linux/include/uapi/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _UAPI_LINUX_PERF_EVENT_H
  15#define _UAPI_LINUX_PERF_EVENT_H
  16
  17#include <linux/types.h>
  18#include <linux/ioctl.h>
  19#include <asm/byteorder.h>
  20
  21/*
  22 * User-space ABI bits:
  23 */
  24
  25/*
  26 * attr.type
  27 */
  28enum perf_type_id {
  29        PERF_TYPE_HARDWARE                      = 0,
  30        PERF_TYPE_SOFTWARE                      = 1,
  31        PERF_TYPE_TRACEPOINT                    = 2,
  32        PERF_TYPE_HW_CACHE                      = 3,
  33        PERF_TYPE_RAW                           = 4,
  34        PERF_TYPE_BREAKPOINT                    = 5,
  35
  36        PERF_TYPE_MAX,                          /* non-ABI */
  37};
  38
  39/*
  40 * Generalized performance event event_id types, used by the
  41 * attr.event_id parameter of the sys_perf_event_open()
  42 * syscall:
  43 */
  44enum perf_hw_id {
  45        /*
  46         * Common hardware events, generalized by the kernel:
  47         */
  48        PERF_COUNT_HW_CPU_CYCLES                = 0,
  49        PERF_COUNT_HW_INSTRUCTIONS              = 1,
  50        PERF_COUNT_HW_CACHE_REFERENCES          = 2,
  51        PERF_COUNT_HW_CACHE_MISSES              = 3,
  52        PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
  53        PERF_COUNT_HW_BRANCH_MISSES             = 5,
  54        PERF_COUNT_HW_BUS_CYCLES                = 6,
  55        PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
  56        PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
  57        PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
  58
  59        PERF_COUNT_HW_MAX,                      /* non-ABI */
  60};
  61
  62/*
  63 * Generalized hardware cache events:
  64 *
  65 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
  66 *       { read, write, prefetch } x
  67 *       { accesses, misses }
  68 */
  69enum perf_hw_cache_id {
  70        PERF_COUNT_HW_CACHE_L1D                 = 0,
  71        PERF_COUNT_HW_CACHE_L1I                 = 1,
  72        PERF_COUNT_HW_CACHE_LL                  = 2,
  73        PERF_COUNT_HW_CACHE_DTLB                = 3,
  74        PERF_COUNT_HW_CACHE_ITLB                = 4,
  75        PERF_COUNT_HW_CACHE_BPU                 = 5,
  76        PERF_COUNT_HW_CACHE_NODE                = 6,
  77
  78        PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
  79};
  80
  81enum perf_hw_cache_op_id {
  82        PERF_COUNT_HW_CACHE_OP_READ             = 0,
  83        PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
  84        PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
  85
  86        PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
  87};
  88
  89enum perf_hw_cache_op_result_id {
  90        PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
  91        PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
  92
  93        PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
  94};
  95
  96/*
  97 * Special "software" events provided by the kernel, even if the hardware
  98 * does not support performance events. These events measure various
  99 * physical and sw events of the kernel (and allow the profiling of them as
 100 * well):
 101 */
 102enum perf_sw_ids {
 103        PERF_COUNT_SW_CPU_CLOCK                 = 0,
 104        PERF_COUNT_SW_TASK_CLOCK                = 1,
 105        PERF_COUNT_SW_PAGE_FAULTS               = 2,
 106        PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
 107        PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
 108        PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
 109        PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
 110        PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
 111        PERF_COUNT_SW_EMULATION_FAULTS          = 8,
 112        PERF_COUNT_SW_DUMMY                     = 9,
 113
 114        PERF_COUNT_SW_MAX,                      /* non-ABI */
 115};
 116
 117/*
 118 * Bits that can be set in attr.sample_type to request information
 119 * in the overflow packets.
 120 */
 121enum perf_event_sample_format {
 122        PERF_SAMPLE_IP                          = 1U << 0,
 123        PERF_SAMPLE_TID                         = 1U << 1,
 124        PERF_SAMPLE_TIME                        = 1U << 2,
 125        PERF_SAMPLE_ADDR                        = 1U << 3,
 126        PERF_SAMPLE_READ                        = 1U << 4,
 127        PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
 128        PERF_SAMPLE_ID                          = 1U << 6,
 129        PERF_SAMPLE_CPU                         = 1U << 7,
 130        PERF_SAMPLE_PERIOD                      = 1U << 8,
 131        PERF_SAMPLE_STREAM_ID                   = 1U << 9,
 132        PERF_SAMPLE_RAW                         = 1U << 10,
 133        PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
 134        PERF_SAMPLE_REGS_USER                   = 1U << 12,
 135        PERF_SAMPLE_STACK_USER                  = 1U << 13,
 136        PERF_SAMPLE_WEIGHT                      = 1U << 14,
 137        PERF_SAMPLE_DATA_SRC                    = 1U << 15,
 138        PERF_SAMPLE_IDENTIFIER                  = 1U << 16,
 139        PERF_SAMPLE_TRANSACTION                 = 1U << 17,
 140        PERF_SAMPLE_REGS_INTR                   = 1U << 18,
 141
 142        PERF_SAMPLE_MAX = 1U << 19,             /* non-ABI */
 143};
 144
 145/*
 146 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 147 *
 148 * If the user does not pass priv level information via branch_sample_type,
 149 * the kernel uses the event's priv level. Branch and event priv levels do
 150 * not have to match. Branch priv level is checked for permissions.
 151 *
 152 * The branch types can be combined, however BRANCH_ANY covers all types
 153 * of branches and therefore it supersedes all the other types.
 154 */
 155enum perf_branch_sample_type {
 156        PERF_SAMPLE_BRANCH_USER         = 1U << 0, /* user branches */
 157        PERF_SAMPLE_BRANCH_KERNEL       = 1U << 1, /* kernel branches */
 158        PERF_SAMPLE_BRANCH_HV           = 1U << 2, /* hypervisor branches */
 159
 160        PERF_SAMPLE_BRANCH_ANY          = 1U << 3, /* any branch types */
 161        PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << 4, /* any call branch */
 162        PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << 5, /* any return branch */
 163        PERF_SAMPLE_BRANCH_IND_CALL     = 1U << 6, /* indirect calls */
 164        PERF_SAMPLE_BRANCH_ABORT_TX     = 1U << 7, /* transaction aborts */
 165        PERF_SAMPLE_BRANCH_IN_TX        = 1U << 8, /* in transaction */
 166        PERF_SAMPLE_BRANCH_NO_TX        = 1U << 9, /* not in transaction */
 167        PERF_SAMPLE_BRANCH_COND         = 1U << 10, /* conditional branches */
 168
 169        PERF_SAMPLE_BRANCH_MAX          = 1U << 11, /* non-ABI */
 170};
 171
 172#define PERF_SAMPLE_BRANCH_PLM_ALL \
 173        (PERF_SAMPLE_BRANCH_USER|\
 174         PERF_SAMPLE_BRANCH_KERNEL|\
 175         PERF_SAMPLE_BRANCH_HV)
 176
 177/*
 178 * Values to determine ABI of the registers dump.
 179 */
 180enum perf_sample_regs_abi {
 181        PERF_SAMPLE_REGS_ABI_NONE       = 0,
 182        PERF_SAMPLE_REGS_ABI_32         = 1,
 183        PERF_SAMPLE_REGS_ABI_64         = 2,
 184};
 185
 186/*
 187 * Values for the memory transaction event qualifier, mostly for
 188 * abort events. Multiple bits can be set.
 189 */
 190enum {
 191        PERF_TXN_ELISION        = (1 << 0), /* From elision */
 192        PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
 193        PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
 194        PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
 195        PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
 196        PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
 197        PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
 198        PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
 199
 200        PERF_TXN_MAX            = (1 << 8), /* non-ABI */
 201
 202        /* bits 32..63 are reserved for the abort code */
 203
 204        PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
 205        PERF_TXN_ABORT_SHIFT = 32,
 206};
 207
 208/*
 209 * The format of the data returned by read() on a perf event fd,
 210 * as specified by attr.read_format:
 211 *
 212 * struct read_format {
 213 *      { u64           value;
 214 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 215 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 216 *        { u64         id;           } && PERF_FORMAT_ID
 217 *      } && !PERF_FORMAT_GROUP
 218 *
 219 *      { u64           nr;
 220 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 221 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 222 *        { u64         value;
 223 *          { u64       id;           } && PERF_FORMAT_ID
 224 *        }             cntr[nr];
 225 *      } && PERF_FORMAT_GROUP
 226 * };
 227 */
 228enum perf_event_read_format {
 229        PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
 230        PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
 231        PERF_FORMAT_ID                          = 1U << 2,
 232        PERF_FORMAT_GROUP                       = 1U << 3,
 233
 234        PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
 235};
 236
 237#define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
 238#define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
 239#define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
 240#define PERF_ATTR_SIZE_VER3     96      /* add: sample_regs_user */
 241                                        /* add: sample_stack_user */
 242#define PERF_ATTR_SIZE_VER4     104     /* add: sample_regs_intr */
 243
 244/*
 245 * Hardware event_id to monitor via a performance monitoring event:
 246 */
 247struct perf_event_attr {
 248
 249        /*
 250         * Major type: hardware/software/tracepoint/etc.
 251         */
 252        __u32                   type;
 253
 254        /*
 255         * Size of the attr structure, for fwd/bwd compat.
 256         */
 257        __u32                   size;
 258
 259        /*
 260         * Type specific configuration information.
 261         */
 262        __u64                   config;
 263
 264        union {
 265                __u64           sample_period;
 266                __u64           sample_freq;
 267        };
 268
 269        __u64                   sample_type;
 270        __u64                   read_format;
 271
 272        __u64                   disabled       :  1, /* off by default        */
 273                                inherit        :  1, /* children inherit it   */
 274                                pinned         :  1, /* must always be on PMU */
 275                                exclusive      :  1, /* only group on PMU     */
 276                                exclude_user   :  1, /* don't count user      */
 277                                exclude_kernel :  1, /* ditto kernel          */
 278                                exclude_hv     :  1, /* ditto hypervisor      */
 279                                exclude_idle   :  1, /* don't count when idle */
 280                                mmap           :  1, /* include mmap data     */
 281                                comm           :  1, /* include comm data     */
 282                                freq           :  1, /* use freq, not period  */
 283                                inherit_stat   :  1, /* per task counts       */
 284                                enable_on_exec :  1, /* next exec enables     */
 285                                task           :  1, /* trace fork/exit       */
 286                                watermark      :  1, /* wakeup_watermark      */
 287                                /*
 288                                 * precise_ip:
 289                                 *
 290                                 *  0 - SAMPLE_IP can have arbitrary skid
 291                                 *  1 - SAMPLE_IP must have constant skid
 292                                 *  2 - SAMPLE_IP requested to have 0 skid
 293                                 *  3 - SAMPLE_IP must have 0 skid
 294                                 *
 295                                 *  See also PERF_RECORD_MISC_EXACT_IP
 296                                 */
 297                                precise_ip     :  2, /* skid constraint       */
 298                                mmap_data      :  1, /* non-exec mmap data    */
 299                                sample_id_all  :  1, /* sample_type all events */
 300
 301                                exclude_host   :  1, /* don't count in host   */
 302                                exclude_guest  :  1, /* don't count in guest  */
 303
 304                                exclude_callchain_kernel : 1, /* exclude kernel callchains */
 305                                exclude_callchain_user   : 1, /* exclude user callchains */
 306                                mmap2          :  1, /* include mmap with inode data     */
 307                                comm_exec      :  1, /* flag comm events that are due to an exec */
 308                                __reserved_1   : 39;
 309
 310        union {
 311                __u32           wakeup_events;    /* wakeup every n events */
 312                __u32           wakeup_watermark; /* bytes before wakeup   */
 313        };
 314
 315        __u32                   bp_type;
 316        union {
 317                __u64           bp_addr;
 318                __u64           config1; /* extension of config */
 319        };
 320        union {
 321                __u64           bp_len;
 322                __u64           config2; /* extension of config1 */
 323        };
 324        __u64   branch_sample_type; /* enum perf_branch_sample_type */
 325
 326        /*
 327         * Defines set of user regs to dump on samples.
 328         * See asm/perf_regs.h for details.
 329         */
 330        __u64   sample_regs_user;
 331
 332        /*
 333         * Defines size of the user stack to dump on samples.
 334         */
 335        __u32   sample_stack_user;
 336
 337        /* Align to u64. */
 338        __u32   __reserved_2;
 339        /*
 340         * Defines set of regs to dump for each sample
 341         * state captured on:
 342         *  - precise = 0: PMU interrupt
 343         *  - precise > 0: sampled instruction
 344         *
 345         * See asm/perf_regs.h for details.
 346         */
 347        __u64   sample_regs_intr;
 348};
 349
 350#define perf_flags(attr)        (*(&(attr)->read_format + 1))
 351
 352/*
 353 * Ioctls that can be done on a perf event fd:
 354 */
 355#define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
 356#define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
 357#define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
 358#define PERF_EVENT_IOC_RESET            _IO ('$', 3)
 359#define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
 360#define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
 361#define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
 362#define PERF_EVENT_IOC_ID               _IOR('$', 7, __u64 *)
 363
 364enum perf_event_ioc_flags {
 365        PERF_IOC_FLAG_GROUP             = 1U << 0,
 366};
 367
 368/*
 369 * Structure of the page that can be mapped via mmap
 370 */
 371struct perf_event_mmap_page {
 372        __u32   version;                /* version number of this structure */
 373        __u32   compat_version;         /* lowest version this is compat with */
 374
 375        /*
 376         * Bits needed to read the hw events in user-space.
 377         *
 378         *   u32 seq, time_mult, time_shift, index, width;
 379         *   u64 count, enabled, running;
 380         *   u64 cyc, time_offset;
 381         *   s64 pmc = 0;
 382         *
 383         *   do {
 384         *     seq = pc->lock;
 385         *     barrier()
 386         *
 387         *     enabled = pc->time_enabled;
 388         *     running = pc->time_running;
 389         *
 390         *     if (pc->cap_usr_time && enabled != running) {
 391         *       cyc = rdtsc();
 392         *       time_offset = pc->time_offset;
 393         *       time_mult   = pc->time_mult;
 394         *       time_shift  = pc->time_shift;
 395         *     }
 396         *
 397         *     index = pc->index;
 398         *     count = pc->offset;
 399         *     if (pc->cap_user_rdpmc && index) {
 400         *       width = pc->pmc_width;
 401         *       pmc = rdpmc(index - 1);
 402         *     }
 403         *
 404         *     barrier();
 405         *   } while (pc->lock != seq);
 406         *
 407         * NOTE: for obvious reason this only works on self-monitoring
 408         *       processes.
 409         */
 410        __u32   lock;                   /* seqlock for synchronization */
 411        __u32   index;                  /* hardware event identifier */
 412        __s64   offset;                 /* add to hardware event value */
 413        __u64   time_enabled;           /* time event active */
 414        __u64   time_running;           /* time event on cpu */
 415        union {
 416                __u64   capabilities;
 417                struct {
 418                        __u64   cap_bit0                : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
 419                                cap_bit0_is_deprecated  : 1, /* Always 1, signals that bit 0 is zero */
 420
 421                                cap_user_rdpmc          : 1, /* The RDPMC instruction can be used to read counts */
 422                                cap_user_time           : 1, /* The time_* fields are used */
 423                                cap_user_time_zero      : 1, /* The time_zero field is used */
 424                                cap_____res             : 59;
 425                };
 426        };
 427
 428        /*
 429         * If cap_user_rdpmc this field provides the bit-width of the value
 430         * read using the rdpmc() or equivalent instruction. This can be used
 431         * to sign extend the result like:
 432         *
 433         *   pmc <<= 64 - width;
 434         *   pmc >>= 64 - width; // signed shift right
 435         *   count += pmc;
 436         */
 437        __u16   pmc_width;
 438
 439        /*
 440         * If cap_usr_time the below fields can be used to compute the time
 441         * delta since time_enabled (in ns) using rdtsc or similar.
 442         *
 443         *   u64 quot, rem;
 444         *   u64 delta;
 445         *
 446         *   quot = (cyc >> time_shift);
 447         *   rem = cyc & ((1 << time_shift) - 1);
 448         *   delta = time_offset + quot * time_mult +
 449         *              ((rem * time_mult) >> time_shift);
 450         *
 451         * Where time_offset,time_mult,time_shift and cyc are read in the
 452         * seqcount loop described above. This delta can then be added to
 453         * enabled and possible running (if index), improving the scaling:
 454         *
 455         *   enabled += delta;
 456         *   if (index)
 457         *     running += delta;
 458         *
 459         *   quot = count / running;
 460         *   rem  = count % running;
 461         *   count = quot * enabled + (rem * enabled) / running;
 462         */
 463        __u16   time_shift;
 464        __u32   time_mult;
 465        __u64   time_offset;
 466        /*
 467         * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
 468         * from sample timestamps.
 469         *
 470         *   time = timestamp - time_zero;
 471         *   quot = time / time_mult;
 472         *   rem  = time % time_mult;
 473         *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
 474         *
 475         * And vice versa:
 476         *
 477         *   quot = cyc >> time_shift;
 478         *   rem  = cyc & ((1 << time_shift) - 1);
 479         *   timestamp = time_zero + quot * time_mult +
 480         *               ((rem * time_mult) >> time_shift);
 481         */
 482        __u64   time_zero;
 483        __u32   size;                   /* Header size up to __reserved[] fields. */
 484
 485                /*
 486                 * Hole for extension of the self monitor capabilities
 487                 */
 488
 489        __u8    __reserved[118*8+4];    /* align to 1k. */
 490
 491        /*
 492         * Control data for the mmap() data buffer.
 493         *
 494         * User-space reading the @data_head value should issue an smp_rmb(),
 495         * after reading this value.
 496         *
 497         * When the mapping is PROT_WRITE the @data_tail value should be
 498         * written by userspace to reflect the last read data, after issueing
 499         * an smp_mb() to separate the data read from the ->data_tail store.
 500         * In this case the kernel will not over-write unread data.
 501         *
 502         * See perf_output_put_handle() for the data ordering.
 503         */
 504        __u64   data_head;              /* head in the data section */
 505        __u64   data_tail;              /* user-space written tail */
 506};
 507
 508#define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
 509#define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
 510#define PERF_RECORD_MISC_KERNEL                 (1 << 0)
 511#define PERF_RECORD_MISC_USER                   (2 << 0)
 512#define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
 513#define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
 514#define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
 515
 516/*
 517 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
 518 * different events so can reuse the same bit position.
 519 */
 520#define PERF_RECORD_MISC_MMAP_DATA              (1 << 13)
 521#define PERF_RECORD_MISC_COMM_EXEC              (1 << 13)
 522/*
 523 * Indicates that the content of PERF_SAMPLE_IP points to
 524 * the actual instruction that triggered the event. See also
 525 * perf_event_attr::precise_ip.
 526 */
 527#define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
 528/*
 529 * Reserve the last bit to indicate some extended misc field
 530 */
 531#define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
 532
 533struct perf_event_header {
 534        __u32   type;
 535        __u16   misc;
 536        __u16   size;
 537};
 538
 539enum perf_event_type {
 540
 541        /*
 542         * If perf_event_attr.sample_id_all is set then all event types will
 543         * have the sample_type selected fields related to where/when
 544         * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
 545         * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
 546         * just after the perf_event_header and the fields already present for
 547         * the existing fields, i.e. at the end of the payload. That way a newer
 548         * perf.data file will be supported by older perf tools, with these new
 549         * optional fields being ignored.
 550         *
 551         * struct sample_id {
 552         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 553         *      { u64                   time;     } && PERF_SAMPLE_TIME
 554         *      { u64                   id;       } && PERF_SAMPLE_ID
 555         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 556         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 557         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 558         * } && perf_event_attr::sample_id_all
 559         *
 560         * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
 561         * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
 562         * relative to header.size.
 563         */
 564
 565        /*
 566         * The MMAP events record the PROT_EXEC mappings so that we can
 567         * correlate userspace IPs to code. They have the following structure:
 568         *
 569         * struct {
 570         *      struct perf_event_header        header;
 571         *
 572         *      u32                             pid, tid;
 573         *      u64                             addr;
 574         *      u64                             len;
 575         *      u64                             pgoff;
 576         *      char                            filename[];
 577         *      struct sample_id                sample_id;
 578         * };
 579         */
 580        PERF_RECORD_MMAP                        = 1,
 581
 582        /*
 583         * struct {
 584         *      struct perf_event_header        header;
 585         *      u64                             id;
 586         *      u64                             lost;
 587         *      struct sample_id                sample_id;
 588         * };
 589         */
 590        PERF_RECORD_LOST                        = 2,
 591
 592        /*
 593         * struct {
 594         *      struct perf_event_header        header;
 595         *
 596         *      u32                             pid, tid;
 597         *      char                            comm[];
 598         *      struct sample_id                sample_id;
 599         * };
 600         */
 601        PERF_RECORD_COMM                        = 3,
 602
 603        /*
 604         * struct {
 605         *      struct perf_event_header        header;
 606         *      u32                             pid, ppid;
 607         *      u32                             tid, ptid;
 608         *      u64                             time;
 609         *      struct sample_id                sample_id;
 610         * };
 611         */
 612        PERF_RECORD_EXIT                        = 4,
 613
 614        /*
 615         * struct {
 616         *      struct perf_event_header        header;
 617         *      u64                             time;
 618         *      u64                             id;
 619         *      u64                             stream_id;
 620         *      struct sample_id                sample_id;
 621         * };
 622         */
 623        PERF_RECORD_THROTTLE                    = 5,
 624        PERF_RECORD_UNTHROTTLE                  = 6,
 625
 626        /*
 627         * struct {
 628         *      struct perf_event_header        header;
 629         *      u32                             pid, ppid;
 630         *      u32                             tid, ptid;
 631         *      u64                             time;
 632         *      struct sample_id                sample_id;
 633         * };
 634         */
 635        PERF_RECORD_FORK                        = 7,
 636
 637        /*
 638         * struct {
 639         *      struct perf_event_header        header;
 640         *      u32                             pid, tid;
 641         *
 642         *      struct read_format              values;
 643         *      struct sample_id                sample_id;
 644         * };
 645         */
 646        PERF_RECORD_READ                        = 8,
 647
 648        /*
 649         * struct {
 650         *      struct perf_event_header        header;
 651         *
 652         *      #
 653         *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
 654         *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
 655         *      # is fixed relative to header.
 656         *      #
 657         *
 658         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 659         *      { u64                   ip;       } && PERF_SAMPLE_IP
 660         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 661         *      { u64                   time;     } && PERF_SAMPLE_TIME
 662         *      { u64                   addr;     } && PERF_SAMPLE_ADDR
 663         *      { u64                   id;       } && PERF_SAMPLE_ID
 664         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 665         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 666         *      { u64                   period;   } && PERF_SAMPLE_PERIOD
 667         *
 668         *      { struct read_format    values;   } && PERF_SAMPLE_READ
 669         *
 670         *      { u64                   nr,
 671         *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
 672         *
 673         *      #
 674         *      # The RAW record below is opaque data wrt the ABI
 675         *      #
 676         *      # That is, the ABI doesn't make any promises wrt to
 677         *      # the stability of its content, it may vary depending
 678         *      # on event, hardware, kernel version and phase of
 679         *      # the moon.
 680         *      #
 681         *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
 682         *      #
 683         *
 684         *      { u32                   size;
 685         *        char                  data[size];}&& PERF_SAMPLE_RAW
 686         *
 687         *      { u64                   nr;
 688         *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
 689         *
 690         *      { u64                   abi; # enum perf_sample_regs_abi
 691         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
 692         *
 693         *      { u64                   size;
 694         *        char                  data[size];
 695         *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
 696         *
 697         *      { u64                   weight;   } && PERF_SAMPLE_WEIGHT
 698         *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
 699         *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
 700         *      { u64                   abi; # enum perf_sample_regs_abi
 701         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
 702         * };
 703         */
 704        PERF_RECORD_SAMPLE                      = 9,
 705
 706        /*
 707         * The MMAP2 records are an augmented version of MMAP, they add
 708         * maj, min, ino numbers to be used to uniquely identify each mapping
 709         *
 710         * struct {
 711         *      struct perf_event_header        header;
 712         *
 713         *      u32                             pid, tid;
 714         *      u64                             addr;
 715         *      u64                             len;
 716         *      u64                             pgoff;
 717         *      u32                             maj;
 718         *      u32                             min;
 719         *      u64                             ino;
 720         *      u64                             ino_generation;
 721         *      u32                             prot, flags;
 722         *      char                            filename[];
 723         *      struct sample_id                sample_id;
 724         * };
 725         */
 726        PERF_RECORD_MMAP2                       = 10,
 727
 728        PERF_RECORD_MAX,                        /* non-ABI */
 729};
 730
 731#define PERF_MAX_STACK_DEPTH            127
 732
 733enum perf_callchain_context {
 734        PERF_CONTEXT_HV                 = (__u64)-32,
 735        PERF_CONTEXT_KERNEL             = (__u64)-128,
 736        PERF_CONTEXT_USER               = (__u64)-512,
 737
 738        PERF_CONTEXT_GUEST              = (__u64)-2048,
 739        PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
 740        PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
 741
 742        PERF_CONTEXT_MAX                = (__u64)-4095,
 743};
 744
 745#define PERF_FLAG_FD_NO_GROUP           (1UL << 0)
 746#define PERF_FLAG_FD_OUTPUT             (1UL << 1)
 747#define PERF_FLAG_PID_CGROUP            (1UL << 2) /* pid=cgroup id, per-cpu mode only */
 748#define PERF_FLAG_FD_CLOEXEC            (1UL << 3) /* O_CLOEXEC */
 749
 750union perf_mem_data_src {
 751        __u64 val;
 752        struct {
 753                __u64   mem_op:5,       /* type of opcode */
 754                        mem_lvl:14,     /* memory hierarchy level */
 755                        mem_snoop:5,    /* snoop mode */
 756                        mem_lock:2,     /* lock instr */
 757                        mem_dtlb:7,     /* tlb access */
 758                        mem_rsvd:31;
 759        };
 760};
 761
 762/* type of opcode (load/store/prefetch,code) */
 763#define PERF_MEM_OP_NA          0x01 /* not available */
 764#define PERF_MEM_OP_LOAD        0x02 /* load instruction */
 765#define PERF_MEM_OP_STORE       0x04 /* store instruction */
 766#define PERF_MEM_OP_PFETCH      0x08 /* prefetch */
 767#define PERF_MEM_OP_EXEC        0x10 /* code (execution) */
 768#define PERF_MEM_OP_SHIFT       0
 769
 770/* memory hierarchy (memory level, hit or miss) */
 771#define PERF_MEM_LVL_NA         0x01  /* not available */
 772#define PERF_MEM_LVL_HIT        0x02  /* hit level */
 773#define PERF_MEM_LVL_MISS       0x04  /* miss level  */
 774#define PERF_MEM_LVL_L1         0x08  /* L1 */
 775#define PERF_MEM_LVL_LFB        0x10  /* Line Fill Buffer */
 776#define PERF_MEM_LVL_L2         0x20  /* L2 */
 777#define PERF_MEM_LVL_L3         0x40  /* L3 */
 778#define PERF_MEM_LVL_LOC_RAM    0x80  /* Local DRAM */
 779#define PERF_MEM_LVL_REM_RAM1   0x100 /* Remote DRAM (1 hop) */
 780#define PERF_MEM_LVL_REM_RAM2   0x200 /* Remote DRAM (2 hops) */
 781#define PERF_MEM_LVL_REM_CCE1   0x400 /* Remote Cache (1 hop) */
 782#define PERF_MEM_LVL_REM_CCE2   0x800 /* Remote Cache (2 hops) */
 783#define PERF_MEM_LVL_IO         0x1000 /* I/O memory */
 784#define PERF_MEM_LVL_UNC        0x2000 /* Uncached memory */
 785#define PERF_MEM_LVL_SHIFT      5
 786
 787/* snoop mode */
 788#define PERF_MEM_SNOOP_NA       0x01 /* not available */
 789#define PERF_MEM_SNOOP_NONE     0x02 /* no snoop */
 790#define PERF_MEM_SNOOP_HIT      0x04 /* snoop hit */
 791#define PERF_MEM_SNOOP_MISS     0x08 /* snoop miss */
 792#define PERF_MEM_SNOOP_HITM     0x10 /* snoop hit modified */
 793#define PERF_MEM_SNOOP_SHIFT    19
 794
 795/* locked instruction */
 796#define PERF_MEM_LOCK_NA        0x01 /* not available */
 797#define PERF_MEM_LOCK_LOCKED    0x02 /* locked transaction */
 798#define PERF_MEM_LOCK_SHIFT     24
 799
 800/* TLB access */
 801#define PERF_MEM_TLB_NA         0x01 /* not available */
 802#define PERF_MEM_TLB_HIT        0x02 /* hit level */
 803#define PERF_MEM_TLB_MISS       0x04 /* miss level */
 804#define PERF_MEM_TLB_L1         0x08 /* L1 */
 805#define PERF_MEM_TLB_L2         0x10 /* L2 */
 806#define PERF_MEM_TLB_WK         0x20 /* Hardware Walker*/
 807#define PERF_MEM_TLB_OS         0x40 /* OS fault handler */
 808#define PERF_MEM_TLB_SHIFT      26
 809
 810#define PERF_MEM_S(a, s) \
 811        (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
 812
 813/*
 814 * single taken branch record layout:
 815 *
 816 *      from: source instruction (may not always be a branch insn)
 817 *        to: branch target
 818 *   mispred: branch target was mispredicted
 819 * predicted: branch target was predicted
 820 *
 821 * support for mispred, predicted is optional. In case it
 822 * is not supported mispred = predicted = 0.
 823 *
 824 *     in_tx: running in a hardware transaction
 825 *     abort: aborting a hardware transaction
 826 */
 827struct perf_branch_entry {
 828        __u64   from;
 829        __u64   to;
 830        __u64   mispred:1,  /* target mispredicted */
 831                predicted:1,/* target predicted */
 832                in_tx:1,    /* in transaction */
 833                abort:1,    /* transaction abort */
 834                reserved:60;
 835};
 836
 837#endif /* _UAPI_LINUX_PERF_EVENT_H */
 838