linux/kernel/profile.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/profile.c
   3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   4 *  with configurable resolution, support for restricting the cpus on
   5 *  which profiling is done, and switching between cpu time and
   6 *  schedule() calls via kernel command line parameters passed at boot.
   7 *
   8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
   9 *      Red Hat, July 2004
  10 *  Consolidation of architecture support code for profiling,
  11 *      Nadia Yvette Chambers, Oracle, July 2004
  12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  13 *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
  14 *      Oracle, 2004
  15 */
  16
  17#include <linux/export.h>
  18#include <linux/profile.h>
  19#include <linux/bootmem.h>
  20#include <linux/notifier.h>
  21#include <linux/mm.h>
  22#include <linux/cpumask.h>
  23#include <linux/cpu.h>
  24#include <linux/highmem.h>
  25#include <linux/mutex.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <asm/sections.h>
  29#include <asm/irq_regs.h>
  30#include <asm/ptrace.h>
  31
  32struct profile_hit {
  33        u32 pc, hits;
  34};
  35#define PROFILE_GRPSHIFT        3
  36#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  37#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  38#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  39
  40static atomic_t *prof_buffer;
  41static unsigned long prof_len, prof_shift;
  42
  43int prof_on __read_mostly;
  44EXPORT_SYMBOL_GPL(prof_on);
  45
  46static cpumask_var_t prof_cpu_mask;
  47#ifdef CONFIG_SMP
  48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  49static DEFINE_PER_CPU(int, cpu_profile_flip);
  50static DEFINE_MUTEX(profile_flip_mutex);
  51#endif /* CONFIG_SMP */
  52
  53int profile_setup(char *str)
  54{
  55        static const char schedstr[] = "schedule";
  56        static const char sleepstr[] = "sleep";
  57        static const char kvmstr[] = "kvm";
  58        int par;
  59
  60        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  61#ifdef CONFIG_SCHEDSTATS
  62                prof_on = SLEEP_PROFILING;
  63                if (str[strlen(sleepstr)] == ',')
  64                        str += strlen(sleepstr) + 1;
  65                if (get_option(&str, &par))
  66                        prof_shift = par;
  67                pr_info("kernel sleep profiling enabled (shift: %ld)\n",
  68                        prof_shift);
  69#else
  70                pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  71#endif /* CONFIG_SCHEDSTATS */
  72        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  73                prof_on = SCHED_PROFILING;
  74                if (str[strlen(schedstr)] == ',')
  75                        str += strlen(schedstr) + 1;
  76                if (get_option(&str, &par))
  77                        prof_shift = par;
  78                pr_info("kernel schedule profiling enabled (shift: %ld)\n",
  79                        prof_shift);
  80        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  81                prof_on = KVM_PROFILING;
  82                if (str[strlen(kvmstr)] == ',')
  83                        str += strlen(kvmstr) + 1;
  84                if (get_option(&str, &par))
  85                        prof_shift = par;
  86                pr_info("kernel KVM profiling enabled (shift: %ld)\n",
  87                        prof_shift);
  88        } else if (get_option(&str, &par)) {
  89                prof_shift = par;
  90                prof_on = CPU_PROFILING;
  91                pr_info("kernel profiling enabled (shift: %ld)\n",
  92                        prof_shift);
  93        }
  94        return 1;
  95}
  96__setup("profile=", profile_setup);
  97
  98
  99int __ref profile_init(void)
 100{
 101        int buffer_bytes;
 102        if (!prof_on)
 103                return 0;
 104
 105        /* only text is profiled */
 106        prof_len = (_etext - _stext) >> prof_shift;
 107        buffer_bytes = prof_len*sizeof(atomic_t);
 108
 109        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 110                return -ENOMEM;
 111
 112        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 113
 114        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 115        if (prof_buffer)
 116                return 0;
 117
 118        prof_buffer = alloc_pages_exact(buffer_bytes,
 119                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 120        if (prof_buffer)
 121                return 0;
 122
 123        prof_buffer = vzalloc(buffer_bytes);
 124        if (prof_buffer)
 125                return 0;
 126
 127        free_cpumask_var(prof_cpu_mask);
 128        return -ENOMEM;
 129}
 130
 131/* Profile event notifications */
 132
 133static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 134static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 135static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 136
 137void profile_task_exit(struct task_struct *task)
 138{
 139        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 140}
 141
 142int profile_handoff_task(struct task_struct *task)
 143{
 144        int ret;
 145        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 146        return (ret == NOTIFY_OK) ? 1 : 0;
 147}
 148
 149void profile_munmap(unsigned long addr)
 150{
 151        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 152}
 153
 154int task_handoff_register(struct notifier_block *n)
 155{
 156        return atomic_notifier_chain_register(&task_free_notifier, n);
 157}
 158EXPORT_SYMBOL_GPL(task_handoff_register);
 159
 160int task_handoff_unregister(struct notifier_block *n)
 161{
 162        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 163}
 164EXPORT_SYMBOL_GPL(task_handoff_unregister);
 165
 166int profile_event_register(enum profile_type type, struct notifier_block *n)
 167{
 168        int err = -EINVAL;
 169
 170        switch (type) {
 171        case PROFILE_TASK_EXIT:
 172                err = blocking_notifier_chain_register(
 173                                &task_exit_notifier, n);
 174                break;
 175        case PROFILE_MUNMAP:
 176                err = blocking_notifier_chain_register(
 177                                &munmap_notifier, n);
 178                break;
 179        }
 180
 181        return err;
 182}
 183EXPORT_SYMBOL_GPL(profile_event_register);
 184
 185int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 186{
 187        int err = -EINVAL;
 188
 189        switch (type) {
 190        case PROFILE_TASK_EXIT:
 191                err = blocking_notifier_chain_unregister(
 192                                &task_exit_notifier, n);
 193                break;
 194        case PROFILE_MUNMAP:
 195                err = blocking_notifier_chain_unregister(
 196                                &munmap_notifier, n);
 197                break;
 198        }
 199
 200        return err;
 201}
 202EXPORT_SYMBOL_GPL(profile_event_unregister);
 203
 204#ifdef CONFIG_SMP
 205/*
 206 * Each cpu has a pair of open-addressed hashtables for pending
 207 * profile hits. read_profile() IPI's all cpus to request them
 208 * to flip buffers and flushes their contents to prof_buffer itself.
 209 * Flip requests are serialized by the profile_flip_mutex. The sole
 210 * use of having a second hashtable is for avoiding cacheline
 211 * contention that would otherwise happen during flushes of pending
 212 * profile hits required for the accuracy of reported profile hits
 213 * and so resurrect the interrupt livelock issue.
 214 *
 215 * The open-addressed hashtables are indexed by profile buffer slot
 216 * and hold the number of pending hits to that profile buffer slot on
 217 * a cpu in an entry. When the hashtable overflows, all pending hits
 218 * are accounted to their corresponding profile buffer slots with
 219 * atomic_add() and the hashtable emptied. As numerous pending hits
 220 * may be accounted to a profile buffer slot in a hashtable entry,
 221 * this amortizes a number of atomic profile buffer increments likely
 222 * to be far larger than the number of entries in the hashtable,
 223 * particularly given that the number of distinct profile buffer
 224 * positions to which hits are accounted during short intervals (e.g.
 225 * several seconds) is usually very small. Exclusion from buffer
 226 * flipping is provided by interrupt disablement (note that for
 227 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 228 * process context).
 229 * The hash function is meant to be lightweight as opposed to strong,
 230 * and was vaguely inspired by ppc64 firmware-supported inverted
 231 * pagetable hash functions, but uses a full hashtable full of finite
 232 * collision chains, not just pairs of them.
 233 *
 234 * -- nyc
 235 */
 236static void __profile_flip_buffers(void *unused)
 237{
 238        int cpu = smp_processor_id();
 239
 240        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 241}
 242
 243static void profile_flip_buffers(void)
 244{
 245        int i, j, cpu;
 246
 247        mutex_lock(&profile_flip_mutex);
 248        j = per_cpu(cpu_profile_flip, get_cpu());
 249        put_cpu();
 250        on_each_cpu(__profile_flip_buffers, NULL, 1);
 251        for_each_online_cpu(cpu) {
 252                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 253                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 254                        if (!hits[i].hits) {
 255                                if (hits[i].pc)
 256                                        hits[i].pc = 0;
 257                                continue;
 258                        }
 259                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 260                        hits[i].hits = hits[i].pc = 0;
 261                }
 262        }
 263        mutex_unlock(&profile_flip_mutex);
 264}
 265
 266static void profile_discard_flip_buffers(void)
 267{
 268        int i, cpu;
 269
 270        mutex_lock(&profile_flip_mutex);
 271        i = per_cpu(cpu_profile_flip, get_cpu());
 272        put_cpu();
 273        on_each_cpu(__profile_flip_buffers, NULL, 1);
 274        for_each_online_cpu(cpu) {
 275                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 276                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 277        }
 278        mutex_unlock(&profile_flip_mutex);
 279}
 280
 281static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 282{
 283        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 284        int i, j, cpu;
 285        struct profile_hit *hits;
 286
 287        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 288        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 289        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 290        cpu = get_cpu();
 291        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 292        if (!hits) {
 293                put_cpu();
 294                return;
 295        }
 296        /*
 297         * We buffer the global profiler buffer into a per-CPU
 298         * queue and thus reduce the number of global (and possibly
 299         * NUMA-alien) accesses. The write-queue is self-coalescing:
 300         */
 301        local_irq_save(flags);
 302        do {
 303                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 304                        if (hits[i + j].pc == pc) {
 305                                hits[i + j].hits += nr_hits;
 306                                goto out;
 307                        } else if (!hits[i + j].hits) {
 308                                hits[i + j].pc = pc;
 309                                hits[i + j].hits = nr_hits;
 310                                goto out;
 311                        }
 312                }
 313                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 314        } while (i != primary);
 315
 316        /*
 317         * Add the current hit(s) and flush the write-queue out
 318         * to the global buffer:
 319         */
 320        atomic_add(nr_hits, &prof_buffer[pc]);
 321        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 322                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 323                hits[i].pc = hits[i].hits = 0;
 324        }
 325out:
 326        local_irq_restore(flags);
 327        put_cpu();
 328}
 329
 330static int profile_cpu_callback(struct notifier_block *info,
 331                                        unsigned long action, void *__cpu)
 332{
 333        int node, cpu = (unsigned long)__cpu;
 334        struct page *page;
 335
 336        switch (action) {
 337        case CPU_UP_PREPARE:
 338        case CPU_UP_PREPARE_FROZEN:
 339                node = cpu_to_mem(cpu);
 340                per_cpu(cpu_profile_flip, cpu) = 0;
 341                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 342                        page = alloc_pages_exact_node(node,
 343                                        GFP_KERNEL | __GFP_ZERO,
 344                                        0);
 345                        if (!page)
 346                                return notifier_from_errno(-ENOMEM);
 347                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 348                }
 349                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 350                        page = alloc_pages_exact_node(node,
 351                                        GFP_KERNEL | __GFP_ZERO,
 352                                        0);
 353                        if (!page)
 354                                goto out_free;
 355                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 356                }
 357                break;
 358out_free:
 359                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 360                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 361                __free_page(page);
 362                return notifier_from_errno(-ENOMEM);
 363        case CPU_ONLINE:
 364        case CPU_ONLINE_FROZEN:
 365                if (prof_cpu_mask != NULL)
 366                        cpumask_set_cpu(cpu, prof_cpu_mask);
 367                break;
 368        case CPU_UP_CANCELED:
 369        case CPU_UP_CANCELED_FROZEN:
 370        case CPU_DEAD:
 371        case CPU_DEAD_FROZEN:
 372                if (prof_cpu_mask != NULL)
 373                        cpumask_clear_cpu(cpu, prof_cpu_mask);
 374                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 375                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 376                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 377                        __free_page(page);
 378                }
 379                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 380                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 381                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 382                        __free_page(page);
 383                }
 384                break;
 385        }
 386        return NOTIFY_OK;
 387}
 388#else /* !CONFIG_SMP */
 389#define profile_flip_buffers()          do { } while (0)
 390#define profile_discard_flip_buffers()  do { } while (0)
 391#define profile_cpu_callback            NULL
 392
 393static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 394{
 395        unsigned long pc;
 396        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 397        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 398}
 399#endif /* !CONFIG_SMP */
 400
 401void profile_hits(int type, void *__pc, unsigned int nr_hits)
 402{
 403        if (prof_on != type || !prof_buffer)
 404                return;
 405        do_profile_hits(type, __pc, nr_hits);
 406}
 407EXPORT_SYMBOL_GPL(profile_hits);
 408
 409void profile_tick(int type)
 410{
 411        struct pt_regs *regs = get_irq_regs();
 412
 413        if (!user_mode(regs) && prof_cpu_mask != NULL &&
 414            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 415                profile_hit(type, (void *)profile_pc(regs));
 416}
 417
 418#ifdef CONFIG_PROC_FS
 419#include <linux/proc_fs.h>
 420#include <linux/seq_file.h>
 421#include <asm/uaccess.h>
 422
 423static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 424{
 425        seq_cpumask(m, prof_cpu_mask);
 426        seq_putc(m, '\n');
 427        return 0;
 428}
 429
 430static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 431{
 432        return single_open(file, prof_cpu_mask_proc_show, NULL);
 433}
 434
 435static ssize_t prof_cpu_mask_proc_write(struct file *file,
 436        const char __user *buffer, size_t count, loff_t *pos)
 437{
 438        cpumask_var_t new_value;
 439        int err;
 440
 441        if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 442                return -ENOMEM;
 443
 444        err = cpumask_parse_user(buffer, count, new_value);
 445        if (!err) {
 446                cpumask_copy(prof_cpu_mask, new_value);
 447                err = count;
 448        }
 449        free_cpumask_var(new_value);
 450        return err;
 451}
 452
 453static const struct file_operations prof_cpu_mask_proc_fops = {
 454        .open           = prof_cpu_mask_proc_open,
 455        .read           = seq_read,
 456        .llseek         = seq_lseek,
 457        .release        = single_release,
 458        .write          = prof_cpu_mask_proc_write,
 459};
 460
 461void create_prof_cpu_mask(void)
 462{
 463        /* create /proc/irq/prof_cpu_mask */
 464        proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
 465}
 466
 467/*
 468 * This function accesses profiling information. The returned data is
 469 * binary: the sampling step and the actual contents of the profile
 470 * buffer. Use of the program readprofile is recommended in order to
 471 * get meaningful info out of these data.
 472 */
 473static ssize_t
 474read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 475{
 476        unsigned long p = *ppos;
 477        ssize_t read;
 478        char *pnt;
 479        unsigned int sample_step = 1 << prof_shift;
 480
 481        profile_flip_buffers();
 482        if (p >= (prof_len+1)*sizeof(unsigned int))
 483                return 0;
 484        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 485                count = (prof_len+1)*sizeof(unsigned int) - p;
 486        read = 0;
 487
 488        while (p < sizeof(unsigned int) && count > 0) {
 489                if (put_user(*((char *)(&sample_step)+p), buf))
 490                        return -EFAULT;
 491                buf++; p++; count--; read++;
 492        }
 493        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 494        if (copy_to_user(buf, (void *)pnt, count))
 495                return -EFAULT;
 496        read += count;
 497        *ppos += read;
 498        return read;
 499}
 500
 501/*
 502 * Writing to /proc/profile resets the counters
 503 *
 504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 505 * interrupt frequency, on architectures that support this.
 506 */
 507static ssize_t write_profile(struct file *file, const char __user *buf,
 508                             size_t count, loff_t *ppos)
 509{
 510#ifdef CONFIG_SMP
 511        extern int setup_profiling_timer(unsigned int multiplier);
 512
 513        if (count == sizeof(int)) {
 514                unsigned int multiplier;
 515
 516                if (copy_from_user(&multiplier, buf, sizeof(int)))
 517                        return -EFAULT;
 518
 519                if (setup_profiling_timer(multiplier))
 520                        return -EINVAL;
 521        }
 522#endif
 523        profile_discard_flip_buffers();
 524        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 525        return count;
 526}
 527
 528static const struct file_operations proc_profile_operations = {
 529        .read           = read_profile,
 530        .write          = write_profile,
 531        .llseek         = default_llseek,
 532};
 533
 534#ifdef CONFIG_SMP
 535static void profile_nop(void *unused)
 536{
 537}
 538
 539static int create_hash_tables(void)
 540{
 541        int cpu;
 542
 543        for_each_online_cpu(cpu) {
 544                int node = cpu_to_mem(cpu);
 545                struct page *page;
 546
 547                page = alloc_pages_exact_node(node,
 548                                GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
 549                                0);
 550                if (!page)
 551                        goto out_cleanup;
 552                per_cpu(cpu_profile_hits, cpu)[1]
 553                                = (struct profile_hit *)page_address(page);
 554                page = alloc_pages_exact_node(node,
 555                                GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
 556                                0);
 557                if (!page)
 558                        goto out_cleanup;
 559                per_cpu(cpu_profile_hits, cpu)[0]
 560                                = (struct profile_hit *)page_address(page);
 561        }
 562        return 0;
 563out_cleanup:
 564        prof_on = 0;
 565        smp_mb();
 566        on_each_cpu(profile_nop, NULL, 1);
 567        for_each_online_cpu(cpu) {
 568                struct page *page;
 569
 570                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 571                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 572                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 573                        __free_page(page);
 574                }
 575                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 576                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 577                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 578                        __free_page(page);
 579                }
 580        }
 581        return -1;
 582}
 583#else
 584#define create_hash_tables()                    ({ 0; })
 585#endif
 586
 587int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 588{
 589        struct proc_dir_entry *entry;
 590        int err = 0;
 591
 592        if (!prof_on)
 593                return 0;
 594
 595        cpu_notifier_register_begin();
 596
 597        if (create_hash_tables()) {
 598                err = -ENOMEM;
 599                goto out;
 600        }
 601
 602        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 603                            NULL, &proc_profile_operations);
 604        if (!entry)
 605                goto out;
 606        proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 607        __hotcpu_notifier(profile_cpu_callback, 0);
 608
 609out:
 610        cpu_notifier_register_done();
 611        return err;
 612}
 613subsys_initcall(create_proc_profile);
 614#endif /* CONFIG_PROC_FS */
 615