linux/mm/migrate.c
<<
>>
Prefs
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
  34#include <linux/syscalls.h>
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
  40
  41#include <asm/tlbflush.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/migrate.h>
  45
  46#include "internal.h"
  47
  48/*
  49 * migrate_prep() needs to be called before we start compiling a list of pages
  50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  51 * undesirable, use migrate_prep_local()
  52 */
  53int migrate_prep(void)
  54{
  55        /*
  56         * Clear the LRU lists so pages can be isolated.
  57         * Note that pages may be moved off the LRU after we have
  58         * drained them. Those pages will fail to migrate like other
  59         * pages that may be busy.
  60         */
  61        lru_add_drain_all();
  62
  63        return 0;
  64}
  65
  66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  67int migrate_prep_local(void)
  68{
  69        lru_add_drain();
  70
  71        return 0;
  72}
  73
  74/*
  75 * Put previously isolated pages back onto the appropriate lists
  76 * from where they were once taken off for compaction/migration.
  77 *
  78 * This function shall be used whenever the isolated pageset has been
  79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  80 * and isolate_huge_page().
  81 */
  82void putback_movable_pages(struct list_head *l)
  83{
  84        struct page *page;
  85        struct page *page2;
  86
  87        list_for_each_entry_safe(page, page2, l, lru) {
  88                if (unlikely(PageHuge(page))) {
  89                        putback_active_hugepage(page);
  90                        continue;
  91                }
  92                list_del(&page->lru);
  93                dec_zone_page_state(page, NR_ISOLATED_ANON +
  94                                page_is_file_cache(page));
  95                if (unlikely(isolated_balloon_page(page)))
  96                        balloon_page_putback(page);
  97                else
  98                        putback_lru_page(page);
  99        }
 100}
 101
 102/*
 103 * Restore a potential migration pte to a working pte entry
 104 */
 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 106                                 unsigned long addr, void *old)
 107{
 108        struct mm_struct *mm = vma->vm_mm;
 109        swp_entry_t entry;
 110        pmd_t *pmd;
 111        pte_t *ptep, pte;
 112        spinlock_t *ptl;
 113
 114        if (unlikely(PageHuge(new))) {
 115                ptep = huge_pte_offset(mm, addr);
 116                if (!ptep)
 117                        goto out;
 118                ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 119        } else {
 120                pmd = mm_find_pmd(mm, addr);
 121                if (!pmd)
 122                        goto out;
 123
 124                ptep = pte_offset_map(pmd, addr);
 125
 126                /*
 127                 * Peek to check is_swap_pte() before taking ptlock?  No, we
 128                 * can race mremap's move_ptes(), which skips anon_vma lock.
 129                 */
 130
 131                ptl = pte_lockptr(mm, pmd);
 132        }
 133
 134        spin_lock(ptl);
 135        pte = *ptep;
 136        if (!is_swap_pte(pte))
 137                goto unlock;
 138
 139        entry = pte_to_swp_entry(pte);
 140
 141        if (!is_migration_entry(entry) ||
 142            migration_entry_to_page(entry) != old)
 143                goto unlock;
 144
 145        get_page(new);
 146        pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 147        if (pte_swp_soft_dirty(*ptep))
 148                pte = pte_mksoft_dirty(pte);
 149
 150        /* Recheck VMA as permissions can change since migration started  */
 151        if (is_write_migration_entry(entry))
 152                pte = maybe_mkwrite(pte, vma);
 153
 154#ifdef CONFIG_HUGETLB_PAGE
 155        if (PageHuge(new)) {
 156                pte = pte_mkhuge(pte);
 157                pte = arch_make_huge_pte(pte, vma, new, 0);
 158        }
 159#endif
 160        flush_dcache_page(new);
 161        set_pte_at(mm, addr, ptep, pte);
 162
 163        if (PageHuge(new)) {
 164                if (PageAnon(new))
 165                        hugepage_add_anon_rmap(new, vma, addr);
 166                else
 167                        page_dup_rmap(new);
 168        } else if (PageAnon(new))
 169                page_add_anon_rmap(new, vma, addr);
 170        else
 171                page_add_file_rmap(new);
 172
 173        /* No need to invalidate - it was non-present before */
 174        update_mmu_cache(vma, addr, ptep);
 175unlock:
 176        pte_unmap_unlock(ptep, ptl);
 177out:
 178        return SWAP_AGAIN;
 179}
 180
 181/*
 182 * Congratulations to trinity for discovering this bug.
 183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 185 * replace the specified range by file ptes throughout (maybe populated after).
 186 * If page migration finds a page within that range, while it's still located
 187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 189 * But if the migrating page is in a part of the vma outside the range to be
 190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 191 * deal with it.  Fortunately, this part of the vma is of course still linear,
 192 * so we just need to use linear location on the nonlinear list.
 193 */
 194static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
 195                struct address_space *mapping, void *arg)
 196{
 197        struct vm_area_struct *vma;
 198        /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
 199        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 200        unsigned long addr;
 201
 202        list_for_each_entry(vma,
 203                &mapping->i_mmap_nonlinear, shared.nonlinear) {
 204
 205                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 206                if (addr >= vma->vm_start && addr < vma->vm_end)
 207                        remove_migration_pte(page, vma, addr, arg);
 208        }
 209        return SWAP_AGAIN;
 210}
 211
 212/*
 213 * Get rid of all migration entries and replace them by
 214 * references to the indicated page.
 215 */
 216static void remove_migration_ptes(struct page *old, struct page *new)
 217{
 218        struct rmap_walk_control rwc = {
 219                .rmap_one = remove_migration_pte,
 220                .arg = old,
 221                .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
 222        };
 223
 224        rmap_walk(new, &rwc);
 225}
 226
 227/*
 228 * Something used the pte of a page under migration. We need to
 229 * get to the page and wait until migration is finished.
 230 * When we return from this function the fault will be retried.
 231 */
 232static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 233                                spinlock_t *ptl)
 234{
 235        pte_t pte;
 236        swp_entry_t entry;
 237        struct page *page;
 238
 239        spin_lock(ptl);
 240        pte = *ptep;
 241        if (!is_swap_pte(pte))
 242                goto out;
 243
 244        entry = pte_to_swp_entry(pte);
 245        if (!is_migration_entry(entry))
 246                goto out;
 247
 248        page = migration_entry_to_page(entry);
 249
 250        /*
 251         * Once radix-tree replacement of page migration started, page_count
 252         * *must* be zero. And, we don't want to call wait_on_page_locked()
 253         * against a page without get_page().
 254         * So, we use get_page_unless_zero(), here. Even failed, page fault
 255         * will occur again.
 256         */
 257        if (!get_page_unless_zero(page))
 258                goto out;
 259        pte_unmap_unlock(ptep, ptl);
 260        wait_on_page_locked(page);
 261        put_page(page);
 262        return;
 263out:
 264        pte_unmap_unlock(ptep, ptl);
 265}
 266
 267void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 268                                unsigned long address)
 269{
 270        spinlock_t *ptl = pte_lockptr(mm, pmd);
 271        pte_t *ptep = pte_offset_map(pmd, address);
 272        __migration_entry_wait(mm, ptep, ptl);
 273}
 274
 275void migration_entry_wait_huge(struct vm_area_struct *vma,
 276                struct mm_struct *mm, pte_t *pte)
 277{
 278        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 279        __migration_entry_wait(mm, pte, ptl);
 280}
 281
 282#ifdef CONFIG_BLOCK
 283/* Returns true if all buffers are successfully locked */
 284static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 285                                                        enum migrate_mode mode)
 286{
 287        struct buffer_head *bh = head;
 288
 289        /* Simple case, sync compaction */
 290        if (mode != MIGRATE_ASYNC) {
 291                do {
 292                        get_bh(bh);
 293                        lock_buffer(bh);
 294                        bh = bh->b_this_page;
 295
 296                } while (bh != head);
 297
 298                return true;
 299        }
 300
 301        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 302        do {
 303                get_bh(bh);
 304                if (!trylock_buffer(bh)) {
 305                        /*
 306                         * We failed to lock the buffer and cannot stall in
 307                         * async migration. Release the taken locks
 308                         */
 309                        struct buffer_head *failed_bh = bh;
 310                        put_bh(failed_bh);
 311                        bh = head;
 312                        while (bh != failed_bh) {
 313                                unlock_buffer(bh);
 314                                put_bh(bh);
 315                                bh = bh->b_this_page;
 316                        }
 317                        return false;
 318                }
 319
 320                bh = bh->b_this_page;
 321        } while (bh != head);
 322        return true;
 323}
 324#else
 325static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 326                                                        enum migrate_mode mode)
 327{
 328        return true;
 329}
 330#endif /* CONFIG_BLOCK */
 331
 332/*
 333 * Replace the page in the mapping.
 334 *
 335 * The number of remaining references must be:
 336 * 1 for anonymous pages without a mapping
 337 * 2 for pages with a mapping
 338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 339 */
 340int migrate_page_move_mapping(struct address_space *mapping,
 341                struct page *newpage, struct page *page,
 342                struct buffer_head *head, enum migrate_mode mode,
 343                int extra_count)
 344{
 345        int expected_count = 1 + extra_count;
 346        void **pslot;
 347
 348        if (!mapping) {
 349                /* Anonymous page without mapping */
 350                if (page_count(page) != expected_count)
 351                        return -EAGAIN;
 352                return MIGRATEPAGE_SUCCESS;
 353        }
 354
 355        spin_lock_irq(&mapping->tree_lock);
 356
 357        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 358                                        page_index(page));
 359
 360        expected_count += 1 + page_has_private(page);
 361        if (page_count(page) != expected_count ||
 362                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 363                spin_unlock_irq(&mapping->tree_lock);
 364                return -EAGAIN;
 365        }
 366
 367        if (!page_freeze_refs(page, expected_count)) {
 368                spin_unlock_irq(&mapping->tree_lock);
 369                return -EAGAIN;
 370        }
 371
 372        /*
 373         * In the async migration case of moving a page with buffers, lock the
 374         * buffers using trylock before the mapping is moved. If the mapping
 375         * was moved, we later failed to lock the buffers and could not move
 376         * the mapping back due to an elevated page count, we would have to
 377         * block waiting on other references to be dropped.
 378         */
 379        if (mode == MIGRATE_ASYNC && head &&
 380                        !buffer_migrate_lock_buffers(head, mode)) {
 381                page_unfreeze_refs(page, expected_count);
 382                spin_unlock_irq(&mapping->tree_lock);
 383                return -EAGAIN;
 384        }
 385
 386        /*
 387         * Now we know that no one else is looking at the page.
 388         */
 389        get_page(newpage);      /* add cache reference */
 390        if (PageSwapCache(page)) {
 391                SetPageSwapCache(newpage);
 392                set_page_private(newpage, page_private(page));
 393        }
 394
 395        radix_tree_replace_slot(pslot, newpage);
 396
 397        /*
 398         * Drop cache reference from old page by unfreezing
 399         * to one less reference.
 400         * We know this isn't the last reference.
 401         */
 402        page_unfreeze_refs(page, expected_count - 1);
 403
 404        /*
 405         * If moved to a different zone then also account
 406         * the page for that zone. Other VM counters will be
 407         * taken care of when we establish references to the
 408         * new page and drop references to the old page.
 409         *
 410         * Note that anonymous pages are accounted for
 411         * via NR_FILE_PAGES and NR_ANON_PAGES if they
 412         * are mapped to swap space.
 413         */
 414        __dec_zone_page_state(page, NR_FILE_PAGES);
 415        __inc_zone_page_state(newpage, NR_FILE_PAGES);
 416        if (!PageSwapCache(page) && PageSwapBacked(page)) {
 417                __dec_zone_page_state(page, NR_SHMEM);
 418                __inc_zone_page_state(newpage, NR_SHMEM);
 419        }
 420        spin_unlock_irq(&mapping->tree_lock);
 421
 422        return MIGRATEPAGE_SUCCESS;
 423}
 424
 425/*
 426 * The expected number of remaining references is the same as that
 427 * of migrate_page_move_mapping().
 428 */
 429int migrate_huge_page_move_mapping(struct address_space *mapping,
 430                                   struct page *newpage, struct page *page)
 431{
 432        int expected_count;
 433        void **pslot;
 434
 435        if (!mapping) {
 436                if (page_count(page) != 1)
 437                        return -EAGAIN;
 438                return MIGRATEPAGE_SUCCESS;
 439        }
 440
 441        spin_lock_irq(&mapping->tree_lock);
 442
 443        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 444                                        page_index(page));
 445
 446        expected_count = 2 + page_has_private(page);
 447        if (page_count(page) != expected_count ||
 448                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 449                spin_unlock_irq(&mapping->tree_lock);
 450                return -EAGAIN;
 451        }
 452
 453        if (!page_freeze_refs(page, expected_count)) {
 454                spin_unlock_irq(&mapping->tree_lock);
 455                return -EAGAIN;
 456        }
 457
 458        get_page(newpage);
 459
 460        radix_tree_replace_slot(pslot, newpage);
 461
 462        page_unfreeze_refs(page, expected_count - 1);
 463
 464        spin_unlock_irq(&mapping->tree_lock);
 465        return MIGRATEPAGE_SUCCESS;
 466}
 467
 468/*
 469 * Gigantic pages are so large that we do not guarantee that page++ pointer
 470 * arithmetic will work across the entire page.  We need something more
 471 * specialized.
 472 */
 473static void __copy_gigantic_page(struct page *dst, struct page *src,
 474                                int nr_pages)
 475{
 476        int i;
 477        struct page *dst_base = dst;
 478        struct page *src_base = src;
 479
 480        for (i = 0; i < nr_pages; ) {
 481                cond_resched();
 482                copy_highpage(dst, src);
 483
 484                i++;
 485                dst = mem_map_next(dst, dst_base, i);
 486                src = mem_map_next(src, src_base, i);
 487        }
 488}
 489
 490static void copy_huge_page(struct page *dst, struct page *src)
 491{
 492        int i;
 493        int nr_pages;
 494
 495        if (PageHuge(src)) {
 496                /* hugetlbfs page */
 497                struct hstate *h = page_hstate(src);
 498                nr_pages = pages_per_huge_page(h);
 499
 500                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 501                        __copy_gigantic_page(dst, src, nr_pages);
 502                        return;
 503                }
 504        } else {
 505                /* thp page */
 506                BUG_ON(!PageTransHuge(src));
 507                nr_pages = hpage_nr_pages(src);
 508        }
 509
 510        for (i = 0; i < nr_pages; i++) {
 511                cond_resched();
 512                copy_highpage(dst + i, src + i);
 513        }
 514}
 515
 516/*
 517 * Copy the page to its new location
 518 */
 519void migrate_page_copy(struct page *newpage, struct page *page)
 520{
 521        int cpupid;
 522
 523        if (PageHuge(page) || PageTransHuge(page))
 524                copy_huge_page(newpage, page);
 525        else
 526                copy_highpage(newpage, page);
 527
 528        if (PageError(page))
 529                SetPageError(newpage);
 530        if (PageReferenced(page))
 531                SetPageReferenced(newpage);
 532        if (PageUptodate(page))
 533                SetPageUptodate(newpage);
 534        if (TestClearPageActive(page)) {
 535                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 536                SetPageActive(newpage);
 537        } else if (TestClearPageUnevictable(page))
 538                SetPageUnevictable(newpage);
 539        if (PageChecked(page))
 540                SetPageChecked(newpage);
 541        if (PageMappedToDisk(page))
 542                SetPageMappedToDisk(newpage);
 543
 544        if (PageDirty(page)) {
 545                clear_page_dirty_for_io(page);
 546                /*
 547                 * Want to mark the page and the radix tree as dirty, and
 548                 * redo the accounting that clear_page_dirty_for_io undid,
 549                 * but we can't use set_page_dirty because that function
 550                 * is actually a signal that all of the page has become dirty.
 551                 * Whereas only part of our page may be dirty.
 552                 */
 553                if (PageSwapBacked(page))
 554                        SetPageDirty(newpage);
 555                else
 556                        __set_page_dirty_nobuffers(newpage);
 557        }
 558
 559        /*
 560         * Copy NUMA information to the new page, to prevent over-eager
 561         * future migrations of this same page.
 562         */
 563        cpupid = page_cpupid_xchg_last(page, -1);
 564        page_cpupid_xchg_last(newpage, cpupid);
 565
 566        mlock_migrate_page(newpage, page);
 567        ksm_migrate_page(newpage, page);
 568        /*
 569         * Please do not reorder this without considering how mm/ksm.c's
 570         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 571         */
 572        ClearPageSwapCache(page);
 573        ClearPagePrivate(page);
 574        set_page_private(page, 0);
 575
 576        /*
 577         * If any waiters have accumulated on the new page then
 578         * wake them up.
 579         */
 580        if (PageWriteback(newpage))
 581                end_page_writeback(newpage);
 582}
 583
 584/************************************************************
 585 *                    Migration functions
 586 ***********************************************************/
 587
 588/*
 589 * Common logic to directly migrate a single page suitable for
 590 * pages that do not use PagePrivate/PagePrivate2.
 591 *
 592 * Pages are locked upon entry and exit.
 593 */
 594int migrate_page(struct address_space *mapping,
 595                struct page *newpage, struct page *page,
 596                enum migrate_mode mode)
 597{
 598        int rc;
 599
 600        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 601
 602        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 603
 604        if (rc != MIGRATEPAGE_SUCCESS)
 605                return rc;
 606
 607        migrate_page_copy(newpage, page);
 608        return MIGRATEPAGE_SUCCESS;
 609}
 610EXPORT_SYMBOL(migrate_page);
 611
 612#ifdef CONFIG_BLOCK
 613/*
 614 * Migration function for pages with buffers. This function can only be used
 615 * if the underlying filesystem guarantees that no other references to "page"
 616 * exist.
 617 */
 618int buffer_migrate_page(struct address_space *mapping,
 619                struct page *newpage, struct page *page, enum migrate_mode mode)
 620{
 621        struct buffer_head *bh, *head;
 622        int rc;
 623
 624        if (!page_has_buffers(page))
 625                return migrate_page(mapping, newpage, page, mode);
 626
 627        head = page_buffers(page);
 628
 629        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 630
 631        if (rc != MIGRATEPAGE_SUCCESS)
 632                return rc;
 633
 634        /*
 635         * In the async case, migrate_page_move_mapping locked the buffers
 636         * with an IRQ-safe spinlock held. In the sync case, the buffers
 637         * need to be locked now
 638         */
 639        if (mode != MIGRATE_ASYNC)
 640                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 641
 642        ClearPagePrivate(page);
 643        set_page_private(newpage, page_private(page));
 644        set_page_private(page, 0);
 645        put_page(page);
 646        get_page(newpage);
 647
 648        bh = head;
 649        do {
 650                set_bh_page(bh, newpage, bh_offset(bh));
 651                bh = bh->b_this_page;
 652
 653        } while (bh != head);
 654
 655        SetPagePrivate(newpage);
 656
 657        migrate_page_copy(newpage, page);
 658
 659        bh = head;
 660        do {
 661                unlock_buffer(bh);
 662                put_bh(bh);
 663                bh = bh->b_this_page;
 664
 665        } while (bh != head);
 666
 667        return MIGRATEPAGE_SUCCESS;
 668}
 669EXPORT_SYMBOL(buffer_migrate_page);
 670#endif
 671
 672/*
 673 * Writeback a page to clean the dirty state
 674 */
 675static int writeout(struct address_space *mapping, struct page *page)
 676{
 677        struct writeback_control wbc = {
 678                .sync_mode = WB_SYNC_NONE,
 679                .nr_to_write = 1,
 680                .range_start = 0,
 681                .range_end = LLONG_MAX,
 682                .for_reclaim = 1
 683        };
 684        int rc;
 685
 686        if (!mapping->a_ops->writepage)
 687                /* No write method for the address space */
 688                return -EINVAL;
 689
 690        if (!clear_page_dirty_for_io(page))
 691                /* Someone else already triggered a write */
 692                return -EAGAIN;
 693
 694        /*
 695         * A dirty page may imply that the underlying filesystem has
 696         * the page on some queue. So the page must be clean for
 697         * migration. Writeout may mean we loose the lock and the
 698         * page state is no longer what we checked for earlier.
 699         * At this point we know that the migration attempt cannot
 700         * be successful.
 701         */
 702        remove_migration_ptes(page, page);
 703
 704        rc = mapping->a_ops->writepage(page, &wbc);
 705
 706        if (rc != AOP_WRITEPAGE_ACTIVATE)
 707                /* unlocked. Relock */
 708                lock_page(page);
 709
 710        return (rc < 0) ? -EIO : -EAGAIN;
 711}
 712
 713/*
 714 * Default handling if a filesystem does not provide a migration function.
 715 */
 716static int fallback_migrate_page(struct address_space *mapping,
 717        struct page *newpage, struct page *page, enum migrate_mode mode)
 718{
 719        if (PageDirty(page)) {
 720                /* Only writeback pages in full synchronous migration */
 721                if (mode != MIGRATE_SYNC)
 722                        return -EBUSY;
 723                return writeout(mapping, page);
 724        }
 725
 726        /*
 727         * Buffers may be managed in a filesystem specific way.
 728         * We must have no buffers or drop them.
 729         */
 730        if (page_has_private(page) &&
 731            !try_to_release_page(page, GFP_KERNEL))
 732                return -EAGAIN;
 733
 734        return migrate_page(mapping, newpage, page, mode);
 735}
 736
 737/*
 738 * Move a page to a newly allocated page
 739 * The page is locked and all ptes have been successfully removed.
 740 *
 741 * The new page will have replaced the old page if this function
 742 * is successful.
 743 *
 744 * Return value:
 745 *   < 0 - error code
 746 *  MIGRATEPAGE_SUCCESS - success
 747 */
 748static int move_to_new_page(struct page *newpage, struct page *page,
 749                                int page_was_mapped, enum migrate_mode mode)
 750{
 751        struct address_space *mapping;
 752        int rc;
 753
 754        /*
 755         * Block others from accessing the page when we get around to
 756         * establishing additional references. We are the only one
 757         * holding a reference to the new page at this point.
 758         */
 759        if (!trylock_page(newpage))
 760                BUG();
 761
 762        /* Prepare mapping for the new page.*/
 763        newpage->index = page->index;
 764        newpage->mapping = page->mapping;
 765        if (PageSwapBacked(page))
 766                SetPageSwapBacked(newpage);
 767
 768        mapping = page_mapping(page);
 769        if (!mapping)
 770                rc = migrate_page(mapping, newpage, page, mode);
 771        else if (mapping->a_ops->migratepage)
 772                /*
 773                 * Most pages have a mapping and most filesystems provide a
 774                 * migratepage callback. Anonymous pages are part of swap
 775                 * space which also has its own migratepage callback. This
 776                 * is the most common path for page migration.
 777                 */
 778                rc = mapping->a_ops->migratepage(mapping,
 779                                                newpage, page, mode);
 780        else
 781                rc = fallback_migrate_page(mapping, newpage, page, mode);
 782
 783        if (rc != MIGRATEPAGE_SUCCESS) {
 784                newpage->mapping = NULL;
 785        } else {
 786                mem_cgroup_migrate(page, newpage, false);
 787                if (page_was_mapped)
 788                        remove_migration_ptes(page, newpage);
 789                page->mapping = NULL;
 790        }
 791
 792        unlock_page(newpage);
 793
 794        return rc;
 795}
 796
 797static int __unmap_and_move(struct page *page, struct page *newpage,
 798                                int force, enum migrate_mode mode)
 799{
 800        int rc = -EAGAIN;
 801        int page_was_mapped = 0;
 802        struct anon_vma *anon_vma = NULL;
 803
 804        if (!trylock_page(page)) {
 805                if (!force || mode == MIGRATE_ASYNC)
 806                        goto out;
 807
 808                /*
 809                 * It's not safe for direct compaction to call lock_page.
 810                 * For example, during page readahead pages are added locked
 811                 * to the LRU. Later, when the IO completes the pages are
 812                 * marked uptodate and unlocked. However, the queueing
 813                 * could be merging multiple pages for one bio (e.g.
 814                 * mpage_readpages). If an allocation happens for the
 815                 * second or third page, the process can end up locking
 816                 * the same page twice and deadlocking. Rather than
 817                 * trying to be clever about what pages can be locked,
 818                 * avoid the use of lock_page for direct compaction
 819                 * altogether.
 820                 */
 821                if (current->flags & PF_MEMALLOC)
 822                        goto out;
 823
 824                lock_page(page);
 825        }
 826
 827        if (PageWriteback(page)) {
 828                /*
 829                 * Only in the case of a full synchronous migration is it
 830                 * necessary to wait for PageWriteback. In the async case,
 831                 * the retry loop is too short and in the sync-light case,
 832                 * the overhead of stalling is too much
 833                 */
 834                if (mode != MIGRATE_SYNC) {
 835                        rc = -EBUSY;
 836                        goto out_unlock;
 837                }
 838                if (!force)
 839                        goto out_unlock;
 840                wait_on_page_writeback(page);
 841        }
 842        /*
 843         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 844         * we cannot notice that anon_vma is freed while we migrates a page.
 845         * This get_anon_vma() delays freeing anon_vma pointer until the end
 846         * of migration. File cache pages are no problem because of page_lock()
 847         * File Caches may use write_page() or lock_page() in migration, then,
 848         * just care Anon page here.
 849         */
 850        if (PageAnon(page) && !PageKsm(page)) {
 851                /*
 852                 * Only page_lock_anon_vma_read() understands the subtleties of
 853                 * getting a hold on an anon_vma from outside one of its mms.
 854                 */
 855                anon_vma = page_get_anon_vma(page);
 856                if (anon_vma) {
 857                        /*
 858                         * Anon page
 859                         */
 860                } else if (PageSwapCache(page)) {
 861                        /*
 862                         * We cannot be sure that the anon_vma of an unmapped
 863                         * swapcache page is safe to use because we don't
 864                         * know in advance if the VMA that this page belonged
 865                         * to still exists. If the VMA and others sharing the
 866                         * data have been freed, then the anon_vma could
 867                         * already be invalid.
 868                         *
 869                         * To avoid this possibility, swapcache pages get
 870                         * migrated but are not remapped when migration
 871                         * completes
 872                         */
 873                } else {
 874                        goto out_unlock;
 875                }
 876        }
 877
 878        if (unlikely(isolated_balloon_page(page))) {
 879                /*
 880                 * A ballooned page does not need any special attention from
 881                 * physical to virtual reverse mapping procedures.
 882                 * Skip any attempt to unmap PTEs or to remap swap cache,
 883                 * in order to avoid burning cycles at rmap level, and perform
 884                 * the page migration right away (proteced by page lock).
 885                 */
 886                rc = balloon_page_migrate(newpage, page, mode);
 887                goto out_unlock;
 888        }
 889
 890        /*
 891         * Corner case handling:
 892         * 1. When a new swap-cache page is read into, it is added to the LRU
 893         * and treated as swapcache but it has no rmap yet.
 894         * Calling try_to_unmap() against a page->mapping==NULL page will
 895         * trigger a BUG.  So handle it here.
 896         * 2. An orphaned page (see truncate_complete_page) might have
 897         * fs-private metadata. The page can be picked up due to memory
 898         * offlining.  Everywhere else except page reclaim, the page is
 899         * invisible to the vm, so the page can not be migrated.  So try to
 900         * free the metadata, so the page can be freed.
 901         */
 902        if (!page->mapping) {
 903                VM_BUG_ON_PAGE(PageAnon(page), page);
 904                if (page_has_private(page)) {
 905                        try_to_free_buffers(page);
 906                        goto out_unlock;
 907                }
 908                goto skip_unmap;
 909        }
 910
 911        /* Establish migration ptes or remove ptes */
 912        if (page_mapped(page)) {
 913                try_to_unmap(page,
 914                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 915                page_was_mapped = 1;
 916        }
 917
 918skip_unmap:
 919        if (!page_mapped(page))
 920                rc = move_to_new_page(newpage, page, page_was_mapped, mode);
 921
 922        if (rc && page_was_mapped)
 923                remove_migration_ptes(page, page);
 924
 925        /* Drop an anon_vma reference if we took one */
 926        if (anon_vma)
 927                put_anon_vma(anon_vma);
 928
 929out_unlock:
 930        unlock_page(page);
 931out:
 932        return rc;
 933}
 934
 935/*
 936 * Obtain the lock on page, remove all ptes and migrate the page
 937 * to the newly allocated page in newpage.
 938 */
 939static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
 940                        unsigned long private, struct page *page, int force,
 941                        enum migrate_mode mode)
 942{
 943        int rc = 0;
 944        int *result = NULL;
 945        struct page *newpage = get_new_page(page, private, &result);
 946
 947        if (!newpage)
 948                return -ENOMEM;
 949
 950        if (page_count(page) == 1) {
 951                /* page was freed from under us. So we are done. */
 952                goto out;
 953        }
 954
 955        if (unlikely(PageTransHuge(page)))
 956                if (unlikely(split_huge_page(page)))
 957                        goto out;
 958
 959        rc = __unmap_and_move(page, newpage, force, mode);
 960
 961out:
 962        if (rc != -EAGAIN) {
 963                /*
 964                 * A page that has been migrated has all references
 965                 * removed and will be freed. A page that has not been
 966                 * migrated will have kepts its references and be
 967                 * restored.
 968                 */
 969                list_del(&page->lru);
 970                dec_zone_page_state(page, NR_ISOLATED_ANON +
 971                                page_is_file_cache(page));
 972                putback_lru_page(page);
 973        }
 974
 975        /*
 976         * If migration was not successful and there's a freeing callback, use
 977         * it.  Otherwise, putback_lru_page() will drop the reference grabbed
 978         * during isolation.
 979         */
 980        if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
 981                ClearPageSwapBacked(newpage);
 982                put_new_page(newpage, private);
 983        } else if (unlikely(__is_movable_balloon_page(newpage))) {
 984                /* drop our reference, page already in the balloon */
 985                put_page(newpage);
 986        } else
 987                putback_lru_page(newpage);
 988
 989        if (result) {
 990                if (rc)
 991                        *result = rc;
 992                else
 993                        *result = page_to_nid(newpage);
 994        }
 995        return rc;
 996}
 997
 998/*
 999 * Counterpart of unmap_and_move_page() for hugepage migration.
1000 *
1001 * This function doesn't wait the completion of hugepage I/O
1002 * because there is no race between I/O and migration for hugepage.
1003 * Note that currently hugepage I/O occurs only in direct I/O
1004 * where no lock is held and PG_writeback is irrelevant,
1005 * and writeback status of all subpages are counted in the reference
1006 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1007 * under direct I/O, the reference of the head page is 512 and a bit more.)
1008 * This means that when we try to migrate hugepage whose subpages are
1009 * doing direct I/O, some references remain after try_to_unmap() and
1010 * hugepage migration fails without data corruption.
1011 *
1012 * There is also no race when direct I/O is issued on the page under migration,
1013 * because then pte is replaced with migration swap entry and direct I/O code
1014 * will wait in the page fault for migration to complete.
1015 */
1016static int unmap_and_move_huge_page(new_page_t get_new_page,
1017                                free_page_t put_new_page, unsigned long private,
1018                                struct page *hpage, int force,
1019                                enum migrate_mode mode)
1020{
1021        int rc = 0;
1022        int *result = NULL;
1023        int page_was_mapped = 0;
1024        struct page *new_hpage;
1025        struct anon_vma *anon_vma = NULL;
1026
1027        /*
1028         * Movability of hugepages depends on architectures and hugepage size.
1029         * This check is necessary because some callers of hugepage migration
1030         * like soft offline and memory hotremove don't walk through page
1031         * tables or check whether the hugepage is pmd-based or not before
1032         * kicking migration.
1033         */
1034        if (!hugepage_migration_supported(page_hstate(hpage))) {
1035                putback_active_hugepage(hpage);
1036                return -ENOSYS;
1037        }
1038
1039        new_hpage = get_new_page(hpage, private, &result);
1040        if (!new_hpage)
1041                return -ENOMEM;
1042
1043        rc = -EAGAIN;
1044
1045        if (!trylock_page(hpage)) {
1046                if (!force || mode != MIGRATE_SYNC)
1047                        goto out;
1048                lock_page(hpage);
1049        }
1050
1051        if (PageAnon(hpage))
1052                anon_vma = page_get_anon_vma(hpage);
1053
1054        if (page_mapped(hpage)) {
1055                try_to_unmap(hpage,
1056                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1057                page_was_mapped = 1;
1058        }
1059
1060        if (!page_mapped(hpage))
1061                rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1062
1063        if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1064                remove_migration_ptes(hpage, hpage);
1065
1066        if (anon_vma)
1067                put_anon_vma(anon_vma);
1068
1069        if (rc == MIGRATEPAGE_SUCCESS)
1070                hugetlb_cgroup_migrate(hpage, new_hpage);
1071
1072        unlock_page(hpage);
1073out:
1074        if (rc != -EAGAIN)
1075                putback_active_hugepage(hpage);
1076
1077        /*
1078         * If migration was not successful and there's a freeing callback, use
1079         * it.  Otherwise, put_page() will drop the reference grabbed during
1080         * isolation.
1081         */
1082        if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1083                put_new_page(new_hpage, private);
1084        else
1085                put_page(new_hpage);
1086
1087        if (result) {
1088                if (rc)
1089                        *result = rc;
1090                else
1091                        *result = page_to_nid(new_hpage);
1092        }
1093        return rc;
1094}
1095
1096/*
1097 * migrate_pages - migrate the pages specified in a list, to the free pages
1098 *                 supplied as the target for the page migration
1099 *
1100 * @from:               The list of pages to be migrated.
1101 * @get_new_page:       The function used to allocate free pages to be used
1102 *                      as the target of the page migration.
1103 * @put_new_page:       The function used to free target pages if migration
1104 *                      fails, or NULL if no special handling is necessary.
1105 * @private:            Private data to be passed on to get_new_page()
1106 * @mode:               The migration mode that specifies the constraints for
1107 *                      page migration, if any.
1108 * @reason:             The reason for page migration.
1109 *
1110 * The function returns after 10 attempts or if no pages are movable any more
1111 * because the list has become empty or no retryable pages exist any more.
1112 * The caller should call putback_lru_pages() to return pages to the LRU
1113 * or free list only if ret != 0.
1114 *
1115 * Returns the number of pages that were not migrated, or an error code.
1116 */
1117int migrate_pages(struct list_head *from, new_page_t get_new_page,
1118                free_page_t put_new_page, unsigned long private,
1119                enum migrate_mode mode, int reason)
1120{
1121        int retry = 1;
1122        int nr_failed = 0;
1123        int nr_succeeded = 0;
1124        int pass = 0;
1125        struct page *page;
1126        struct page *page2;
1127        int swapwrite = current->flags & PF_SWAPWRITE;
1128        int rc;
1129
1130        if (!swapwrite)
1131                current->flags |= PF_SWAPWRITE;
1132
1133        for(pass = 0; pass < 10 && retry; pass++) {
1134                retry = 0;
1135
1136                list_for_each_entry_safe(page, page2, from, lru) {
1137                        cond_resched();
1138
1139                        if (PageHuge(page))
1140                                rc = unmap_and_move_huge_page(get_new_page,
1141                                                put_new_page, private, page,
1142                                                pass > 2, mode);
1143                        else
1144                                rc = unmap_and_move(get_new_page, put_new_page,
1145                                                private, page, pass > 2, mode);
1146
1147                        switch(rc) {
1148                        case -ENOMEM:
1149                                goto out;
1150                        case -EAGAIN:
1151                                retry++;
1152                                break;
1153                        case MIGRATEPAGE_SUCCESS:
1154                                nr_succeeded++;
1155                                break;
1156                        default:
1157                                /*
1158                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1159                                 * unlike -EAGAIN case, the failed page is
1160                                 * removed from migration page list and not
1161                                 * retried in the next outer loop.
1162                                 */
1163                                nr_failed++;
1164                                break;
1165                        }
1166                }
1167        }
1168        rc = nr_failed + retry;
1169out:
1170        if (nr_succeeded)
1171                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1172        if (nr_failed)
1173                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1174        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1175
1176        if (!swapwrite)
1177                current->flags &= ~PF_SWAPWRITE;
1178
1179        return rc;
1180}
1181
1182#ifdef CONFIG_NUMA
1183/*
1184 * Move a list of individual pages
1185 */
1186struct page_to_node {
1187        unsigned long addr;
1188        struct page *page;
1189        int node;
1190        int status;
1191};
1192
1193static struct page *new_page_node(struct page *p, unsigned long private,
1194                int **result)
1195{
1196        struct page_to_node *pm = (struct page_to_node *)private;
1197
1198        while (pm->node != MAX_NUMNODES && pm->page != p)
1199                pm++;
1200
1201        if (pm->node == MAX_NUMNODES)
1202                return NULL;
1203
1204        *result = &pm->status;
1205
1206        if (PageHuge(p))
1207                return alloc_huge_page_node(page_hstate(compound_head(p)),
1208                                        pm->node);
1209        else
1210                return alloc_pages_exact_node(pm->node,
1211                                GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1212}
1213
1214/*
1215 * Move a set of pages as indicated in the pm array. The addr
1216 * field must be set to the virtual address of the page to be moved
1217 * and the node number must contain a valid target node.
1218 * The pm array ends with node = MAX_NUMNODES.
1219 */
1220static int do_move_page_to_node_array(struct mm_struct *mm,
1221                                      struct page_to_node *pm,
1222                                      int migrate_all)
1223{
1224        int err;
1225        struct page_to_node *pp;
1226        LIST_HEAD(pagelist);
1227
1228        down_read(&mm->mmap_sem);
1229
1230        /*
1231         * Build a list of pages to migrate
1232         */
1233        for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1234                struct vm_area_struct *vma;
1235                struct page *page;
1236
1237                err = -EFAULT;
1238                vma = find_vma(mm, pp->addr);
1239                if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1240                        goto set_status;
1241
1242                page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1243
1244                err = PTR_ERR(page);
1245                if (IS_ERR(page))
1246                        goto set_status;
1247
1248                err = -ENOENT;
1249                if (!page)
1250                        goto set_status;
1251
1252                /* Use PageReserved to check for zero page */
1253                if (PageReserved(page))
1254                        goto put_and_set;
1255
1256                pp->page = page;
1257                err = page_to_nid(page);
1258
1259                if (err == pp->node)
1260                        /*
1261                         * Node already in the right place
1262                         */
1263                        goto put_and_set;
1264
1265                err = -EACCES;
1266                if (page_mapcount(page) > 1 &&
1267                                !migrate_all)
1268                        goto put_and_set;
1269
1270                if (PageHuge(page)) {
1271                        isolate_huge_page(page, &pagelist);
1272                        goto put_and_set;
1273                }
1274
1275                err = isolate_lru_page(page);
1276                if (!err) {
1277                        list_add_tail(&page->lru, &pagelist);
1278                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1279                                            page_is_file_cache(page));
1280                }
1281put_and_set:
1282                /*
1283                 * Either remove the duplicate refcount from
1284                 * isolate_lru_page() or drop the page ref if it was
1285                 * not isolated.
1286                 */
1287                put_page(page);
1288set_status:
1289                pp->status = err;
1290        }
1291
1292        err = 0;
1293        if (!list_empty(&pagelist)) {
1294                err = migrate_pages(&pagelist, new_page_node, NULL,
1295                                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1296                if (err)
1297                        putback_movable_pages(&pagelist);
1298        }
1299
1300        up_read(&mm->mmap_sem);
1301        return err;
1302}
1303
1304/*
1305 * Migrate an array of page address onto an array of nodes and fill
1306 * the corresponding array of status.
1307 */
1308static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1309                         unsigned long nr_pages,
1310                         const void __user * __user *pages,
1311                         const int __user *nodes,
1312                         int __user *status, int flags)
1313{
1314        struct page_to_node *pm;
1315        unsigned long chunk_nr_pages;
1316        unsigned long chunk_start;
1317        int err;
1318
1319        err = -ENOMEM;
1320        pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1321        if (!pm)
1322                goto out;
1323
1324        migrate_prep();
1325
1326        /*
1327         * Store a chunk of page_to_node array in a page,
1328         * but keep the last one as a marker
1329         */
1330        chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1331
1332        for (chunk_start = 0;
1333             chunk_start < nr_pages;
1334             chunk_start += chunk_nr_pages) {
1335                int j;
1336
1337                if (chunk_start + chunk_nr_pages > nr_pages)
1338                        chunk_nr_pages = nr_pages - chunk_start;
1339
1340                /* fill the chunk pm with addrs and nodes from user-space */
1341                for (j = 0; j < chunk_nr_pages; j++) {
1342                        const void __user *p;
1343                        int node;
1344
1345                        err = -EFAULT;
1346                        if (get_user(p, pages + j + chunk_start))
1347                                goto out_pm;
1348                        pm[j].addr = (unsigned long) p;
1349
1350                        if (get_user(node, nodes + j + chunk_start))
1351                                goto out_pm;
1352
1353                        err = -ENODEV;
1354                        if (node < 0 || node >= MAX_NUMNODES)
1355                                goto out_pm;
1356
1357                        if (!node_state(node, N_MEMORY))
1358                                goto out_pm;
1359
1360                        err = -EACCES;
1361                        if (!node_isset(node, task_nodes))
1362                                goto out_pm;
1363
1364                        pm[j].node = node;
1365                }
1366
1367                /* End marker for this chunk */
1368                pm[chunk_nr_pages].node = MAX_NUMNODES;
1369
1370                /* Migrate this chunk */
1371                err = do_move_page_to_node_array(mm, pm,
1372                                                 flags & MPOL_MF_MOVE_ALL);
1373                if (err < 0)
1374                        goto out_pm;
1375
1376                /* Return status information */
1377                for (j = 0; j < chunk_nr_pages; j++)
1378                        if (put_user(pm[j].status, status + j + chunk_start)) {
1379                                err = -EFAULT;
1380                                goto out_pm;
1381                        }
1382        }
1383        err = 0;
1384
1385out_pm:
1386        free_page((unsigned long)pm);
1387out:
1388        return err;
1389}
1390
1391/*
1392 * Determine the nodes of an array of pages and store it in an array of status.
1393 */
1394static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1395                                const void __user **pages, int *status)
1396{
1397        unsigned long i;
1398
1399        down_read(&mm->mmap_sem);
1400
1401        for (i = 0; i < nr_pages; i++) {
1402                unsigned long addr = (unsigned long)(*pages);
1403                struct vm_area_struct *vma;
1404                struct page *page;
1405                int err = -EFAULT;
1406
1407                vma = find_vma(mm, addr);
1408                if (!vma || addr < vma->vm_start)
1409                        goto set_status;
1410
1411                page = follow_page(vma, addr, 0);
1412
1413                err = PTR_ERR(page);
1414                if (IS_ERR(page))
1415                        goto set_status;
1416
1417                err = -ENOENT;
1418                /* Use PageReserved to check for zero page */
1419                if (!page || PageReserved(page))
1420                        goto set_status;
1421
1422                err = page_to_nid(page);
1423set_status:
1424                *status = err;
1425
1426                pages++;
1427                status++;
1428        }
1429
1430        up_read(&mm->mmap_sem);
1431}
1432
1433/*
1434 * Determine the nodes of a user array of pages and store it in
1435 * a user array of status.
1436 */
1437static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1438                         const void __user * __user *pages,
1439                         int __user *status)
1440{
1441#define DO_PAGES_STAT_CHUNK_NR 16
1442        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1443        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1444
1445        while (nr_pages) {
1446                unsigned long chunk_nr;
1447
1448                chunk_nr = nr_pages;
1449                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1450                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1451
1452                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1453                        break;
1454
1455                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1456
1457                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1458                        break;
1459
1460                pages += chunk_nr;
1461                status += chunk_nr;
1462                nr_pages -= chunk_nr;
1463        }
1464        return nr_pages ? -EFAULT : 0;
1465}
1466
1467/*
1468 * Move a list of pages in the address space of the currently executing
1469 * process.
1470 */
1471SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1472                const void __user * __user *, pages,
1473                const int __user *, nodes,
1474                int __user *, status, int, flags)
1475{
1476        const struct cred *cred = current_cred(), *tcred;
1477        struct task_struct *task;
1478        struct mm_struct *mm;
1479        int err;
1480        nodemask_t task_nodes;
1481
1482        /* Check flags */
1483        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1484                return -EINVAL;
1485
1486        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1487                return -EPERM;
1488
1489        /* Find the mm_struct */
1490        rcu_read_lock();
1491        task = pid ? find_task_by_vpid(pid) : current;
1492        if (!task) {
1493                rcu_read_unlock();
1494                return -ESRCH;
1495        }
1496        get_task_struct(task);
1497
1498        /*
1499         * Check if this process has the right to modify the specified
1500         * process. The right exists if the process has administrative
1501         * capabilities, superuser privileges or the same
1502         * userid as the target process.
1503         */
1504        tcred = __task_cred(task);
1505        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1506            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1507            !capable(CAP_SYS_NICE)) {
1508                rcu_read_unlock();
1509                err = -EPERM;
1510                goto out;
1511        }
1512        rcu_read_unlock();
1513
1514        err = security_task_movememory(task);
1515        if (err)
1516                goto out;
1517
1518        task_nodes = cpuset_mems_allowed(task);
1519        mm = get_task_mm(task);
1520        put_task_struct(task);
1521
1522        if (!mm)
1523                return -EINVAL;
1524
1525        if (nodes)
1526                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1527                                    nodes, status, flags);
1528        else
1529                err = do_pages_stat(mm, nr_pages, pages, status);
1530
1531        mmput(mm);
1532        return err;
1533
1534out:
1535        put_task_struct(task);
1536        return err;
1537}
1538
1539#ifdef CONFIG_NUMA_BALANCING
1540/*
1541 * Returns true if this is a safe migration target node for misplaced NUMA
1542 * pages. Currently it only checks the watermarks which crude
1543 */
1544static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1545                                   unsigned long nr_migrate_pages)
1546{
1547        int z;
1548        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1549                struct zone *zone = pgdat->node_zones + z;
1550
1551                if (!populated_zone(zone))
1552                        continue;
1553
1554                if (!zone_reclaimable(zone))
1555                        continue;
1556
1557                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1558                if (!zone_watermark_ok(zone, 0,
1559                                       high_wmark_pages(zone) +
1560                                       nr_migrate_pages,
1561                                       0, 0))
1562                        continue;
1563                return true;
1564        }
1565        return false;
1566}
1567
1568static struct page *alloc_misplaced_dst_page(struct page *page,
1569                                           unsigned long data,
1570                                           int **result)
1571{
1572        int nid = (int) data;
1573        struct page *newpage;
1574
1575        newpage = alloc_pages_exact_node(nid,
1576                                         (GFP_HIGHUSER_MOVABLE |
1577                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1578                                          __GFP_NORETRY | __GFP_NOWARN) &
1579                                         ~GFP_IOFS, 0);
1580
1581        return newpage;
1582}
1583
1584/*
1585 * page migration rate limiting control.
1586 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1587 * window of time. Default here says do not migrate more than 1280M per second.
1588 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1589 * as it is faults that reset the window, pte updates will happen unconditionally
1590 * if there has not been a fault since @pteupdate_interval_millisecs after the
1591 * throttle window closed.
1592 */
1593static unsigned int migrate_interval_millisecs __read_mostly = 100;
1594static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1595static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1596
1597/* Returns true if NUMA migration is currently rate limited */
1598bool migrate_ratelimited(int node)
1599{
1600        pg_data_t *pgdat = NODE_DATA(node);
1601
1602        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1603                                msecs_to_jiffies(pteupdate_interval_millisecs)))
1604                return false;
1605
1606        if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1607                return false;
1608
1609        return true;
1610}
1611
1612/* Returns true if the node is migrate rate-limited after the update */
1613static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1614                                        unsigned long nr_pages)
1615{
1616        /*
1617         * Rate-limit the amount of data that is being migrated to a node.
1618         * Optimal placement is no good if the memory bus is saturated and
1619         * all the time is being spent migrating!
1620         */
1621        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1622                spin_lock(&pgdat->numabalancing_migrate_lock);
1623                pgdat->numabalancing_migrate_nr_pages = 0;
1624                pgdat->numabalancing_migrate_next_window = jiffies +
1625                        msecs_to_jiffies(migrate_interval_millisecs);
1626                spin_unlock(&pgdat->numabalancing_migrate_lock);
1627        }
1628        if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1629                trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1630                                                                nr_pages);
1631                return true;
1632        }
1633
1634        /*
1635         * This is an unlocked non-atomic update so errors are possible.
1636         * The consequences are failing to migrate when we potentiall should
1637         * have which is not severe enough to warrant locking. If it is ever
1638         * a problem, it can be converted to a per-cpu counter.
1639         */
1640        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1641        return false;
1642}
1643
1644static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1645{
1646        int page_lru;
1647
1648        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1649
1650        /* Avoid migrating to a node that is nearly full */
1651        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1652                return 0;
1653
1654        if (isolate_lru_page(page))
1655                return 0;
1656
1657        /*
1658         * migrate_misplaced_transhuge_page() skips page migration's usual
1659         * check on page_count(), so we must do it here, now that the page
1660         * has been isolated: a GUP pin, or any other pin, prevents migration.
1661         * The expected page count is 3: 1 for page's mapcount and 1 for the
1662         * caller's pin and 1 for the reference taken by isolate_lru_page().
1663         */
1664        if (PageTransHuge(page) && page_count(page) != 3) {
1665                putback_lru_page(page);
1666                return 0;
1667        }
1668
1669        page_lru = page_is_file_cache(page);
1670        mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1671                                hpage_nr_pages(page));
1672
1673        /*
1674         * Isolating the page has taken another reference, so the
1675         * caller's reference can be safely dropped without the page
1676         * disappearing underneath us during migration.
1677         */
1678        put_page(page);
1679        return 1;
1680}
1681
1682bool pmd_trans_migrating(pmd_t pmd)
1683{
1684        struct page *page = pmd_page(pmd);
1685        return PageLocked(page);
1686}
1687
1688void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1689{
1690        struct page *page = pmd_page(*pmd);
1691        wait_on_page_locked(page);
1692}
1693
1694/*
1695 * Attempt to migrate a misplaced page to the specified destination
1696 * node. Caller is expected to have an elevated reference count on
1697 * the page that will be dropped by this function before returning.
1698 */
1699int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1700                           int node)
1701{
1702        pg_data_t *pgdat = NODE_DATA(node);
1703        int isolated;
1704        int nr_remaining;
1705        LIST_HEAD(migratepages);
1706
1707        /*
1708         * Don't migrate file pages that are mapped in multiple processes
1709         * with execute permissions as they are probably shared libraries.
1710         */
1711        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1712            (vma->vm_flags & VM_EXEC))
1713                goto out;
1714
1715        /*
1716         * Rate-limit the amount of data that is being migrated to a node.
1717         * Optimal placement is no good if the memory bus is saturated and
1718         * all the time is being spent migrating!
1719         */
1720        if (numamigrate_update_ratelimit(pgdat, 1))
1721                goto out;
1722
1723        isolated = numamigrate_isolate_page(pgdat, page);
1724        if (!isolated)
1725                goto out;
1726
1727        list_add(&page->lru, &migratepages);
1728        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1729                                     NULL, node, MIGRATE_ASYNC,
1730                                     MR_NUMA_MISPLACED);
1731        if (nr_remaining) {
1732                if (!list_empty(&migratepages)) {
1733                        list_del(&page->lru);
1734                        dec_zone_page_state(page, NR_ISOLATED_ANON +
1735                                        page_is_file_cache(page));
1736                        putback_lru_page(page);
1737                }
1738                isolated = 0;
1739        } else
1740                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1741        BUG_ON(!list_empty(&migratepages));
1742        return isolated;
1743
1744out:
1745        put_page(page);
1746        return 0;
1747}
1748#endif /* CONFIG_NUMA_BALANCING */
1749
1750#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1751/*
1752 * Migrates a THP to a given target node. page must be locked and is unlocked
1753 * before returning.
1754 */
1755int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1756                                struct vm_area_struct *vma,
1757                                pmd_t *pmd, pmd_t entry,
1758                                unsigned long address,
1759                                struct page *page, int node)
1760{
1761        spinlock_t *ptl;
1762        pg_data_t *pgdat = NODE_DATA(node);
1763        int isolated = 0;
1764        struct page *new_page = NULL;
1765        int page_lru = page_is_file_cache(page);
1766        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1767        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1768        pmd_t orig_entry;
1769
1770        /*
1771         * Rate-limit the amount of data that is being migrated to a node.
1772         * Optimal placement is no good if the memory bus is saturated and
1773         * all the time is being spent migrating!
1774         */
1775        if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1776                goto out_dropref;
1777
1778        new_page = alloc_pages_node(node,
1779                (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1780                HPAGE_PMD_ORDER);
1781        if (!new_page)
1782                goto out_fail;
1783
1784        isolated = numamigrate_isolate_page(pgdat, page);
1785        if (!isolated) {
1786                put_page(new_page);
1787                goto out_fail;
1788        }
1789
1790        if (mm_tlb_flush_pending(mm))
1791                flush_tlb_range(vma, mmun_start, mmun_end);
1792
1793        /* Prepare a page as a migration target */
1794        __set_page_locked(new_page);
1795        SetPageSwapBacked(new_page);
1796
1797        /* anon mapping, we can simply copy page->mapping to the new page: */
1798        new_page->mapping = page->mapping;
1799        new_page->index = page->index;
1800        migrate_page_copy(new_page, page);
1801        WARN_ON(PageLRU(new_page));
1802
1803        /* Recheck the target PMD */
1804        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1805        ptl = pmd_lock(mm, pmd);
1806        if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1807fail_putback:
1808                spin_unlock(ptl);
1809                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1810
1811                /* Reverse changes made by migrate_page_copy() */
1812                if (TestClearPageActive(new_page))
1813                        SetPageActive(page);
1814                if (TestClearPageUnevictable(new_page))
1815                        SetPageUnevictable(page);
1816                mlock_migrate_page(page, new_page);
1817
1818                unlock_page(new_page);
1819                put_page(new_page);             /* Free it */
1820
1821                /* Retake the callers reference and putback on LRU */
1822                get_page(page);
1823                putback_lru_page(page);
1824                mod_zone_page_state(page_zone(page),
1825                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1826
1827                goto out_unlock;
1828        }
1829
1830        orig_entry = *pmd;
1831        entry = mk_pmd(new_page, vma->vm_page_prot);
1832        entry = pmd_mkhuge(entry);
1833        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1834
1835        /*
1836         * Clear the old entry under pagetable lock and establish the new PTE.
1837         * Any parallel GUP will either observe the old page blocking on the
1838         * page lock, block on the page table lock or observe the new page.
1839         * The SetPageUptodate on the new page and page_add_new_anon_rmap
1840         * guarantee the copy is visible before the pagetable update.
1841         */
1842        flush_cache_range(vma, mmun_start, mmun_end);
1843        page_add_anon_rmap(new_page, vma, mmun_start);
1844        pmdp_clear_flush_notify(vma, mmun_start, pmd);
1845        set_pmd_at(mm, mmun_start, pmd, entry);
1846        flush_tlb_range(vma, mmun_start, mmun_end);
1847        update_mmu_cache_pmd(vma, address, &entry);
1848
1849        if (page_count(page) != 2) {
1850                set_pmd_at(mm, mmun_start, pmd, orig_entry);
1851                flush_tlb_range(vma, mmun_start, mmun_end);
1852                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1853                update_mmu_cache_pmd(vma, address, &entry);
1854                page_remove_rmap(new_page);
1855                goto fail_putback;
1856        }
1857
1858        mem_cgroup_migrate(page, new_page, false);
1859
1860        page_remove_rmap(page);
1861
1862        spin_unlock(ptl);
1863        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1864
1865        /* Take an "isolate" reference and put new page on the LRU. */
1866        get_page(new_page);
1867        putback_lru_page(new_page);
1868
1869        unlock_page(new_page);
1870        unlock_page(page);
1871        put_page(page);                 /* Drop the rmap reference */
1872        put_page(page);                 /* Drop the LRU isolation reference */
1873
1874        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1875        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1876
1877        mod_zone_page_state(page_zone(page),
1878                        NR_ISOLATED_ANON + page_lru,
1879                        -HPAGE_PMD_NR);
1880        return isolated;
1881
1882out_fail:
1883        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1884out_dropref:
1885        ptl = pmd_lock(mm, pmd);
1886        if (pmd_same(*pmd, entry)) {
1887                entry = pmd_mknonnuma(entry);
1888                set_pmd_at(mm, mmun_start, pmd, entry);
1889                update_mmu_cache_pmd(vma, address, &entry);
1890        }
1891        spin_unlock(ptl);
1892
1893out_unlock:
1894        unlock_page(page);
1895        put_page(page);
1896        return 0;
1897}
1898#endif /* CONFIG_NUMA_BALANCING */
1899
1900#endif /* CONFIG_NUMA */
1901