linux/include/xen/interface/io/netif.h
<<
>>
Prefs
   1/******************************************************************************
   2 * netif.h
   3 *
   4 * Unified network-device I/O interface for Xen guest OSes.
   5 *
   6 * Copyright (c) 2003-2004, Keir Fraser
   7 */
   8
   9#ifndef __XEN_PUBLIC_IO_NETIF_H__
  10#define __XEN_PUBLIC_IO_NETIF_H__
  11
  12#include <xen/interface/io/ring.h>
  13#include <xen/interface/grant_table.h>
  14
  15/*
  16 * Older implementation of Xen network frontend / backend has an
  17 * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
  18 * ring slots a skb can use. Netfront / netback may not work as
  19 * expected when frontend and backend have different MAX_SKB_FRAGS.
  20 *
  21 * A better approach is to add mechanism for netfront / netback to
  22 * negotiate this value. However we cannot fix all possible
  23 * frontends, so we need to define a value which states the minimum
  24 * slots backend must support.
  25 *
  26 * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
  27 * (18), which is proved to work with most frontends. Any new backend
  28 * which doesn't negotiate with frontend should expect frontend to
  29 * send a valid packet using slots up to this value.
  30 */
  31#define XEN_NETIF_NR_SLOTS_MIN 18
  32
  33/*
  34 * Notifications after enqueuing any type of message should be conditional on
  35 * the appropriate req_event or rsp_event field in the shared ring.
  36 * If the client sends notification for rx requests then it should specify
  37 * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
  38 * that it cannot safely queue packets (as it may not be kicked to send them).
  39 */
  40
  41 /*
  42 * "feature-split-event-channels" is introduced to separate guest TX
  43 * and RX notificaion. Backend either doesn't support this feature or
  44 * advertise it via xenstore as 0 (disabled) or 1 (enabled).
  45 *
  46 * To make use of this feature, frontend should allocate two event
  47 * channels for TX and RX, advertise them to backend as
  48 * "event-channel-tx" and "event-channel-rx" respectively. If frontend
  49 * doesn't want to use this feature, it just writes "event-channel"
  50 * node as before.
  51 */
  52
  53/*
  54 * Multiple transmit and receive queues:
  55 * If supported, the backend will write the key "multi-queue-max-queues" to
  56 * the directory for that vif, and set its value to the maximum supported
  57 * number of queues.
  58 * Frontends that are aware of this feature and wish to use it can write the
  59 * key "multi-queue-num-queues", set to the number they wish to use, which
  60 * must be greater than zero, and no more than the value reported by the backend
  61 * in "multi-queue-max-queues".
  62 *
  63 * Queues replicate the shared rings and event channels.
  64 * "feature-split-event-channels" may optionally be used when using
  65 * multiple queues, but is not mandatory.
  66 *
  67 * Each queue consists of one shared ring pair, i.e. there must be the same
  68 * number of tx and rx rings.
  69 *
  70 * For frontends requesting just one queue, the usual event-channel and
  71 * ring-ref keys are written as before, simplifying the backend processing
  72 * to avoid distinguishing between a frontend that doesn't understand the
  73 * multi-queue feature, and one that does, but requested only one queue.
  74 *
  75 * Frontends requesting two or more queues must not write the toplevel
  76 * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
  77 * instead writing those keys under sub-keys having the name "queue-N" where
  78 * N is the integer ID of the queue for which those keys belong. Queues
  79 * are indexed from zero. For example, a frontend with two queues and split
  80 * event channels must write the following set of queue-related keys:
  81 *
  82 * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
  83 * /local/domain/1/device/vif/0/queue-0 = ""
  84 * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
  85 * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
  86 * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
  87 * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
  88 * /local/domain/1/device/vif/0/queue-1 = ""
  89 * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
  90 * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
  91 * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
  92 * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
  93 *
  94 * If there is any inconsistency in the XenStore data, the backend may
  95 * choose not to connect any queues, instead treating the request as an
  96 * error. This includes scenarios where more (or fewer) queues were
  97 * requested than the frontend provided details for.
  98 *
  99 * Mapping of packets to queues is considered to be a function of the
 100 * transmitting system (backend or frontend) and is not negotiated
 101 * between the two. Guests are free to transmit packets on any queue
 102 * they choose, provided it has been set up correctly. Guests must be
 103 * prepared to receive packets on any queue they have requested be set up.
 104 */
 105
 106/*
 107 * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
 108 * offload off or on. If it is missing then the feature is assumed to be on.
 109 * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
 110 * offload on or off. If it is missing then the feature is assumed to be off.
 111 */
 112
 113/*
 114 * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
 115 * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
 116 * frontends nor backends are assumed to be capable unless the flags are
 117 * present.
 118 */
 119
 120/*
 121 * This is the 'wire' format for packets:
 122 *  Request 1: xen_netif_tx_request  -- XEN_NETTXF_* (any flags)
 123 * [Request 2: xen_netif_extra_info]    (only if request 1 has XEN_NETTXF_extra_info)
 124 * [Request 3: xen_netif_extra_info]    (only if request 2 has XEN_NETIF_EXTRA_MORE)
 125 *  Request 4: xen_netif_tx_request  -- XEN_NETTXF_more_data
 126 *  Request 5: xen_netif_tx_request  -- XEN_NETTXF_more_data
 127 *  ...
 128 *  Request N: xen_netif_tx_request  -- 0
 129 */
 130
 131/* Protocol checksum field is blank in the packet (hardware offload)? */
 132#define _XEN_NETTXF_csum_blank          (0)
 133#define  XEN_NETTXF_csum_blank          (1U<<_XEN_NETTXF_csum_blank)
 134
 135/* Packet data has been validated against protocol checksum. */
 136#define _XEN_NETTXF_data_validated      (1)
 137#define  XEN_NETTXF_data_validated      (1U<<_XEN_NETTXF_data_validated)
 138
 139/* Packet continues in the next request descriptor. */
 140#define _XEN_NETTXF_more_data           (2)
 141#define  XEN_NETTXF_more_data           (1U<<_XEN_NETTXF_more_data)
 142
 143/* Packet to be followed by extra descriptor(s). */
 144#define _XEN_NETTXF_extra_info          (3)
 145#define  XEN_NETTXF_extra_info          (1U<<_XEN_NETTXF_extra_info)
 146
 147#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
 148struct xen_netif_tx_request {
 149    grant_ref_t gref;      /* Reference to buffer page */
 150    uint16_t offset;       /* Offset within buffer page */
 151    uint16_t flags;        /* XEN_NETTXF_* */
 152    uint16_t id;           /* Echoed in response message. */
 153    uint16_t size;         /* Packet size in bytes.       */
 154};
 155
 156/* Types of xen_netif_extra_info descriptors. */
 157#define XEN_NETIF_EXTRA_TYPE_NONE       (0)  /* Never used - invalid */
 158#define XEN_NETIF_EXTRA_TYPE_GSO        (1)  /* u.gso */
 159#define XEN_NETIF_EXTRA_TYPE_MAX        (2)
 160
 161/* xen_netif_extra_info flags. */
 162#define _XEN_NETIF_EXTRA_FLAG_MORE      (0)
 163#define  XEN_NETIF_EXTRA_FLAG_MORE      (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
 164
 165/* GSO types */
 166#define XEN_NETIF_GSO_TYPE_NONE         (0)
 167#define XEN_NETIF_GSO_TYPE_TCPV4        (1)
 168#define XEN_NETIF_GSO_TYPE_TCPV6        (2)
 169
 170/*
 171 * This structure needs to fit within both netif_tx_request and
 172 * netif_rx_response for compatibility.
 173 */
 174struct xen_netif_extra_info {
 175        uint8_t type;  /* XEN_NETIF_EXTRA_TYPE_* */
 176        uint8_t flags; /* XEN_NETIF_EXTRA_FLAG_* */
 177
 178        union {
 179                struct {
 180                        /*
 181                         * Maximum payload size of each segment. For
 182                         * example, for TCP this is just the path MSS.
 183                         */
 184                        uint16_t size;
 185
 186                        /*
 187                         * GSO type. This determines the protocol of
 188                         * the packet and any extra features required
 189                         * to segment the packet properly.
 190                         */
 191                        uint8_t type; /* XEN_NETIF_GSO_TYPE_* */
 192
 193                        /* Future expansion. */
 194                        uint8_t pad;
 195
 196                        /*
 197                         * GSO features. This specifies any extra GSO
 198                         * features required to process this packet,
 199                         * such as ECN support for TCPv4.
 200                         */
 201                        uint16_t features; /* XEN_NETIF_GSO_FEAT_* */
 202                } gso;
 203
 204                uint16_t pad[3];
 205        } u;
 206};
 207
 208struct xen_netif_tx_response {
 209        uint16_t id;
 210        int16_t  status;       /* XEN_NETIF_RSP_* */
 211};
 212
 213struct xen_netif_rx_request {
 214        uint16_t    id;        /* Echoed in response message.        */
 215        grant_ref_t gref;      /* Reference to incoming granted frame */
 216};
 217
 218/* Packet data has been validated against protocol checksum. */
 219#define _XEN_NETRXF_data_validated      (0)
 220#define  XEN_NETRXF_data_validated      (1U<<_XEN_NETRXF_data_validated)
 221
 222/* Protocol checksum field is blank in the packet (hardware offload)? */
 223#define _XEN_NETRXF_csum_blank          (1)
 224#define  XEN_NETRXF_csum_blank          (1U<<_XEN_NETRXF_csum_blank)
 225
 226/* Packet continues in the next request descriptor. */
 227#define _XEN_NETRXF_more_data           (2)
 228#define  XEN_NETRXF_more_data           (1U<<_XEN_NETRXF_more_data)
 229
 230/* Packet to be followed by extra descriptor(s). */
 231#define _XEN_NETRXF_extra_info          (3)
 232#define  XEN_NETRXF_extra_info          (1U<<_XEN_NETRXF_extra_info)
 233
 234/* GSO Prefix descriptor. */
 235#define _XEN_NETRXF_gso_prefix          (4)
 236#define  XEN_NETRXF_gso_prefix          (1U<<_XEN_NETRXF_gso_prefix)
 237
 238struct xen_netif_rx_response {
 239    uint16_t id;
 240    uint16_t offset;       /* Offset in page of start of received packet  */
 241    uint16_t flags;        /* XEN_NETRXF_* */
 242    int16_t  status;       /* -ve: BLKIF_RSP_* ; +ve: Rx'ed pkt size. */
 243};
 244
 245/*
 246 * Generate netif ring structures and types.
 247 */
 248
 249DEFINE_RING_TYPES(xen_netif_tx,
 250                  struct xen_netif_tx_request,
 251                  struct xen_netif_tx_response);
 252DEFINE_RING_TYPES(xen_netif_rx,
 253                  struct xen_netif_rx_request,
 254                  struct xen_netif_rx_response);
 255
 256#define XEN_NETIF_RSP_DROPPED   -2
 257#define XEN_NETIF_RSP_ERROR     -1
 258#define XEN_NETIF_RSP_OKAY       0
 259/* No response: used for auxiliary requests (e.g., xen_netif_extra_info). */
 260#define XEN_NETIF_RSP_NULL       1
 261
 262#endif
 263