linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/mmdebug.h>
   9#include <linux/gfp.h>
  10#include <linux/bug.h>
  11#include <linux/list.h>
  12#include <linux/mmzone.h>
  13#include <linux/rbtree.h>
  14#include <linux/atomic.h>
  15#include <linux/debug_locks.h>
  16#include <linux/mm_types.h>
  17#include <linux/range.h>
  18#include <linux/pfn.h>
  19#include <linux/bit_spinlock.h>
  20#include <linux/shrinker.h>
  21#include <linux/resource.h>
  22#include <linux/page_ext.h>
  23
  24struct mempolicy;
  25struct anon_vma;
  26struct anon_vma_chain;
  27struct file_ra_state;
  28struct user_struct;
  29struct writeback_control;
  30
  31#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  32extern unsigned long max_mapnr;
  33
  34static inline void set_max_mapnr(unsigned long limit)
  35{
  36        max_mapnr = limit;
  37}
  38#else
  39static inline void set_max_mapnr(unsigned long limit) { }
  40#endif
  41
  42extern unsigned long totalram_pages;
  43extern void * high_memory;
  44extern int page_cluster;
  45
  46#ifdef CONFIG_SYSCTL
  47extern int sysctl_legacy_va_layout;
  48#else
  49#define sysctl_legacy_va_layout 0
  50#endif
  51
  52#include <asm/page.h>
  53#include <asm/pgtable.h>
  54#include <asm/processor.h>
  55
  56#ifndef __pa_symbol
  57#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
  58#endif
  59
  60/*
  61 * To prevent common memory management code establishing
  62 * a zero page mapping on a read fault.
  63 * This macro should be defined within <asm/pgtable.h>.
  64 * s390 does this to prevent multiplexing of hardware bits
  65 * related to the physical page in case of virtualization.
  66 */
  67#ifndef mm_forbids_zeropage
  68#define mm_forbids_zeropage(X)  (0)
  69#endif
  70
  71extern unsigned long sysctl_user_reserve_kbytes;
  72extern unsigned long sysctl_admin_reserve_kbytes;
  73
  74extern int sysctl_overcommit_memory;
  75extern int sysctl_overcommit_ratio;
  76extern unsigned long sysctl_overcommit_kbytes;
  77
  78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  79                                    size_t *, loff_t *);
  80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  81                                    size_t *, loff_t *);
  82
  83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  84
  85/* to align the pointer to the (next) page boundary */
  86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  87
  88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  89#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  90
  91/*
  92 * Linux kernel virtual memory manager primitives.
  93 * The idea being to have a "virtual" mm in the same way
  94 * we have a virtual fs - giving a cleaner interface to the
  95 * mm details, and allowing different kinds of memory mappings
  96 * (from shared memory to executable loading to arbitrary
  97 * mmap() functions).
  98 */
  99
 100extern struct kmem_cache *vm_area_cachep;
 101
 102#ifndef CONFIG_MMU
 103extern struct rb_root nommu_region_tree;
 104extern struct rw_semaphore nommu_region_sem;
 105
 106extern unsigned int kobjsize(const void *objp);
 107#endif
 108
 109/*
 110 * vm_flags in vm_area_struct, see mm_types.h.
 111 */
 112#define VM_NONE         0x00000000
 113
 114#define VM_READ         0x00000001      /* currently active flags */
 115#define VM_WRITE        0x00000002
 116#define VM_EXEC         0x00000004
 117#define VM_SHARED       0x00000008
 118
 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 120#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 121#define VM_MAYWRITE     0x00000020
 122#define VM_MAYEXEC      0x00000040
 123#define VM_MAYSHARE     0x00000080
 124
 125#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 126#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 127#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 128
 129#define VM_LOCKED       0x00002000
 130#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 131
 132                                        /* Used by sys_madvise() */
 133#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 134#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 135
 136#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 137#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 138#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 139#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 140#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 141#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
 142#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 143#define VM_ARCH_2       0x02000000
 144#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 145
 146#ifdef CONFIG_MEM_SOFT_DIRTY
 147# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 148#else
 149# define VM_SOFTDIRTY   0
 150#endif
 151
 152#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 153#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 154#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 155#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 156
 157#if defined(CONFIG_X86)
 158# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 159#elif defined(CONFIG_PPC)
 160# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 161#elif defined(CONFIG_PARISC)
 162# define VM_GROWSUP     VM_ARCH_1
 163#elif defined(CONFIG_METAG)
 164# define VM_GROWSUP     VM_ARCH_1
 165#elif defined(CONFIG_IA64)
 166# define VM_GROWSUP     VM_ARCH_1
 167#elif !defined(CONFIG_MMU)
 168# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 169#endif
 170
 171#if defined(CONFIG_X86)
 172/* MPX specific bounds table or bounds directory */
 173# define VM_MPX         VM_ARCH_2
 174#endif
 175
 176#ifndef VM_GROWSUP
 177# define VM_GROWSUP     VM_NONE
 178#endif
 179
 180/* Bits set in the VMA until the stack is in its final location */
 181#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 182
 183#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 185#endif
 186
 187#ifdef CONFIG_STACK_GROWSUP
 188#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 189#else
 190#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 191#endif
 192
 193/*
 194 * Special vmas that are non-mergable, non-mlock()able.
 195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 196 */
 197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 198
 199/* This mask defines which mm->def_flags a process can inherit its parent */
 200#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 201
 202/*
 203 * mapping from the currently active vm_flags protection bits (the
 204 * low four bits) to a page protection mask..
 205 */
 206extern pgprot_t protection_map[16];
 207
 208#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 209#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
 210#define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
 211#define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
 212#define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
 213#define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
 214#define FAULT_FLAG_TRIED        0x40    /* second try */
 215#define FAULT_FLAG_USER         0x80    /* The fault originated in userspace */
 216
 217/*
 218 * vm_fault is filled by the the pagefault handler and passed to the vma's
 219 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 220 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 221 *
 222 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 223 * is used, one may implement ->remap_pages to get nonlinear mapping support.
 224 */
 225struct vm_fault {
 226        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 227        pgoff_t pgoff;                  /* Logical page offset based on vma */
 228        void __user *virtual_address;   /* Faulting virtual address */
 229
 230        struct page *page;              /* ->fault handlers should return a
 231                                         * page here, unless VM_FAULT_NOPAGE
 232                                         * is set (which is also implied by
 233                                         * VM_FAULT_ERROR).
 234                                         */
 235        /* for ->map_pages() only */
 236        pgoff_t max_pgoff;              /* map pages for offset from pgoff till
 237                                         * max_pgoff inclusive */
 238        pte_t *pte;                     /* pte entry associated with ->pgoff */
 239};
 240
 241/*
 242 * These are the virtual MM functions - opening of an area, closing and
 243 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 244 * to the functions called when a no-page or a wp-page exception occurs. 
 245 */
 246struct vm_operations_struct {
 247        void (*open)(struct vm_area_struct * area);
 248        void (*close)(struct vm_area_struct * area);
 249        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 250        void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
 251
 252        /* notification that a previously read-only page is about to become
 253         * writable, if an error is returned it will cause a SIGBUS */
 254        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 255
 256        /* called by access_process_vm when get_user_pages() fails, typically
 257         * for use by special VMAs that can switch between memory and hardware
 258         */
 259        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 260                      void *buf, int len, int write);
 261
 262        /* Called by the /proc/PID/maps code to ask the vma whether it
 263         * has a special name.  Returning non-NULL will also cause this
 264         * vma to be dumped unconditionally. */
 265        const char *(*name)(struct vm_area_struct *vma);
 266
 267#ifdef CONFIG_NUMA
 268        /*
 269         * set_policy() op must add a reference to any non-NULL @new mempolicy
 270         * to hold the policy upon return.  Caller should pass NULL @new to
 271         * remove a policy and fall back to surrounding context--i.e. do not
 272         * install a MPOL_DEFAULT policy, nor the task or system default
 273         * mempolicy.
 274         */
 275        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 276
 277        /*
 278         * get_policy() op must add reference [mpol_get()] to any policy at
 279         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 280         * in mm/mempolicy.c will do this automatically.
 281         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 282         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 283         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 284         * must return NULL--i.e., do not "fallback" to task or system default
 285         * policy.
 286         */
 287        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 288                                        unsigned long addr);
 289#endif
 290        /* called by sys_remap_file_pages() to populate non-linear mapping */
 291        int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
 292                           unsigned long size, pgoff_t pgoff);
 293};
 294
 295struct mmu_gather;
 296struct inode;
 297
 298#define page_private(page)              ((page)->private)
 299#define set_page_private(page, v)       ((page)->private = (v))
 300
 301/* It's valid only if the page is free path or free_list */
 302static inline void set_freepage_migratetype(struct page *page, int migratetype)
 303{
 304        page->index = migratetype;
 305}
 306
 307/* It's valid only if the page is free path or free_list */
 308static inline int get_freepage_migratetype(struct page *page)
 309{
 310        return page->index;
 311}
 312
 313/*
 314 * FIXME: take this include out, include page-flags.h in
 315 * files which need it (119 of them)
 316 */
 317#include <linux/page-flags.h>
 318#include <linux/huge_mm.h>
 319
 320/*
 321 * Methods to modify the page usage count.
 322 *
 323 * What counts for a page usage:
 324 * - cache mapping   (page->mapping)
 325 * - private data    (page->private)
 326 * - page mapped in a task's page tables, each mapping
 327 *   is counted separately
 328 *
 329 * Also, many kernel routines increase the page count before a critical
 330 * routine so they can be sure the page doesn't go away from under them.
 331 */
 332
 333/*
 334 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 335 */
 336static inline int put_page_testzero(struct page *page)
 337{
 338        VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
 339        return atomic_dec_and_test(&page->_count);
 340}
 341
 342/*
 343 * Try to grab a ref unless the page has a refcount of zero, return false if
 344 * that is the case.
 345 * This can be called when MMU is off so it must not access
 346 * any of the virtual mappings.
 347 */
 348static inline int get_page_unless_zero(struct page *page)
 349{
 350        return atomic_inc_not_zero(&page->_count);
 351}
 352
 353/*
 354 * Try to drop a ref unless the page has a refcount of one, return false if
 355 * that is the case.
 356 * This is to make sure that the refcount won't become zero after this drop.
 357 * This can be called when MMU is off so it must not access
 358 * any of the virtual mappings.
 359 */
 360static inline int put_page_unless_one(struct page *page)
 361{
 362        return atomic_add_unless(&page->_count, -1, 1);
 363}
 364
 365extern int page_is_ram(unsigned long pfn);
 366extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
 367
 368/* Support for virtually mapped pages */
 369struct page *vmalloc_to_page(const void *addr);
 370unsigned long vmalloc_to_pfn(const void *addr);
 371
 372/*
 373 * Determine if an address is within the vmalloc range
 374 *
 375 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 376 * is no special casing required.
 377 */
 378static inline int is_vmalloc_addr(const void *x)
 379{
 380#ifdef CONFIG_MMU
 381        unsigned long addr = (unsigned long)x;
 382
 383        return addr >= VMALLOC_START && addr < VMALLOC_END;
 384#else
 385        return 0;
 386#endif
 387}
 388#ifdef CONFIG_MMU
 389extern int is_vmalloc_or_module_addr(const void *x);
 390#else
 391static inline int is_vmalloc_or_module_addr(const void *x)
 392{
 393        return 0;
 394}
 395#endif
 396
 397extern void kvfree(const void *addr);
 398
 399static inline void compound_lock(struct page *page)
 400{
 401#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 402        VM_BUG_ON_PAGE(PageSlab(page), page);
 403        bit_spin_lock(PG_compound_lock, &page->flags);
 404#endif
 405}
 406
 407static inline void compound_unlock(struct page *page)
 408{
 409#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 410        VM_BUG_ON_PAGE(PageSlab(page), page);
 411        bit_spin_unlock(PG_compound_lock, &page->flags);
 412#endif
 413}
 414
 415static inline unsigned long compound_lock_irqsave(struct page *page)
 416{
 417        unsigned long uninitialized_var(flags);
 418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 419        local_irq_save(flags);
 420        compound_lock(page);
 421#endif
 422        return flags;
 423}
 424
 425static inline void compound_unlock_irqrestore(struct page *page,
 426                                              unsigned long flags)
 427{
 428#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 429        compound_unlock(page);
 430        local_irq_restore(flags);
 431#endif
 432}
 433
 434static inline struct page *compound_head_by_tail(struct page *tail)
 435{
 436        struct page *head = tail->first_page;
 437
 438        /*
 439         * page->first_page may be a dangling pointer to an old
 440         * compound page, so recheck that it is still a tail
 441         * page before returning.
 442         */
 443        smp_rmb();
 444        if (likely(PageTail(tail)))
 445                return head;
 446        return tail;
 447}
 448
 449static inline struct page *compound_head(struct page *page)
 450{
 451        if (unlikely(PageTail(page)))
 452                return compound_head_by_tail(page);
 453        return page;
 454}
 455
 456/*
 457 * The atomic page->_mapcount, starts from -1: so that transitions
 458 * both from it and to it can be tracked, using atomic_inc_and_test
 459 * and atomic_add_negative(-1).
 460 */
 461static inline void page_mapcount_reset(struct page *page)
 462{
 463        atomic_set(&(page)->_mapcount, -1);
 464}
 465
 466static inline int page_mapcount(struct page *page)
 467{
 468        return atomic_read(&(page)->_mapcount) + 1;
 469}
 470
 471static inline int page_count(struct page *page)
 472{
 473        return atomic_read(&compound_head(page)->_count);
 474}
 475
 476#ifdef CONFIG_HUGETLB_PAGE
 477extern int PageHeadHuge(struct page *page_head);
 478#else /* CONFIG_HUGETLB_PAGE */
 479static inline int PageHeadHuge(struct page *page_head)
 480{
 481        return 0;
 482}
 483#endif /* CONFIG_HUGETLB_PAGE */
 484
 485static inline bool __compound_tail_refcounted(struct page *page)
 486{
 487        return !PageSlab(page) && !PageHeadHuge(page);
 488}
 489
 490/*
 491 * This takes a head page as parameter and tells if the
 492 * tail page reference counting can be skipped.
 493 *
 494 * For this to be safe, PageSlab and PageHeadHuge must remain true on
 495 * any given page where they return true here, until all tail pins
 496 * have been released.
 497 */
 498static inline bool compound_tail_refcounted(struct page *page)
 499{
 500        VM_BUG_ON_PAGE(!PageHead(page), page);
 501        return __compound_tail_refcounted(page);
 502}
 503
 504static inline void get_huge_page_tail(struct page *page)
 505{
 506        /*
 507         * __split_huge_page_refcount() cannot run from under us.
 508         */
 509        VM_BUG_ON_PAGE(!PageTail(page), page);
 510        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 511        VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 512        if (compound_tail_refcounted(page->first_page))
 513                atomic_inc(&page->_mapcount);
 514}
 515
 516extern bool __get_page_tail(struct page *page);
 517
 518static inline void get_page(struct page *page)
 519{
 520        if (unlikely(PageTail(page)))
 521                if (likely(__get_page_tail(page)))
 522                        return;
 523        /*
 524         * Getting a normal page or the head of a compound page
 525         * requires to already have an elevated page->_count.
 526         */
 527        VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
 528        atomic_inc(&page->_count);
 529}
 530
 531static inline struct page *virt_to_head_page(const void *x)
 532{
 533        struct page *page = virt_to_page(x);
 534        return compound_head(page);
 535}
 536
 537/*
 538 * Setup the page count before being freed into the page allocator for
 539 * the first time (boot or memory hotplug)
 540 */
 541static inline void init_page_count(struct page *page)
 542{
 543        atomic_set(&page->_count, 1);
 544}
 545
 546/*
 547 * PageBuddy() indicate that the page is free and in the buddy system
 548 * (see mm/page_alloc.c).
 549 *
 550 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 551 * -2 so that an underflow of the page_mapcount() won't be mistaken
 552 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 553 * efficiently by most CPU architectures.
 554 */
 555#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
 556
 557static inline int PageBuddy(struct page *page)
 558{
 559        return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
 560}
 561
 562static inline void __SetPageBuddy(struct page *page)
 563{
 564        VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
 565        atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
 566}
 567
 568static inline void __ClearPageBuddy(struct page *page)
 569{
 570        VM_BUG_ON_PAGE(!PageBuddy(page), page);
 571        atomic_set(&page->_mapcount, -1);
 572}
 573
 574#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
 575
 576static inline int PageBalloon(struct page *page)
 577{
 578        return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
 579}
 580
 581static inline void __SetPageBalloon(struct page *page)
 582{
 583        VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
 584        atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
 585}
 586
 587static inline void __ClearPageBalloon(struct page *page)
 588{
 589        VM_BUG_ON_PAGE(!PageBalloon(page), page);
 590        atomic_set(&page->_mapcount, -1);
 591}
 592
 593void put_page(struct page *page);
 594void put_pages_list(struct list_head *pages);
 595
 596void split_page(struct page *page, unsigned int order);
 597int split_free_page(struct page *page);
 598
 599/*
 600 * Compound pages have a destructor function.  Provide a
 601 * prototype for that function and accessor functions.
 602 * These are _only_ valid on the head of a PG_compound page.
 603 */
 604typedef void compound_page_dtor(struct page *);
 605
 606static inline void set_compound_page_dtor(struct page *page,
 607                                                compound_page_dtor *dtor)
 608{
 609        page[1].lru.next = (void *)dtor;
 610}
 611
 612static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 613{
 614        return (compound_page_dtor *)page[1].lru.next;
 615}
 616
 617static inline int compound_order(struct page *page)
 618{
 619        if (!PageHead(page))
 620                return 0;
 621        return (unsigned long)page[1].lru.prev;
 622}
 623
 624static inline void set_compound_order(struct page *page, unsigned long order)
 625{
 626        page[1].lru.prev = (void *)order;
 627}
 628
 629#ifdef CONFIG_MMU
 630/*
 631 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 632 * servicing faults for write access.  In the normal case, do always want
 633 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 634 * that do not have writing enabled, when used by access_process_vm.
 635 */
 636static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 637{
 638        if (likely(vma->vm_flags & VM_WRITE))
 639                pte = pte_mkwrite(pte);
 640        return pte;
 641}
 642
 643void do_set_pte(struct vm_area_struct *vma, unsigned long address,
 644                struct page *page, pte_t *pte, bool write, bool anon);
 645#endif
 646
 647/*
 648 * Multiple processes may "see" the same page. E.g. for untouched
 649 * mappings of /dev/null, all processes see the same page full of
 650 * zeroes, and text pages of executables and shared libraries have
 651 * only one copy in memory, at most, normally.
 652 *
 653 * For the non-reserved pages, page_count(page) denotes a reference count.
 654 *   page_count() == 0 means the page is free. page->lru is then used for
 655 *   freelist management in the buddy allocator.
 656 *   page_count() > 0  means the page has been allocated.
 657 *
 658 * Pages are allocated by the slab allocator in order to provide memory
 659 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 660 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 661 * unless a particular usage is carefully commented. (the responsibility of
 662 * freeing the kmalloc memory is the caller's, of course).
 663 *
 664 * A page may be used by anyone else who does a __get_free_page().
 665 * In this case, page_count still tracks the references, and should only
 666 * be used through the normal accessor functions. The top bits of page->flags
 667 * and page->virtual store page management information, but all other fields
 668 * are unused and could be used privately, carefully. The management of this
 669 * page is the responsibility of the one who allocated it, and those who have
 670 * subsequently been given references to it.
 671 *
 672 * The other pages (we may call them "pagecache pages") are completely
 673 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 674 * The following discussion applies only to them.
 675 *
 676 * A pagecache page contains an opaque `private' member, which belongs to the
 677 * page's address_space. Usually, this is the address of a circular list of
 678 * the page's disk buffers. PG_private must be set to tell the VM to call
 679 * into the filesystem to release these pages.
 680 *
 681 * A page may belong to an inode's memory mapping. In this case, page->mapping
 682 * is the pointer to the inode, and page->index is the file offset of the page,
 683 * in units of PAGE_CACHE_SIZE.
 684 *
 685 * If pagecache pages are not associated with an inode, they are said to be
 686 * anonymous pages. These may become associated with the swapcache, and in that
 687 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 688 *
 689 * In either case (swapcache or inode backed), the pagecache itself holds one
 690 * reference to the page. Setting PG_private should also increment the
 691 * refcount. The each user mapping also has a reference to the page.
 692 *
 693 * The pagecache pages are stored in a per-mapping radix tree, which is
 694 * rooted at mapping->page_tree, and indexed by offset.
 695 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 696 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 697 *
 698 * All pagecache pages may be subject to I/O:
 699 * - inode pages may need to be read from disk,
 700 * - inode pages which have been modified and are MAP_SHARED may need
 701 *   to be written back to the inode on disk,
 702 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 703 *   modified may need to be swapped out to swap space and (later) to be read
 704 *   back into memory.
 705 */
 706
 707/*
 708 * The zone field is never updated after free_area_init_core()
 709 * sets it, so none of the operations on it need to be atomic.
 710 */
 711
 712/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 713#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 714#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 715#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 716#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 717
 718/*
 719 * Define the bit shifts to access each section.  For non-existent
 720 * sections we define the shift as 0; that plus a 0 mask ensures
 721 * the compiler will optimise away reference to them.
 722 */
 723#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 724#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 725#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 726#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 727
 728/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 729#ifdef NODE_NOT_IN_PAGE_FLAGS
 730#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 731#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 732                                                SECTIONS_PGOFF : ZONES_PGOFF)
 733#else
 734#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 735#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 736                                                NODES_PGOFF : ZONES_PGOFF)
 737#endif
 738
 739#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 740
 741#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 742#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 743#endif
 744
 745#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 746#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 747#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 748#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 749#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 750
 751static inline enum zone_type page_zonenum(const struct page *page)
 752{
 753        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 754}
 755
 756#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 757#define SECTION_IN_PAGE_FLAGS
 758#endif
 759
 760/*
 761 * The identification function is mainly used by the buddy allocator for
 762 * determining if two pages could be buddies. We are not really identifying
 763 * the zone since we could be using the section number id if we do not have
 764 * node id available in page flags.
 765 * We only guarantee that it will return the same value for two combinable
 766 * pages in a zone.
 767 */
 768static inline int page_zone_id(struct page *page)
 769{
 770        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 771}
 772
 773static inline int zone_to_nid(struct zone *zone)
 774{
 775#ifdef CONFIG_NUMA
 776        return zone->node;
 777#else
 778        return 0;
 779#endif
 780}
 781
 782#ifdef NODE_NOT_IN_PAGE_FLAGS
 783extern int page_to_nid(const struct page *page);
 784#else
 785static inline int page_to_nid(const struct page *page)
 786{
 787        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 788}
 789#endif
 790
 791#ifdef CONFIG_NUMA_BALANCING
 792static inline int cpu_pid_to_cpupid(int cpu, int pid)
 793{
 794        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 795}
 796
 797static inline int cpupid_to_pid(int cpupid)
 798{
 799        return cpupid & LAST__PID_MASK;
 800}
 801
 802static inline int cpupid_to_cpu(int cpupid)
 803{
 804        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 805}
 806
 807static inline int cpupid_to_nid(int cpupid)
 808{
 809        return cpu_to_node(cpupid_to_cpu(cpupid));
 810}
 811
 812static inline bool cpupid_pid_unset(int cpupid)
 813{
 814        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 815}
 816
 817static inline bool cpupid_cpu_unset(int cpupid)
 818{
 819        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 820}
 821
 822static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 823{
 824        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 825}
 826
 827#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 828#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 829static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 830{
 831        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 832}
 833
 834static inline int page_cpupid_last(struct page *page)
 835{
 836        return page->_last_cpupid;
 837}
 838static inline void page_cpupid_reset_last(struct page *page)
 839{
 840        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 841}
 842#else
 843static inline int page_cpupid_last(struct page *page)
 844{
 845        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 846}
 847
 848extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 849
 850static inline void page_cpupid_reset_last(struct page *page)
 851{
 852        int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
 853
 854        page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
 855        page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
 856}
 857#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 858#else /* !CONFIG_NUMA_BALANCING */
 859static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 860{
 861        return page_to_nid(page); /* XXX */
 862}
 863
 864static inline int page_cpupid_last(struct page *page)
 865{
 866        return page_to_nid(page); /* XXX */
 867}
 868
 869static inline int cpupid_to_nid(int cpupid)
 870{
 871        return -1;
 872}
 873
 874static inline int cpupid_to_pid(int cpupid)
 875{
 876        return -1;
 877}
 878
 879static inline int cpupid_to_cpu(int cpupid)
 880{
 881        return -1;
 882}
 883
 884static inline int cpu_pid_to_cpupid(int nid, int pid)
 885{
 886        return -1;
 887}
 888
 889static inline bool cpupid_pid_unset(int cpupid)
 890{
 891        return 1;
 892}
 893
 894static inline void page_cpupid_reset_last(struct page *page)
 895{
 896}
 897
 898static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 899{
 900        return false;
 901}
 902#endif /* CONFIG_NUMA_BALANCING */
 903
 904static inline struct zone *page_zone(const struct page *page)
 905{
 906        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 907}
 908
 909#ifdef SECTION_IN_PAGE_FLAGS
 910static inline void set_page_section(struct page *page, unsigned long section)
 911{
 912        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 913        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 914}
 915
 916static inline unsigned long page_to_section(const struct page *page)
 917{
 918        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 919}
 920#endif
 921
 922static inline void set_page_zone(struct page *page, enum zone_type zone)
 923{
 924        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 925        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 926}
 927
 928static inline void set_page_node(struct page *page, unsigned long node)
 929{
 930        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 931        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 932}
 933
 934static inline void set_page_links(struct page *page, enum zone_type zone,
 935        unsigned long node, unsigned long pfn)
 936{
 937        set_page_zone(page, zone);
 938        set_page_node(page, node);
 939#ifdef SECTION_IN_PAGE_FLAGS
 940        set_page_section(page, pfn_to_section_nr(pfn));
 941#endif
 942}
 943
 944/*
 945 * Some inline functions in vmstat.h depend on page_zone()
 946 */
 947#include <linux/vmstat.h>
 948
 949static __always_inline void *lowmem_page_address(const struct page *page)
 950{
 951        return __va(PFN_PHYS(page_to_pfn(page)));
 952}
 953
 954#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 955#define HASHED_PAGE_VIRTUAL
 956#endif
 957
 958#if defined(WANT_PAGE_VIRTUAL)
 959static inline void *page_address(const struct page *page)
 960{
 961        return page->virtual;
 962}
 963static inline void set_page_address(struct page *page, void *address)
 964{
 965        page->virtual = address;
 966}
 967#define page_address_init()  do { } while(0)
 968#endif
 969
 970#if defined(HASHED_PAGE_VIRTUAL)
 971void *page_address(const struct page *page);
 972void set_page_address(struct page *page, void *virtual);
 973void page_address_init(void);
 974#endif
 975
 976#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 977#define page_address(page) lowmem_page_address(page)
 978#define set_page_address(page, address)  do { } while(0)
 979#define page_address_init()  do { } while(0)
 980#endif
 981
 982/*
 983 * On an anonymous page mapped into a user virtual memory area,
 984 * page->mapping points to its anon_vma, not to a struct address_space;
 985 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 986 *
 987 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 988 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 989 * and then page->mapping points, not to an anon_vma, but to a private
 990 * structure which KSM associates with that merged page.  See ksm.h.
 991 *
 992 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 993 *
 994 * Please note that, confusingly, "page_mapping" refers to the inode
 995 * address_space which maps the page from disk; whereas "page_mapped"
 996 * refers to user virtual address space into which the page is mapped.
 997 */
 998#define PAGE_MAPPING_ANON       1
 999#define PAGE_MAPPING_KSM        2
1000#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1001
1002extern struct address_space *page_mapping(struct page *page);
1003
1004/* Neutral page->mapping pointer to address_space or anon_vma or other */
1005static inline void *page_rmapping(struct page *page)
1006{
1007        return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1008}
1009
1010extern struct address_space *__page_file_mapping(struct page *);
1011
1012static inline
1013struct address_space *page_file_mapping(struct page *page)
1014{
1015        if (unlikely(PageSwapCache(page)))
1016                return __page_file_mapping(page);
1017
1018        return page->mapping;
1019}
1020
1021static inline int PageAnon(struct page *page)
1022{
1023        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1024}
1025
1026/*
1027 * Return the pagecache index of the passed page.  Regular pagecache pages
1028 * use ->index whereas swapcache pages use ->private
1029 */
1030static inline pgoff_t page_index(struct page *page)
1031{
1032        if (unlikely(PageSwapCache(page)))
1033                return page_private(page);
1034        return page->index;
1035}
1036
1037extern pgoff_t __page_file_index(struct page *page);
1038
1039/*
1040 * Return the file index of the page. Regular pagecache pages use ->index
1041 * whereas swapcache pages use swp_offset(->private)
1042 */
1043static inline pgoff_t page_file_index(struct page *page)
1044{
1045        if (unlikely(PageSwapCache(page)))
1046                return __page_file_index(page);
1047
1048        return page->index;
1049}
1050
1051/*
1052 * Return true if this page is mapped into pagetables.
1053 */
1054static inline int page_mapped(struct page *page)
1055{
1056        return atomic_read(&(page)->_mapcount) >= 0;
1057}
1058
1059/*
1060 * Different kinds of faults, as returned by handle_mm_fault().
1061 * Used to decide whether a process gets delivered SIGBUS or
1062 * just gets major/minor fault counters bumped up.
1063 */
1064
1065#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1066
1067#define VM_FAULT_OOM    0x0001
1068#define VM_FAULT_SIGBUS 0x0002
1069#define VM_FAULT_MAJOR  0x0004
1070#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1071#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1072#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1073#define VM_FAULT_SIGSEGV 0x0040
1074
1075#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1076#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1077#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1078#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1079
1080#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1081
1082#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1083                         VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1084                         VM_FAULT_FALLBACK)
1085
1086/* Encode hstate index for a hwpoisoned large page */
1087#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1088#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1089
1090/*
1091 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1092 */
1093extern void pagefault_out_of_memory(void);
1094
1095#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1096
1097/*
1098 * Flags passed to show_mem() and show_free_areas() to suppress output in
1099 * various contexts.
1100 */
1101#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1102
1103extern void show_free_areas(unsigned int flags);
1104extern bool skip_free_areas_node(unsigned int flags, int nid);
1105
1106int shmem_zero_setup(struct vm_area_struct *);
1107#ifdef CONFIG_SHMEM
1108bool shmem_mapping(struct address_space *mapping);
1109#else
1110static inline bool shmem_mapping(struct address_space *mapping)
1111{
1112        return false;
1113}
1114#endif
1115
1116extern int can_do_mlock(void);
1117extern int user_shm_lock(size_t, struct user_struct *);
1118extern void user_shm_unlock(size_t, struct user_struct *);
1119
1120/*
1121 * Parameter block passed down to zap_pte_range in exceptional cases.
1122 */
1123struct zap_details {
1124        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
1125        struct address_space *check_mapping;    /* Check page->mapping if set */
1126        pgoff_t first_index;                    /* Lowest page->index to unmap */
1127        pgoff_t last_index;                     /* Highest page->index to unmap */
1128};
1129
1130struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1131                pte_t pte);
1132
1133int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1134                unsigned long size);
1135void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1136                unsigned long size, struct zap_details *);
1137void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1138                unsigned long start, unsigned long end);
1139
1140/**
1141 * mm_walk - callbacks for walk_page_range
1142 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1143 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1144 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1145 *             this handler is required to be able to handle
1146 *             pmd_trans_huge() pmds.  They may simply choose to
1147 *             split_huge_page() instead of handling it explicitly.
1148 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1149 * @pte_hole: if set, called for each hole at all levels
1150 * @hugetlb_entry: if set, called for each hugetlb entry
1151 *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1152 *                            is used.
1153 *
1154 * (see walk_page_range for more details)
1155 */
1156struct mm_walk {
1157        int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1158                         unsigned long next, struct mm_walk *walk);
1159        int (*pud_entry)(pud_t *pud, unsigned long addr,
1160                         unsigned long next, struct mm_walk *walk);
1161        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1162                         unsigned long next, struct mm_walk *walk);
1163        int (*pte_entry)(pte_t *pte, unsigned long addr,
1164                         unsigned long next, struct mm_walk *walk);
1165        int (*pte_hole)(unsigned long addr, unsigned long next,
1166                        struct mm_walk *walk);
1167        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1168                             unsigned long addr, unsigned long next,
1169                             struct mm_walk *walk);
1170        struct mm_struct *mm;
1171        void *private;
1172};
1173
1174int walk_page_range(unsigned long addr, unsigned long end,
1175                struct mm_walk *walk);
1176void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1177                unsigned long end, unsigned long floor, unsigned long ceiling);
1178int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1179                        struct vm_area_struct *vma);
1180void unmap_mapping_range(struct address_space *mapping,
1181                loff_t const holebegin, loff_t const holelen, int even_cows);
1182int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1183        unsigned long *pfn);
1184int follow_phys(struct vm_area_struct *vma, unsigned long address,
1185                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1186int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1187                        void *buf, int len, int write);
1188
1189static inline void unmap_shared_mapping_range(struct address_space *mapping,
1190                loff_t const holebegin, loff_t const holelen)
1191{
1192        unmap_mapping_range(mapping, holebegin, holelen, 0);
1193}
1194
1195extern void truncate_pagecache(struct inode *inode, loff_t new);
1196extern void truncate_setsize(struct inode *inode, loff_t newsize);
1197void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1198void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1199int truncate_inode_page(struct address_space *mapping, struct page *page);
1200int generic_error_remove_page(struct address_space *mapping, struct page *page);
1201int invalidate_inode_page(struct page *page);
1202
1203#ifdef CONFIG_MMU
1204extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1205                        unsigned long address, unsigned int flags);
1206extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1207                            unsigned long address, unsigned int fault_flags);
1208#else
1209static inline int handle_mm_fault(struct mm_struct *mm,
1210                        struct vm_area_struct *vma, unsigned long address,
1211                        unsigned int flags)
1212{
1213        /* should never happen if there's no MMU */
1214        BUG();
1215        return VM_FAULT_SIGBUS;
1216}
1217static inline int fixup_user_fault(struct task_struct *tsk,
1218                struct mm_struct *mm, unsigned long address,
1219                unsigned int fault_flags)
1220{
1221        /* should never happen if there's no MMU */
1222        BUG();
1223        return -EFAULT;
1224}
1225#endif
1226
1227extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1228extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1229                void *buf, int len, int write);
1230
1231long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1232                      unsigned long start, unsigned long nr_pages,
1233                      unsigned int foll_flags, struct page **pages,
1234                      struct vm_area_struct **vmas, int *nonblocking);
1235long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1236                    unsigned long start, unsigned long nr_pages,
1237                    int write, int force, struct page **pages,
1238                    struct vm_area_struct **vmas);
1239int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1240                        struct page **pages);
1241struct kvec;
1242int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1243                        struct page **pages);
1244int get_kernel_page(unsigned long start, int write, struct page **pages);
1245struct page *get_dump_page(unsigned long addr);
1246
1247extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1248extern void do_invalidatepage(struct page *page, unsigned int offset,
1249                              unsigned int length);
1250
1251int __set_page_dirty_nobuffers(struct page *page);
1252int __set_page_dirty_no_writeback(struct page *page);
1253int redirty_page_for_writepage(struct writeback_control *wbc,
1254                                struct page *page);
1255void account_page_dirtied(struct page *page, struct address_space *mapping);
1256int set_page_dirty(struct page *page);
1257int set_page_dirty_lock(struct page *page);
1258int clear_page_dirty_for_io(struct page *page);
1259int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1260
1261/* Is the vma a continuation of the stack vma above it? */
1262static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1263{
1264        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1265}
1266
1267static inline int stack_guard_page_start(struct vm_area_struct *vma,
1268                                             unsigned long addr)
1269{
1270        return (vma->vm_flags & VM_GROWSDOWN) &&
1271                (vma->vm_start == addr) &&
1272                !vma_growsdown(vma->vm_prev, addr);
1273}
1274
1275/* Is the vma a continuation of the stack vma below it? */
1276static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1277{
1278        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1279}
1280
1281static inline int stack_guard_page_end(struct vm_area_struct *vma,
1282                                           unsigned long addr)
1283{
1284        return (vma->vm_flags & VM_GROWSUP) &&
1285                (vma->vm_end == addr) &&
1286                !vma_growsup(vma->vm_next, addr);
1287}
1288
1289extern struct task_struct *task_of_stack(struct task_struct *task,
1290                                struct vm_area_struct *vma, bool in_group);
1291
1292extern unsigned long move_page_tables(struct vm_area_struct *vma,
1293                unsigned long old_addr, struct vm_area_struct *new_vma,
1294                unsigned long new_addr, unsigned long len,
1295                bool need_rmap_locks);
1296extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1297                              unsigned long end, pgprot_t newprot,
1298                              int dirty_accountable, int prot_numa);
1299extern int mprotect_fixup(struct vm_area_struct *vma,
1300                          struct vm_area_struct **pprev, unsigned long start,
1301                          unsigned long end, unsigned long newflags);
1302
1303/*
1304 * doesn't attempt to fault and will return short.
1305 */
1306int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1307                          struct page **pages);
1308/*
1309 * per-process(per-mm_struct) statistics.
1310 */
1311static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1312{
1313        long val = atomic_long_read(&mm->rss_stat.count[member]);
1314
1315#ifdef SPLIT_RSS_COUNTING
1316        /*
1317         * counter is updated in asynchronous manner and may go to minus.
1318         * But it's never be expected number for users.
1319         */
1320        if (val < 0)
1321                val = 0;
1322#endif
1323        return (unsigned long)val;
1324}
1325
1326static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1327{
1328        atomic_long_add(value, &mm->rss_stat.count[member]);
1329}
1330
1331static inline void inc_mm_counter(struct mm_struct *mm, int member)
1332{
1333        atomic_long_inc(&mm->rss_stat.count[member]);
1334}
1335
1336static inline void dec_mm_counter(struct mm_struct *mm, int member)
1337{
1338        atomic_long_dec(&mm->rss_stat.count[member]);
1339}
1340
1341static inline unsigned long get_mm_rss(struct mm_struct *mm)
1342{
1343        return get_mm_counter(mm, MM_FILEPAGES) +
1344                get_mm_counter(mm, MM_ANONPAGES);
1345}
1346
1347static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1348{
1349        return max(mm->hiwater_rss, get_mm_rss(mm));
1350}
1351
1352static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1353{
1354        return max(mm->hiwater_vm, mm->total_vm);
1355}
1356
1357static inline void update_hiwater_rss(struct mm_struct *mm)
1358{
1359        unsigned long _rss = get_mm_rss(mm);
1360
1361        if ((mm)->hiwater_rss < _rss)
1362                (mm)->hiwater_rss = _rss;
1363}
1364
1365static inline void update_hiwater_vm(struct mm_struct *mm)
1366{
1367        if (mm->hiwater_vm < mm->total_vm)
1368                mm->hiwater_vm = mm->total_vm;
1369}
1370
1371static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1372                                         struct mm_struct *mm)
1373{
1374        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1375
1376        if (*maxrss < hiwater_rss)
1377                *maxrss = hiwater_rss;
1378}
1379
1380#if defined(SPLIT_RSS_COUNTING)
1381void sync_mm_rss(struct mm_struct *mm);
1382#else
1383static inline void sync_mm_rss(struct mm_struct *mm)
1384{
1385}
1386#endif
1387
1388int vma_wants_writenotify(struct vm_area_struct *vma);
1389
1390extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1391                               spinlock_t **ptl);
1392static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393                                    spinlock_t **ptl)
1394{
1395        pte_t *ptep;
1396        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1397        return ptep;
1398}
1399
1400#ifdef __PAGETABLE_PUD_FOLDED
1401static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1402                                                unsigned long address)
1403{
1404        return 0;
1405}
1406#else
1407int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1408#endif
1409
1410#ifdef __PAGETABLE_PMD_FOLDED
1411static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1412                                                unsigned long address)
1413{
1414        return 0;
1415}
1416#else
1417int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1418#endif
1419
1420int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1421                pmd_t *pmd, unsigned long address);
1422int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1423
1424/*
1425 * The following ifdef needed to get the 4level-fixup.h header to work.
1426 * Remove it when 4level-fixup.h has been removed.
1427 */
1428#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1429static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1430{
1431        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1432                NULL: pud_offset(pgd, address);
1433}
1434
1435static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1436{
1437        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1438                NULL: pmd_offset(pud, address);
1439}
1440#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1441
1442#if USE_SPLIT_PTE_PTLOCKS
1443#if ALLOC_SPLIT_PTLOCKS
1444void __init ptlock_cache_init(void);
1445extern bool ptlock_alloc(struct page *page);
1446extern void ptlock_free(struct page *page);
1447
1448static inline spinlock_t *ptlock_ptr(struct page *page)
1449{
1450        return page->ptl;
1451}
1452#else /* ALLOC_SPLIT_PTLOCKS */
1453static inline void ptlock_cache_init(void)
1454{
1455}
1456
1457static inline bool ptlock_alloc(struct page *page)
1458{
1459        return true;
1460}
1461
1462static inline void ptlock_free(struct page *page)
1463{
1464}
1465
1466static inline spinlock_t *ptlock_ptr(struct page *page)
1467{
1468        return &page->ptl;
1469}
1470#endif /* ALLOC_SPLIT_PTLOCKS */
1471
1472static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1473{
1474        return ptlock_ptr(pmd_page(*pmd));
1475}
1476
1477static inline bool ptlock_init(struct page *page)
1478{
1479        /*
1480         * prep_new_page() initialize page->private (and therefore page->ptl)
1481         * with 0. Make sure nobody took it in use in between.
1482         *
1483         * It can happen if arch try to use slab for page table allocation:
1484         * slab code uses page->slab_cache and page->first_page (for tail
1485         * pages), which share storage with page->ptl.
1486         */
1487        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1488        if (!ptlock_alloc(page))
1489                return false;
1490        spin_lock_init(ptlock_ptr(page));
1491        return true;
1492}
1493
1494/* Reset page->mapping so free_pages_check won't complain. */
1495static inline void pte_lock_deinit(struct page *page)
1496{
1497        page->mapping = NULL;
1498        ptlock_free(page);
1499}
1500
1501#else   /* !USE_SPLIT_PTE_PTLOCKS */
1502/*
1503 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1504 */
1505static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1506{
1507        return &mm->page_table_lock;
1508}
1509static inline void ptlock_cache_init(void) {}
1510static inline bool ptlock_init(struct page *page) { return true; }
1511static inline void pte_lock_deinit(struct page *page) {}
1512#endif /* USE_SPLIT_PTE_PTLOCKS */
1513
1514static inline void pgtable_init(void)
1515{
1516        ptlock_cache_init();
1517        pgtable_cache_init();
1518}
1519
1520static inline bool pgtable_page_ctor(struct page *page)
1521{
1522        inc_zone_page_state(page, NR_PAGETABLE);
1523        return ptlock_init(page);
1524}
1525
1526static inline void pgtable_page_dtor(struct page *page)
1527{
1528        pte_lock_deinit(page);
1529        dec_zone_page_state(page, NR_PAGETABLE);
1530}
1531
1532#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1533({                                                      \
1534        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1535        pte_t *__pte = pte_offset_map(pmd, address);    \
1536        *(ptlp) = __ptl;                                \
1537        spin_lock(__ptl);                               \
1538        __pte;                                          \
1539})
1540
1541#define pte_unmap_unlock(pte, ptl)      do {            \
1542        spin_unlock(ptl);                               \
1543        pte_unmap(pte);                                 \
1544} while (0)
1545
1546#define pte_alloc_map(mm, vma, pmd, address)                            \
1547        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1548                                                        pmd, address))? \
1549         NULL: pte_offset_map(pmd, address))
1550
1551#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1552        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1553                                                        pmd, address))? \
1554                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1555
1556#define pte_alloc_kernel(pmd, address)                  \
1557        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1558                NULL: pte_offset_kernel(pmd, address))
1559
1560#if USE_SPLIT_PMD_PTLOCKS
1561
1562static struct page *pmd_to_page(pmd_t *pmd)
1563{
1564        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1565        return virt_to_page((void *)((unsigned long) pmd & mask));
1566}
1567
1568static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1569{
1570        return ptlock_ptr(pmd_to_page(pmd));
1571}
1572
1573static inline bool pgtable_pmd_page_ctor(struct page *page)
1574{
1575#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1576        page->pmd_huge_pte = NULL;
1577#endif
1578        return ptlock_init(page);
1579}
1580
1581static inline void pgtable_pmd_page_dtor(struct page *page)
1582{
1583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1584        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1585#endif
1586        ptlock_free(page);
1587}
1588
1589#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1590
1591#else
1592
1593static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1594{
1595        return &mm->page_table_lock;
1596}
1597
1598static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1599static inline void pgtable_pmd_page_dtor(struct page *page) {}
1600
1601#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1602
1603#endif
1604
1605static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1606{
1607        spinlock_t *ptl = pmd_lockptr(mm, pmd);
1608        spin_lock(ptl);
1609        return ptl;
1610}
1611
1612extern void free_area_init(unsigned long * zones_size);
1613extern void free_area_init_node(int nid, unsigned long * zones_size,
1614                unsigned long zone_start_pfn, unsigned long *zholes_size);
1615extern void free_initmem(void);
1616
1617/*
1618 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1619 * into the buddy system. The freed pages will be poisoned with pattern
1620 * "poison" if it's within range [0, UCHAR_MAX].
1621 * Return pages freed into the buddy system.
1622 */
1623extern unsigned long free_reserved_area(void *start, void *end,
1624                                        int poison, char *s);
1625
1626#ifdef  CONFIG_HIGHMEM
1627/*
1628 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1629 * and totalram_pages.
1630 */
1631extern void free_highmem_page(struct page *page);
1632#endif
1633
1634extern void adjust_managed_page_count(struct page *page, long count);
1635extern void mem_init_print_info(const char *str);
1636
1637/* Free the reserved page into the buddy system, so it gets managed. */
1638static inline void __free_reserved_page(struct page *page)
1639{
1640        ClearPageReserved(page);
1641        init_page_count(page);
1642        __free_page(page);
1643}
1644
1645static inline void free_reserved_page(struct page *page)
1646{
1647        __free_reserved_page(page);
1648        adjust_managed_page_count(page, 1);
1649}
1650
1651static inline void mark_page_reserved(struct page *page)
1652{
1653        SetPageReserved(page);
1654        adjust_managed_page_count(page, -1);
1655}
1656
1657/*
1658 * Default method to free all the __init memory into the buddy system.
1659 * The freed pages will be poisoned with pattern "poison" if it's within
1660 * range [0, UCHAR_MAX].
1661 * Return pages freed into the buddy system.
1662 */
1663static inline unsigned long free_initmem_default(int poison)
1664{
1665        extern char __init_begin[], __init_end[];
1666
1667        return free_reserved_area(&__init_begin, &__init_end,
1668                                  poison, "unused kernel");
1669}
1670
1671static inline unsigned long get_num_physpages(void)
1672{
1673        int nid;
1674        unsigned long phys_pages = 0;
1675
1676        for_each_online_node(nid)
1677                phys_pages += node_present_pages(nid);
1678
1679        return phys_pages;
1680}
1681
1682#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1683/*
1684 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1685 * zones, allocate the backing mem_map and account for memory holes in a more
1686 * architecture independent manner. This is a substitute for creating the
1687 * zone_sizes[] and zholes_size[] arrays and passing them to
1688 * free_area_init_node()
1689 *
1690 * An architecture is expected to register range of page frames backed by
1691 * physical memory with memblock_add[_node]() before calling
1692 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1693 * usage, an architecture is expected to do something like
1694 *
1695 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1696 *                                                       max_highmem_pfn};
1697 * for_each_valid_physical_page_range()
1698 *      memblock_add_node(base, size, nid)
1699 * free_area_init_nodes(max_zone_pfns);
1700 *
1701 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1702 * registered physical page range.  Similarly
1703 * sparse_memory_present_with_active_regions() calls memory_present() for
1704 * each range when SPARSEMEM is enabled.
1705 *
1706 * See mm/page_alloc.c for more information on each function exposed by
1707 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1708 */
1709extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1710unsigned long node_map_pfn_alignment(void);
1711unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1712                                                unsigned long end_pfn);
1713extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1714                                                unsigned long end_pfn);
1715extern void get_pfn_range_for_nid(unsigned int nid,
1716                        unsigned long *start_pfn, unsigned long *end_pfn);
1717extern unsigned long find_min_pfn_with_active_regions(void);
1718extern void free_bootmem_with_active_regions(int nid,
1719                                                unsigned long max_low_pfn);
1720extern void sparse_memory_present_with_active_regions(int nid);
1721
1722#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1723
1724#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1725    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1726static inline int __early_pfn_to_nid(unsigned long pfn)
1727{
1728        return 0;
1729}
1730#else
1731/* please see mm/page_alloc.c */
1732extern int __meminit early_pfn_to_nid(unsigned long pfn);
1733/* there is a per-arch backend function. */
1734extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1735#endif
1736
1737extern void set_dma_reserve(unsigned long new_dma_reserve);
1738extern void memmap_init_zone(unsigned long, int, unsigned long,
1739                                unsigned long, enum memmap_context);
1740extern void setup_per_zone_wmarks(void);
1741extern int __meminit init_per_zone_wmark_min(void);
1742extern void mem_init(void);
1743extern void __init mmap_init(void);
1744extern void show_mem(unsigned int flags);
1745extern void si_meminfo(struct sysinfo * val);
1746extern void si_meminfo_node(struct sysinfo *val, int nid);
1747
1748extern __printf(3, 4)
1749void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1750
1751extern void setup_per_cpu_pageset(void);
1752
1753extern void zone_pcp_update(struct zone *zone);
1754extern void zone_pcp_reset(struct zone *zone);
1755
1756/* page_alloc.c */
1757extern int min_free_kbytes;
1758
1759/* nommu.c */
1760extern atomic_long_t mmap_pages_allocated;
1761extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1762
1763/* interval_tree.c */
1764void vma_interval_tree_insert(struct vm_area_struct *node,
1765                              struct rb_root *root);
1766void vma_interval_tree_insert_after(struct vm_area_struct *node,
1767                                    struct vm_area_struct *prev,
1768                                    struct rb_root *root);
1769void vma_interval_tree_remove(struct vm_area_struct *node,
1770                              struct rb_root *root);
1771struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1772                                unsigned long start, unsigned long last);
1773struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1774                                unsigned long start, unsigned long last);
1775
1776#define vma_interval_tree_foreach(vma, root, start, last)               \
1777        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1778             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1779
1780static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1781                                        struct list_head *list)
1782{
1783        list_add_tail(&vma->shared.nonlinear, list);
1784}
1785
1786void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1787                                   struct rb_root *root);
1788void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1789                                   struct rb_root *root);
1790struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1791        struct rb_root *root, unsigned long start, unsigned long last);
1792struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1793        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1794#ifdef CONFIG_DEBUG_VM_RB
1795void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1796#endif
1797
1798#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1799        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1800             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1801
1802/* mmap.c */
1803extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1804extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1805        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1806extern struct vm_area_struct *vma_merge(struct mm_struct *,
1807        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1808        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1809        struct mempolicy *);
1810extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1811extern int split_vma(struct mm_struct *,
1812        struct vm_area_struct *, unsigned long addr, int new_below);
1813extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1814extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1815        struct rb_node **, struct rb_node *);
1816extern void unlink_file_vma(struct vm_area_struct *);
1817extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1818        unsigned long addr, unsigned long len, pgoff_t pgoff,
1819        bool *need_rmap_locks);
1820extern void exit_mmap(struct mm_struct *);
1821
1822static inline int check_data_rlimit(unsigned long rlim,
1823                                    unsigned long new,
1824                                    unsigned long start,
1825                                    unsigned long end_data,
1826                                    unsigned long start_data)
1827{
1828        if (rlim < RLIM_INFINITY) {
1829                if (((new - start) + (end_data - start_data)) > rlim)
1830                        return -ENOSPC;
1831        }
1832
1833        return 0;
1834}
1835
1836extern int mm_take_all_locks(struct mm_struct *mm);
1837extern void mm_drop_all_locks(struct mm_struct *mm);
1838
1839extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1840extern struct file *get_mm_exe_file(struct mm_struct *mm);
1841
1842extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1843extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1844                                   unsigned long addr, unsigned long len,
1845                                   unsigned long flags,
1846                                   const struct vm_special_mapping *spec);
1847/* This is an obsolete alternative to _install_special_mapping. */
1848extern int install_special_mapping(struct mm_struct *mm,
1849                                   unsigned long addr, unsigned long len,
1850                                   unsigned long flags, struct page **pages);
1851
1852extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1853
1854extern unsigned long mmap_region(struct file *file, unsigned long addr,
1855        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1856extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1857        unsigned long len, unsigned long prot, unsigned long flags,
1858        unsigned long pgoff, unsigned long *populate);
1859extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1860
1861#ifdef CONFIG_MMU
1862extern int __mm_populate(unsigned long addr, unsigned long len,
1863                         int ignore_errors);
1864static inline void mm_populate(unsigned long addr, unsigned long len)
1865{
1866        /* Ignore errors */
1867        (void) __mm_populate(addr, len, 1);
1868}
1869#else
1870static inline void mm_populate(unsigned long addr, unsigned long len) {}
1871#endif
1872
1873/* These take the mm semaphore themselves */
1874extern unsigned long vm_brk(unsigned long, unsigned long);
1875extern int vm_munmap(unsigned long, size_t);
1876extern unsigned long vm_mmap(struct file *, unsigned long,
1877        unsigned long, unsigned long,
1878        unsigned long, unsigned long);
1879
1880struct vm_unmapped_area_info {
1881#define VM_UNMAPPED_AREA_TOPDOWN 1
1882        unsigned long flags;
1883        unsigned long length;
1884        unsigned long low_limit;
1885        unsigned long high_limit;
1886        unsigned long align_mask;
1887        unsigned long align_offset;
1888};
1889
1890extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1891extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1892
1893/*
1894 * Search for an unmapped address range.
1895 *
1896 * We are looking for a range that:
1897 * - does not intersect with any VMA;
1898 * - is contained within the [low_limit, high_limit) interval;
1899 * - is at least the desired size.
1900 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1901 */
1902static inline unsigned long
1903vm_unmapped_area(struct vm_unmapped_area_info *info)
1904{
1905        if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1906                return unmapped_area(info);
1907        else
1908                return unmapped_area_topdown(info);
1909}
1910
1911/* truncate.c */
1912extern void truncate_inode_pages(struct address_space *, loff_t);
1913extern void truncate_inode_pages_range(struct address_space *,
1914                                       loff_t lstart, loff_t lend);
1915extern void truncate_inode_pages_final(struct address_space *);
1916
1917/* generic vm_area_ops exported for stackable file systems */
1918extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1919extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1920extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1921
1922/* mm/page-writeback.c */
1923int write_one_page(struct page *page, int wait);
1924void task_dirty_inc(struct task_struct *tsk);
1925
1926/* readahead.c */
1927#define VM_MAX_READAHEAD        128     /* kbytes */
1928#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1929
1930int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1931                        pgoff_t offset, unsigned long nr_to_read);
1932
1933void page_cache_sync_readahead(struct address_space *mapping,
1934                               struct file_ra_state *ra,
1935                               struct file *filp,
1936                               pgoff_t offset,
1937                               unsigned long size);
1938
1939void page_cache_async_readahead(struct address_space *mapping,
1940                                struct file_ra_state *ra,
1941                                struct file *filp,
1942                                struct page *pg,
1943                                pgoff_t offset,
1944                                unsigned long size);
1945
1946unsigned long max_sane_readahead(unsigned long nr);
1947
1948/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1949extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1950
1951/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1952extern int expand_downwards(struct vm_area_struct *vma,
1953                unsigned long address);
1954#if VM_GROWSUP
1955extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1956#else
1957  #define expand_upwards(vma, address) (0)
1958#endif
1959
1960/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1961extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1962extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1963                                             struct vm_area_struct **pprev);
1964
1965/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1966   NULL if none.  Assume start_addr < end_addr. */
1967static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1968{
1969        struct vm_area_struct * vma = find_vma(mm,start_addr);
1970
1971        if (vma && end_addr <= vma->vm_start)
1972                vma = NULL;
1973        return vma;
1974}
1975
1976static inline unsigned long vma_pages(struct vm_area_struct *vma)
1977{
1978        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1979}
1980
1981/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1982static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1983                                unsigned long vm_start, unsigned long vm_end)
1984{
1985        struct vm_area_struct *vma = find_vma(mm, vm_start);
1986
1987        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1988                vma = NULL;
1989
1990        return vma;
1991}
1992
1993#ifdef CONFIG_MMU
1994pgprot_t vm_get_page_prot(unsigned long vm_flags);
1995void vma_set_page_prot(struct vm_area_struct *vma);
1996#else
1997static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1998{
1999        return __pgprot(0);
2000}
2001static inline void vma_set_page_prot(struct vm_area_struct *vma)
2002{
2003        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2004}
2005#endif
2006
2007#ifdef CONFIG_NUMA_BALANCING
2008unsigned long change_prot_numa(struct vm_area_struct *vma,
2009                        unsigned long start, unsigned long end);
2010#endif
2011
2012struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2013int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2014                        unsigned long pfn, unsigned long size, pgprot_t);
2015int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2016int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2017                        unsigned long pfn);
2018int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2019                        unsigned long pfn);
2020int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2021
2022
2023struct page *follow_page_mask(struct vm_area_struct *vma,
2024                              unsigned long address, unsigned int foll_flags,
2025                              unsigned int *page_mask);
2026
2027static inline struct page *follow_page(struct vm_area_struct *vma,
2028                unsigned long address, unsigned int foll_flags)
2029{
2030        unsigned int unused_page_mask;
2031        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2032}
2033
2034#define FOLL_WRITE      0x01    /* check pte is writable */
2035#define FOLL_TOUCH      0x02    /* mark page accessed */
2036#define FOLL_GET        0x04    /* do get_page on page */
2037#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2038#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2039#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2040                                 * and return without waiting upon it */
2041#define FOLL_MLOCK      0x40    /* mark page as mlocked */
2042#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2043#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2044#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2045#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2046#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2047
2048typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2049                        void *data);
2050extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2051                               unsigned long size, pte_fn_t fn, void *data);
2052
2053#ifdef CONFIG_PROC_FS
2054void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2055#else
2056static inline void vm_stat_account(struct mm_struct *mm,
2057                        unsigned long flags, struct file *file, long pages)
2058{
2059        mm->total_vm += pages;
2060}
2061#endif /* CONFIG_PROC_FS */
2062
2063#ifdef CONFIG_DEBUG_PAGEALLOC
2064extern bool _debug_pagealloc_enabled;
2065extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2066
2067static inline bool debug_pagealloc_enabled(void)
2068{
2069        return _debug_pagealloc_enabled;
2070}
2071
2072static inline void
2073kernel_map_pages(struct page *page, int numpages, int enable)
2074{
2075        if (!debug_pagealloc_enabled())
2076                return;
2077
2078        __kernel_map_pages(page, numpages, enable);
2079}
2080#ifdef CONFIG_HIBERNATION
2081extern bool kernel_page_present(struct page *page);
2082#endif /* CONFIG_HIBERNATION */
2083#else
2084static inline void
2085kernel_map_pages(struct page *page, int numpages, int enable) {}
2086#ifdef CONFIG_HIBERNATION
2087static inline bool kernel_page_present(struct page *page) { return true; }
2088#endif /* CONFIG_HIBERNATION */
2089#endif
2090
2091#ifdef __HAVE_ARCH_GATE_AREA
2092extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2093extern int in_gate_area_no_mm(unsigned long addr);
2094extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2095#else
2096static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2097{
2098        return NULL;
2099}
2100static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2101static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2102{
2103        return 0;
2104}
2105#endif  /* __HAVE_ARCH_GATE_AREA */
2106
2107#ifdef CONFIG_SYSCTL
2108extern int sysctl_drop_caches;
2109int drop_caches_sysctl_handler(struct ctl_table *, int,
2110                                        void __user *, size_t *, loff_t *);
2111#endif
2112
2113unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2114                                unsigned long nr_scanned,
2115                                unsigned long nr_eligible);
2116
2117#ifndef CONFIG_MMU
2118#define randomize_va_space 0
2119#else
2120extern int randomize_va_space;
2121#endif
2122
2123const char * arch_vma_name(struct vm_area_struct *vma);
2124void print_vma_addr(char *prefix, unsigned long rip);
2125
2126void sparse_mem_maps_populate_node(struct page **map_map,
2127                                   unsigned long pnum_begin,
2128                                   unsigned long pnum_end,
2129                                   unsigned long map_count,
2130                                   int nodeid);
2131
2132struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2133pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2134pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2135pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2136pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2137void *vmemmap_alloc_block(unsigned long size, int node);
2138void *vmemmap_alloc_block_buf(unsigned long size, int node);
2139void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2140int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2141                               int node);
2142int vmemmap_populate(unsigned long start, unsigned long end, int node);
2143void vmemmap_populate_print_last(void);
2144#ifdef CONFIG_MEMORY_HOTPLUG
2145void vmemmap_free(unsigned long start, unsigned long end);
2146#endif
2147void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2148                                  unsigned long size);
2149
2150enum mf_flags {
2151        MF_COUNT_INCREASED = 1 << 0,
2152        MF_ACTION_REQUIRED = 1 << 1,
2153        MF_MUST_KILL = 1 << 2,
2154        MF_SOFT_OFFLINE = 1 << 3,
2155};
2156extern int memory_failure(unsigned long pfn, int trapno, int flags);
2157extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2158extern int unpoison_memory(unsigned long pfn);
2159extern int sysctl_memory_failure_early_kill;
2160extern int sysctl_memory_failure_recovery;
2161extern void shake_page(struct page *p, int access);
2162extern atomic_long_t num_poisoned_pages;
2163extern int soft_offline_page(struct page *page, int flags);
2164
2165#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2166extern void clear_huge_page(struct page *page,
2167                            unsigned long addr,
2168                            unsigned int pages_per_huge_page);
2169extern void copy_user_huge_page(struct page *dst, struct page *src,
2170                                unsigned long addr, struct vm_area_struct *vma,
2171                                unsigned int pages_per_huge_page);
2172#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2173
2174extern struct page_ext_operations debug_guardpage_ops;
2175extern struct page_ext_operations page_poisoning_ops;
2176
2177#ifdef CONFIG_DEBUG_PAGEALLOC
2178extern unsigned int _debug_guardpage_minorder;
2179extern bool _debug_guardpage_enabled;
2180
2181static inline unsigned int debug_guardpage_minorder(void)
2182{
2183        return _debug_guardpage_minorder;
2184}
2185
2186static inline bool debug_guardpage_enabled(void)
2187{
2188        return _debug_guardpage_enabled;
2189}
2190
2191static inline bool page_is_guard(struct page *page)
2192{
2193        struct page_ext *page_ext;
2194
2195        if (!debug_guardpage_enabled())
2196                return false;
2197
2198        page_ext = lookup_page_ext(page);
2199        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2200}
2201#else
2202static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2203static inline bool debug_guardpage_enabled(void) { return false; }
2204static inline bool page_is_guard(struct page *page) { return false; }
2205#endif /* CONFIG_DEBUG_PAGEALLOC */
2206
2207#if MAX_NUMNODES > 1
2208void __init setup_nr_node_ids(void);
2209#else
2210static inline void setup_nr_node_ids(void) {}
2211#endif
2212
2213#endif /* __KERNEL__ */
2214#endif /* _LINUX_MM_H */
2215