linux/kernel/sys.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a, b)  (-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a, b)  (-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a, b)    (-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a, b)    (-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a, b)    (-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a, b)    (-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a, b)       (-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a, b)       (-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)         (-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)         (-EINVAL)
  93#endif
  94#ifndef MPX_ENABLE_MANAGEMENT
  95# define MPX_ENABLE_MANAGEMENT(a)       (-EINVAL)
  96#endif
  97#ifndef MPX_DISABLE_MANAGEMENT
  98# define MPX_DISABLE_MANAGEMENT(a)      (-EINVAL)
  99#endif
 100
 101/*
 102 * this is where the system-wide overflow UID and GID are defined, for
 103 * architectures that now have 32-bit UID/GID but didn't in the past
 104 */
 105
 106int overflowuid = DEFAULT_OVERFLOWUID;
 107int overflowgid = DEFAULT_OVERFLOWGID;
 108
 109EXPORT_SYMBOL(overflowuid);
 110EXPORT_SYMBOL(overflowgid);
 111
 112/*
 113 * the same as above, but for filesystems which can only store a 16-bit
 114 * UID and GID. as such, this is needed on all architectures
 115 */
 116
 117int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 118int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 119
 120EXPORT_SYMBOL(fs_overflowuid);
 121EXPORT_SYMBOL(fs_overflowgid);
 122
 123/*
 124 * Returns true if current's euid is same as p's uid or euid,
 125 * or has CAP_SYS_NICE to p's user_ns.
 126 *
 127 * Called with rcu_read_lock, creds are safe
 128 */
 129static bool set_one_prio_perm(struct task_struct *p)
 130{
 131        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 132
 133        if (uid_eq(pcred->uid,  cred->euid) ||
 134            uid_eq(pcred->euid, cred->euid))
 135                return true;
 136        if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 137                return true;
 138        return false;
 139}
 140
 141/*
 142 * set the priority of a task
 143 * - the caller must hold the RCU read lock
 144 */
 145static int set_one_prio(struct task_struct *p, int niceval, int error)
 146{
 147        int no_nice;
 148
 149        if (!set_one_prio_perm(p)) {
 150                error = -EPERM;
 151                goto out;
 152        }
 153        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 154                error = -EACCES;
 155                goto out;
 156        }
 157        no_nice = security_task_setnice(p, niceval);
 158        if (no_nice) {
 159                error = no_nice;
 160                goto out;
 161        }
 162        if (error == -ESRCH)
 163                error = 0;
 164        set_user_nice(p, niceval);
 165out:
 166        return error;
 167}
 168
 169SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 170{
 171        struct task_struct *g, *p;
 172        struct user_struct *user;
 173        const struct cred *cred = current_cred();
 174        int error = -EINVAL;
 175        struct pid *pgrp;
 176        kuid_t uid;
 177
 178        if (which > PRIO_USER || which < PRIO_PROCESS)
 179                goto out;
 180
 181        /* normalize: avoid signed division (rounding problems) */
 182        error = -ESRCH;
 183        if (niceval < MIN_NICE)
 184                niceval = MIN_NICE;
 185        if (niceval > MAX_NICE)
 186                niceval = MAX_NICE;
 187
 188        rcu_read_lock();
 189        read_lock(&tasklist_lock);
 190        switch (which) {
 191        case PRIO_PROCESS:
 192                if (who)
 193                        p = find_task_by_vpid(who);
 194                else
 195                        p = current;
 196                if (p)
 197                        error = set_one_prio(p, niceval, error);
 198                break;
 199        case PRIO_PGRP:
 200                if (who)
 201                        pgrp = find_vpid(who);
 202                else
 203                        pgrp = task_pgrp(current);
 204                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 205                        error = set_one_prio(p, niceval, error);
 206                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 207                break;
 208        case PRIO_USER:
 209                uid = make_kuid(cred->user_ns, who);
 210                user = cred->user;
 211                if (!who)
 212                        uid = cred->uid;
 213                else if (!uid_eq(uid, cred->uid)) {
 214                        user = find_user(uid);
 215                        if (!user)
 216                                goto out_unlock;        /* No processes for this user */
 217                }
 218                do_each_thread(g, p) {
 219                        if (uid_eq(task_uid(p), uid))
 220                                error = set_one_prio(p, niceval, error);
 221                } while_each_thread(g, p);
 222                if (!uid_eq(uid, cred->uid))
 223                        free_uid(user);         /* For find_user() */
 224                break;
 225        }
 226out_unlock:
 227        read_unlock(&tasklist_lock);
 228        rcu_read_unlock();
 229out:
 230        return error;
 231}
 232
 233/*
 234 * Ugh. To avoid negative return values, "getpriority()" will
 235 * not return the normal nice-value, but a negated value that
 236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 237 * to stay compatible.
 238 */
 239SYSCALL_DEFINE2(getpriority, int, which, int, who)
 240{
 241        struct task_struct *g, *p;
 242        struct user_struct *user;
 243        const struct cred *cred = current_cred();
 244        long niceval, retval = -ESRCH;
 245        struct pid *pgrp;
 246        kuid_t uid;
 247
 248        if (which > PRIO_USER || which < PRIO_PROCESS)
 249                return -EINVAL;
 250
 251        rcu_read_lock();
 252        read_lock(&tasklist_lock);
 253        switch (which) {
 254        case PRIO_PROCESS:
 255                if (who)
 256                        p = find_task_by_vpid(who);
 257                else
 258                        p = current;
 259                if (p) {
 260                        niceval = nice_to_rlimit(task_nice(p));
 261                        if (niceval > retval)
 262                                retval = niceval;
 263                }
 264                break;
 265        case PRIO_PGRP:
 266                if (who)
 267                        pgrp = find_vpid(who);
 268                else
 269                        pgrp = task_pgrp(current);
 270                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 271                        niceval = nice_to_rlimit(task_nice(p));
 272                        if (niceval > retval)
 273                                retval = niceval;
 274                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 275                break;
 276        case PRIO_USER:
 277                uid = make_kuid(cred->user_ns, who);
 278                user = cred->user;
 279                if (!who)
 280                        uid = cred->uid;
 281                else if (!uid_eq(uid, cred->uid)) {
 282                        user = find_user(uid);
 283                        if (!user)
 284                                goto out_unlock;        /* No processes for this user */
 285                }
 286                do_each_thread(g, p) {
 287                        if (uid_eq(task_uid(p), uid)) {
 288                                niceval = nice_to_rlimit(task_nice(p));
 289                                if (niceval > retval)
 290                                        retval = niceval;
 291                        }
 292                } while_each_thread(g, p);
 293                if (!uid_eq(uid, cred->uid))
 294                        free_uid(user);         /* for find_user() */
 295                break;
 296        }
 297out_unlock:
 298        read_unlock(&tasklist_lock);
 299        rcu_read_unlock();
 300
 301        return retval;
 302}
 303
 304/*
 305 * Unprivileged users may change the real gid to the effective gid
 306 * or vice versa.  (BSD-style)
 307 *
 308 * If you set the real gid at all, or set the effective gid to a value not
 309 * equal to the real gid, then the saved gid is set to the new effective gid.
 310 *
 311 * This makes it possible for a setgid program to completely drop its
 312 * privileges, which is often a useful assertion to make when you are doing
 313 * a security audit over a program.
 314 *
 315 * The general idea is that a program which uses just setregid() will be
 316 * 100% compatible with BSD.  A program which uses just setgid() will be
 317 * 100% compatible with POSIX with saved IDs.
 318 *
 319 * SMP: There are not races, the GIDs are checked only by filesystem
 320 *      operations (as far as semantic preservation is concerned).
 321 */
 322SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 323{
 324        struct user_namespace *ns = current_user_ns();
 325        const struct cred *old;
 326        struct cred *new;
 327        int retval;
 328        kgid_t krgid, kegid;
 329
 330        krgid = make_kgid(ns, rgid);
 331        kegid = make_kgid(ns, egid);
 332
 333        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 334                return -EINVAL;
 335        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 336                return -EINVAL;
 337
 338        new = prepare_creds();
 339        if (!new)
 340                return -ENOMEM;
 341        old = current_cred();
 342
 343        retval = -EPERM;
 344        if (rgid != (gid_t) -1) {
 345                if (gid_eq(old->gid, krgid) ||
 346                    gid_eq(old->egid, krgid) ||
 347                    ns_capable(old->user_ns, CAP_SETGID))
 348                        new->gid = krgid;
 349                else
 350                        goto error;
 351        }
 352        if (egid != (gid_t) -1) {
 353                if (gid_eq(old->gid, kegid) ||
 354                    gid_eq(old->egid, kegid) ||
 355                    gid_eq(old->sgid, kegid) ||
 356                    ns_capable(old->user_ns, CAP_SETGID))
 357                        new->egid = kegid;
 358                else
 359                        goto error;
 360        }
 361
 362        if (rgid != (gid_t) -1 ||
 363            (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 364                new->sgid = new->egid;
 365        new->fsgid = new->egid;
 366
 367        return commit_creds(new);
 368
 369error:
 370        abort_creds(new);
 371        return retval;
 372}
 373
 374/*
 375 * setgid() is implemented like SysV w/ SAVED_IDS
 376 *
 377 * SMP: Same implicit races as above.
 378 */
 379SYSCALL_DEFINE1(setgid, gid_t, gid)
 380{
 381        struct user_namespace *ns = current_user_ns();
 382        const struct cred *old;
 383        struct cred *new;
 384        int retval;
 385        kgid_t kgid;
 386
 387        kgid = make_kgid(ns, gid);
 388        if (!gid_valid(kgid))
 389                return -EINVAL;
 390
 391        new = prepare_creds();
 392        if (!new)
 393                return -ENOMEM;
 394        old = current_cred();
 395
 396        retval = -EPERM;
 397        if (ns_capable(old->user_ns, CAP_SETGID))
 398                new->gid = new->egid = new->sgid = new->fsgid = kgid;
 399        else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 400                new->egid = new->fsgid = kgid;
 401        else
 402                goto error;
 403
 404        return commit_creds(new);
 405
 406error:
 407        abort_creds(new);
 408        return retval;
 409}
 410
 411/*
 412 * change the user struct in a credentials set to match the new UID
 413 */
 414static int set_user(struct cred *new)
 415{
 416        struct user_struct *new_user;
 417
 418        new_user = alloc_uid(new->uid);
 419        if (!new_user)
 420                return -EAGAIN;
 421
 422        /*
 423         * We don't fail in case of NPROC limit excess here because too many
 424         * poorly written programs don't check set*uid() return code, assuming
 425         * it never fails if called by root.  We may still enforce NPROC limit
 426         * for programs doing set*uid()+execve() by harmlessly deferring the
 427         * failure to the execve() stage.
 428         */
 429        if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 430                        new_user != INIT_USER)
 431                current->flags |= PF_NPROC_EXCEEDED;
 432        else
 433                current->flags &= ~PF_NPROC_EXCEEDED;
 434
 435        free_uid(new->user);
 436        new->user = new_user;
 437        return 0;
 438}
 439
 440/*
 441 * Unprivileged users may change the real uid to the effective uid
 442 * or vice versa.  (BSD-style)
 443 *
 444 * If you set the real uid at all, or set the effective uid to a value not
 445 * equal to the real uid, then the saved uid is set to the new effective uid.
 446 *
 447 * This makes it possible for a setuid program to completely drop its
 448 * privileges, which is often a useful assertion to make when you are doing
 449 * a security audit over a program.
 450 *
 451 * The general idea is that a program which uses just setreuid() will be
 452 * 100% compatible with BSD.  A program which uses just setuid() will be
 453 * 100% compatible with POSIX with saved IDs.
 454 */
 455SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 456{
 457        struct user_namespace *ns = current_user_ns();
 458        const struct cred *old;
 459        struct cred *new;
 460        int retval;
 461        kuid_t kruid, keuid;
 462
 463        kruid = make_kuid(ns, ruid);
 464        keuid = make_kuid(ns, euid);
 465
 466        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 467                return -EINVAL;
 468        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 469                return -EINVAL;
 470
 471        new = prepare_creds();
 472        if (!new)
 473                return -ENOMEM;
 474        old = current_cred();
 475
 476        retval = -EPERM;
 477        if (ruid != (uid_t) -1) {
 478                new->uid = kruid;
 479                if (!uid_eq(old->uid, kruid) &&
 480                    !uid_eq(old->euid, kruid) &&
 481                    !ns_capable(old->user_ns, CAP_SETUID))
 482                        goto error;
 483        }
 484
 485        if (euid != (uid_t) -1) {
 486                new->euid = keuid;
 487                if (!uid_eq(old->uid, keuid) &&
 488                    !uid_eq(old->euid, keuid) &&
 489                    !uid_eq(old->suid, keuid) &&
 490                    !ns_capable(old->user_ns, CAP_SETUID))
 491                        goto error;
 492        }
 493
 494        if (!uid_eq(new->uid, old->uid)) {
 495                retval = set_user(new);
 496                if (retval < 0)
 497                        goto error;
 498        }
 499        if (ruid != (uid_t) -1 ||
 500            (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 501                new->suid = new->euid;
 502        new->fsuid = new->euid;
 503
 504        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 505        if (retval < 0)
 506                goto error;
 507
 508        return commit_creds(new);
 509
 510error:
 511        abort_creds(new);
 512        return retval;
 513}
 514
 515/*
 516 * setuid() is implemented like SysV with SAVED_IDS
 517 *
 518 * Note that SAVED_ID's is deficient in that a setuid root program
 519 * like sendmail, for example, cannot set its uid to be a normal
 520 * user and then switch back, because if you're root, setuid() sets
 521 * the saved uid too.  If you don't like this, blame the bright people
 522 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 523 * will allow a root program to temporarily drop privileges and be able to
 524 * regain them by swapping the real and effective uid.
 525 */
 526SYSCALL_DEFINE1(setuid, uid_t, uid)
 527{
 528        struct user_namespace *ns = current_user_ns();
 529        const struct cred *old;
 530        struct cred *new;
 531        int retval;
 532        kuid_t kuid;
 533
 534        kuid = make_kuid(ns, uid);
 535        if (!uid_valid(kuid))
 536                return -EINVAL;
 537
 538        new = prepare_creds();
 539        if (!new)
 540                return -ENOMEM;
 541        old = current_cred();
 542
 543        retval = -EPERM;
 544        if (ns_capable(old->user_ns, CAP_SETUID)) {
 545                new->suid = new->uid = kuid;
 546                if (!uid_eq(kuid, old->uid)) {
 547                        retval = set_user(new);
 548                        if (retval < 0)
 549                                goto error;
 550                }
 551        } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 552                goto error;
 553        }
 554
 555        new->fsuid = new->euid = kuid;
 556
 557        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 558        if (retval < 0)
 559                goto error;
 560
 561        return commit_creds(new);
 562
 563error:
 564        abort_creds(new);
 565        return retval;
 566}
 567
 568
 569/*
 570 * This function implements a generic ability to update ruid, euid,
 571 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 572 */
 573SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 574{
 575        struct user_namespace *ns = current_user_ns();
 576        const struct cred *old;
 577        struct cred *new;
 578        int retval;
 579        kuid_t kruid, keuid, ksuid;
 580
 581        kruid = make_kuid(ns, ruid);
 582        keuid = make_kuid(ns, euid);
 583        ksuid = make_kuid(ns, suid);
 584
 585        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 586                return -EINVAL;
 587
 588        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 589                return -EINVAL;
 590
 591        if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 592                return -EINVAL;
 593
 594        new = prepare_creds();
 595        if (!new)
 596                return -ENOMEM;
 597
 598        old = current_cred();
 599
 600        retval = -EPERM;
 601        if (!ns_capable(old->user_ns, CAP_SETUID)) {
 602                if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 603                    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 604                        goto error;
 605                if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 606                    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 607                        goto error;
 608                if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 609                    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 610                        goto error;
 611        }
 612
 613        if (ruid != (uid_t) -1) {
 614                new->uid = kruid;
 615                if (!uid_eq(kruid, old->uid)) {
 616                        retval = set_user(new);
 617                        if (retval < 0)
 618                                goto error;
 619                }
 620        }
 621        if (euid != (uid_t) -1)
 622                new->euid = keuid;
 623        if (suid != (uid_t) -1)
 624                new->suid = ksuid;
 625        new->fsuid = new->euid;
 626
 627        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 628        if (retval < 0)
 629                goto error;
 630
 631        return commit_creds(new);
 632
 633error:
 634        abort_creds(new);
 635        return retval;
 636}
 637
 638SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 639{
 640        const struct cred *cred = current_cred();
 641        int retval;
 642        uid_t ruid, euid, suid;
 643
 644        ruid = from_kuid_munged(cred->user_ns, cred->uid);
 645        euid = from_kuid_munged(cred->user_ns, cred->euid);
 646        suid = from_kuid_munged(cred->user_ns, cred->suid);
 647
 648        retval = put_user(ruid, ruidp);
 649        if (!retval) {
 650                retval = put_user(euid, euidp);
 651                if (!retval)
 652                        return put_user(suid, suidp);
 653        }
 654        return retval;
 655}
 656
 657/*
 658 * Same as above, but for rgid, egid, sgid.
 659 */
 660SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 661{
 662        struct user_namespace *ns = current_user_ns();
 663        const struct cred *old;
 664        struct cred *new;
 665        int retval;
 666        kgid_t krgid, kegid, ksgid;
 667
 668        krgid = make_kgid(ns, rgid);
 669        kegid = make_kgid(ns, egid);
 670        ksgid = make_kgid(ns, sgid);
 671
 672        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 673                return -EINVAL;
 674        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 675                return -EINVAL;
 676        if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 677                return -EINVAL;
 678
 679        new = prepare_creds();
 680        if (!new)
 681                return -ENOMEM;
 682        old = current_cred();
 683
 684        retval = -EPERM;
 685        if (!ns_capable(old->user_ns, CAP_SETGID)) {
 686                if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 687                    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 688                        goto error;
 689                if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 690                    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 691                        goto error;
 692                if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 693                    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 694                        goto error;
 695        }
 696
 697        if (rgid != (gid_t) -1)
 698                new->gid = krgid;
 699        if (egid != (gid_t) -1)
 700                new->egid = kegid;
 701        if (sgid != (gid_t) -1)
 702                new->sgid = ksgid;
 703        new->fsgid = new->egid;
 704
 705        return commit_creds(new);
 706
 707error:
 708        abort_creds(new);
 709        return retval;
 710}
 711
 712SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 713{
 714        const struct cred *cred = current_cred();
 715        int retval;
 716        gid_t rgid, egid, sgid;
 717
 718        rgid = from_kgid_munged(cred->user_ns, cred->gid);
 719        egid = from_kgid_munged(cred->user_ns, cred->egid);
 720        sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 721
 722        retval = put_user(rgid, rgidp);
 723        if (!retval) {
 724                retval = put_user(egid, egidp);
 725                if (!retval)
 726                        retval = put_user(sgid, sgidp);
 727        }
 728
 729        return retval;
 730}
 731
 732
 733/*
 734 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 735 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 736 * whatever uid it wants to). It normally shadows "euid", except when
 737 * explicitly set by setfsuid() or for access..
 738 */
 739SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 740{
 741        const struct cred *old;
 742        struct cred *new;
 743        uid_t old_fsuid;
 744        kuid_t kuid;
 745
 746        old = current_cred();
 747        old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 748
 749        kuid = make_kuid(old->user_ns, uid);
 750        if (!uid_valid(kuid))
 751                return old_fsuid;
 752
 753        new = prepare_creds();
 754        if (!new)
 755                return old_fsuid;
 756
 757        if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 758            uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 759            ns_capable(old->user_ns, CAP_SETUID)) {
 760                if (!uid_eq(kuid, old->fsuid)) {
 761                        new->fsuid = kuid;
 762                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 763                                goto change_okay;
 764                }
 765        }
 766
 767        abort_creds(new);
 768        return old_fsuid;
 769
 770change_okay:
 771        commit_creds(new);
 772        return old_fsuid;
 773}
 774
 775/*
 776 * Samma på svenska..
 777 */
 778SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 779{
 780        const struct cred *old;
 781        struct cred *new;
 782        gid_t old_fsgid;
 783        kgid_t kgid;
 784
 785        old = current_cred();
 786        old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 787
 788        kgid = make_kgid(old->user_ns, gid);
 789        if (!gid_valid(kgid))
 790                return old_fsgid;
 791
 792        new = prepare_creds();
 793        if (!new)
 794                return old_fsgid;
 795
 796        if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 797            gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 798            ns_capable(old->user_ns, CAP_SETGID)) {
 799                if (!gid_eq(kgid, old->fsgid)) {
 800                        new->fsgid = kgid;
 801                        goto change_okay;
 802                }
 803        }
 804
 805        abort_creds(new);
 806        return old_fsgid;
 807
 808change_okay:
 809        commit_creds(new);
 810        return old_fsgid;
 811}
 812
 813/**
 814 * sys_getpid - return the thread group id of the current process
 815 *
 816 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 817 * the pid are identical unless CLONE_THREAD was specified on clone() in
 818 * which case the tgid is the same in all threads of the same group.
 819 *
 820 * This is SMP safe as current->tgid does not change.
 821 */
 822SYSCALL_DEFINE0(getpid)
 823{
 824        return task_tgid_vnr(current);
 825}
 826
 827/* Thread ID - the internal kernel "pid" */
 828SYSCALL_DEFINE0(gettid)
 829{
 830        return task_pid_vnr(current);
 831}
 832
 833/*
 834 * Accessing ->real_parent is not SMP-safe, it could
 835 * change from under us. However, we can use a stale
 836 * value of ->real_parent under rcu_read_lock(), see
 837 * release_task()->call_rcu(delayed_put_task_struct).
 838 */
 839SYSCALL_DEFINE0(getppid)
 840{
 841        int pid;
 842
 843        rcu_read_lock();
 844        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 845        rcu_read_unlock();
 846
 847        return pid;
 848}
 849
 850SYSCALL_DEFINE0(getuid)
 851{
 852        /* Only we change this so SMP safe */
 853        return from_kuid_munged(current_user_ns(), current_uid());
 854}
 855
 856SYSCALL_DEFINE0(geteuid)
 857{
 858        /* Only we change this so SMP safe */
 859        return from_kuid_munged(current_user_ns(), current_euid());
 860}
 861
 862SYSCALL_DEFINE0(getgid)
 863{
 864        /* Only we change this so SMP safe */
 865        return from_kgid_munged(current_user_ns(), current_gid());
 866}
 867
 868SYSCALL_DEFINE0(getegid)
 869{
 870        /* Only we change this so SMP safe */
 871        return from_kgid_munged(current_user_ns(), current_egid());
 872}
 873
 874void do_sys_times(struct tms *tms)
 875{
 876        cputime_t tgutime, tgstime, cutime, cstime;
 877
 878        thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 879        cutime = current->signal->cutime;
 880        cstime = current->signal->cstime;
 881        tms->tms_utime = cputime_to_clock_t(tgutime);
 882        tms->tms_stime = cputime_to_clock_t(tgstime);
 883        tms->tms_cutime = cputime_to_clock_t(cutime);
 884        tms->tms_cstime = cputime_to_clock_t(cstime);
 885}
 886
 887SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 888{
 889        if (tbuf) {
 890                struct tms tmp;
 891
 892                do_sys_times(&tmp);
 893                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 894                        return -EFAULT;
 895        }
 896        force_successful_syscall_return();
 897        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 898}
 899
 900/*
 901 * This needs some heavy checking ...
 902 * I just haven't the stomach for it. I also don't fully
 903 * understand sessions/pgrp etc. Let somebody who does explain it.
 904 *
 905 * OK, I think I have the protection semantics right.... this is really
 906 * only important on a multi-user system anyway, to make sure one user
 907 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 908 *
 909 * !PF_FORKNOEXEC check to conform completely to POSIX.
 910 */
 911SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 912{
 913        struct task_struct *p;
 914        struct task_struct *group_leader = current->group_leader;
 915        struct pid *pgrp;
 916        int err;
 917
 918        if (!pid)
 919                pid = task_pid_vnr(group_leader);
 920        if (!pgid)
 921                pgid = pid;
 922        if (pgid < 0)
 923                return -EINVAL;
 924        rcu_read_lock();
 925
 926        /* From this point forward we keep holding onto the tasklist lock
 927         * so that our parent does not change from under us. -DaveM
 928         */
 929        write_lock_irq(&tasklist_lock);
 930
 931        err = -ESRCH;
 932        p = find_task_by_vpid(pid);
 933        if (!p)
 934                goto out;
 935
 936        err = -EINVAL;
 937        if (!thread_group_leader(p))
 938                goto out;
 939
 940        if (same_thread_group(p->real_parent, group_leader)) {
 941                err = -EPERM;
 942                if (task_session(p) != task_session(group_leader))
 943                        goto out;
 944                err = -EACCES;
 945                if (!(p->flags & PF_FORKNOEXEC))
 946                        goto out;
 947        } else {
 948                err = -ESRCH;
 949                if (p != group_leader)
 950                        goto out;
 951        }
 952
 953        err = -EPERM;
 954        if (p->signal->leader)
 955                goto out;
 956
 957        pgrp = task_pid(p);
 958        if (pgid != pid) {
 959                struct task_struct *g;
 960
 961                pgrp = find_vpid(pgid);
 962                g = pid_task(pgrp, PIDTYPE_PGID);
 963                if (!g || task_session(g) != task_session(group_leader))
 964                        goto out;
 965        }
 966
 967        err = security_task_setpgid(p, pgid);
 968        if (err)
 969                goto out;
 970
 971        if (task_pgrp(p) != pgrp)
 972                change_pid(p, PIDTYPE_PGID, pgrp);
 973
 974        err = 0;
 975out:
 976        /* All paths lead to here, thus we are safe. -DaveM */
 977        write_unlock_irq(&tasklist_lock);
 978        rcu_read_unlock();
 979        return err;
 980}
 981
 982SYSCALL_DEFINE1(getpgid, pid_t, pid)
 983{
 984        struct task_struct *p;
 985        struct pid *grp;
 986        int retval;
 987
 988        rcu_read_lock();
 989        if (!pid)
 990                grp = task_pgrp(current);
 991        else {
 992                retval = -ESRCH;
 993                p = find_task_by_vpid(pid);
 994                if (!p)
 995                        goto out;
 996                grp = task_pgrp(p);
 997                if (!grp)
 998                        goto out;
 999
1000                retval = security_task_getpgid(p);
1001                if (retval)
1002                        goto out;
1003        }
1004        retval = pid_vnr(grp);
1005out:
1006        rcu_read_unlock();
1007        return retval;
1008}
1009
1010#ifdef __ARCH_WANT_SYS_GETPGRP
1011
1012SYSCALL_DEFINE0(getpgrp)
1013{
1014        return sys_getpgid(0);
1015}
1016
1017#endif
1018
1019SYSCALL_DEFINE1(getsid, pid_t, pid)
1020{
1021        struct task_struct *p;
1022        struct pid *sid;
1023        int retval;
1024
1025        rcu_read_lock();
1026        if (!pid)
1027                sid = task_session(current);
1028        else {
1029                retval = -ESRCH;
1030                p = find_task_by_vpid(pid);
1031                if (!p)
1032                        goto out;
1033                sid = task_session(p);
1034                if (!sid)
1035                        goto out;
1036
1037                retval = security_task_getsid(p);
1038                if (retval)
1039                        goto out;
1040        }
1041        retval = pid_vnr(sid);
1042out:
1043        rcu_read_unlock();
1044        return retval;
1045}
1046
1047static void set_special_pids(struct pid *pid)
1048{
1049        struct task_struct *curr = current->group_leader;
1050
1051        if (task_session(curr) != pid)
1052                change_pid(curr, PIDTYPE_SID, pid);
1053
1054        if (task_pgrp(curr) != pid)
1055                change_pid(curr, PIDTYPE_PGID, pid);
1056}
1057
1058SYSCALL_DEFINE0(setsid)
1059{
1060        struct task_struct *group_leader = current->group_leader;
1061        struct pid *sid = task_pid(group_leader);
1062        pid_t session = pid_vnr(sid);
1063        int err = -EPERM;
1064
1065        write_lock_irq(&tasklist_lock);
1066        /* Fail if I am already a session leader */
1067        if (group_leader->signal->leader)
1068                goto out;
1069
1070        /* Fail if a process group id already exists that equals the
1071         * proposed session id.
1072         */
1073        if (pid_task(sid, PIDTYPE_PGID))
1074                goto out;
1075
1076        group_leader->signal->leader = 1;
1077        set_special_pids(sid);
1078
1079        proc_clear_tty(group_leader);
1080
1081        err = session;
1082out:
1083        write_unlock_irq(&tasklist_lock);
1084        if (err > 0) {
1085                proc_sid_connector(group_leader);
1086                sched_autogroup_create_attach(group_leader);
1087        }
1088        return err;
1089}
1090
1091DECLARE_RWSEM(uts_sem);
1092
1093#ifdef COMPAT_UTS_MACHINE
1094#define override_architecture(name) \
1095        (personality(current->personality) == PER_LINUX32 && \
1096         copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1097                      sizeof(COMPAT_UTS_MACHINE)))
1098#else
1099#define override_architecture(name)     0
1100#endif
1101
1102/*
1103 * Work around broken programs that cannot handle "Linux 3.0".
1104 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1105 */
1106static int override_release(char __user *release, size_t len)
1107{
1108        int ret = 0;
1109
1110        if (current->personality & UNAME26) {
1111                const char *rest = UTS_RELEASE;
1112                char buf[65] = { 0 };
1113                int ndots = 0;
1114                unsigned v;
1115                size_t copy;
1116
1117                while (*rest) {
1118                        if (*rest == '.' && ++ndots >= 3)
1119                                break;
1120                        if (!isdigit(*rest) && *rest != '.')
1121                                break;
1122                        rest++;
1123                }
1124                v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1125                copy = clamp_t(size_t, len, 1, sizeof(buf));
1126                copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1127                ret = copy_to_user(release, buf, copy + 1);
1128        }
1129        return ret;
1130}
1131
1132SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1133{
1134        int errno = 0;
1135
1136        down_read(&uts_sem);
1137        if (copy_to_user(name, utsname(), sizeof *name))
1138                errno = -EFAULT;
1139        up_read(&uts_sem);
1140
1141        if (!errno && override_release(name->release, sizeof(name->release)))
1142                errno = -EFAULT;
1143        if (!errno && override_architecture(name))
1144                errno = -EFAULT;
1145        return errno;
1146}
1147
1148#ifdef __ARCH_WANT_SYS_OLD_UNAME
1149/*
1150 * Old cruft
1151 */
1152SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1153{
1154        int error = 0;
1155
1156        if (!name)
1157                return -EFAULT;
1158
1159        down_read(&uts_sem);
1160        if (copy_to_user(name, utsname(), sizeof(*name)))
1161                error = -EFAULT;
1162        up_read(&uts_sem);
1163
1164        if (!error && override_release(name->release, sizeof(name->release)))
1165                error = -EFAULT;
1166        if (!error && override_architecture(name))
1167                error = -EFAULT;
1168        return error;
1169}
1170
1171SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1172{
1173        int error;
1174
1175        if (!name)
1176                return -EFAULT;
1177        if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1178                return -EFAULT;
1179
1180        down_read(&uts_sem);
1181        error = __copy_to_user(&name->sysname, &utsname()->sysname,
1182                               __OLD_UTS_LEN);
1183        error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1184        error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1185                                __OLD_UTS_LEN);
1186        error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1187        error |= __copy_to_user(&name->release, &utsname()->release,
1188                                __OLD_UTS_LEN);
1189        error |= __put_user(0, name->release + __OLD_UTS_LEN);
1190        error |= __copy_to_user(&name->version, &utsname()->version,
1191                                __OLD_UTS_LEN);
1192        error |= __put_user(0, name->version + __OLD_UTS_LEN);
1193        error |= __copy_to_user(&name->machine, &utsname()->machine,
1194                                __OLD_UTS_LEN);
1195        error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1196        up_read(&uts_sem);
1197
1198        if (!error && override_architecture(name))
1199                error = -EFAULT;
1200        if (!error && override_release(name->release, sizeof(name->release)))
1201                error = -EFAULT;
1202        return error ? -EFAULT : 0;
1203}
1204#endif
1205
1206SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1207{
1208        int errno;
1209        char tmp[__NEW_UTS_LEN];
1210
1211        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1212                return -EPERM;
1213
1214        if (len < 0 || len > __NEW_UTS_LEN)
1215                return -EINVAL;
1216        down_write(&uts_sem);
1217        errno = -EFAULT;
1218        if (!copy_from_user(tmp, name, len)) {
1219                struct new_utsname *u = utsname();
1220
1221                memcpy(u->nodename, tmp, len);
1222                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1223                errno = 0;
1224                uts_proc_notify(UTS_PROC_HOSTNAME);
1225        }
1226        up_write(&uts_sem);
1227        return errno;
1228}
1229
1230#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1231
1232SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1233{
1234        int i, errno;
1235        struct new_utsname *u;
1236
1237        if (len < 0)
1238                return -EINVAL;
1239        down_read(&uts_sem);
1240        u = utsname();
1241        i = 1 + strlen(u->nodename);
1242        if (i > len)
1243                i = len;
1244        errno = 0;
1245        if (copy_to_user(name, u->nodename, i))
1246                errno = -EFAULT;
1247        up_read(&uts_sem);
1248        return errno;
1249}
1250
1251#endif
1252
1253/*
1254 * Only setdomainname; getdomainname can be implemented by calling
1255 * uname()
1256 */
1257SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1258{
1259        int errno;
1260        char tmp[__NEW_UTS_LEN];
1261
1262        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1263                return -EPERM;
1264        if (len < 0 || len > __NEW_UTS_LEN)
1265                return -EINVAL;
1266
1267        down_write(&uts_sem);
1268        errno = -EFAULT;
1269        if (!copy_from_user(tmp, name, len)) {
1270                struct new_utsname *u = utsname();
1271
1272                memcpy(u->domainname, tmp, len);
1273                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1274                errno = 0;
1275                uts_proc_notify(UTS_PROC_DOMAINNAME);
1276        }
1277        up_write(&uts_sem);
1278        return errno;
1279}
1280
1281SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1282{
1283        struct rlimit value;
1284        int ret;
1285
1286        ret = do_prlimit(current, resource, NULL, &value);
1287        if (!ret)
1288                ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1289
1290        return ret;
1291}
1292
1293#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1294
1295/*
1296 *      Back compatibility for getrlimit. Needed for some apps.
1297 */
1298SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1299                struct rlimit __user *, rlim)
1300{
1301        struct rlimit x;
1302        if (resource >= RLIM_NLIMITS)
1303                return -EINVAL;
1304
1305        task_lock(current->group_leader);
1306        x = current->signal->rlim[resource];
1307        task_unlock(current->group_leader);
1308        if (x.rlim_cur > 0x7FFFFFFF)
1309                x.rlim_cur = 0x7FFFFFFF;
1310        if (x.rlim_max > 0x7FFFFFFF)
1311                x.rlim_max = 0x7FFFFFFF;
1312        return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1313}
1314
1315#endif
1316
1317static inline bool rlim64_is_infinity(__u64 rlim64)
1318{
1319#if BITS_PER_LONG < 64
1320        return rlim64 >= ULONG_MAX;
1321#else
1322        return rlim64 == RLIM64_INFINITY;
1323#endif
1324}
1325
1326static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1327{
1328        if (rlim->rlim_cur == RLIM_INFINITY)
1329                rlim64->rlim_cur = RLIM64_INFINITY;
1330        else
1331                rlim64->rlim_cur = rlim->rlim_cur;
1332        if (rlim->rlim_max == RLIM_INFINITY)
1333                rlim64->rlim_max = RLIM64_INFINITY;
1334        else
1335                rlim64->rlim_max = rlim->rlim_max;
1336}
1337
1338static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1339{
1340        if (rlim64_is_infinity(rlim64->rlim_cur))
1341                rlim->rlim_cur = RLIM_INFINITY;
1342        else
1343                rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1344        if (rlim64_is_infinity(rlim64->rlim_max))
1345                rlim->rlim_max = RLIM_INFINITY;
1346        else
1347                rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1348}
1349
1350/* make sure you are allowed to change @tsk limits before calling this */
1351int do_prlimit(struct task_struct *tsk, unsigned int resource,
1352                struct rlimit *new_rlim, struct rlimit *old_rlim)
1353{
1354        struct rlimit *rlim;
1355        int retval = 0;
1356
1357        if (resource >= RLIM_NLIMITS)
1358                return -EINVAL;
1359        if (new_rlim) {
1360                if (new_rlim->rlim_cur > new_rlim->rlim_max)
1361                        return -EINVAL;
1362                if (resource == RLIMIT_NOFILE &&
1363                                new_rlim->rlim_max > sysctl_nr_open)
1364                        return -EPERM;
1365        }
1366
1367        /* protect tsk->signal and tsk->sighand from disappearing */
1368        read_lock(&tasklist_lock);
1369        if (!tsk->sighand) {
1370                retval = -ESRCH;
1371                goto out;
1372        }
1373
1374        rlim = tsk->signal->rlim + resource;
1375        task_lock(tsk->group_leader);
1376        if (new_rlim) {
1377                /* Keep the capable check against init_user_ns until
1378                   cgroups can contain all limits */
1379                if (new_rlim->rlim_max > rlim->rlim_max &&
1380                                !capable(CAP_SYS_RESOURCE))
1381                        retval = -EPERM;
1382                if (!retval)
1383                        retval = security_task_setrlimit(tsk->group_leader,
1384                                        resource, new_rlim);
1385                if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1386                        /*
1387                         * The caller is asking for an immediate RLIMIT_CPU
1388                         * expiry.  But we use the zero value to mean "it was
1389                         * never set".  So let's cheat and make it one second
1390                         * instead
1391                         */
1392                        new_rlim->rlim_cur = 1;
1393                }
1394        }
1395        if (!retval) {
1396                if (old_rlim)
1397                        *old_rlim = *rlim;
1398                if (new_rlim)
1399                        *rlim = *new_rlim;
1400        }
1401        task_unlock(tsk->group_leader);
1402
1403        /*
1404         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1405         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1406         * very long-standing error, and fixing it now risks breakage of
1407         * applications, so we live with it
1408         */
1409         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1410                         new_rlim->rlim_cur != RLIM_INFINITY)
1411                update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1412out:
1413        read_unlock(&tasklist_lock);
1414        return retval;
1415}
1416
1417/* rcu lock must be held */
1418static int check_prlimit_permission(struct task_struct *task)
1419{
1420        const struct cred *cred = current_cred(), *tcred;
1421
1422        if (current == task)
1423                return 0;
1424
1425        tcred = __task_cred(task);
1426        if (uid_eq(cred->uid, tcred->euid) &&
1427            uid_eq(cred->uid, tcred->suid) &&
1428            uid_eq(cred->uid, tcred->uid)  &&
1429            gid_eq(cred->gid, tcred->egid) &&
1430            gid_eq(cred->gid, tcred->sgid) &&
1431            gid_eq(cred->gid, tcred->gid))
1432                return 0;
1433        if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1434                return 0;
1435
1436        return -EPERM;
1437}
1438
1439SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1440                const struct rlimit64 __user *, new_rlim,
1441                struct rlimit64 __user *, old_rlim)
1442{
1443        struct rlimit64 old64, new64;
1444        struct rlimit old, new;
1445        struct task_struct *tsk;
1446        int ret;
1447
1448        if (new_rlim) {
1449                if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1450                        return -EFAULT;
1451                rlim64_to_rlim(&new64, &new);
1452        }
1453
1454        rcu_read_lock();
1455        tsk = pid ? find_task_by_vpid(pid) : current;
1456        if (!tsk) {
1457                rcu_read_unlock();
1458                return -ESRCH;
1459        }
1460        ret = check_prlimit_permission(tsk);
1461        if (ret) {
1462                rcu_read_unlock();
1463                return ret;
1464        }
1465        get_task_struct(tsk);
1466        rcu_read_unlock();
1467
1468        ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1469                        old_rlim ? &old : NULL);
1470
1471        if (!ret && old_rlim) {
1472                rlim_to_rlim64(&old, &old64);
1473                if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1474                        ret = -EFAULT;
1475        }
1476
1477        put_task_struct(tsk);
1478        return ret;
1479}
1480
1481SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1482{
1483        struct rlimit new_rlim;
1484
1485        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1486                return -EFAULT;
1487        return do_prlimit(current, resource, &new_rlim, NULL);
1488}
1489
1490/*
1491 * It would make sense to put struct rusage in the task_struct,
1492 * except that would make the task_struct be *really big*.  After
1493 * task_struct gets moved into malloc'ed memory, it would
1494 * make sense to do this.  It will make moving the rest of the information
1495 * a lot simpler!  (Which we're not doing right now because we're not
1496 * measuring them yet).
1497 *
1498 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1499 * races with threads incrementing their own counters.  But since word
1500 * reads are atomic, we either get new values or old values and we don't
1501 * care which for the sums.  We always take the siglock to protect reading
1502 * the c* fields from p->signal from races with exit.c updating those
1503 * fields when reaping, so a sample either gets all the additions of a
1504 * given child after it's reaped, or none so this sample is before reaping.
1505 *
1506 * Locking:
1507 * We need to take the siglock for CHILDEREN, SELF and BOTH
1508 * for  the cases current multithreaded, non-current single threaded
1509 * non-current multithreaded.  Thread traversal is now safe with
1510 * the siglock held.
1511 * Strictly speaking, we donot need to take the siglock if we are current and
1512 * single threaded,  as no one else can take our signal_struct away, no one
1513 * else can  reap the  children to update signal->c* counters, and no one else
1514 * can race with the signal-> fields. If we do not take any lock, the
1515 * signal-> fields could be read out of order while another thread was just
1516 * exiting. So we should  place a read memory barrier when we avoid the lock.
1517 * On the writer side,  write memory barrier is implied in  __exit_signal
1518 * as __exit_signal releases  the siglock spinlock after updating the signal->
1519 * fields. But we don't do this yet to keep things simple.
1520 *
1521 */
1522
1523static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1524{
1525        r->ru_nvcsw += t->nvcsw;
1526        r->ru_nivcsw += t->nivcsw;
1527        r->ru_minflt += t->min_flt;
1528        r->ru_majflt += t->maj_flt;
1529        r->ru_inblock += task_io_get_inblock(t);
1530        r->ru_oublock += task_io_get_oublock(t);
1531}
1532
1533static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1534{
1535        struct task_struct *t;
1536        unsigned long flags;
1537        cputime_t tgutime, tgstime, utime, stime;
1538        unsigned long maxrss = 0;
1539
1540        memset((char *)r, 0, sizeof (*r));
1541        utime = stime = 0;
1542
1543        if (who == RUSAGE_THREAD) {
1544                task_cputime_adjusted(current, &utime, &stime);
1545                accumulate_thread_rusage(p, r);
1546                maxrss = p->signal->maxrss;
1547                goto out;
1548        }
1549
1550        if (!lock_task_sighand(p, &flags))
1551                return;
1552
1553        switch (who) {
1554        case RUSAGE_BOTH:
1555        case RUSAGE_CHILDREN:
1556                utime = p->signal->cutime;
1557                stime = p->signal->cstime;
1558                r->ru_nvcsw = p->signal->cnvcsw;
1559                r->ru_nivcsw = p->signal->cnivcsw;
1560                r->ru_minflt = p->signal->cmin_flt;
1561                r->ru_majflt = p->signal->cmaj_flt;
1562                r->ru_inblock = p->signal->cinblock;
1563                r->ru_oublock = p->signal->coublock;
1564                maxrss = p->signal->cmaxrss;
1565
1566                if (who == RUSAGE_CHILDREN)
1567                        break;
1568
1569        case RUSAGE_SELF:
1570                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1571                utime += tgutime;
1572                stime += tgstime;
1573                r->ru_nvcsw += p->signal->nvcsw;
1574                r->ru_nivcsw += p->signal->nivcsw;
1575                r->ru_minflt += p->signal->min_flt;
1576                r->ru_majflt += p->signal->maj_flt;
1577                r->ru_inblock += p->signal->inblock;
1578                r->ru_oublock += p->signal->oublock;
1579                if (maxrss < p->signal->maxrss)
1580                        maxrss = p->signal->maxrss;
1581                t = p;
1582                do {
1583                        accumulate_thread_rusage(t, r);
1584                } while_each_thread(p, t);
1585                break;
1586
1587        default:
1588                BUG();
1589        }
1590        unlock_task_sighand(p, &flags);
1591
1592out:
1593        cputime_to_timeval(utime, &r->ru_utime);
1594        cputime_to_timeval(stime, &r->ru_stime);
1595
1596        if (who != RUSAGE_CHILDREN) {
1597                struct mm_struct *mm = get_task_mm(p);
1598
1599                if (mm) {
1600                        setmax_mm_hiwater_rss(&maxrss, mm);
1601                        mmput(mm);
1602                }
1603        }
1604        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1605}
1606
1607int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1608{
1609        struct rusage r;
1610
1611        k_getrusage(p, who, &r);
1612        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1613}
1614
1615SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1616{
1617        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1618            who != RUSAGE_THREAD)
1619                return -EINVAL;
1620        return getrusage(current, who, ru);
1621}
1622
1623#ifdef CONFIG_COMPAT
1624COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1625{
1626        struct rusage r;
1627
1628        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1629            who != RUSAGE_THREAD)
1630                return -EINVAL;
1631
1632        k_getrusage(current, who, &r);
1633        return put_compat_rusage(&r, ru);
1634}
1635#endif
1636
1637SYSCALL_DEFINE1(umask, int, mask)
1638{
1639        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1640        return mask;
1641}
1642
1643static int prctl_set_mm_exe_file_locked(struct mm_struct *mm, unsigned int fd)
1644{
1645        struct fd exe;
1646        struct inode *inode;
1647        int err;
1648
1649        VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1650
1651        exe = fdget(fd);
1652        if (!exe.file)
1653                return -EBADF;
1654
1655        inode = file_inode(exe.file);
1656
1657        /*
1658         * Because the original mm->exe_file points to executable file, make
1659         * sure that this one is executable as well, to avoid breaking an
1660         * overall picture.
1661         */
1662        err = -EACCES;
1663        if (!S_ISREG(inode->i_mode)     ||
1664            exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1665                goto exit;
1666
1667        err = inode_permission(inode, MAY_EXEC);
1668        if (err)
1669                goto exit;
1670
1671        /*
1672         * Forbid mm->exe_file change if old file still mapped.
1673         */
1674        err = -EBUSY;
1675        if (mm->exe_file) {
1676                struct vm_area_struct *vma;
1677
1678                for (vma = mm->mmap; vma; vma = vma->vm_next)
1679                        if (vma->vm_file &&
1680                            path_equal(&vma->vm_file->f_path,
1681                                       &mm->exe_file->f_path))
1682                                goto exit;
1683        }
1684
1685        /*
1686         * The symlink can be changed only once, just to disallow arbitrary
1687         * transitions malicious software might bring in. This means one
1688         * could make a snapshot over all processes running and monitor
1689         * /proc/pid/exe changes to notice unusual activity if needed.
1690         */
1691        err = -EPERM;
1692        if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1693                goto exit;
1694
1695        err = 0;
1696        set_mm_exe_file(mm, exe.file);  /* this grabs a reference to exe.file */
1697exit:
1698        fdput(exe);
1699        return err;
1700}
1701
1702#ifdef CONFIG_CHECKPOINT_RESTORE
1703/*
1704 * WARNING: we don't require any capability here so be very careful
1705 * in what is allowed for modification from userspace.
1706 */
1707static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1708{
1709        unsigned long mmap_max_addr = TASK_SIZE;
1710        struct mm_struct *mm = current->mm;
1711        int error = -EINVAL, i;
1712
1713        static const unsigned char offsets[] = {
1714                offsetof(struct prctl_mm_map, start_code),
1715                offsetof(struct prctl_mm_map, end_code),
1716                offsetof(struct prctl_mm_map, start_data),
1717                offsetof(struct prctl_mm_map, end_data),
1718                offsetof(struct prctl_mm_map, start_brk),
1719                offsetof(struct prctl_mm_map, brk),
1720                offsetof(struct prctl_mm_map, start_stack),
1721                offsetof(struct prctl_mm_map, arg_start),
1722                offsetof(struct prctl_mm_map, arg_end),
1723                offsetof(struct prctl_mm_map, env_start),
1724                offsetof(struct prctl_mm_map, env_end),
1725        };
1726
1727        /*
1728         * Make sure the members are not somewhere outside
1729         * of allowed address space.
1730         */
1731        for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1732                u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1733
1734                if ((unsigned long)val >= mmap_max_addr ||
1735                    (unsigned long)val < mmap_min_addr)
1736                        goto out;
1737        }
1738
1739        /*
1740         * Make sure the pairs are ordered.
1741         */
1742#define __prctl_check_order(__m1, __op, __m2)                           \
1743        ((unsigned long)prctl_map->__m1 __op                            \
1744         (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1745        error  = __prctl_check_order(start_code, <, end_code);
1746        error |= __prctl_check_order(start_data, <, end_data);
1747        error |= __prctl_check_order(start_brk, <=, brk);
1748        error |= __prctl_check_order(arg_start, <=, arg_end);
1749        error |= __prctl_check_order(env_start, <=, env_end);
1750        if (error)
1751                goto out;
1752#undef __prctl_check_order
1753
1754        error = -EINVAL;
1755
1756        /*
1757         * @brk should be after @end_data in traditional maps.
1758         */
1759        if (prctl_map->start_brk <= prctl_map->end_data ||
1760            prctl_map->brk <= prctl_map->end_data)
1761                goto out;
1762
1763        /*
1764         * Neither we should allow to override limits if they set.
1765         */
1766        if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1767                              prctl_map->start_brk, prctl_map->end_data,
1768                              prctl_map->start_data))
1769                        goto out;
1770
1771        /*
1772         * Someone is trying to cheat the auxv vector.
1773         */
1774        if (prctl_map->auxv_size) {
1775                if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1776                        goto out;
1777        }
1778
1779        /*
1780         * Finally, make sure the caller has the rights to
1781         * change /proc/pid/exe link: only local root should
1782         * be allowed to.
1783         */
1784        if (prctl_map->exe_fd != (u32)-1) {
1785                struct user_namespace *ns = current_user_ns();
1786                const struct cred *cred = current_cred();
1787
1788                if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1789                    !gid_eq(cred->gid, make_kgid(ns, 0)))
1790                        goto out;
1791        }
1792
1793        error = 0;
1794out:
1795        return error;
1796}
1797
1798static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1799{
1800        struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1801        unsigned long user_auxv[AT_VECTOR_SIZE];
1802        struct mm_struct *mm = current->mm;
1803        int error;
1804
1805        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1806        BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1807
1808        if (opt == PR_SET_MM_MAP_SIZE)
1809                return put_user((unsigned int)sizeof(prctl_map),
1810                                (unsigned int __user *)addr);
1811
1812        if (data_size != sizeof(prctl_map))
1813                return -EINVAL;
1814
1815        if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1816                return -EFAULT;
1817
1818        error = validate_prctl_map(&prctl_map);
1819        if (error)
1820                return error;
1821
1822        if (prctl_map.auxv_size) {
1823                memset(user_auxv, 0, sizeof(user_auxv));
1824                if (copy_from_user(user_auxv,
1825                                   (const void __user *)prctl_map.auxv,
1826                                   prctl_map.auxv_size))
1827                        return -EFAULT;
1828
1829                /* Last entry must be AT_NULL as specification requires */
1830                user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1831                user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1832        }
1833
1834        down_write(&mm->mmap_sem);
1835        if (prctl_map.exe_fd != (u32)-1)
1836                error = prctl_set_mm_exe_file_locked(mm, prctl_map.exe_fd);
1837        downgrade_write(&mm->mmap_sem);
1838        if (error)
1839                goto out;
1840
1841        /*
1842         * We don't validate if these members are pointing to
1843         * real present VMAs because application may have correspond
1844         * VMAs already unmapped and kernel uses these members for statistics
1845         * output in procfs mostly, except
1846         *
1847         *  - @start_brk/@brk which are used in do_brk but kernel lookups
1848         *    for VMAs when updating these memvers so anything wrong written
1849         *    here cause kernel to swear at userspace program but won't lead
1850         *    to any problem in kernel itself
1851         */
1852
1853        mm->start_code  = prctl_map.start_code;
1854        mm->end_code    = prctl_map.end_code;
1855        mm->start_data  = prctl_map.start_data;
1856        mm->end_data    = prctl_map.end_data;
1857        mm->start_brk   = prctl_map.start_brk;
1858        mm->brk         = prctl_map.brk;
1859        mm->start_stack = prctl_map.start_stack;
1860        mm->arg_start   = prctl_map.arg_start;
1861        mm->arg_end     = prctl_map.arg_end;
1862        mm->env_start   = prctl_map.env_start;
1863        mm->env_end     = prctl_map.env_end;
1864
1865        /*
1866         * Note this update of @saved_auxv is lockless thus
1867         * if someone reads this member in procfs while we're
1868         * updating -- it may get partly updated results. It's
1869         * known and acceptable trade off: we leave it as is to
1870         * not introduce additional locks here making the kernel
1871         * more complex.
1872         */
1873        if (prctl_map.auxv_size)
1874                memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1875
1876        error = 0;
1877out:
1878        up_read(&mm->mmap_sem);
1879        return error;
1880}
1881#endif /* CONFIG_CHECKPOINT_RESTORE */
1882
1883static int prctl_set_mm(int opt, unsigned long addr,
1884                        unsigned long arg4, unsigned long arg5)
1885{
1886        struct mm_struct *mm = current->mm;
1887        struct vm_area_struct *vma;
1888        int error;
1889
1890        if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1891                              opt != PR_SET_MM_MAP &&
1892                              opt != PR_SET_MM_MAP_SIZE)))
1893                return -EINVAL;
1894
1895#ifdef CONFIG_CHECKPOINT_RESTORE
1896        if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1897                return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1898#endif
1899
1900        if (!capable(CAP_SYS_RESOURCE))
1901                return -EPERM;
1902
1903        if (opt == PR_SET_MM_EXE_FILE) {
1904                down_write(&mm->mmap_sem);
1905                error = prctl_set_mm_exe_file_locked(mm, (unsigned int)addr);
1906                up_write(&mm->mmap_sem);
1907                return error;
1908        }
1909
1910        if (addr >= TASK_SIZE || addr < mmap_min_addr)
1911                return -EINVAL;
1912
1913        error = -EINVAL;
1914
1915        down_read(&mm->mmap_sem);
1916        vma = find_vma(mm, addr);
1917
1918        switch (opt) {
1919        case PR_SET_MM_START_CODE:
1920                mm->start_code = addr;
1921                break;
1922        case PR_SET_MM_END_CODE:
1923                mm->end_code = addr;
1924                break;
1925        case PR_SET_MM_START_DATA:
1926                mm->start_data = addr;
1927                break;
1928        case PR_SET_MM_END_DATA:
1929                mm->end_data = addr;
1930                break;
1931
1932        case PR_SET_MM_START_BRK:
1933                if (addr <= mm->end_data)
1934                        goto out;
1935
1936                if (check_data_rlimit(rlimit(RLIMIT_DATA), mm->brk, addr,
1937                                      mm->end_data, mm->start_data))
1938                        goto out;
1939
1940                mm->start_brk = addr;
1941                break;
1942
1943        case PR_SET_MM_BRK:
1944                if (addr <= mm->end_data)
1945                        goto out;
1946
1947                if (check_data_rlimit(rlimit(RLIMIT_DATA), addr, mm->start_brk,
1948                                      mm->end_data, mm->start_data))
1949                        goto out;
1950
1951                mm->brk = addr;
1952                break;
1953
1954        /*
1955         * If command line arguments and environment
1956         * are placed somewhere else on stack, we can
1957         * set them up here, ARG_START/END to setup
1958         * command line argumets and ENV_START/END
1959         * for environment.
1960         */
1961        case PR_SET_MM_START_STACK:
1962        case PR_SET_MM_ARG_START:
1963        case PR_SET_MM_ARG_END:
1964        case PR_SET_MM_ENV_START:
1965        case PR_SET_MM_ENV_END:
1966                if (!vma) {
1967                        error = -EFAULT;
1968                        goto out;
1969                }
1970                if (opt == PR_SET_MM_START_STACK)
1971                        mm->start_stack = addr;
1972                else if (opt == PR_SET_MM_ARG_START)
1973                        mm->arg_start = addr;
1974                else if (opt == PR_SET_MM_ARG_END)
1975                        mm->arg_end = addr;
1976                else if (opt == PR_SET_MM_ENV_START)
1977                        mm->env_start = addr;
1978                else if (opt == PR_SET_MM_ENV_END)
1979                        mm->env_end = addr;
1980                break;
1981
1982        /*
1983         * This doesn't move auxiliary vector itself
1984         * since it's pinned to mm_struct, but allow
1985         * to fill vector with new values. It's up
1986         * to a caller to provide sane values here
1987         * otherwise user space tools which use this
1988         * vector might be unhappy.
1989         */
1990        case PR_SET_MM_AUXV: {
1991                unsigned long user_auxv[AT_VECTOR_SIZE];
1992
1993                if (arg4 > sizeof(user_auxv))
1994                        goto out;
1995                up_read(&mm->mmap_sem);
1996
1997                if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1998                        return -EFAULT;
1999
2000                /* Make sure the last entry is always AT_NULL */
2001                user_auxv[AT_VECTOR_SIZE - 2] = 0;
2002                user_auxv[AT_VECTOR_SIZE - 1] = 0;
2003
2004                BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2005
2006                task_lock(current);
2007                memcpy(mm->saved_auxv, user_auxv, arg4);
2008                task_unlock(current);
2009
2010                return 0;
2011        }
2012        default:
2013                goto out;
2014        }
2015
2016        error = 0;
2017out:
2018        up_read(&mm->mmap_sem);
2019        return error;
2020}
2021
2022#ifdef CONFIG_CHECKPOINT_RESTORE
2023static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2024{
2025        return put_user(me->clear_child_tid, tid_addr);
2026}
2027#else
2028static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2029{
2030        return -EINVAL;
2031}
2032#endif
2033
2034SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2035                unsigned long, arg4, unsigned long, arg5)
2036{
2037        struct task_struct *me = current;
2038        unsigned char comm[sizeof(me->comm)];
2039        long error;
2040
2041        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2042        if (error != -ENOSYS)
2043                return error;
2044
2045        error = 0;
2046        switch (option) {
2047        case PR_SET_PDEATHSIG:
2048                if (!valid_signal(arg2)) {
2049                        error = -EINVAL;
2050                        break;
2051                }
2052                me->pdeath_signal = arg2;
2053                break;
2054        case PR_GET_PDEATHSIG:
2055                error = put_user(me->pdeath_signal, (int __user *)arg2);
2056                break;
2057        case PR_GET_DUMPABLE:
2058                error = get_dumpable(me->mm);
2059                break;
2060        case PR_SET_DUMPABLE:
2061                if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2062                        error = -EINVAL;
2063                        break;
2064                }
2065                set_dumpable(me->mm, arg2);
2066                break;
2067
2068        case PR_SET_UNALIGN:
2069                error = SET_UNALIGN_CTL(me, arg2);
2070                break;
2071        case PR_GET_UNALIGN:
2072                error = GET_UNALIGN_CTL(me, arg2);
2073                break;
2074        case PR_SET_FPEMU:
2075                error = SET_FPEMU_CTL(me, arg2);
2076                break;
2077        case PR_GET_FPEMU:
2078                error = GET_FPEMU_CTL(me, arg2);
2079                break;
2080        case PR_SET_FPEXC:
2081                error = SET_FPEXC_CTL(me, arg2);
2082                break;
2083        case PR_GET_FPEXC:
2084                error = GET_FPEXC_CTL(me, arg2);
2085                break;
2086        case PR_GET_TIMING:
2087                error = PR_TIMING_STATISTICAL;
2088                break;
2089        case PR_SET_TIMING:
2090                if (arg2 != PR_TIMING_STATISTICAL)
2091                        error = -EINVAL;
2092                break;
2093        case PR_SET_NAME:
2094                comm[sizeof(me->comm) - 1] = 0;
2095                if (strncpy_from_user(comm, (char __user *)arg2,
2096                                      sizeof(me->comm) - 1) < 0)
2097                        return -EFAULT;
2098                set_task_comm(me, comm);
2099                proc_comm_connector(me);
2100                break;
2101        case PR_GET_NAME:
2102                get_task_comm(comm, me);
2103                if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2104                        return -EFAULT;
2105                break;
2106        case PR_GET_ENDIAN:
2107                error = GET_ENDIAN(me, arg2);
2108                break;
2109        case PR_SET_ENDIAN:
2110                error = SET_ENDIAN(me, arg2);
2111                break;
2112        case PR_GET_SECCOMP:
2113                error = prctl_get_seccomp();
2114                break;
2115        case PR_SET_SECCOMP:
2116                error = prctl_set_seccomp(arg2, (char __user *)arg3);
2117                break;
2118        case PR_GET_TSC:
2119                error = GET_TSC_CTL(arg2);
2120                break;
2121        case PR_SET_TSC:
2122                error = SET_TSC_CTL(arg2);
2123                break;
2124        case PR_TASK_PERF_EVENTS_DISABLE:
2125                error = perf_event_task_disable();
2126                break;
2127        case PR_TASK_PERF_EVENTS_ENABLE:
2128                error = perf_event_task_enable();
2129                break;
2130        case PR_GET_TIMERSLACK:
2131                error = current->timer_slack_ns;
2132                break;
2133        case PR_SET_TIMERSLACK:
2134                if (arg2 <= 0)
2135                        current->timer_slack_ns =
2136                                        current->default_timer_slack_ns;
2137                else
2138                        current->timer_slack_ns = arg2;
2139                break;
2140        case PR_MCE_KILL:
2141                if (arg4 | arg5)
2142                        return -EINVAL;
2143                switch (arg2) {
2144                case PR_MCE_KILL_CLEAR:
2145                        if (arg3 != 0)
2146                                return -EINVAL;
2147                        current->flags &= ~PF_MCE_PROCESS;
2148                        break;
2149                case PR_MCE_KILL_SET:
2150                        current->flags |= PF_MCE_PROCESS;
2151                        if (arg3 == PR_MCE_KILL_EARLY)
2152                                current->flags |= PF_MCE_EARLY;
2153                        else if (arg3 == PR_MCE_KILL_LATE)
2154                                current->flags &= ~PF_MCE_EARLY;
2155                        else if (arg3 == PR_MCE_KILL_DEFAULT)
2156                                current->flags &=
2157                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2158                        else
2159                                return -EINVAL;
2160                        break;
2161                default:
2162                        return -EINVAL;
2163                }
2164                break;
2165        case PR_MCE_KILL_GET:
2166                if (arg2 | arg3 | arg4 | arg5)
2167                        return -EINVAL;
2168                if (current->flags & PF_MCE_PROCESS)
2169                        error = (current->flags & PF_MCE_EARLY) ?
2170                                PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2171                else
2172                        error = PR_MCE_KILL_DEFAULT;
2173                break;
2174        case PR_SET_MM:
2175                error = prctl_set_mm(arg2, arg3, arg4, arg5);
2176                break;
2177        case PR_GET_TID_ADDRESS:
2178                error = prctl_get_tid_address(me, (int __user **)arg2);
2179                break;
2180        case PR_SET_CHILD_SUBREAPER:
2181                me->signal->is_child_subreaper = !!arg2;
2182                break;
2183        case PR_GET_CHILD_SUBREAPER:
2184                error = put_user(me->signal->is_child_subreaper,
2185                                 (int __user *)arg2);
2186                break;
2187        case PR_SET_NO_NEW_PRIVS:
2188                if (arg2 != 1 || arg3 || arg4 || arg5)
2189                        return -EINVAL;
2190
2191                task_set_no_new_privs(current);
2192                break;
2193        case PR_GET_NO_NEW_PRIVS:
2194                if (arg2 || arg3 || arg4 || arg5)
2195                        return -EINVAL;
2196                return task_no_new_privs(current) ? 1 : 0;
2197        case PR_GET_THP_DISABLE:
2198                if (arg2 || arg3 || arg4 || arg5)
2199                        return -EINVAL;
2200                error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2201                break;
2202        case PR_SET_THP_DISABLE:
2203                if (arg3 || arg4 || arg5)
2204                        return -EINVAL;
2205                down_write(&me->mm->mmap_sem);
2206                if (arg2)
2207                        me->mm->def_flags |= VM_NOHUGEPAGE;
2208                else
2209                        me->mm->def_flags &= ~VM_NOHUGEPAGE;
2210                up_write(&me->mm->mmap_sem);
2211                break;
2212        case PR_MPX_ENABLE_MANAGEMENT:
2213                if (arg2 || arg3 || arg4 || arg5)
2214                        return -EINVAL;
2215                error = MPX_ENABLE_MANAGEMENT(me);
2216                break;
2217        case PR_MPX_DISABLE_MANAGEMENT:
2218                if (arg2 || arg3 || arg4 || arg5)
2219                        return -EINVAL;
2220                error = MPX_DISABLE_MANAGEMENT(me);
2221                break;
2222        default:
2223                error = -EINVAL;
2224                break;
2225        }
2226        return error;
2227}
2228
2229SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2230                struct getcpu_cache __user *, unused)
2231{
2232        int err = 0;
2233        int cpu = raw_smp_processor_id();
2234
2235        if (cpup)
2236                err |= put_user(cpu, cpup);
2237        if (nodep)
2238                err |= put_user(cpu_to_node(cpu), nodep);
2239        return err ? -EFAULT : 0;
2240}
2241
2242/**
2243 * do_sysinfo - fill in sysinfo struct
2244 * @info: pointer to buffer to fill
2245 */
2246static int do_sysinfo(struct sysinfo *info)
2247{
2248        unsigned long mem_total, sav_total;
2249        unsigned int mem_unit, bitcount;
2250        struct timespec tp;
2251
2252        memset(info, 0, sizeof(struct sysinfo));
2253
2254        get_monotonic_boottime(&tp);
2255        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2256
2257        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2258
2259        info->procs = nr_threads;
2260
2261        si_meminfo(info);
2262        si_swapinfo(info);
2263
2264        /*
2265         * If the sum of all the available memory (i.e. ram + swap)
2266         * is less than can be stored in a 32 bit unsigned long then
2267         * we can be binary compatible with 2.2.x kernels.  If not,
2268         * well, in that case 2.2.x was broken anyways...
2269         *
2270         *  -Erik Andersen <andersee@debian.org>
2271         */
2272
2273        mem_total = info->totalram + info->totalswap;
2274        if (mem_total < info->totalram || mem_total < info->totalswap)
2275                goto out;
2276        bitcount = 0;
2277        mem_unit = info->mem_unit;
2278        while (mem_unit > 1) {
2279                bitcount++;
2280                mem_unit >>= 1;
2281                sav_total = mem_total;
2282                mem_total <<= 1;
2283                if (mem_total < sav_total)
2284                        goto out;
2285        }
2286
2287        /*
2288         * If mem_total did not overflow, multiply all memory values by
2289         * info->mem_unit and set it to 1.  This leaves things compatible
2290         * with 2.2.x, and also retains compatibility with earlier 2.4.x
2291         * kernels...
2292         */
2293
2294        info->mem_unit = 1;
2295        info->totalram <<= bitcount;
2296        info->freeram <<= bitcount;
2297        info->sharedram <<= bitcount;
2298        info->bufferram <<= bitcount;
2299        info->totalswap <<= bitcount;
2300        info->freeswap <<= bitcount;
2301        info->totalhigh <<= bitcount;
2302        info->freehigh <<= bitcount;
2303
2304out:
2305        return 0;
2306}
2307
2308SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2309{
2310        struct sysinfo val;
2311
2312        do_sysinfo(&val);
2313
2314        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2315                return -EFAULT;
2316
2317        return 0;
2318}
2319
2320#ifdef CONFIG_COMPAT
2321struct compat_sysinfo {
2322        s32 uptime;
2323        u32 loads[3];
2324        u32 totalram;
2325        u32 freeram;
2326        u32 sharedram;
2327        u32 bufferram;
2328        u32 totalswap;
2329        u32 freeswap;
2330        u16 procs;
2331        u16 pad;
2332        u32 totalhigh;
2333        u32 freehigh;
2334        u32 mem_unit;
2335        char _f[20-2*sizeof(u32)-sizeof(int)];
2336};
2337
2338COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2339{
2340        struct sysinfo s;
2341
2342        do_sysinfo(&s);
2343
2344        /* Check to see if any memory value is too large for 32-bit and scale
2345         *  down if needed
2346         */
2347        if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2348                int bitcount = 0;
2349
2350                while (s.mem_unit < PAGE_SIZE) {
2351                        s.mem_unit <<= 1;
2352                        bitcount++;
2353                }
2354
2355                s.totalram >>= bitcount;
2356                s.freeram >>= bitcount;
2357                s.sharedram >>= bitcount;
2358                s.bufferram >>= bitcount;
2359                s.totalswap >>= bitcount;
2360                s.freeswap >>= bitcount;
2361                s.totalhigh >>= bitcount;
2362                s.freehigh >>= bitcount;
2363        }
2364
2365        if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2366            __put_user(s.uptime, &info->uptime) ||
2367            __put_user(s.loads[0], &info->loads[0]) ||
2368            __put_user(s.loads[1], &info->loads[1]) ||
2369            __put_user(s.loads[2], &info->loads[2]) ||
2370            __put_user(s.totalram, &info->totalram) ||
2371            __put_user(s.freeram, &info->freeram) ||
2372            __put_user(s.sharedram, &info->sharedram) ||
2373            __put_user(s.bufferram, &info->bufferram) ||
2374            __put_user(s.totalswap, &info->totalswap) ||
2375            __put_user(s.freeswap, &info->freeswap) ||
2376            __put_user(s.procs, &info->procs) ||
2377            __put_user(s.totalhigh, &info->totalhigh) ||
2378            __put_user(s.freehigh, &info->freehigh) ||
2379            __put_user(s.mem_unit, &info->mem_unit))
2380                return -EFAULT;
2381
2382        return 0;
2383}
2384#endif /* CONFIG_COMPAT */
2385