linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/profile.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/perf_event.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/irq_regs.h>
  29
  30#include "tick-internal.h"
  31
  32#include <trace/events/timer.h>
  33
  34/*
  35 * Per cpu nohz control structure
  36 */
  37DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  38
  39/*
  40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  41 */
  42static ktime_t last_jiffies_update;
  43
  44struct tick_sched *tick_get_tick_sched(int cpu)
  45{
  46        return &per_cpu(tick_cpu_sched, cpu);
  47}
  48
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54        unsigned long ticks = 0;
  55        ktime_t delta;
  56
  57        /*
  58         * Do a quick check without holding jiffies_lock:
  59         */
  60        delta = ktime_sub(now, last_jiffies_update);
  61        if (delta.tv64 < tick_period.tv64)
  62                return;
  63
  64        /* Reevalute with jiffies_lock held */
  65        write_seqlock(&jiffies_lock);
  66
  67        delta = ktime_sub(now, last_jiffies_update);
  68        if (delta.tv64 >= tick_period.tv64) {
  69
  70                delta = ktime_sub(delta, tick_period);
  71                last_jiffies_update = ktime_add(last_jiffies_update,
  72                                                tick_period);
  73
  74                /* Slow path for long timeouts */
  75                if (unlikely(delta.tv64 >= tick_period.tv64)) {
  76                        s64 incr = ktime_to_ns(tick_period);
  77
  78                        ticks = ktime_divns(delta, incr);
  79
  80                        last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81                                                           incr * ticks);
  82                }
  83                do_timer(++ticks);
  84
  85                /* Keep the tick_next_period variable up to date */
  86                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  87        } else {
  88                write_sequnlock(&jiffies_lock);
  89                return;
  90        }
  91        write_sequnlock(&jiffies_lock);
  92        update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100        ktime_t period;
 101
 102        write_seqlock(&jiffies_lock);
 103        /* Did we start the jiffies update yet ? */
 104        if (last_jiffies_update.tv64 == 0)
 105                last_jiffies_update = tick_next_period;
 106        period = last_jiffies_update;
 107        write_sequnlock(&jiffies_lock);
 108        return period;
 109}
 110
 111
 112static void tick_sched_do_timer(ktime_t now)
 113{
 114        int cpu = smp_processor_id();
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117        /*
 118         * Check if the do_timer duty was dropped. We don't care about
 119         * concurrency: This happens only when the cpu in charge went
 120         * into a long sleep. If two cpus happen to assign themself to
 121         * this duty, then the jiffies update is still serialized by
 122         * jiffies_lock.
 123         */
 124        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125            && !tick_nohz_full_cpu(cpu))
 126                tick_do_timer_cpu = cpu;
 127#endif
 128
 129        /* Check, if the jiffies need an update */
 130        if (tick_do_timer_cpu == cpu)
 131                tick_do_update_jiffies64(now);
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137        /*
 138         * When we are idle and the tick is stopped, we have to touch
 139         * the watchdog as we might not schedule for a really long
 140         * time. This happens on complete idle SMP systems while
 141         * waiting on the login prompt. We also increment the "start of
 142         * idle" jiffy stamp so the idle accounting adjustment we do
 143         * when we go busy again does not account too much ticks.
 144         */
 145        if (ts->tick_stopped) {
 146                touch_softlockup_watchdog();
 147                if (is_idle_task(current))
 148                        ts->idle_jiffies++;
 149        }
 150#endif
 151        update_process_times(user_mode(regs));
 152        profile_tick(CPU_PROFILING);
 153}
 154
 155#ifdef CONFIG_NO_HZ_FULL
 156cpumask_var_t tick_nohz_full_mask;
 157cpumask_var_t housekeeping_mask;
 158bool tick_nohz_full_running;
 159
 160static bool can_stop_full_tick(void)
 161{
 162        WARN_ON_ONCE(!irqs_disabled());
 163
 164        if (!sched_can_stop_tick()) {
 165                trace_tick_stop(0, "more than 1 task in runqueue\n");
 166                return false;
 167        }
 168
 169        if (!posix_cpu_timers_can_stop_tick(current)) {
 170                trace_tick_stop(0, "posix timers running\n");
 171                return false;
 172        }
 173
 174        if (!perf_event_can_stop_tick()) {
 175                trace_tick_stop(0, "perf events running\n");
 176                return false;
 177        }
 178
 179        /* sched_clock_tick() needs us? */
 180#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 181        /*
 182         * TODO: kick full dynticks CPUs when
 183         * sched_clock_stable is set.
 184         */
 185        if (!sched_clock_stable()) {
 186                trace_tick_stop(0, "unstable sched clock\n");
 187                /*
 188                 * Don't allow the user to think they can get
 189                 * full NO_HZ with this machine.
 190                 */
 191                WARN_ONCE(tick_nohz_full_running,
 192                          "NO_HZ FULL will not work with unstable sched clock");
 193                return false;
 194        }
 195#endif
 196
 197        return true;
 198}
 199
 200static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
 201
 202/*
 203 * Re-evaluate the need for the tick on the current CPU
 204 * and restart it if necessary.
 205 */
 206void __tick_nohz_full_check(void)
 207{
 208        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 209
 210        if (tick_nohz_full_cpu(smp_processor_id())) {
 211                if (ts->tick_stopped && !is_idle_task(current)) {
 212                        if (!can_stop_full_tick())
 213                                tick_nohz_restart_sched_tick(ts, ktime_get());
 214                }
 215        }
 216}
 217
 218static void nohz_full_kick_work_func(struct irq_work *work)
 219{
 220        __tick_nohz_full_check();
 221}
 222
 223static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 224        .func = nohz_full_kick_work_func,
 225};
 226
 227/*
 228 * Kick this CPU if it's full dynticks in order to force it to
 229 * re-evaluate its dependency on the tick and restart it if necessary.
 230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 231 * is NMI safe.
 232 */
 233void tick_nohz_full_kick(void)
 234{
 235        if (!tick_nohz_full_cpu(smp_processor_id()))
 236                return;
 237
 238        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 239}
 240
 241/*
 242 * Kick the CPU if it's full dynticks in order to force it to
 243 * re-evaluate its dependency on the tick and restart it if necessary.
 244 */
 245void tick_nohz_full_kick_cpu(int cpu)
 246{
 247        if (!tick_nohz_full_cpu(cpu))
 248                return;
 249
 250        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 251}
 252
 253static void nohz_full_kick_ipi(void *info)
 254{
 255        __tick_nohz_full_check();
 256}
 257
 258/*
 259 * Kick all full dynticks CPUs in order to force these to re-evaluate
 260 * their dependency on the tick and restart it if necessary.
 261 */
 262void tick_nohz_full_kick_all(void)
 263{
 264        if (!tick_nohz_full_running)
 265                return;
 266
 267        preempt_disable();
 268        smp_call_function_many(tick_nohz_full_mask,
 269                               nohz_full_kick_ipi, NULL, false);
 270        tick_nohz_full_kick();
 271        preempt_enable();
 272}
 273
 274/*
 275 * Re-evaluate the need for the tick as we switch the current task.
 276 * It might need the tick due to per task/process properties:
 277 * perf events, posix cpu timers, ...
 278 */
 279void __tick_nohz_task_switch(struct task_struct *tsk)
 280{
 281        unsigned long flags;
 282
 283        local_irq_save(flags);
 284
 285        if (!tick_nohz_full_cpu(smp_processor_id()))
 286                goto out;
 287
 288        if (tick_nohz_tick_stopped() && !can_stop_full_tick())
 289                tick_nohz_full_kick();
 290
 291out:
 292        local_irq_restore(flags);
 293}
 294
 295/* Parse the boot-time nohz CPU list from the kernel parameters. */
 296static int __init tick_nohz_full_setup(char *str)
 297{
 298        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 299        if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 300                pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
 301                free_bootmem_cpumask_var(tick_nohz_full_mask);
 302                return 1;
 303        }
 304        tick_nohz_full_running = true;
 305
 306        return 1;
 307}
 308__setup("nohz_full=", tick_nohz_full_setup);
 309
 310static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
 311                                                 unsigned long action,
 312                                                 void *hcpu)
 313{
 314        unsigned int cpu = (unsigned long)hcpu;
 315
 316        switch (action & ~CPU_TASKS_FROZEN) {
 317        case CPU_DOWN_PREPARE:
 318                /*
 319                 * If we handle the timekeeping duty for full dynticks CPUs,
 320                 * we can't safely shutdown that CPU.
 321                 */
 322                if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 323                        return NOTIFY_BAD;
 324                break;
 325        }
 326        return NOTIFY_OK;
 327}
 328
 329/*
 330 * Worst case string length in chunks of CPU range seems 2 steps
 331 * separations: 0,2,4,6,...
 332 * This is NR_CPUS + sizeof('\0')
 333 */
 334static char __initdata nohz_full_buf[NR_CPUS + 1];
 335
 336static int tick_nohz_init_all(void)
 337{
 338        int err = -1;
 339
 340#ifdef CONFIG_NO_HZ_FULL_ALL
 341        if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 342                WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 343                return err;
 344        }
 345        err = 0;
 346        cpumask_setall(tick_nohz_full_mask);
 347        tick_nohz_full_running = true;
 348#endif
 349        return err;
 350}
 351
 352void __init tick_nohz_init(void)
 353{
 354        int cpu;
 355
 356        if (!tick_nohz_full_running) {
 357                if (tick_nohz_init_all() < 0)
 358                        return;
 359        }
 360
 361        if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 362                WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 363                cpumask_clear(tick_nohz_full_mask);
 364                tick_nohz_full_running = false;
 365                return;
 366        }
 367
 368        /*
 369         * Full dynticks uses irq work to drive the tick rescheduling on safe
 370         * locking contexts. But then we need irq work to raise its own
 371         * interrupts to avoid circular dependency on the tick
 372         */
 373        if (!arch_irq_work_has_interrupt()) {
 374                pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
 375                           "support irq work self-IPIs\n");
 376                cpumask_clear(tick_nohz_full_mask);
 377                cpumask_copy(housekeeping_mask, cpu_possible_mask);
 378                tick_nohz_full_running = false;
 379                return;
 380        }
 381
 382        cpu = smp_processor_id();
 383
 384        if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 385                pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
 386                cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 387        }
 388
 389        cpumask_andnot(housekeeping_mask,
 390                       cpu_possible_mask, tick_nohz_full_mask);
 391
 392        for_each_cpu(cpu, tick_nohz_full_mask)
 393                context_tracking_cpu_set(cpu);
 394
 395        cpu_notifier(tick_nohz_cpu_down_callback, 0);
 396        cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
 397        pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
 398}
 399#endif
 400
 401/*
 402 * NOHZ - aka dynamic tick functionality
 403 */
 404#ifdef CONFIG_NO_HZ_COMMON
 405/*
 406 * NO HZ enabled ?
 407 */
 408static int tick_nohz_enabled __read_mostly  = 1;
 409int tick_nohz_active  __read_mostly;
 410/*
 411 * Enable / Disable tickless mode
 412 */
 413static int __init setup_tick_nohz(char *str)
 414{
 415        if (!strcmp(str, "off"))
 416                tick_nohz_enabled = 0;
 417        else if (!strcmp(str, "on"))
 418                tick_nohz_enabled = 1;
 419        else
 420                return 0;
 421        return 1;
 422}
 423
 424__setup("nohz=", setup_tick_nohz);
 425
 426/**
 427 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 428 *
 429 * Called from interrupt entry when the CPU was idle
 430 *
 431 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 432 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 433 * value. We do this unconditionally on any cpu, as we don't know whether the
 434 * cpu, which has the update task assigned is in a long sleep.
 435 */
 436static void tick_nohz_update_jiffies(ktime_t now)
 437{
 438        unsigned long flags;
 439
 440        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 441
 442        local_irq_save(flags);
 443        tick_do_update_jiffies64(now);
 444        local_irq_restore(flags);
 445
 446        touch_softlockup_watchdog();
 447}
 448
 449/*
 450 * Updates the per cpu time idle statistics counters
 451 */
 452static void
 453update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 454{
 455        ktime_t delta;
 456
 457        if (ts->idle_active) {
 458                delta = ktime_sub(now, ts->idle_entrytime);
 459                if (nr_iowait_cpu(cpu) > 0)
 460                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 461                else
 462                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 463                ts->idle_entrytime = now;
 464        }
 465
 466        if (last_update_time)
 467                *last_update_time = ktime_to_us(now);
 468
 469}
 470
 471static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 472{
 473        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 474        ts->idle_active = 0;
 475
 476        sched_clock_idle_wakeup_event(0);
 477}
 478
 479static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 480{
 481        ktime_t now = ktime_get();
 482
 483        ts->idle_entrytime = now;
 484        ts->idle_active = 1;
 485        sched_clock_idle_sleep_event();
 486        return now;
 487}
 488
 489/**
 490 * get_cpu_idle_time_us - get the total idle time of a cpu
 491 * @cpu: CPU number to query
 492 * @last_update_time: variable to store update time in. Do not update
 493 * counters if NULL.
 494 *
 495 * Return the cummulative idle time (since boot) for a given
 496 * CPU, in microseconds.
 497 *
 498 * This time is measured via accounting rather than sampling,
 499 * and is as accurate as ktime_get() is.
 500 *
 501 * This function returns -1 if NOHZ is not enabled.
 502 */
 503u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 504{
 505        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 506        ktime_t now, idle;
 507
 508        if (!tick_nohz_active)
 509                return -1;
 510
 511        now = ktime_get();
 512        if (last_update_time) {
 513                update_ts_time_stats(cpu, ts, now, last_update_time);
 514                idle = ts->idle_sleeptime;
 515        } else {
 516                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 517                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 518
 519                        idle = ktime_add(ts->idle_sleeptime, delta);
 520                } else {
 521                        idle = ts->idle_sleeptime;
 522                }
 523        }
 524
 525        return ktime_to_us(idle);
 526
 527}
 528EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 529
 530/**
 531 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 532 * @cpu: CPU number to query
 533 * @last_update_time: variable to store update time in. Do not update
 534 * counters if NULL.
 535 *
 536 * Return the cummulative iowait time (since boot) for a given
 537 * CPU, in microseconds.
 538 *
 539 * This time is measured via accounting rather than sampling,
 540 * and is as accurate as ktime_get() is.
 541 *
 542 * This function returns -1 if NOHZ is not enabled.
 543 */
 544u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 545{
 546        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 547        ktime_t now, iowait;
 548
 549        if (!tick_nohz_active)
 550                return -1;
 551
 552        now = ktime_get();
 553        if (last_update_time) {
 554                update_ts_time_stats(cpu, ts, now, last_update_time);
 555                iowait = ts->iowait_sleeptime;
 556        } else {
 557                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 558                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 559
 560                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 561                } else {
 562                        iowait = ts->iowait_sleeptime;
 563                }
 564        }
 565
 566        return ktime_to_us(iowait);
 567}
 568EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 569
 570static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 571                                         ktime_t now, int cpu)
 572{
 573        unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
 574        ktime_t last_update, expires, ret = { .tv64 = 0 };
 575        unsigned long rcu_delta_jiffies;
 576        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 577        u64 time_delta;
 578
 579        time_delta = timekeeping_max_deferment();
 580
 581        /* Read jiffies and the time when jiffies were updated last */
 582        do {
 583                seq = read_seqbegin(&jiffies_lock);
 584                last_update = last_jiffies_update;
 585                last_jiffies = jiffies;
 586        } while (read_seqretry(&jiffies_lock, seq));
 587
 588        if (rcu_needs_cpu(&rcu_delta_jiffies) ||
 589            arch_needs_cpu() || irq_work_needs_cpu()) {
 590                next_jiffies = last_jiffies + 1;
 591                delta_jiffies = 1;
 592        } else {
 593                /* Get the next timer wheel timer */
 594                next_jiffies = get_next_timer_interrupt(last_jiffies);
 595                delta_jiffies = next_jiffies - last_jiffies;
 596                if (rcu_delta_jiffies < delta_jiffies) {
 597                        next_jiffies = last_jiffies + rcu_delta_jiffies;
 598                        delta_jiffies = rcu_delta_jiffies;
 599                }
 600        }
 601
 602        /*
 603         * Do not stop the tick, if we are only one off (or less)
 604         * or if the cpu is required for RCU:
 605         */
 606        if (!ts->tick_stopped && delta_jiffies <= 1)
 607                goto out;
 608
 609        /* Schedule the tick, if we are at least one jiffie off */
 610        if ((long)delta_jiffies >= 1) {
 611
 612                /*
 613                 * If this cpu is the one which updates jiffies, then
 614                 * give up the assignment and let it be taken by the
 615                 * cpu which runs the tick timer next, which might be
 616                 * this cpu as well. If we don't drop this here the
 617                 * jiffies might be stale and do_timer() never
 618                 * invoked. Keep track of the fact that it was the one
 619                 * which had the do_timer() duty last. If this cpu is
 620                 * the one which had the do_timer() duty last, we
 621                 * limit the sleep time to the timekeeping
 622                 * max_deferement value which we retrieved
 623                 * above. Otherwise we can sleep as long as we want.
 624                 */
 625                if (cpu == tick_do_timer_cpu) {
 626                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 627                        ts->do_timer_last = 1;
 628                } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 629                        time_delta = KTIME_MAX;
 630                        ts->do_timer_last = 0;
 631                } else if (!ts->do_timer_last) {
 632                        time_delta = KTIME_MAX;
 633                }
 634
 635#ifdef CONFIG_NO_HZ_FULL
 636                if (!ts->inidle) {
 637                        time_delta = min(time_delta,
 638                                         scheduler_tick_max_deferment());
 639                }
 640#endif
 641
 642                /*
 643                 * calculate the expiry time for the next timer wheel
 644                 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
 645                 * that there is no timer pending or at least extremely
 646                 * far into the future (12 days for HZ=1000). In this
 647                 * case we set the expiry to the end of time.
 648                 */
 649                if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
 650                        /*
 651                         * Calculate the time delta for the next timer event.
 652                         * If the time delta exceeds the maximum time delta
 653                         * permitted by the current clocksource then adjust
 654                         * the time delta accordingly to ensure the
 655                         * clocksource does not wrap.
 656                         */
 657                        time_delta = min_t(u64, time_delta,
 658                                           tick_period.tv64 * delta_jiffies);
 659                }
 660
 661                if (time_delta < KTIME_MAX)
 662                        expires = ktime_add_ns(last_update, time_delta);
 663                else
 664                        expires.tv64 = KTIME_MAX;
 665
 666                /* Skip reprogram of event if its not changed */
 667                if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
 668                        goto out;
 669
 670                ret = expires;
 671
 672                /*
 673                 * nohz_stop_sched_tick can be called several times before
 674                 * the nohz_restart_sched_tick is called. This happens when
 675                 * interrupts arrive which do not cause a reschedule. In the
 676                 * first call we save the current tick time, so we can restart
 677                 * the scheduler tick in nohz_restart_sched_tick.
 678                 */
 679                if (!ts->tick_stopped) {
 680                        nohz_balance_enter_idle(cpu);
 681                        calc_load_enter_idle();
 682
 683                        ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 684                        ts->tick_stopped = 1;
 685                        trace_tick_stop(1, " ");
 686                }
 687
 688                /*
 689                 * If the expiration time == KTIME_MAX, then
 690                 * in this case we simply stop the tick timer.
 691                 */
 692                 if (unlikely(expires.tv64 == KTIME_MAX)) {
 693                        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 694                                hrtimer_cancel(&ts->sched_timer);
 695                        goto out;
 696                }
 697
 698                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 699                        hrtimer_start(&ts->sched_timer, expires,
 700                                      HRTIMER_MODE_ABS_PINNED);
 701                        /* Check, if the timer was already in the past */
 702                        if (hrtimer_active(&ts->sched_timer))
 703                                goto out;
 704                } else if (!tick_program_event(expires, 0))
 705                                goto out;
 706                /*
 707                 * We are past the event already. So we crossed a
 708                 * jiffie boundary. Update jiffies and raise the
 709                 * softirq.
 710                 */
 711                tick_do_update_jiffies64(ktime_get());
 712        }
 713        raise_softirq_irqoff(TIMER_SOFTIRQ);
 714out:
 715        ts->next_jiffies = next_jiffies;
 716        ts->last_jiffies = last_jiffies;
 717        ts->sleep_length = ktime_sub(dev->next_event, now);
 718
 719        return ret;
 720}
 721
 722static void tick_nohz_full_stop_tick(struct tick_sched *ts)
 723{
 724#ifdef CONFIG_NO_HZ_FULL
 725        int cpu = smp_processor_id();
 726
 727        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
 728                return;
 729
 730        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 731                return;
 732
 733        if (!can_stop_full_tick())
 734                return;
 735
 736        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 737#endif
 738}
 739
 740static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 741{
 742        /*
 743         * If this cpu is offline and it is the one which updates
 744         * jiffies, then give up the assignment and let it be taken by
 745         * the cpu which runs the tick timer next. If we don't drop
 746         * this here the jiffies might be stale and do_timer() never
 747         * invoked.
 748         */
 749        if (unlikely(!cpu_online(cpu))) {
 750                if (cpu == tick_do_timer_cpu)
 751                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 752                return false;
 753        }
 754
 755        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 756                ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
 757                return false;
 758        }
 759
 760        if (need_resched())
 761                return false;
 762
 763        if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 764                static int ratelimit;
 765
 766                if (ratelimit < 10 &&
 767                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 768                        pr_warn("NOHZ: local_softirq_pending %02x\n",
 769                                (unsigned int) local_softirq_pending());
 770                        ratelimit++;
 771                }
 772                return false;
 773        }
 774
 775        if (tick_nohz_full_enabled()) {
 776                /*
 777                 * Keep the tick alive to guarantee timekeeping progression
 778                 * if there are full dynticks CPUs around
 779                 */
 780                if (tick_do_timer_cpu == cpu)
 781                        return false;
 782                /*
 783                 * Boot safety: make sure the timekeeping duty has been
 784                 * assigned before entering dyntick-idle mode,
 785                 */
 786                if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 787                        return false;
 788        }
 789
 790        return true;
 791}
 792
 793static void __tick_nohz_idle_enter(struct tick_sched *ts)
 794{
 795        ktime_t now, expires;
 796        int cpu = smp_processor_id();
 797
 798        now = tick_nohz_start_idle(ts);
 799
 800        if (can_stop_idle_tick(cpu, ts)) {
 801                int was_stopped = ts->tick_stopped;
 802
 803                ts->idle_calls++;
 804
 805                expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 806                if (expires.tv64 > 0LL) {
 807                        ts->idle_sleeps++;
 808                        ts->idle_expires = expires;
 809                }
 810
 811                if (!was_stopped && ts->tick_stopped)
 812                        ts->idle_jiffies = ts->last_jiffies;
 813        }
 814}
 815
 816/**
 817 * tick_nohz_idle_enter - stop the idle tick from the idle task
 818 *
 819 * When the next event is more than a tick into the future, stop the idle tick
 820 * Called when we start the idle loop.
 821 *
 822 * The arch is responsible of calling:
 823 *
 824 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 825 *  to sleep.
 826 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 827 */
 828void tick_nohz_idle_enter(void)
 829{
 830        struct tick_sched *ts;
 831
 832        WARN_ON_ONCE(irqs_disabled());
 833
 834        /*
 835         * Update the idle state in the scheduler domain hierarchy
 836         * when tick_nohz_stop_sched_tick() is called from the idle loop.
 837         * State will be updated to busy during the first busy tick after
 838         * exiting idle.
 839         */
 840        set_cpu_sd_state_idle();
 841
 842        local_irq_disable();
 843
 844        ts = this_cpu_ptr(&tick_cpu_sched);
 845        ts->inidle = 1;
 846        __tick_nohz_idle_enter(ts);
 847
 848        local_irq_enable();
 849}
 850
 851/**
 852 * tick_nohz_irq_exit - update next tick event from interrupt exit
 853 *
 854 * When an interrupt fires while we are idle and it doesn't cause
 855 * a reschedule, it may still add, modify or delete a timer, enqueue
 856 * an RCU callback, etc...
 857 * So we need to re-calculate and reprogram the next tick event.
 858 */
 859void tick_nohz_irq_exit(void)
 860{
 861        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 862
 863        if (ts->inidle)
 864                __tick_nohz_idle_enter(ts);
 865        else
 866                tick_nohz_full_stop_tick(ts);
 867}
 868
 869/**
 870 * tick_nohz_get_sleep_length - return the length of the current sleep
 871 *
 872 * Called from power state control code with interrupts disabled
 873 */
 874ktime_t tick_nohz_get_sleep_length(void)
 875{
 876        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 877
 878        return ts->sleep_length;
 879}
 880
 881static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 882{
 883        hrtimer_cancel(&ts->sched_timer);
 884        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 885
 886        while (1) {
 887                /* Forward the time to expire in the future */
 888                hrtimer_forward(&ts->sched_timer, now, tick_period);
 889
 890                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 891                        hrtimer_start_expires(&ts->sched_timer,
 892                                              HRTIMER_MODE_ABS_PINNED);
 893                        /* Check, if the timer was already in the past */
 894                        if (hrtimer_active(&ts->sched_timer))
 895                                break;
 896                } else {
 897                        if (!tick_program_event(
 898                                hrtimer_get_expires(&ts->sched_timer), 0))
 899                                break;
 900                }
 901                /* Reread time and update jiffies */
 902                now = ktime_get();
 903                tick_do_update_jiffies64(now);
 904        }
 905}
 906
 907static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 908{
 909        /* Update jiffies first */
 910        tick_do_update_jiffies64(now);
 911        update_cpu_load_nohz();
 912
 913        calc_load_exit_idle();
 914        touch_softlockup_watchdog();
 915        /*
 916         * Cancel the scheduled timer and restore the tick
 917         */
 918        ts->tick_stopped  = 0;
 919        ts->idle_exittime = now;
 920
 921        tick_nohz_restart(ts, now);
 922}
 923
 924static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 925{
 926#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 927        unsigned long ticks;
 928
 929        if (vtime_accounting_enabled())
 930                return;
 931        /*
 932         * We stopped the tick in idle. Update process times would miss the
 933         * time we slept as update_process_times does only a 1 tick
 934         * accounting. Enforce that this is accounted to idle !
 935         */
 936        ticks = jiffies - ts->idle_jiffies;
 937        /*
 938         * We might be one off. Do not randomly account a huge number of ticks!
 939         */
 940        if (ticks && ticks < LONG_MAX)
 941                account_idle_ticks(ticks);
 942#endif
 943}
 944
 945/**
 946 * tick_nohz_idle_exit - restart the idle tick from the idle task
 947 *
 948 * Restart the idle tick when the CPU is woken up from idle
 949 * This also exit the RCU extended quiescent state. The CPU
 950 * can use RCU again after this function is called.
 951 */
 952void tick_nohz_idle_exit(void)
 953{
 954        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 955        ktime_t now;
 956
 957        local_irq_disable();
 958
 959        WARN_ON_ONCE(!ts->inidle);
 960
 961        ts->inidle = 0;
 962
 963        if (ts->idle_active || ts->tick_stopped)
 964                now = ktime_get();
 965
 966        if (ts->idle_active)
 967                tick_nohz_stop_idle(ts, now);
 968
 969        if (ts->tick_stopped) {
 970                tick_nohz_restart_sched_tick(ts, now);
 971                tick_nohz_account_idle_ticks(ts);
 972        }
 973
 974        local_irq_enable();
 975}
 976
 977static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 978{
 979        hrtimer_forward(&ts->sched_timer, now, tick_period);
 980        return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 981}
 982
 983/*
 984 * The nohz low res interrupt handler
 985 */
 986static void tick_nohz_handler(struct clock_event_device *dev)
 987{
 988        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 989        struct pt_regs *regs = get_irq_regs();
 990        ktime_t now = ktime_get();
 991
 992        dev->next_event.tv64 = KTIME_MAX;
 993
 994        tick_sched_do_timer(now);
 995        tick_sched_handle(ts, regs);
 996
 997        /* No need to reprogram if we are running tickless  */
 998        if (unlikely(ts->tick_stopped))
 999                return;
1000
1001        while (tick_nohz_reprogram(ts, now)) {
1002                now = ktime_get();
1003                tick_do_update_jiffies64(now);
1004        }
1005}
1006
1007/**
1008 * tick_nohz_switch_to_nohz - switch to nohz mode
1009 */
1010static void tick_nohz_switch_to_nohz(void)
1011{
1012        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013        ktime_t next;
1014
1015        if (!tick_nohz_enabled)
1016                return;
1017
1018        local_irq_disable();
1019        if (tick_switch_to_oneshot(tick_nohz_handler)) {
1020                local_irq_enable();
1021                return;
1022        }
1023        tick_nohz_active = 1;
1024        ts->nohz_mode = NOHZ_MODE_LOWRES;
1025
1026        /*
1027         * Recycle the hrtimer in ts, so we can share the
1028         * hrtimer_forward with the highres code.
1029         */
1030        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1031        /* Get the next period */
1032        next = tick_init_jiffy_update();
1033
1034        for (;;) {
1035                hrtimer_set_expires(&ts->sched_timer, next);
1036                if (!tick_program_event(next, 0))
1037                        break;
1038                next = ktime_add(next, tick_period);
1039        }
1040        local_irq_enable();
1041}
1042
1043/*
1044 * When NOHZ is enabled and the tick is stopped, we need to kick the
1045 * tick timer from irq_enter() so that the jiffies update is kept
1046 * alive during long running softirqs. That's ugly as hell, but
1047 * correctness is key even if we need to fix the offending softirq in
1048 * the first place.
1049 *
1050 * Note, this is different to tick_nohz_restart. We just kick the
1051 * timer and do not touch the other magic bits which need to be done
1052 * when idle is left.
1053 */
1054static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1055{
1056#if 0
1057        /* Switch back to 2.6.27 behaviour */
1058        ktime_t delta;
1059
1060        /*
1061         * Do not touch the tick device, when the next expiry is either
1062         * already reached or less/equal than the tick period.
1063         */
1064        delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1065        if (delta.tv64 <= tick_period.tv64)
1066                return;
1067
1068        tick_nohz_restart(ts, now);
1069#endif
1070}
1071
1072static inline void tick_nohz_irq_enter(void)
1073{
1074        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1075        ktime_t now;
1076
1077        if (!ts->idle_active && !ts->tick_stopped)
1078                return;
1079        now = ktime_get();
1080        if (ts->idle_active)
1081                tick_nohz_stop_idle(ts, now);
1082        if (ts->tick_stopped) {
1083                tick_nohz_update_jiffies(now);
1084                tick_nohz_kick_tick(ts, now);
1085        }
1086}
1087
1088#else
1089
1090static inline void tick_nohz_switch_to_nohz(void) { }
1091static inline void tick_nohz_irq_enter(void) { }
1092
1093#endif /* CONFIG_NO_HZ_COMMON */
1094
1095/*
1096 * Called from irq_enter to notify about the possible interruption of idle()
1097 */
1098void tick_irq_enter(void)
1099{
1100        tick_check_oneshot_broadcast_this_cpu();
1101        tick_nohz_irq_enter();
1102}
1103
1104/*
1105 * High resolution timer specific code
1106 */
1107#ifdef CONFIG_HIGH_RES_TIMERS
1108/*
1109 * We rearm the timer until we get disabled by the idle code.
1110 * Called with interrupts disabled.
1111 */
1112static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1113{
1114        struct tick_sched *ts =
1115                container_of(timer, struct tick_sched, sched_timer);
1116        struct pt_regs *regs = get_irq_regs();
1117        ktime_t now = ktime_get();
1118
1119        tick_sched_do_timer(now);
1120
1121        /*
1122         * Do not call, when we are not in irq context and have
1123         * no valid regs pointer
1124         */
1125        if (regs)
1126                tick_sched_handle(ts, regs);
1127
1128        /* No need to reprogram if we are in idle or full dynticks mode */
1129        if (unlikely(ts->tick_stopped))
1130                return HRTIMER_NORESTART;
1131
1132        hrtimer_forward(timer, now, tick_period);
1133
1134        return HRTIMER_RESTART;
1135}
1136
1137static int sched_skew_tick;
1138
1139static int __init skew_tick(char *str)
1140{
1141        get_option(&str, &sched_skew_tick);
1142
1143        return 0;
1144}
1145early_param("skew_tick", skew_tick);
1146
1147/**
1148 * tick_setup_sched_timer - setup the tick emulation timer
1149 */
1150void tick_setup_sched_timer(void)
1151{
1152        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1153        ktime_t now = ktime_get();
1154
1155        /*
1156         * Emulate tick processing via per-CPU hrtimers:
1157         */
1158        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1159        ts->sched_timer.function = tick_sched_timer;
1160
1161        /* Get the next period (per cpu) */
1162        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1163
1164        /* Offset the tick to avert jiffies_lock contention. */
1165        if (sched_skew_tick) {
1166                u64 offset = ktime_to_ns(tick_period) >> 1;
1167                do_div(offset, num_possible_cpus());
1168                offset *= smp_processor_id();
1169                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1170        }
1171
1172        for (;;) {
1173                hrtimer_forward(&ts->sched_timer, now, tick_period);
1174                hrtimer_start_expires(&ts->sched_timer,
1175                                      HRTIMER_MODE_ABS_PINNED);
1176                /* Check, if the timer was already in the past */
1177                if (hrtimer_active(&ts->sched_timer))
1178                        break;
1179                now = ktime_get();
1180        }
1181
1182#ifdef CONFIG_NO_HZ_COMMON
1183        if (tick_nohz_enabled) {
1184                ts->nohz_mode = NOHZ_MODE_HIGHRES;
1185                tick_nohz_active = 1;
1186        }
1187#endif
1188}
1189#endif /* HIGH_RES_TIMERS */
1190
1191#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1192void tick_cancel_sched_timer(int cpu)
1193{
1194        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1195
1196# ifdef CONFIG_HIGH_RES_TIMERS
1197        if (ts->sched_timer.base)
1198                hrtimer_cancel(&ts->sched_timer);
1199# endif
1200
1201        memset(ts, 0, sizeof(*ts));
1202}
1203#endif
1204
1205/**
1206 * Async notification about clocksource changes
1207 */
1208void tick_clock_notify(void)
1209{
1210        int cpu;
1211
1212        for_each_possible_cpu(cpu)
1213                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1214}
1215
1216/*
1217 * Async notification about clock event changes
1218 */
1219void tick_oneshot_notify(void)
1220{
1221        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1222
1223        set_bit(0, &ts->check_clocks);
1224}
1225
1226/**
1227 * Check, if a change happened, which makes oneshot possible.
1228 *
1229 * Called cyclic from the hrtimer softirq (driven by the timer
1230 * softirq) allow_nohz signals, that we can switch into low-res nohz
1231 * mode, because high resolution timers are disabled (either compile
1232 * or runtime).
1233 */
1234int tick_check_oneshot_change(int allow_nohz)
1235{
1236        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1237
1238        if (!test_and_clear_bit(0, &ts->check_clocks))
1239                return 0;
1240
1241        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1242                return 0;
1243
1244        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1245                return 0;
1246
1247        if (!allow_nohz)
1248                return 1;
1249
1250        tick_nohz_switch_to_nohz();
1251        return 0;
1252}
1253