linux/kernel/rcu/update.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *              http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/percpu.h>
  43#include <linux/notifier.h>
  44#include <linux/cpu.h>
  45#include <linux/mutex.h>
  46#include <linux/export.h>
  47#include <linux/hardirq.h>
  48#include <linux/delay.h>
  49#include <linux/module.h>
  50#include <linux/kthread.h>
  51#include <linux/tick.h>
  52
  53#define CREATE_TRACE_POINTS
  54
  55#include "rcu.h"
  56
  57MODULE_ALIAS("rcupdate");
  58#ifdef MODULE_PARAM_PREFIX
  59#undef MODULE_PARAM_PREFIX
  60#endif
  61#define MODULE_PARAM_PREFIX "rcupdate."
  62
  63module_param(rcu_expedited, int, 0);
  64
  65#ifdef CONFIG_PREEMPT_RCU
  66
  67/*
  68 * Preemptible RCU implementation for rcu_read_lock().
  69 * Just increment ->rcu_read_lock_nesting, shared state will be updated
  70 * if we block.
  71 */
  72void __rcu_read_lock(void)
  73{
  74        current->rcu_read_lock_nesting++;
  75        barrier();  /* critical section after entry code. */
  76}
  77EXPORT_SYMBOL_GPL(__rcu_read_lock);
  78
  79/*
  80 * Preemptible RCU implementation for rcu_read_unlock().
  81 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
  82 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
  83 * invoke rcu_read_unlock_special() to clean up after a context switch
  84 * in an RCU read-side critical section and other special cases.
  85 */
  86void __rcu_read_unlock(void)
  87{
  88        struct task_struct *t = current;
  89
  90        if (t->rcu_read_lock_nesting != 1) {
  91                --t->rcu_read_lock_nesting;
  92        } else {
  93                barrier();  /* critical section before exit code. */
  94                t->rcu_read_lock_nesting = INT_MIN;
  95                barrier();  /* assign before ->rcu_read_unlock_special load */
  96                if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special.s)))
  97                        rcu_read_unlock_special(t);
  98                barrier();  /* ->rcu_read_unlock_special load before assign */
  99                t->rcu_read_lock_nesting = 0;
 100        }
 101#ifdef CONFIG_PROVE_LOCKING
 102        {
 103                int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
 104
 105                WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 106        }
 107#endif /* #ifdef CONFIG_PROVE_LOCKING */
 108}
 109EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 110
 111#endif /* #ifdef CONFIG_PREEMPT_RCU */
 112
 113#ifdef CONFIG_DEBUG_LOCK_ALLOC
 114static struct lock_class_key rcu_lock_key;
 115struct lockdep_map rcu_lock_map =
 116        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 117EXPORT_SYMBOL_GPL(rcu_lock_map);
 118
 119static struct lock_class_key rcu_bh_lock_key;
 120struct lockdep_map rcu_bh_lock_map =
 121        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 122EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 123
 124static struct lock_class_key rcu_sched_lock_key;
 125struct lockdep_map rcu_sched_lock_map =
 126        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 127EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 128
 129static struct lock_class_key rcu_callback_key;
 130struct lockdep_map rcu_callback_map =
 131        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 132EXPORT_SYMBOL_GPL(rcu_callback_map);
 133
 134int notrace debug_lockdep_rcu_enabled(void)
 135{
 136        return rcu_scheduler_active && debug_locks &&
 137               current->lockdep_recursion == 0;
 138}
 139EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 140
 141/**
 142 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 143 *
 144 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 145 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 146 * this assumes we are in an RCU read-side critical section unless it can
 147 * prove otherwise.  This is useful for debug checks in functions that
 148 * require that they be called within an RCU read-side critical section.
 149 *
 150 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 151 * and while lockdep is disabled.
 152 *
 153 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 154 * occur in the same context, for example, it is illegal to invoke
 155 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 156 * was invoked from within an irq handler.
 157 *
 158 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 159 * offline from an RCU perspective, so check for those as well.
 160 */
 161int rcu_read_lock_held(void)
 162{
 163        if (!debug_lockdep_rcu_enabled())
 164                return 1;
 165        if (!rcu_is_watching())
 166                return 0;
 167        if (!rcu_lockdep_current_cpu_online())
 168                return 0;
 169        return lock_is_held(&rcu_lock_map);
 170}
 171EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 172
 173/**
 174 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 175 *
 176 * Check for bottom half being disabled, which covers both the
 177 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 178 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 179 * will show the situation.  This is useful for debug checks in functions
 180 * that require that they be called within an RCU read-side critical
 181 * section.
 182 *
 183 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 184 *
 185 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 186 * offline from an RCU perspective, so check for those as well.
 187 */
 188int rcu_read_lock_bh_held(void)
 189{
 190        if (!debug_lockdep_rcu_enabled())
 191                return 1;
 192        if (!rcu_is_watching())
 193                return 0;
 194        if (!rcu_lockdep_current_cpu_online())
 195                return 0;
 196        return in_softirq() || irqs_disabled();
 197}
 198EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 199
 200#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 201
 202struct rcu_synchronize {
 203        struct rcu_head head;
 204        struct completion completion;
 205};
 206
 207/*
 208 * Awaken the corresponding synchronize_rcu() instance now that a
 209 * grace period has elapsed.
 210 */
 211static void wakeme_after_rcu(struct rcu_head  *head)
 212{
 213        struct rcu_synchronize *rcu;
 214
 215        rcu = container_of(head, struct rcu_synchronize, head);
 216        complete(&rcu->completion);
 217}
 218
 219void wait_rcu_gp(call_rcu_func_t crf)
 220{
 221        struct rcu_synchronize rcu;
 222
 223        init_rcu_head_on_stack(&rcu.head);
 224        init_completion(&rcu.completion);
 225        /* Will wake me after RCU finished. */
 226        crf(&rcu.head, wakeme_after_rcu);
 227        /* Wait for it. */
 228        wait_for_completion(&rcu.completion);
 229        destroy_rcu_head_on_stack(&rcu.head);
 230}
 231EXPORT_SYMBOL_GPL(wait_rcu_gp);
 232
 233#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 234void init_rcu_head(struct rcu_head *head)
 235{
 236        debug_object_init(head, &rcuhead_debug_descr);
 237}
 238
 239void destroy_rcu_head(struct rcu_head *head)
 240{
 241        debug_object_free(head, &rcuhead_debug_descr);
 242}
 243
 244/*
 245 * fixup_activate is called when:
 246 * - an active object is activated
 247 * - an unknown object is activated (might be a statically initialized object)
 248 * Activation is performed internally by call_rcu().
 249 */
 250static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
 251{
 252        struct rcu_head *head = addr;
 253
 254        switch (state) {
 255
 256        case ODEBUG_STATE_NOTAVAILABLE:
 257                /*
 258                 * This is not really a fixup. We just make sure that it is
 259                 * tracked in the object tracker.
 260                 */
 261                debug_object_init(head, &rcuhead_debug_descr);
 262                debug_object_activate(head, &rcuhead_debug_descr);
 263                return 0;
 264        default:
 265                return 1;
 266        }
 267}
 268
 269/**
 270 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 271 * @head: pointer to rcu_head structure to be initialized
 272 *
 273 * This function informs debugobjects of a new rcu_head structure that
 274 * has been allocated as an auto variable on the stack.  This function
 275 * is not required for rcu_head structures that are statically defined or
 276 * that are dynamically allocated on the heap.  This function has no
 277 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 278 */
 279void init_rcu_head_on_stack(struct rcu_head *head)
 280{
 281        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 282}
 283EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 284
 285/**
 286 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 287 * @head: pointer to rcu_head structure to be initialized
 288 *
 289 * This function informs debugobjects that an on-stack rcu_head structure
 290 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 291 * function is not required for rcu_head structures that are statically
 292 * defined or that are dynamically allocated on the heap.  Also as with
 293 * init_rcu_head_on_stack(), this function has no effect for
 294 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 295 */
 296void destroy_rcu_head_on_stack(struct rcu_head *head)
 297{
 298        debug_object_free(head, &rcuhead_debug_descr);
 299}
 300EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 301
 302struct debug_obj_descr rcuhead_debug_descr = {
 303        .name = "rcu_head",
 304        .fixup_activate = rcuhead_fixup_activate,
 305};
 306EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 307#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 308
 309#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 310void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 311                               unsigned long secs,
 312                               unsigned long c_old, unsigned long c)
 313{
 314        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 315}
 316EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 317#else
 318#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 319        do { } while (0)
 320#endif
 321
 322#ifdef CONFIG_RCU_STALL_COMMON
 323
 324#ifdef CONFIG_PROVE_RCU
 325#define RCU_STALL_DELAY_DELTA          (5 * HZ)
 326#else
 327#define RCU_STALL_DELAY_DELTA          0
 328#endif
 329
 330int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 331static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 332
 333module_param(rcu_cpu_stall_suppress, int, 0644);
 334module_param(rcu_cpu_stall_timeout, int, 0644);
 335
 336int rcu_jiffies_till_stall_check(void)
 337{
 338        int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
 339
 340        /*
 341         * Limit check must be consistent with the Kconfig limits
 342         * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 343         */
 344        if (till_stall_check < 3) {
 345                ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
 346                till_stall_check = 3;
 347        } else if (till_stall_check > 300) {
 348                ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
 349                till_stall_check = 300;
 350        }
 351        return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 352}
 353
 354void rcu_sysrq_start(void)
 355{
 356        if (!rcu_cpu_stall_suppress)
 357                rcu_cpu_stall_suppress = 2;
 358}
 359
 360void rcu_sysrq_end(void)
 361{
 362        if (rcu_cpu_stall_suppress == 2)
 363                rcu_cpu_stall_suppress = 0;
 364}
 365
 366static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 367{
 368        rcu_cpu_stall_suppress = 1;
 369        return NOTIFY_DONE;
 370}
 371
 372static struct notifier_block rcu_panic_block = {
 373        .notifier_call = rcu_panic,
 374};
 375
 376static int __init check_cpu_stall_init(void)
 377{
 378        atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 379        return 0;
 380}
 381early_initcall(check_cpu_stall_init);
 382
 383#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 384
 385#ifdef CONFIG_TASKS_RCU
 386
 387/*
 388 * Simple variant of RCU whose quiescent states are voluntary context switch,
 389 * user-space execution, and idle.  As such, grace periods can take one good
 390 * long time.  There are no read-side primitives similar to rcu_read_lock()
 391 * and rcu_read_unlock() because this implementation is intended to get
 392 * the system into a safe state for some of the manipulations involved in
 393 * tracing and the like.  Finally, this implementation does not support
 394 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 395 * per-CPU callback lists will be needed.
 396 */
 397
 398/* Global list of callbacks and associated lock. */
 399static struct rcu_head *rcu_tasks_cbs_head;
 400static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 401static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 402static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 403
 404/* Track exiting tasks in order to allow them to be waited for. */
 405DEFINE_SRCU(tasks_rcu_exit_srcu);
 406
 407/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 408static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
 409module_param(rcu_task_stall_timeout, int, 0644);
 410
 411static void rcu_spawn_tasks_kthread(void);
 412
 413/*
 414 * Post an RCU-tasks callback.  First call must be from process context
 415 * after the scheduler if fully operational.
 416 */
 417void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
 418{
 419        unsigned long flags;
 420        bool needwake;
 421
 422        rhp->next = NULL;
 423        rhp->func = func;
 424        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 425        needwake = !rcu_tasks_cbs_head;
 426        *rcu_tasks_cbs_tail = rhp;
 427        rcu_tasks_cbs_tail = &rhp->next;
 428        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 429        if (needwake) {
 430                rcu_spawn_tasks_kthread();
 431                wake_up(&rcu_tasks_cbs_wq);
 432        }
 433}
 434EXPORT_SYMBOL_GPL(call_rcu_tasks);
 435
 436/**
 437 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 438 *
 439 * Control will return to the caller some time after a full rcu-tasks
 440 * grace period has elapsed, in other words after all currently
 441 * executing rcu-tasks read-side critical sections have elapsed.  These
 442 * read-side critical sections are delimited by calls to schedule(),
 443 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 444 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 445 *
 446 * This is a very specialized primitive, intended only for a few uses in
 447 * tracing and other situations requiring manipulation of function
 448 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 449 * is not (yet) intended for heavy use from multiple CPUs.
 450 *
 451 * Note that this guarantee implies further memory-ordering guarantees.
 452 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 453 * each CPU is guaranteed to have executed a full memory barrier since the
 454 * end of its last RCU-tasks read-side critical section whose beginning
 455 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 456 * having an RCU-tasks read-side critical section that extends beyond
 457 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 458 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 459 * and before the beginning of that RCU-tasks read-side critical section.
 460 * Note that these guarantees include CPUs that are offline, idle, or
 461 * executing in user mode, as well as CPUs that are executing in the kernel.
 462 *
 463 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 464 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 465 * to have executed a full memory barrier during the execution of
 466 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 467 * (but again only if the system has more than one CPU).
 468 */
 469void synchronize_rcu_tasks(void)
 470{
 471        /* Complain if the scheduler has not started.  */
 472        rcu_lockdep_assert(!rcu_scheduler_active,
 473                           "synchronize_rcu_tasks called too soon");
 474
 475        /* Wait for the grace period. */
 476        wait_rcu_gp(call_rcu_tasks);
 477}
 478EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 479
 480/**
 481 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 482 *
 483 * Although the current implementation is guaranteed to wait, it is not
 484 * obligated to, for example, if there are no pending callbacks.
 485 */
 486void rcu_barrier_tasks(void)
 487{
 488        /* There is only one callback queue, so this is easy.  ;-) */
 489        synchronize_rcu_tasks();
 490}
 491EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 492
 493/* See if tasks are still holding out, complain if so. */
 494static void check_holdout_task(struct task_struct *t,
 495                               bool needreport, bool *firstreport)
 496{
 497        int cpu;
 498
 499        if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
 500            t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
 501            !ACCESS_ONCE(t->on_rq) ||
 502            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 503             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 504                ACCESS_ONCE(t->rcu_tasks_holdout) = false;
 505                list_del_init(&t->rcu_tasks_holdout_list);
 506                put_task_struct(t);
 507                return;
 508        }
 509        if (!needreport)
 510                return;
 511        if (*firstreport) {
 512                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 513                *firstreport = false;
 514        }
 515        cpu = task_cpu(t);
 516        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 517                 t, ".I"[is_idle_task(t)],
 518                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 519                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 520                 t->rcu_tasks_idle_cpu, cpu);
 521        sched_show_task(t);
 522}
 523
 524/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 525static int __noreturn rcu_tasks_kthread(void *arg)
 526{
 527        unsigned long flags;
 528        struct task_struct *g, *t;
 529        unsigned long lastreport;
 530        struct rcu_head *list;
 531        struct rcu_head *next;
 532        LIST_HEAD(rcu_tasks_holdouts);
 533
 534        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 535        housekeeping_affine(current);
 536
 537        /*
 538         * Each pass through the following loop makes one check for
 539         * newly arrived callbacks, and, if there are some, waits for
 540         * one RCU-tasks grace period and then invokes the callbacks.
 541         * This loop is terminated by the system going down.  ;-)
 542         */
 543        for (;;) {
 544
 545                /* Pick up any new callbacks. */
 546                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 547                list = rcu_tasks_cbs_head;
 548                rcu_tasks_cbs_head = NULL;
 549                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 550                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 551
 552                /* If there were none, wait a bit and start over. */
 553                if (!list) {
 554                        wait_event_interruptible(rcu_tasks_cbs_wq,
 555                                                 rcu_tasks_cbs_head);
 556                        if (!rcu_tasks_cbs_head) {
 557                                WARN_ON(signal_pending(current));
 558                                schedule_timeout_interruptible(HZ/10);
 559                        }
 560                        continue;
 561                }
 562
 563                /*
 564                 * Wait for all pre-existing t->on_rq and t->nvcsw
 565                 * transitions to complete.  Invoking synchronize_sched()
 566                 * suffices because all these transitions occur with
 567                 * interrupts disabled.  Without this synchronize_sched(),
 568                 * a read-side critical section that started before the
 569                 * grace period might be incorrectly seen as having started
 570                 * after the grace period.
 571                 *
 572                 * This synchronize_sched() also dispenses with the
 573                 * need for a memory barrier on the first store to
 574                 * ->rcu_tasks_holdout, as it forces the store to happen
 575                 * after the beginning of the grace period.
 576                 */
 577                synchronize_sched();
 578
 579                /*
 580                 * There were callbacks, so we need to wait for an
 581                 * RCU-tasks grace period.  Start off by scanning
 582                 * the task list for tasks that are not already
 583                 * voluntarily blocked.  Mark these tasks and make
 584                 * a list of them in rcu_tasks_holdouts.
 585                 */
 586                rcu_read_lock();
 587                for_each_process_thread(g, t) {
 588                        if (t != current && ACCESS_ONCE(t->on_rq) &&
 589                            !is_idle_task(t)) {
 590                                get_task_struct(t);
 591                                t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
 592                                ACCESS_ONCE(t->rcu_tasks_holdout) = true;
 593                                list_add(&t->rcu_tasks_holdout_list,
 594                                         &rcu_tasks_holdouts);
 595                        }
 596                }
 597                rcu_read_unlock();
 598
 599                /*
 600                 * Wait for tasks that are in the process of exiting.
 601                 * This does only part of the job, ensuring that all
 602                 * tasks that were previously exiting reach the point
 603                 * where they have disabled preemption, allowing the
 604                 * later synchronize_sched() to finish the job.
 605                 */
 606                synchronize_srcu(&tasks_rcu_exit_srcu);
 607
 608                /*
 609                 * Each pass through the following loop scans the list
 610                 * of holdout tasks, removing any that are no longer
 611                 * holdouts.  When the list is empty, we are done.
 612                 */
 613                lastreport = jiffies;
 614                while (!list_empty(&rcu_tasks_holdouts)) {
 615                        bool firstreport;
 616                        bool needreport;
 617                        int rtst;
 618                        struct task_struct *t1;
 619
 620                        schedule_timeout_interruptible(HZ);
 621                        rtst = ACCESS_ONCE(rcu_task_stall_timeout);
 622                        needreport = rtst > 0 &&
 623                                     time_after(jiffies, lastreport + rtst);
 624                        if (needreport)
 625                                lastreport = jiffies;
 626                        firstreport = true;
 627                        WARN_ON(signal_pending(current));
 628                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 629                                                rcu_tasks_holdout_list) {
 630                                check_holdout_task(t, needreport, &firstreport);
 631                                cond_resched();
 632                        }
 633                }
 634
 635                /*
 636                 * Because ->on_rq and ->nvcsw are not guaranteed
 637                 * to have a full memory barriers prior to them in the
 638                 * schedule() path, memory reordering on other CPUs could
 639                 * cause their RCU-tasks read-side critical sections to
 640                 * extend past the end of the grace period.  However,
 641                 * because these ->nvcsw updates are carried out with
 642                 * interrupts disabled, we can use synchronize_sched()
 643                 * to force the needed ordering on all such CPUs.
 644                 *
 645                 * This synchronize_sched() also confines all
 646                 * ->rcu_tasks_holdout accesses to be within the grace
 647                 * period, avoiding the need for memory barriers for
 648                 * ->rcu_tasks_holdout accesses.
 649                 *
 650                 * In addition, this synchronize_sched() waits for exiting
 651                 * tasks to complete their final preempt_disable() region
 652                 * of execution, cleaning up after the synchronize_srcu()
 653                 * above.
 654                 */
 655                synchronize_sched();
 656
 657                /* Invoke the callbacks. */
 658                while (list) {
 659                        next = list->next;
 660                        local_bh_disable();
 661                        list->func(list);
 662                        local_bh_enable();
 663                        list = next;
 664                        cond_resched();
 665                }
 666                schedule_timeout_uninterruptible(HZ/10);
 667        }
 668}
 669
 670/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
 671static void rcu_spawn_tasks_kthread(void)
 672{
 673        static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
 674        static struct task_struct *rcu_tasks_kthread_ptr;
 675        struct task_struct *t;
 676
 677        if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) {
 678                smp_mb(); /* Ensure caller sees full kthread. */
 679                return;
 680        }
 681        mutex_lock(&rcu_tasks_kthread_mutex);
 682        if (rcu_tasks_kthread_ptr) {
 683                mutex_unlock(&rcu_tasks_kthread_mutex);
 684                return;
 685        }
 686        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 687        BUG_ON(IS_ERR(t));
 688        smp_mb(); /* Ensure others see full kthread. */
 689        ACCESS_ONCE(rcu_tasks_kthread_ptr) = t;
 690        mutex_unlock(&rcu_tasks_kthread_mutex);
 691}
 692
 693#endif /* #ifdef CONFIG_TASKS_RCU */
 694
 695#ifdef CONFIG_PROVE_RCU
 696
 697/*
 698 * Early boot self test parameters, one for each flavor
 699 */
 700static bool rcu_self_test;
 701static bool rcu_self_test_bh;
 702static bool rcu_self_test_sched;
 703
 704module_param(rcu_self_test, bool, 0444);
 705module_param(rcu_self_test_bh, bool, 0444);
 706module_param(rcu_self_test_sched, bool, 0444);
 707
 708static int rcu_self_test_counter;
 709
 710static void test_callback(struct rcu_head *r)
 711{
 712        rcu_self_test_counter++;
 713        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 714}
 715
 716static void early_boot_test_call_rcu(void)
 717{
 718        static struct rcu_head head;
 719
 720        call_rcu(&head, test_callback);
 721}
 722
 723static void early_boot_test_call_rcu_bh(void)
 724{
 725        static struct rcu_head head;
 726
 727        call_rcu_bh(&head, test_callback);
 728}
 729
 730static void early_boot_test_call_rcu_sched(void)
 731{
 732        static struct rcu_head head;
 733
 734        call_rcu_sched(&head, test_callback);
 735}
 736
 737void rcu_early_boot_tests(void)
 738{
 739        pr_info("Running RCU self tests\n");
 740
 741        if (rcu_self_test)
 742                early_boot_test_call_rcu();
 743        if (rcu_self_test_bh)
 744                early_boot_test_call_rcu_bh();
 745        if (rcu_self_test_sched)
 746                early_boot_test_call_rcu_sched();
 747}
 748
 749static int rcu_verify_early_boot_tests(void)
 750{
 751        int ret = 0;
 752        int early_boot_test_counter = 0;
 753
 754        if (rcu_self_test) {
 755                early_boot_test_counter++;
 756                rcu_barrier();
 757        }
 758        if (rcu_self_test_bh) {
 759                early_boot_test_counter++;
 760                rcu_barrier_bh();
 761        }
 762        if (rcu_self_test_sched) {
 763                early_boot_test_counter++;
 764                rcu_barrier_sched();
 765        }
 766
 767        if (rcu_self_test_counter != early_boot_test_counter) {
 768                WARN_ON(1);
 769                ret = -1;
 770        }
 771
 772        return ret;
 773}
 774late_initcall(rcu_verify_early_boot_tests);
 775#else
 776void rcu_early_boot_tests(void) {}
 777#endif /* CONFIG_PROVE_RCU */
 778