list)) {
1498                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1499                umount_tree(mnt, 2);
1500        }
1501        unlock_mount_hash();
1502        put_mountpoint(mp);
1503out_unlock:
1504        namespace_unlock();
1505}
1506
1507/* 
1508 * Is the caller allowed to modify his namespace?
1509 */
1510static inline bool may_mount(void)
1511{
1512        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1513}
1514
1515/*
1516 * Now umount can handle mount points as well as block devices.
1517 * This is important for filesystems which use unnamed block devices.
1518 *
1519 * We now support a flag for forced unmount like the other 'big iron'
1520 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1521 */
1522
1523SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1524{
1525        struct path path;
1526        struct mount *mnt;
1527        int retval;
1528        int lookup_flags = 0;
1529
1530        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1531                return -EINVAL;
1532
1533        if (!may_mount())
1534                return -EPERM;
1535
1536        if (!(flags & UMOUNT_NOFOLLOW))
1537                lookup_flags |= LOOKUP_FOLLOW;
1538
1539        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1540        if (retval)
1541                goto out;
1542        mnt = real_mount(path.mnt);
1543        retval = -EINVAL;
1544        if (path.dentry != path.mnt->mnt_root)
1545                goto dput_and_out;
1546        if (!check_mnt(mnt))
1547                goto dput_and_out;
1548        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1549                goto dput_and_out;
1550        retval = -EPERM;
1551        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1552                goto dput_and_out;
1553
1554        retval = do_umount(mnt, flags);
1555dput_and_out:
1556        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1557        dput(path.dentry);
1558        mntput_no_expire(mnt);
1559out:
1560        return retval;
1561}
1562
1563#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1564
1565/*
1566 *      The 2.0 compatible umount. No flags.
1567 */
1568SYSCALL_DEFINE1(oldumount, char __user *, name)
1569{
1570        return sys_umount(name, 0);
1571}
1572
1573#endif
1574
1575static bool is_mnt_ns_file(struct dentry *dentry)
1576{
1577        /* Is this a proxy for a mount namespace? */
1578        return dentry->d_op == &ns_dentry_operations &&
1579               dentry->d_fsdata == &mntns_operations;
1580}
1581
1582struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1583{
1584        return container_of(ns, struct mnt_namespace, ns);
1585}
1586
1587static bool mnt_ns_loop(struct dentry *dentry)
1588{
1589        /* Could bind mounting the mount namespace inode cause a
1590         * mount namespace loop?
1591         */
1592        struct mnt_namespace *mnt_ns;
1593        if (!is_mnt_ns_file(dentry))
1594                return false;
1595
1596        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1597        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1598}
1599
1600struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1601                                        int flag)
1602{
1603        struct mount *res, *p, *q, *r, *parent;
1604
1605        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1606                return ERR_PTR(-EINVAL);
1607
1608        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1609                return ERR_PTR(-EINVAL);
1610
1611        res = q = clone_mnt(mnt, dentry, flag);
1612        if (IS_ERR(q))
1613                return q;
1614
1615        q->mnt_mountpoint = mnt->mnt_mountpoint;
1616
1617        p = mnt;
1618        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1619                struct mount *s;
1620                if (!is_subdir(r->mnt_mountpoint, dentry))
1621                        continue;
1622
1623                for (s = r; s; s = next_mnt(s, r)) {
1624                        struct mount *t = NULL;
1625                        if (!(flag & CL_COPY_UNBINDABLE) &&
1626                            IS_MNT_UNBINDABLE(s)) {
1627                                s = skip_mnt_tree(s);
1628                                continue;
1629                        }
1630                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1631                            is_mnt_ns_file(s->mnt.mnt_root)) {
1632                                s = skip_mnt_tree(s);
1633                                continue;
1634                        }
1635                        while (p != s->mnt_parent) {
1636                                p = p->mnt_parent;
1637                                q = q->mnt_parent;
1638                        }
1639                        p = s;
1640                        parent = q;
1641                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1642                        if (IS_ERR(q))
1643                                goto out;
1644                        lock_mount_hash();
1645                        list_add_tail(&q->mnt_list, &res->mnt_list);
1646                        mnt_set_mountpoint(parent, p->mnt_mp, q);
1647                        if (!list_empty(&parent->mnt_mounts)) {
1648                                t = list_last_entry(&parent->mnt_mounts,
1649                                        struct mount, mnt_child);
1650                                if (t->mnt_mp != p->mnt_mp)
1651                                        t = NULL;
1652                        }
1653                        attach_shadowed(q, parent, t);
1654                        unlock_mount_hash();
1655                }
1656        }
1657        return res;
1658out:
1659        if (res) {
1660                lock_mount_hash();
1661                umount_tree(res, 0);
1662                unlock_mount_hash();
1663        }
1664        return q;
1665}
1666
1667/* Caller should check returned pointer for errors */
1668
1669struct vfsmount *collect_mounts(struct path *path)
1670{
1671        struct mount *tree;
1672        namespace_lock();
1673        tree = copy_tree(real_mount(path->mnt), path->dentry,
1674                         CL_COPY_ALL | CL_PRIVATE);
1675        namespace_unlock();
1676        if (IS_ERR(tree))
1677                return ERR_CAST(tree);
1678        return &tree->mnt;
1679}
1680
1681void drop_collected_mounts(struct vfsmount *mnt)
1682{
1683        namespace_lock();
1684        lock_mount_hash();
1685        umount_tree(real_mount(mnt), 0);
1686        unlock_mount_hash();
1687        namespace_unlock();
1688}
1689
1690/**
1691 * clone_private_mount - create a private clone of a path
1692 *
1693 * This creates a new vfsmount, which will be the clone of @path.  The new will
1694 * not be attached anywhere in the namespace and will be private (i.e. changes
1695 * to the originating mount won't be propagated into this).
1696 *
1697 * Release with mntput().
1698 */
1699struct vfsmount *clone_private_mount(struct path *path)
1700{
1701        struct mount *old_mnt = real_mount(path->mnt);
1702        struct mount *new_mnt;
1703
1704        if (IS_MNT_UNBINDABLE(old_mnt))
1705                return ERR_PTR(-EINVAL);
1706
1707        down_read(&namespace_sem);
1708        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1709        up_read(&namespace_sem);
1710        if (IS_ERR(new_mnt))
1711                return ERR_CAST(new_mnt);
1712
1713        return &new_mnt->mnt;
1714}
1715EXPORT_SYMBOL_GPL(clone_private_mount);
1716
1717int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1718                   struct vfsmount *root)
1719{
1720        struct mount *mnt;
1721        int res = f(root, arg);
1722        if (res)
1723                return res;
1724        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1725                res = f(&mnt->mnt, arg);
1726                if (res)
1727                        return res;
1728        }
1729        return 0;
1730}
1731
1732static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1733{
1734        struct mount *p;
1735
1736        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1737                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1738                        mnt_release_group_id(p);
1739        }
1740}
1741
1742static int invent_group_ids(struct mount *mnt, bool recurse)
1743{
1744        struct mount *p;
1745
1746        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1747                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1748                        int err = mnt_alloc_group_id(p);
1749                        if (err) {
1750                                cleanup_group_ids(mnt, p);
1751                                return err;
1752                        }
1753                }
1754        }
1755
1756        return 0;
1757}
1758
1759/*
1760 *  @source_mnt : mount tree to be attached
1761 *  @nd         : place the mount tree @source_mnt is attached
1762 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1763 *                 store the parent mount and mountpoint dentry.
1764 *                 (done when source_mnt is moved)
1765 *
1766 *  NOTE: in the table below explains the semantics when a source mount
1767 *  of a given type is attached to a destination mount of a given type.
1768 * ---------------------------------------------------------------------------
1769 * |         BIND MOUNT OPERATION                                            |
1770 * |**************************************************************************
1771 * | source-->| shared        |       private  |       slave    | unbindable |
1772 * | dest     |               |                |                |            |
1773 * |   |      |               |                |                |            |
1774 * |   v      |               |                |                |            |
1775 * |**************************************************************************
1776 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1777 * |          |               |                |                |            |
1778 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1779 * ***************************************************************************
1780 * A bind operation clones the source mount and mounts the clone on the
1781 * destination mount.
1782 *
1783 * (++)  the cloned mount is propagated to all the mounts in the propagation
1784 *       tree of the destination mount and the cloned mount is added to
1785 *       the peer group of the source mount.
1786 * (+)   the cloned mount is created under the destination mount and is marked
1787 *       as shared. The cloned mount is added to the peer group of the source
1788 *       mount.
1789 * (+++) the mount is propagated to all the mounts in the propagation tree
1790 *       of the destination mount and the cloned mount is made slave
1791 *       of the same master as that of the source mount. The cloned mount
1792 *       is marked as 'shared and slave'.
1793 * (*)   the cloned mount is made a slave of the same master as that of the
1794 *       source mount.
1795 *
1796 * ---------------------------------------------------------------------------
1797 * |                    MOVE MOUNT OPERATION                                 |
1798 * |**************************************************************************
1799 * | source-->| shared        |       private  |       slave    | unbindable |
1800 * | dest     |               |                |                |            |
1801 * |   |      |               |                |                |            |
1802 * |   v      |               |                |                |            |
1803 * |**************************************************************************
1804 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1805 * |          |               |                |                |            |
1806 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1807 * ***************************************************************************
1808 *
1809 * (+)  the mount is moved to the destination. And is then propagated to
1810 *      all the mounts in the propagation tree of the destination mount.
1811 * (+*)  the mount is moved to the destination.
1812 * (+++)  the mount is moved to the destination and is then propagated to
1813 *      all the mounts belonging to the destination mount's propagation tree.
1814 *      the mount is marked as 'shared and slave'.
1815 * (*)  the mount continues to be a slave at the new location.
1816 *
1817 * if the source mount is a tree, the operations explained above is
1818 * applied to each mount in the tree.
1819 * Must be called without spinlocks held, since this function can sleep
1820 * in allocations.
1821 */
1822static int attach_recursive_mnt(struct mount *source_mnt,
1823                        struct mount *dest_mnt,
1824                        struct mountpoint *dest_mp,
1825                        struct path *parent_path)
1826{
1827        HLIST_HEAD(tree_list);
1828        struct mount *child, *p;
1829        struct hlist_node *n;
1830        int err;
1831
1832        if (IS_MNT_SHARED(dest_mnt)) {
1833                err = invent_group_ids(source_mnt, true);
1834                if (err)
1835                        goto out;
1836                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1837                lock_mount_hash();
1838                if (err)
1839                        goto out_cleanup_ids;
1840                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1841                        set_mnt_shared(p);
1842        } else {
1843                lock_mount_hash();
1844        }
1845        if (parent_path) {
1846                detach_mnt(source_mnt, parent_path);
1847                attach_mnt(source_mnt, dest_mnt, dest_mp);
1848                touch_mnt_namespace(source_mnt->mnt_ns);
1849        } else {
1850                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1851                commit_tree(source_mnt, NULL);
1852        }
1853
1854        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1855                struct mount *q;
1856                hlist_del_init(&child->mnt_hash);
1857                q = __lookup_mnt_last(&child->mnt_parent->mnt,
1858                                      child->mnt_mountpoint);
1859                commit_tree(child, q);
1860        }
1861        unlock_mount_hash();
1862
1863        return 0;
1864
1865 out_cleanup_ids:
1866        while (!hlist_empty(&tree_list)) {
1867                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1868                umount_tree(child, 0);
1869        }
1870        unlock_mount_hash();
1871        cleanup_group_ids(source_mnt, NULL);
1872 out:
1873        return err;
1874}
1875
1876static struct mountpoint *lock_mount(struct path *path)
1877{
1878        struct vfsmount *mnt;
1879        struct dentry *dentry = path->dentry;
1880retry:
1881        mutex_lock(&dentry->d_inode->i_mutex);
1882        if (unlikely(cant_mount(dentry))) {
1883                mutex_unlock(&dentry->d_inode->i_mutex);
1884                return ERR_PTR(-ENOENT);
1885        }
1886        namespace_lock();
1887        mnt = lookup_mnt(path);
1888        if (likely(!mnt)) {
1889                struct mountpoint *mp = lookup_mountpoint(dentry);
1890                if (!mp)
1891                        mp = new_mountpoint(dentry);
1892                if (IS_ERR(mp)) {
1893                        namespace_unlock();
1894                        mutex_unlock(&dentry->d_inode->i_mutex);
1895                        return mp;
1896                }
1897                return mp;
1898        }
1899        namespace_unlock();
1900        mutex_unlock(&path->dentry->d_inode->i_mutex);
1901        path_put(path);
1902        path->mnt = mnt;
1903        dentry = path->dentry = dget(mnt->mnt_root);
1904        goto retry;
1905}
1906
1907static void unlock_mount(struct mountpoint *where)
1908{
1909        struct dentry *dentry = where->m_dentry;
1910        put_mountpoint(where);
1911        namespace_unlock();
1912        mutex_unlock(&dentry->d_inode->i_mutex);
1913}
1914
1915static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1916{
1917        if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1918                return -EINVAL;
1919
1920        if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1921              S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1922                return -ENOTDIR;
1923
1924        return attach_recursive_mnt(mnt, p, mp, NULL);
1925}
1926
1927/*
1928 * Sanity check the flags to change_mnt_propagation.
1929 */
1930
1931static int flags_to_propagation_type(int flags)
1932{
1933        int type = flags & ~(MS_REC | MS_SILENT);
1934
1935        /* Fail if any non-propagation flags are set */
1936        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1937                return 0;
1938        /* Only one propagation flag should be set */
1939        if (!is_power_of_2(type))
1940                return 0;
1941        return type;
1942}
1943
1944/*
1945 * recursively change the type of the mountpoint.
1946 */
1947static int do_change_type(struct path *path, int flag)
1948{
1949        struct mount *m;
1950        struct mount *mnt = real_mount(path->mnt);
1951        int recurse = flag & MS_REC;
1952        int type;
1953        int err = 0;
1954
1955        if (path->dentry != path->mnt->mnt_root)
1956                return -EINVAL;
1957
1958        type = flags_to_propagation_type(flag);
1959        if (!type)
1960                return -EINVAL;
1961
1962        namespace_lock();
1963        if (type == MS_SHARED) {
1964                err = invent_group_ids(mnt, recurse);
1965                if (err)
1966                        goto out_unlock;
1967        }
1968
1969        lock_mount_hash();
1970        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1971                change_mnt_propagation(m, type);
1972        unlock_mount_hash();
1973
1974 out_unlock:
1975        namespace_unlock();
1976        return err;
1977}
1978
1979static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1980{
1981        struct mount *child;
1982        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1983                if (!is_subdir(child->mnt_mountpoint, dentry))
1984                        continue;
1985
1986                if (child->mnt.mnt_flags & MNT_LOCKED)
1987                        return true;
1988        }
1989        return false;
1990}
1991
1992/*
1993 * do loopback mount.
1994 */
1995static int do_loopback(struct path *path, const char *old_name,
1996                                int recurse)
1997{
1998        struct path old_path;
1999        struct mount *mnt = NULL, *old, *parent;
2000        struct mountpoint *mp;
2001        int err;
2002        if (!old_name || !*old_name)
2003                return -EINVAL;
2004        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2005        if (err)
2006                return err;
2007
2008        err = -EINVAL;
2009        if (mnt_ns_loop(old_path.dentry))
2010                goto out; 
2011
2012        mp = lock_mount(path);
2013        err = PTR_ERR(mp);
2014        if (IS_ERR(mp))
2015                goto out;
2016
2017        old = real_mount(old_path.mnt);
2018        parent = real_mount(path->mnt);
2019
2020        err = -EINVAL;
2021        if (IS_MNT_UNBINDABLE(old))
2022                goto out2;
2023
2024        if (!check_mnt(parent))
2025                goto out2;
2026
2027        if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2028                goto out2;
2029
2030        if (!recurse && has_locked_children(old, old_path.dentry))
2031                goto out2;
2032
2033        if (recurse)
2034                mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2035        else
2036                mnt = clone_mnt(old, old_path.dentry, 0);
2037
2038        if (IS_ERR(mnt)) {
2039                err = PTR_ERR(mnt);
2040                goto out2;
2041        }
2042
2043        mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2044
2045        err = graft_tree(mnt, parent, mp);
2046        if (err) {
2047                lock_mount_hash();
2048                umount_tree(mnt, 0);
2049                unlock_mount_hash();
2050        }
2051out2:
2052        unlock_mount(mp);
2053out:
2054        path_put(&old_path);
2055        return err;
2056}
2057
2058static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2059{
2060        int error = 0;
2061        int readonly_request = 0;
2062
2063        if (ms_flags & MS_RDONLY)
2064                readonly_request = 1;
2065        if (readonly_request == __mnt_is_readonly(mnt))
2066                return 0;
2067
2068        if (readonly_request)
2069                error = mnt_make_readonly(real_mount(mnt));
2070        else
2071                __mnt_unmake_readonly(real_mount(mnt));
2072        return error;
2073}
2074
2075/*
2076 * change filesystem flags. dir should be a physical root of filesystem.
2077 * If you've mounted a non-root directory somewhere and want to do remount
2078 * on it - tough luck.
2079 */
2080static int do_remount(struct path *path, int flags, int mnt_flags,
2081                      void *data)
2082{
2083        int err;
2084        struct super_block *sb = path->mnt->mnt_sb;
2085        struct mount *mnt = real_mount(path->mnt);
2086
2087        if (!check_mnt(mnt))
2088                return -EINVAL;
2089
2090        if (path->dentry != path->mnt->mnt_root)
2091                return -EINVAL;
2092
2093        /* Don't allow changing of locked mnt flags.
2094         *
2095         * No locks need to be held here while testing the various
2096         * MNT_LOCK flags because those flags can never be cleared
2097         * once they are set.
2098         */
2099        if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2100            !(mnt_flags & MNT_READONLY)) {
2101                return -EPERM;
2102        }
2103        if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2104            !(mnt_flags & MNT_NODEV)) {
2105                /* Was the nodev implicitly added in mount? */
2106                if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2107                    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2108                        mnt_flags |= MNT_NODEV;
2109                } else {
2110                        return -EPERM;
2111                }
2112        }
2113        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2114            !(mnt_flags & MNT_NOSUID)) {
2115                return -EPERM;
2116        }
2117        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2118            !(mnt_flags & MNT_NOEXEC)) {
2119                return -EPERM;
2120        }
2121        if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2122            ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2123                return -EPERM;
2124        }
2125
2126        err = security_sb_remount(sb, data);
2127        if (err)
2128                return err;
2129
2130        down_write(&sb->s_umount);
2131        if (flags & MS_BIND)
2132                err = change_mount_flags(path->mnt, flags);
2133        else if (!capable(CAP_SYS_ADMIN))
2134                err = -EPERM;
2135        else
2136                err = do_remount_sb(sb, flags, data, 0);
2137        if (!err) {
2138                lock_mount_hash();
2139                mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2140                mnt->mnt.mnt_flags = mnt_flags;
2141                touch_mnt_namespace(mnt->mnt_ns);
2142                unlock_mount_hash();
2143        }
2144        up_write(&sb->s_umount);
2145        return err;
2146}
2147
2148static inline int tree_contains_unbindable(struct mount *mnt)
2149{
2150        struct mount *p;
2151        for (p = mnt; p; p = next_mnt(p, mnt)) {
2152                if (IS_MNT_UNBINDABLE(p))
2153                        return 1;
2154        }
2155        return 0;
2156}
2157
2158static int do_move_mount(struct path *path, const char *old_name)
2159{
2160        struct path old_path, parent_path;
2161        struct mount *p;
2162        struct mount *old;
2163        struct mountpoint *mp;
2164        int err;
2165        if (!old_name || !*old_name)
2166                return -EINVAL;
2167        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2168        if (err)
2169                return err;
2170
2171        mp = lock_mount(path);
2172        err = PTR_ERR(mp);
2173        if (IS_ERR(mp))
2174                goto out;
2175
2176        old = real_mount(old_path.mnt);
2177        p = real_mount(path->mnt);
2178
2179        err = -EINVAL;
2180        if (!check_mnt(p) || !check_mnt(old))
2181                goto out1;
2182
2183        if (old->mnt.mnt_flags & MNT_LOCKED)
2184                goto out1;
2185
2186        err = -EINVAL;
2187        if (old_path.dentry != old_path.mnt->mnt_root)
2188                goto out1;
2189
2190        if (!mnt_has_parent(old))
2191                goto out1;
2192
2193        if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2194              S_ISDIR(old_path.dentry->d_inode->i_mode))
2195                goto out1;
2196        /*
2197         * Don't move a mount residing in a shared parent.
2198         */
2199        if (IS_MNT_SHARED(old->mnt_parent))
2200                goto out1;
2201        /*
2202         * Don't move a mount tree containing unbindable mounts to a destination
2203         * mount which is shared.
2204         */
2205        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2206                goto out1;
2207        err = -ELOOP;
2208        for (; mnt_has_parent(p); p = p->mnt_parent)
2209                if (p == old)
2210                        goto out1;
2211
2212        err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2213        if (err)
2214                goto out1;
2215
2216        /* if the mount is moved, it should no longer be expire
2217         * automatically */
2218        list_del_init(&old->mnt_expire);
2219out1:
2220        unlock_mount(mp);
2221out:
2222        if (!err)
2223                path_put(&parent_path);
2224        path_put(&old_path);
2225        return err;
2226}
2227
2228static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2229{
2230        int err;
2231        const char *subtype = strchr(fstype, '.');
2232        if (subtype) {
2233                subtype++;
2234                err = -EINVAL;
2235                if (!subtype[0])
2236                        goto err;
2237        } else
2238                subtype = "";
2239
2240        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2241        err = -ENOMEM;
2242        if (!mnt->mnt_sb->s_subtype)
2243                goto err;
2244        return mnt;
2245
2246 err:
2247        mntput(mnt);
2248        return ERR_PTR(err);
2249}
2250
2251/*
2252 * add a mount into a namespace's mount tree
2253 */
2254static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2255{
2256        struct mountpoint *mp;
2257        struct mount *parent;
2258        int err;
2259
2260        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2261
2262        mp = lock_mount(path);
2263        if (IS_ERR(mp))
2264                return PTR_ERR(mp);
2265
2266        parent = real_mount(path->mnt);
2267        err = -EINVAL;
2268        if (unlikely(!check_mnt(parent))) {
2269                /* that's acceptable only for automounts done in private ns */
2270                if (!(mnt_flags & MNT_SHRINKABLE))
2271                        goto unlock;
2272                /* ... and for those we'd better have mountpoint still alive */
2273                if (!parent->mnt_ns)
2274                        goto unlock;
2275        }
2276
2277        /* Refuse the same filesystem on the same mount point */
2278        err = -EBUSY;
2279        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2280            path->mnt->mnt_root == path->dentry)
2281                goto unlock;
2282
2283        err = -EINVAL;
2284        if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2285                goto unlock;
2286
2287        newmnt->mnt.mnt_flags = mnt_flags;
2288        err = graft_tree(newmnt, parent, mp);
2289
2290unlock:
2291        unlock_mount(mp);
2292        return err;
2293}
2294
2295/*
2296 * create a new mount for userspace and request it to be added into the
2297 * namespace's tree
2298 */
2299static int do_new_mount(struct path *path, const char *fstype, int flags,
2300                        int mnt_flags, const char *name, void *data)
2301{
2302        struct file_system_type *type;
2303        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2304        struct vfsmount *mnt;
2305        int err;
2306
2307        if (!fstype)
2308                return -EINVAL;
2309
2310        type = get_fs_type(fstype);
2311        if (!type)
2312                return -ENODEV;
2313
2314        if (user_ns != &init_user_ns) {
2315                if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2316                        put_filesystem(type);
2317                        return -EPERM;
2318                }
2319                /* Only in special cases allow devices from mounts
2320                 * created outside the initial user namespace.
2321                 */
2322                if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2323                        flags |= MS_NODEV;
2324                        mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2325                }
2326        }
2327
2328        mnt = vfs_kern_mount(type, flags, name, data);
2329        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2330            !mnt->mnt_sb->s_subtype)
2331                mnt = fs_set_subtype(mnt, fstype);
2332
2333        put_filesystem(type);
2334        if (IS_ERR(mnt))
2335                return PTR_ERR(mnt);
2336
2337        err = do_add_mount(real_mount(mnt), path, mnt_flags);
2338        if (err)
2339                mntput(mnt);
2340        return err;
2341}
2342
2343int finish_automount(struct vfsmount *m, struct path *path)
2344{
2345        struct mount *mnt = real_mount(m);
2346        int err;
2347        /* The new mount record should have at least 2 refs to prevent it being
2348         * expired before we get a chance to add it
2349         */
2350        BUG_ON(mnt_get_count(mnt) < 2);
2351
2352        if (m->mnt_sb == path->mnt->mnt_sb &&
2353            m->mnt_root == path->dentry) {
2354                err = -ELOOP;
2355                goto fail;
2356        }
2357
2358        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2359        if (!err)
2360                return 0;
2361fail:
2362        /* remove m from any expiration list it may be on */
2363        if (!list_empty(&mnt->mnt_expire)) {
2364                namespace_lock();
2365                list_del_init(&mnt->mnt_expire);
2366                namespace_unlock();
2367        }
2368        mntput(m);
2369        mntput(m);
2370        return err;
2371}
2372
2373/**
2374 * mnt_set_expiry - Put a mount on an expiration list
2375 * @mnt: The mount to list.
2376 * @expiry_list: The list to add the mount to.
2377 */
2378void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2379{
2380        namespace_lock();
2381
2382        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2383
2384        namespace_unlock();
2385}
2386EXPORT_SYMBOL(mnt_set_expiry);
2387
2388/*
2389 * process a list of expirable mountpoints with the intent of discarding any
2390 * mountpoints that aren't in use and haven't been touched since last we came
2391 * here
2392 */
2393void mark_mounts_for_expiry(struct list_head *mounts)
2394{
2395        struct mount *mnt, *next;
2396        LIST_HEAD(graveyard);
2397
2398        if (list_empty(mounts))
2399                return;
2400
2401        namespace_lock();
2402        lock_mount_hash();
2403
2404        /* extract from the expiration list every vfsmount that matches the
2405         * following criteria:
2406         * - only referenced by its parent vfsmount
2407         * - still marked for expiry (marked on the last call here; marks are
2408         *   cleared by mntput())
2409         */
2410        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2411                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2412                        propagate_mount_busy(mnt, 1))
2413                        continue;
2414                list_move(&mnt->mnt_expire, &graveyard);
2415        }
2416        while (!list_empty(&graveyard)) {
2417                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2418                touch_mnt_namespace(mnt->mnt_ns);
2419                umount_tree(mnt, 1);
2420        }
2421        unlock_mount_hash();
2422        namespace_unlock();
2423}
2424
2425EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2426
2427/*
2428 * Ripoff of 'select_parent()'
2429 *
2430 * search the list of submounts for a given mountpoint, and move any
2431 * shrinkable submounts to the 'graveyard' list.
2432 */
2433static int select_submounts(struct mount *parent, struct list_head *graveyard)
2434{
2435        struct mount *this_parent = parent;
2436        struct list_head *next;
2437        int found = 0;
2438
2439repeat:
2440        next = this_parent->mnt_mounts.next;
2441resume:
2442        while (next != &this_parent->mnt_mounts) {
2443                struct list_head *tmp = next;
2444                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2445
2446                next = tmp->next;
2447                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2448                        continue;
2449                /*
2450                 * Descend a level if the d_mounts list is non-empty.
2451                 */
2452                if (!list_empty(&mnt->mnt_mounts)) {
2453                        this_parent = mnt;
2454                        goto repeat;
2455                }
2456
2457                if (!propagate_mount_busy(mnt, 1)) {
2458                        list_move_tail(&mnt->mnt_expire, graveyard);
2459                        found++;
2460                }
2461        }
2462        /*
2463         * All done at this level ... ascend and resume the search
2464         */
2465        if (this_parent != parent) {
2466                next = this_parent->mnt_child.next;
2467                this_parent = this_parent->mnt_parent;
2468                goto resume;
2469        }
2470        return found;
2471}
2472
2473/*
2474 * process a list of expirable mountpoints with the intent of discarding any
2475 * submounts of a specific parent mountpoint
2476 *
2477 * mount_lock must be held for write
2478 */
2479static void shrink_submounts(struct mount *mnt)
2480{
2481        LIST_HEAD(graveyard);
2482        struct mount *m;
2483
2484        /* extract submounts of 'mountpoint' from the expiration list */
2485        while (select_submounts(mnt, &graveyard)) {
2486                while (!list_empty(&graveyard)) {
2487                        m = list_first_entry(&graveyard, struct mount,
2488                                                mnt_expire);
2489                        touch_mnt_namespace(m->mnt_ns);
2490                        umount_tree(m, 1);
2491                }
2492        }
2493}
2494
2495/*
2496 * Some copy_from_user() implementations do not return the exact number of
2497 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2498 * Note that this function differs from copy_from_user() in that it will oops
2499 * on bad values of `to', rather than returning a short copy.
2500 */
2501static long exact_copy_from_user(void *to, const void __user * from,
2502                                 unsigned long n)
2503{
2504        char *t = to;
2505        const char __user *f = from;
2506        char c;
2507
2508        if (!access_ok(VERIFY_READ, from, n))
2509                return n;
2510
2511        while (n) {
2512                if (__get_user(c, f)) {
2513                        memset(t, 0, n);
2514                        break;
2515                }
2516                *t++ = c;
2517                f++;
2518                n--;
2519        }
2520        return n;
2521}
2522
2523int copy_mount_options(const void __user * data, unsigned long *where)
2524{
2525        int i;
2526        unsigned long page;
2527        unsigned long size;
2528
2529        *where = 0;
2530        if (!data)
2531                return 0;
2532
2533        if (!(page = __get_free_page(GFP_KERNEL)))
2534                return -ENOMEM;
2535
2536        /* We only care that *some* data at the address the user
2537         * gave us is valid.  Just in case, we'll zero
2538         * the remainder of the page.
2539         */
2540        /* copy_from_user cannot cross TASK_SIZE ! */
2541        size = TASK_SIZE - (unsigned long)data;
2542        if (size > PAGE_SIZE)
2543                size = PAGE_SIZE;
2544
2545        i = size - exact_copy_from_user((void *)page, data, size);
2546        if (!i) {
2547                free_page(page);
2548                return -EFAULT;
2549        }
2550        if (i != PAGE_SIZE)
2551                memset((char *)page + i, 0, PAGE_SIZE - i);
2552        *where = page;
2553        return 0;
2554}
2555
2556char *copy_mount_string(const void __user *data)
2557{
2558        return data ? strndup_user(data, PAGE_SIZE) : NULL;
2559}
2560
2561/*
2562 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2563 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2564 *
2565 * data is a (void *) that can point to any structure up to
2566 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2567 * information (or be NULL).
2568 *
2569 * Pre-0.97 versions of mount() didn't have a flags word.
2570 * When the flags word was introduced its top half was required
2571 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2572 * Therefore, if this magic number is present, it carries no information
2573 * and must be discarded.
2574 */
2575long do_mount(const char *dev_name, const char __user *dir_name,
2576                const char *type_page, unsigned long flags, void *data_page)
2577{
2578        struct path path;
2579        int retval = 0;
2580        int mnt_flags = 0;
2581
2582        /* Discard magic */
2583        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2584                flags &= ~MS_MGC_MSK;
2585
2586        /* Basic sanity checks */
2587        if (data_page)
2588                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2589
2590        /* ... and get the mountpoint */
2591        retval = user_path(dir_name, &path);
2592        if (retval)
2593                return retval;
2594
2595        retval = security_sb_mount(dev_name, &path,
2596                                   type_page, flags, data_page);
2597        if (!retval && !may_mount())
2598                retval = -EPERM;
2599        if (retval)
2600                goto dput_out;
2601
2602        /* Default to relatime unless overriden */
2603        if (!(flags & MS_NOATIME))
2604                mnt_flags |= MNT_RELATIME;
2605
2606        /* Separate the per-mountpoint flags */
2607        if (flags & MS_NOSUID)
2608                mnt_flags |= MNT_NOSUID;
2609        if (flags & MS_NODEV)
2610                mnt_flags |= MNT_NODEV;
2611        if (flags & MS_NOEXEC)
2612                mnt_flags |= MNT_NOEXEC;
2613        if (flags & MS_NOATIME)
2614                mnt_flags |= MNT_NOATIME;
2615        if (flags & MS_NODIRATIME)
2616                mnt_flags |= MNT_NODIRATIME;
2617        if (flags & MS_STRICTATIME)
2618                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2619        if (flags & MS_RDONLY)
2620                mnt_flags |= MNT_READONLY;
2621
2622        /* The default atime for remount is preservation */
2623        if ((flags & MS_REMOUNT) &&
2624            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2625                       MS_STRICTATIME)) == 0)) {
2626                mnt_flags &= ~MNT_ATIME_MASK;
2627                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2628        }
2629
2630        flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2631                   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2632                   MS_STRICTATIME);
2633
2634        if (flags & MS_REMOUNT)
2635                retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2636                                    data_page);
2637        else if (flags & MS_BIND)
2638                retval = do_loopback(&path, dev_name, flags & MS_REC);
2639        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2640                retval = do_change_type(&path, flags);
2641        else if (flags & MS_MOVE)
2642                retval = do_move_mount(&path, dev_name);
2643        else
2644                retval = do_new_mount(&path, type_page, flags, mnt_flags,
2645                                      dev_name, data_page);
2646dput_out:
2647        path_put(&path);
2648        return retval;
2649}
2650
2651static void free_mnt_ns(struct mnt_namespace *ns)
2652{
2653        ns_free_inum(&ns->ns);
2654        put_user_ns(ns->user_ns);
2655        kfree(ns);
2656}
2657
2658/*
2659 * Assign a sequence number so we can detect when we attempt to bind
2660 * mount a reference to an older mount namespace into the current
2661 * mount namespace, preventing reference counting loops.  A 64bit
2662 * number incrementing at 10Ghz will take 12,427 years to wrap which
2663 * is effectively never, so we can ignore the possibility.
2664 */
2665static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2666
2667static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2668{
2669        struct mnt_namespace *new_ns;
2670        int ret;
2671
2672        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2673        if (!new_ns)
2674                return ERR_PTR(-ENOMEM);
2675        ret = ns_alloc_inum(&new_ns->ns);
2676        if (ret) {
2677                kfree(new_ns);
2678                return ERR_PTR(ret);
2679        }
2680        new_ns->ns.ops = &mntns_operations;
2681        new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2682        atomic_set(&new_ns->count, 1);
2683        new_ns->root = NULL;
2684        INIT_LIST_HEAD(&new_ns->list);
2685        init_waitqueue_head(&new_ns->poll);
2686        new_ns->event = 0;
2687        new_ns->user_ns = get_user_ns(user_ns);
2688        return new_ns;
2689}
2690
2691struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2692                struct user_namespace *user_ns, struct fs_struct *new_fs)
2693{
2694        struct mnt_namespace *new_ns;
2695        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2696        struct mount *p, *q;
2697        struct mount *old;
2698        struct mount *new;
2699        int copy_flags;
2700
2701        BUG_ON(!ns);
2702
2703        if (likely(!(flags & CLONE_NEWNS))) {
2704                get_mnt_ns(ns);
2705                return ns;
2706        }
2707
2708        old = ns->root;
2709
2710        new_ns = alloc_mnt_ns(user_ns);
2711        if (IS_ERR(new_ns))
2712                return new_ns;
2713
2714        namespace_lock();
2715        /* First pass: copy the tree topology */
2716        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2717        if (user_ns != ns->user_ns)
2718                copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2719        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2720        if (IS_ERR(new)) {
2721                namespace_unlock();
2722                free_mnt_ns(new_ns);
2723                return ERR_CAST(new);
2724        }
2725        new_ns->root = new;
2726        list_add_tail(&new_ns->list, &new->mnt_list);
2727
2728        /*
2729         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2730         * as belonging to new namespace.  We have already acquired a private
2731         * fs_struct, so tsk->fs->lock is not needed.
2732         */
2733        p = old;
2734        q = new;
2735        while (p) {
2736                q->mnt_ns = new_ns;
2737                if (new_fs) {
2738                        if (&p->mnt == new_fs->root.mnt) {
2739                                new_fs->root.mnt = mntget(&q->mnt);
2740                                rootmnt = &p->mnt;
2741                        }
2742                        if (&p->mnt == new_fs->pwd.mnt) {
2743                                new_fs->pwd.mnt = mntget(&q->mnt);
2744                                pwdmnt = &p->mnt;
2745                        }
2746                }
2747                p = next_mnt(p, old);
2748                q = next_mnt(q, new);
2749                if (!q)
2750                        break;
2751                while (p->mnt.mnt_root != q->mnt.mnt_root)
2752                        p = next_mnt(p, old);
2753        }
2754        namespace_unlock();
2755
2756        if (rootmnt)
2757                mntput(rootmnt);
2758        if (pwdmnt)
2759                mntput(pwdmnt);
2760
2761        return new_ns;
2762}
2763
2764/**
2765 * create_mnt_ns - creates a private namespace and adds a root filesystem
2766 * @mnt: pointer to the new root filesystem mountpoint
2767 */
2768static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2769{
2770        struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2771        if (!IS_ERR(new_ns)) {
2772                struct mount *mnt = real_mount(m);
2773                mnt->mnt_ns = new_ns;
2774                new_ns->root = mnt;
2775                list_add(&mnt->mnt_list, &new_ns->list);
2776        } else {
2777                mntput(m);
2778        }
2779        return new_ns;
2780}
2781
2782struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2783{
2784        struct mnt_namespace *ns;
2785        struct super_block *s;
2786        struct path path;
2787        int err;
2788
2789        ns = create_mnt_ns(mnt);
2790        if (IS_ERR(ns))
2791                return ERR_CAST(ns);
2792
2793        err = vfs_path_lookup(mnt->mnt_root, mnt,
2794                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2795
2796        put_mnt_ns(ns);
2797
2798        if (err)
2799                return ERR_PTR(err);
2800
2801        /* trade a vfsmount reference for active sb one */
2802        s = path.mnt->mnt_sb;
2803        atomic_inc(&s->s_active);
2804        mntput(path.mnt);
2805        /* lock the sucker */
2806        down_write(&s->s_umount);
2807        /* ... and return the root of (sub)tree on it */
2808        return path.dentry;
2809}
2810EXPORT_SYMBOL(mount_subtree);
2811
2812SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2813                char __user *, type, unsigned long, flags, void __user *, data)
2814{
2815        int ret;
2816        char *kernel_type;
2817        char *kernel_dev;
2818        unsigned long data_page;
2819
2820        kernel_type = copy_mount_string(type);
2821        ret = PTR_ERR(kernel_type);
2822        if (IS_ERR(kernel_type))
2823                goto out_type;
2824
2825        kernel_dev = copy_mount_string(dev_name);
2826        ret = PTR_ERR(kernel_dev);
2827        if (IS_ERR(kernel_dev))
2828                goto out_dev;
2829
2830        ret = copy_mount_options(data, &data_page);
2831        if (ret < 0)
2832                goto out_data;
2833
2834        ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2835                (void *) data_page);
2836
2837        free_page(data_page);
2838out_data:
2839        kfree(kernel_dev);
2840out_dev:
2841        kfree(kernel_type);
2842out_type:
2843        return ret;
2844}
2845
2846/*
2847 * Return true if path is reachable from root
2848 *
2849 * namespace_sem or mount_lock is held
2850 */
2851bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2852                         const struct path *root)
2853{
2854        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2855                dentry = mnt->mnt_mountpoint;
2856                mnt = mnt->mnt_parent;
2857        }
2858        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2859}
2860
2861int path_is_under(struct path *path1, struct path *path2)
2862{
2863        int res;
2864        read_seqlock_excl(&mount_lock);
2865        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2866        read_sequnlock_excl(&mount_lock);
2867        return res;
2868}
2869EXPORT_SYMBOL(path_is_under);
2870
2871/*
2872 * pivot_root Semantics:
2873 * Moves the root file system of the current process to the directory put_old,
2874 * makes new_root as the new root file system of the current process, and sets
2875 * root/cwd of all processes which had them on the current root to new_root.
2876 *
2877 * Restrictions:
2878 * The new_root and put_old must be directories, and  must not be on the
2879 * same file  system as the current process root. The put_old  must  be
2880 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2881 * pointed to by put_old must yield the same directory as new_root. No other
2882 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2883 *
2884 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2885 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2886 * in this situation.
2887 *
2888 * Notes:
2889 *  - we don't move root/cwd if they are not at the root (reason: if something
2890 *    cared enough to change them, it's probably wrong to force them elsewhere)
2891 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2892 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2893 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2894 *    first.
2895 */
2896SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2897                const char __user *, put_old)
2898{
2899        struct path new, old, parent_path, root_parent, root;
2900        struct mount *new_mnt, *root_mnt, *old_mnt;
2901        struct mountpoint *old_mp, *root_mp;
2902        int error;
2903
2904        if (!may_mount())
2905                return -EPERM;
2906
2907        error = user_path_dir(new_root, &new);
2908        if (error)
2909                goto out0;
2910
2911        error = user_path_dir(put_old, &old);
2912        if (error)
2913                goto out1;
2914
2915        error = security_sb_pivotroot(&old, &new);
2916        if (error)
2917                goto out2;
2918
2919        get_fs_root(current->fs, &root);
2920        old_mp = lock_mount(&old);
2921        error = PTR_ERR(old_mp);
2922        if (IS_ERR(old_mp))
2923                goto out3;
2924
2925        error = -EINVAL;
2926        new_mnt = real_mount(new.mnt);
2927        root_mnt = real_mount(root.mnt);
2928        old_mnt = real_mount(old.mnt);
2929        if (IS_MNT_SHARED(old_mnt) ||
2930                IS_MNT_SHARED(new_mnt->mnt_parent) ||
2931                IS_MNT_SHARED(root_mnt->mnt_parent))
2932                goto out4;
2933        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2934                goto out4;
2935        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2936                goto out4;
2937        error = -ENOENT;
2938        if (d_unlinked(new.dentry))
2939                goto out4;
2940        error = -EBUSY;
2941        if (new_mnt == root_mnt || old_mnt == root_mnt)
2942                goto out4; /* loop, on the same file system  */
2943        error = -EINVAL;
2944        if (root.mnt->mnt_root != root.dentry)
2945                goto out4; /* not a mountpoint */
2946        if (!mnt_has_parent(root_mnt))
2947                goto out4; /* not attached */
2948        root_mp = root_mnt->mnt_mp;
2949        if (new.mnt->mnt_root != new.dentry)
2950                goto out4; /* not a mountpoint */
2951        if (!mnt_has_parent(new_mnt))
2952                goto out4; /* not attached */
2953        /* make sure we can reach put_old from new_root */
2954        if (!is_path_reachable(old_mnt, old.dentry, &new))
2955                goto out4;
2956        /* make certain new is below the root */
2957        if (!is_path_reachable(new_mnt, new.dentry, &root))
2958                goto out4;
2959        root_mp->m_count++; /* pin it so it won't go away */
2960        lock_mount_hash();
2961        detach_mnt(new_mnt, &parent_path);
2962        detach_mnt(root_mnt, &root_parent);
2963        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2964                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2965                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2966        }
2967        /* mount old root on put_old */
2968        attach_mnt(root_mnt, old_mnt, old_mp);
2969        /* mount new_root on / */
2970        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2971        touch_mnt_namespace(current->nsproxy->mnt_ns);
2972        /* A moved mount should not expire automatically */
2973        list_del_init(&new_mnt->mnt_expire);
2974        unlock_mount_hash();
2975        chroot_fs_refs(&root, &new);
2976        put_mountpoint(root_mp);
2977        error = 0;
2978out4:
2979        unlock_mount(old_mp);
2980        if (!error) {
2981                path_put(&root_parent);
2982                path_put(&parent_path);
2983        }
2984out3:
2985        path_put(&root);
2986out2:
2987        path_put(&old);
2988out1:
2989        path_put(&new);
2990out0:
2991        return error;
2992}
2993
2994static void __init init_mount_tree(void)
2995{
2996        struct vfsmount *mnt;
2997        struct mnt_namespace *ns;
2998        struct path root;
2999        struct file_system_type *type;
3000
3001        type = get_fs_type("rootfs");
3002        if (!type)
3003                panic("Can't find rootfs type");
3004        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3005        put_filesystem(type);
3006        if (IS_ERR(mnt))
3007                panic("Can't create rootfs");
3008
3009        ns = create_mnt_ns(mnt);
3010        if (IS_ERR(ns))
3011                panic("Can't allocate initial namespace");
3012
3013        init_task.nsproxy->mnt_ns = ns;
3014        get_mnt_ns(ns);
3015
3016        root.mnt = mnt;
3017        root.dentry = mnt->mnt_root;
3018        mnt->mnt_flags |= MNT_LOCKED;
3019
3020        set_fs_pwd(current->fs, &root);
3021        set_fs_root(current->fs, &root);
3022}
3023
3024void __init mnt_init(void)
3025{
3026        unsigned u;
3027        int err;
3028
3029        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3030                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3031
3032        mount_hashtable = alloc_large_system_hash("Mount-cache",
3033                                sizeof(struct hlist_head),
3034                                mhash_entries, 19,
3035                                0,
3036                                &m_hash_shift, &m_hash_mask, 0, 0);
3037        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3038                                sizeof(struct hlist_head),
3039                                mphash_entries, 19,
3040                                0,
3041                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3042
3043        if (!mount_hashtable || !mountpoint_hashtable)
3044                panic("Failed to allocate mount hash table\n");
3045
3046        for (u = 0; u <= m_hash_mask; u++)
3047                INIT_HLIST_HEAD(&mount_hashtable[u]);
3048        for (u = 0; u <= mp_hash_mask; u++)
3049                INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3050
3051        kernfs_init();
3052
3053        err = sysfs_init();
3054        if (err)
3055                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3056                        __func__, err);
3057        fs_kobj = kobject_create_and_add("fs", NULL);
3058        if (!fs_kobj)
3059                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3060        init_rootfs();
3061        init_mount_tree();
3062}
3063
3064void put_mnt_ns(struct mnt_namespace *ns)
3065{
3066        if (!atomic_dec_and_test(&ns->count))
3067                return;
3068        drop_collected_mounts(&ns->root->mnt);
3069        free_mnt_ns(ns);
3070}
3071
3072struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3073{
3074        struct vfsmount *mnt;
3075        mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3076        if (!IS_ERR(mnt)) {
3077                /*
3078                 * it is a longterm mount, don't release mnt until
3079                 * we unmount before file sys is unregistered
3080                */
3081                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3082        }
3083        return mnt;
3084}
3085EXPORT_SYMBOL_GPL(kern_mount_data);
3086
3087void kern_unmount(struct vfsmount *mnt)
3088{
3089        /* release long term mount so mount point can be released */
3090        if (!IS_ERR_OR_NULL(mnt)) {
3091                real_mount(mnt)->mnt_ns = NULL;
3092                synchronize_rcu();      /* yecchhh... */
3093                mntput(mnt);
3094        }
3095}
3096EXPORT_SYMBOL(kern_unmount);
3097
3098bool our_mnt(struct vfsmount *mnt)
3099{
3100        return check_mnt(real_mount(mnt));
3101}
3102
3103bool current_chrooted(void)
3104{
3105        /* Does the current process have a non-standard root */
3106        struct path ns_root;
3107        struct path fs_root;
3108        bool chrooted;
3109
3110        /* Find the namespace root */
3111        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3112        ns_root.dentry = ns_root.mnt->mnt_root;
3113        path_get(&ns_root);
3114        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3115                ;
3116
3117        get_fs_root(current->fs, &fs_root);
3118
3119        chrooted = !path_equal(&fs_root, &ns_root);
3120
3121        path_put(&fs_root);
3122        path_put(&ns_root);
3123
3124        return chrooted;
3125}
3126
3127bool fs_fully_visible(struct file_system_type *type)
3128{
3129        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3130        struct mount *mnt;
3131        bool visible = false;
3132
3133        if (unlikely(!ns))
3134                return false;
3135
3136        down_read(&namespace_sem);
3137        list_for_each_entry(mnt, &ns->list, mnt_list) {
3138                struct mount *child;
3139                if (mnt->mnt.mnt_sb->s_type != type)
3140                        continue;
3141
3142                /* This mount is not fully visible if there are any child mounts
3143                 * that cover anything except for empty directories.
3144                 */
3145                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3146                        struct inode *inode = child->mnt_mountpoint->d_inode;
3147                        if (!S_ISDIR(inode->i_mode))
3148                                goto next;
3149                        if (inode->i_nlink > 2)
3150                                goto next;
3151                }
3152                visible = true;
3153                goto found;
3154        next:   ;
3155        }
3156found:
3157        up_read(&namespace_sem);
3158        return visible;
3159}
3160
3161static struct ns_common *mntns_get(struct task_struct *task)
3162{
3163        struct ns_common *ns = NULL;
3164        struct nsproxy *nsproxy;
3165
3166        task_lock(task);
3167        nsproxy = task->nsproxy;
3168        if (nsproxy) {
3169                ns = &nsproxy->mnt_ns->ns;
3170                get_mnt_ns(to_mnt_ns(ns));
3171        }
3172        task_unlock(task);
3173
3174        return ns;
3175}
3176
3177static void mntns_put(struct ns_common *ns)
3178{
3179        put_mnt_ns(to_mnt_ns(ns));
3180}
3181
3182static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3183{
3184        struct fs_struct *fs = current->fs;
3185        struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3186        struct path root;
3187
3188        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3189            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3190            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3191                return -EPERM;
3192
3193        if (fs->users != 1)
3194                return -EINVAL;
3195
3196        get_mnt_ns(mnt_ns);
3197        put_mnt_ns(nsproxy->mnt_ns);
3198        nsproxy->mnt_ns = mnt_ns;
3199
3200        /* Find the root */
3201        root.mnt    = &mnt_ns->root->mnt;
3202        root.dentry = mnt_ns->root->mnt.mnt_root;
3203        path_get(&root);
3204        while(d_mountpoint(root.dentry) && follow_down_one(&root))
3205                ;
3206
3207        /* Update the pwd and root */
3208        set_fs_pwd(fs, &root);
3209        set_fs_root(fs, &root);
3210
3211        path_put(&root);
3212        return 0;
3213}
3214
3215const struct proc_ns_operations mntns_operations = {
3216        .name           = "mnt",
3217        .type           = CLONE_NEWNS,
3218        .get            = mntns_get,
3219        .put            = mntns_put,
3220        .install        = mntns_install,
3221};
3222