linux/mm/percpu.c
<<
>>
Prefs
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009           SUSE Linux Products GmbH
   5 * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * This is percpu allocator which can handle both static and dynamic
  10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
  11 * consisted of boot-time determined number of units and the first
  12 * chunk is used for static percpu variables in the kernel image
  13 * (special boot time alloc/init handling necessary as these areas
  14 * need to be brought up before allocation services are running).
  15 * Unit grows as necessary and all units grow or shrink in unison.
  16 * When a chunk is filled up, another chunk is allocated.
  17 *
  18 *  c0                           c1                         c2
  19 *  -------------------          -------------------        ------------
  20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  21 *  -------------------  ......  -------------------  ....  ------------
  22 *
  23 * Allocation is done in offset-size areas of single unit space.  Ie,
  24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
  26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
  27 * Percpu access can be done by configuring percpu base registers
  28 * according to cpu to unit mapping and pcpu_unit_size.
  29 *
  30 * There are usually many small percpu allocations many of them being
  31 * as small as 4 bytes.  The allocator organizes chunks into lists
  32 * according to free size and tries to allocate from the fullest one.
  33 * Each chunk keeps the maximum contiguous area size hint which is
  34 * guaranteed to be equal to or larger than the maximum contiguous
  35 * area in the chunk.  This helps the allocator not to iterate the
  36 * chunk maps unnecessarily.
  37 *
  38 * Allocation state in each chunk is kept using an array of integers
  39 * on chunk->map.  A positive value in the map represents a free
  40 * region and negative allocated.  Allocation inside a chunk is done
  41 * by scanning this map sequentially and serving the first matching
  42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
  43 * Chunks can be determined from the address using the index field
  44 * in the page struct. The index field contains a pointer to the chunk.
  45 *
  46 * To use this allocator, arch code should do the followings.
  47 *
  48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49 *   regular address to percpu pointer and back if they need to be
  50 *   different from the default
  51 *
  52 * - use pcpu_setup_first_chunk() during percpu area initialization to
  53 *   setup the first chunk containing the kernel static percpu area
  54 */
  55
  56#include <linux/bitmap.h>
  57#include <linux/bootmem.h>
  58#include <linux/err.h>
  59#include <linux/list.h>
  60#include <linux/log2.h>
  61#include <linux/mm.h>
  62#include <linux/module.h>
  63#include <linux/mutex.h>
  64#include <linux/percpu.h>
  65#include <linux/pfn.h>
  66#include <linux/slab.h>
  67#include <linux/spinlock.h>
  68#include <linux/vmalloc.h>
  69#include <linux/workqueue.h>
  70#include <linux/kmemleak.h>
  71
  72#include <asm/cacheflush.h>
  73#include <asm/sections.h>
  74#include <asm/tlbflush.h>
  75#include <asm/io.h>
  76
  77#define PCPU_SLOT_BASE_SHIFT            5       /* 1-31 shares the same slot */
  78#define PCPU_DFL_MAP_ALLOC              16      /* start a map with 16 ents */
  79#define PCPU_ATOMIC_MAP_MARGIN_LOW      32
  80#define PCPU_ATOMIC_MAP_MARGIN_HIGH     64
  81#define PCPU_EMPTY_POP_PAGES_LOW        2
  82#define PCPU_EMPTY_POP_PAGES_HIGH       4
  83
  84#ifdef CONFIG_SMP
  85/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  86#ifndef __addr_to_pcpu_ptr
  87#define __addr_to_pcpu_ptr(addr)                                        \
  88        (void __percpu *)((unsigned long)(addr) -                       \
  89                          (unsigned long)pcpu_base_addr +               \
  90                          (unsigned long)__per_cpu_start)
  91#endif
  92#ifndef __pcpu_ptr_to_addr
  93#define __pcpu_ptr_to_addr(ptr)                                         \
  94        (void __force *)((unsigned long)(ptr) +                         \
  95                         (unsigned long)pcpu_base_addr -                \
  96                         (unsigned long)__per_cpu_start)
  97#endif
  98#else   /* CONFIG_SMP */
  99/* on UP, it's always identity mapped */
 100#define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
 101#define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
 102#endif  /* CONFIG_SMP */
 103
 104struct pcpu_chunk {
 105        struct list_head        list;           /* linked to pcpu_slot lists */
 106        int                     free_size;      /* free bytes in the chunk */
 107        int                     contig_hint;    /* max contiguous size hint */
 108        void                    *base_addr;     /* base address of this chunk */
 109
 110        int                     map_used;       /* # of map entries used before the sentry */
 111        int                     map_alloc;      /* # of map entries allocated */
 112        int                     *map;           /* allocation map */
 113        struct work_struct      map_extend_work;/* async ->map[] extension */
 114
 115        void                    *data;          /* chunk data */
 116        int                     first_free;     /* no free below this */
 117        bool                    immutable;      /* no [de]population allowed */
 118        int                     nr_populated;   /* # of populated pages */
 119        unsigned long           populated[];    /* populated bitmap */
 120};
 121
 122static int pcpu_unit_pages __read_mostly;
 123static int pcpu_unit_size __read_mostly;
 124static int pcpu_nr_units __read_mostly;
 125static int pcpu_atom_size __read_mostly;
 126static int pcpu_nr_slots __read_mostly;
 127static size_t pcpu_chunk_struct_size __read_mostly;
 128
 129/* cpus with the lowest and highest unit addresses */
 130static unsigned int pcpu_low_unit_cpu __read_mostly;
 131static unsigned int pcpu_high_unit_cpu __read_mostly;
 132
 133/* the address of the first chunk which starts with the kernel static area */
 134void *pcpu_base_addr __read_mostly;
 135EXPORT_SYMBOL_GPL(pcpu_base_addr);
 136
 137static const int *pcpu_unit_map __read_mostly;          /* cpu -> unit */
 138const unsigned long *pcpu_unit_offsets __read_mostly;   /* cpu -> unit offset */
 139
 140/* group information, used for vm allocation */
 141static int pcpu_nr_groups __read_mostly;
 142static const unsigned long *pcpu_group_offsets __read_mostly;
 143static const size_t *pcpu_group_sizes __read_mostly;
 144
 145/*
 146 * The first chunk which always exists.  Note that unlike other
 147 * chunks, this one can be allocated and mapped in several different
 148 * ways and thus often doesn't live in the vmalloc area.
 149 */
 150static struct pcpu_chunk *pcpu_first_chunk;
 151
 152/*
 153 * Optional reserved chunk.  This chunk reserves part of the first
 154 * chunk and serves it for reserved allocations.  The amount of
 155 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 156 * area doesn't exist, the following variables contain NULL and 0
 157 * respectively.
 158 */
 159static struct pcpu_chunk *pcpu_reserved_chunk;
 160static int pcpu_reserved_chunk_limit;
 161
 162static DEFINE_SPINLOCK(pcpu_lock);      /* all internal data structures */
 163static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop */
 164
 165static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 166
 167/*
 168 * The number of empty populated pages, protected by pcpu_lock.  The
 169 * reserved chunk doesn't contribute to the count.
 170 */
 171static int pcpu_nr_empty_pop_pages;
 172
 173/*
 174 * Balance work is used to populate or destroy chunks asynchronously.  We
 175 * try to keep the number of populated free pages between
 176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 177 * empty chunk.
 178 */
 179static void pcpu_balance_workfn(struct work_struct *work);
 180static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 181static bool pcpu_async_enabled __read_mostly;
 182static bool pcpu_atomic_alloc_failed;
 183
 184static void pcpu_schedule_balance_work(void)
 185{
 186        if (pcpu_async_enabled)
 187                schedule_work(&pcpu_balance_work);
 188}
 189
 190static bool pcpu_addr_in_first_chunk(void *addr)
 191{
 192        void *first_start = pcpu_first_chunk->base_addr;
 193
 194        return addr >= first_start && addr < first_start + pcpu_unit_size;
 195}
 196
 197static bool pcpu_addr_in_reserved_chunk(void *addr)
 198{
 199        void *first_start = pcpu_first_chunk->base_addr;
 200
 201        return addr >= first_start &&
 202                addr < first_start + pcpu_reserved_chunk_limit;
 203}
 204
 205static int __pcpu_size_to_slot(int size)
 206{
 207        int highbit = fls(size);        /* size is in bytes */
 208        return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 209}
 210
 211static int pcpu_size_to_slot(int size)
 212{
 213        if (size == pcpu_unit_size)
 214                return pcpu_nr_slots - 1;
 215        return __pcpu_size_to_slot(size);
 216}
 217
 218static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 219{
 220        if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 221                return 0;
 222
 223        return pcpu_size_to_slot(chunk->free_size);
 224}
 225
 226/* set the pointer to a chunk in a page struct */
 227static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 228{
 229        page->index = (unsigned long)pcpu;
 230}
 231
 232/* obtain pointer to a chunk from a page struct */
 233static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 234{
 235        return (struct pcpu_chunk *)page->index;
 236}
 237
 238static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 239{
 240        return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 241}
 242
 243static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 244                                     unsigned int cpu, int page_idx)
 245{
 246        return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
 247                (page_idx << PAGE_SHIFT);
 248}
 249
 250static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
 251                                           int *rs, int *re, int end)
 252{
 253        *rs = find_next_zero_bit(chunk->populated, end, *rs);
 254        *re = find_next_bit(chunk->populated, end, *rs + 1);
 255}
 256
 257static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
 258                                         int *rs, int *re, int end)
 259{
 260        *rs = find_next_bit(chunk->populated, end, *rs);
 261        *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
 262}
 263
 264/*
 265 * (Un)populated page region iterators.  Iterate over (un)populated
 266 * page regions between @start and @end in @chunk.  @rs and @re should
 267 * be integer variables and will be set to start and end page index of
 268 * the current region.
 269 */
 270#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)               \
 271        for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
 272             (rs) < (re);                                                   \
 273             (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
 274
 275#define pcpu_for_each_pop_region(chunk, rs, re, start, end)                 \
 276        for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
 277             (rs) < (re);                                                   \
 278             (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
 279
 280/**
 281 * pcpu_mem_zalloc - allocate memory
 282 * @size: bytes to allocate
 283 *
 284 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 285 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
 286 * memory is always zeroed.
 287 *
 288 * CONTEXT:
 289 * Does GFP_KERNEL allocation.
 290 *
 291 * RETURNS:
 292 * Pointer to the allocated area on success, NULL on failure.
 293 */
 294static void *pcpu_mem_zalloc(size_t size)
 295{
 296        if (WARN_ON_ONCE(!slab_is_available()))
 297                return NULL;
 298
 299        if (size <= PAGE_SIZE)
 300                return kzalloc(size, GFP_KERNEL);
 301        else
 302                return vzalloc(size);
 303}
 304
 305/**
 306 * pcpu_mem_free - free memory
 307 * @ptr: memory to free
 308 * @size: size of the area
 309 *
 310 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 311 */
 312static void pcpu_mem_free(void *ptr, size_t size)
 313{
 314        if (size <= PAGE_SIZE)
 315                kfree(ptr);
 316        else
 317                vfree(ptr);
 318}
 319
 320/**
 321 * pcpu_count_occupied_pages - count the number of pages an area occupies
 322 * @chunk: chunk of interest
 323 * @i: index of the area in question
 324 *
 325 * Count the number of pages chunk's @i'th area occupies.  When the area's
 326 * start and/or end address isn't aligned to page boundary, the straddled
 327 * page is included in the count iff the rest of the page is free.
 328 */
 329static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
 330{
 331        int off = chunk->map[i] & ~1;
 332        int end = chunk->map[i + 1] & ~1;
 333
 334        if (!PAGE_ALIGNED(off) && i > 0) {
 335                int prev = chunk->map[i - 1];
 336
 337                if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
 338                        off = round_down(off, PAGE_SIZE);
 339        }
 340
 341        if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
 342                int next = chunk->map[i + 1];
 343                int nend = chunk->map[i + 2] & ~1;
 344
 345                if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
 346                        end = round_up(end, PAGE_SIZE);
 347        }
 348
 349        return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
 350}
 351
 352/**
 353 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 354 * @chunk: chunk of interest
 355 * @oslot: the previous slot it was on
 356 *
 357 * This function is called after an allocation or free changed @chunk.
 358 * New slot according to the changed state is determined and @chunk is
 359 * moved to the slot.  Note that the reserved chunk is never put on
 360 * chunk slots.
 361 *
 362 * CONTEXT:
 363 * pcpu_lock.
 364 */
 365static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 366{
 367        int nslot = pcpu_chunk_slot(chunk);
 368
 369        if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 370                if (oslot < nslot)
 371                        list_move(&chunk->list, &pcpu_slot[nslot]);
 372                else
 373                        list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 374        }
 375}
 376
 377/**
 378 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 379 * @chunk: chunk of interest
 380 * @is_atomic: the allocation context
 381 *
 382 * Determine whether area map of @chunk needs to be extended.  If
 383 * @is_atomic, only the amount necessary for a new allocation is
 384 * considered; however, async extension is scheduled if the left amount is
 385 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 386 * ensures that the map is likely to have enough available space to
 387 * accomodate atomic allocations which can't extend maps directly.
 388 *
 389 * CONTEXT:
 390 * pcpu_lock.
 391 *
 392 * RETURNS:
 393 * New target map allocation length if extension is necessary, 0
 394 * otherwise.
 395 */
 396static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
 397{
 398        int margin, new_alloc;
 399
 400        if (is_atomic) {
 401                margin = 3;
 402
 403                if (chunk->map_alloc <
 404                    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
 405                    pcpu_async_enabled)
 406                        schedule_work(&chunk->map_extend_work);
 407        } else {
 408                margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
 409        }
 410
 411        if (chunk->map_alloc >= chunk->map_used + margin)
 412                return 0;
 413
 414        new_alloc = PCPU_DFL_MAP_ALLOC;
 415        while (new_alloc < chunk->map_used + margin)
 416                new_alloc *= 2;
 417
 418        return new_alloc;
 419}
 420
 421/**
 422 * pcpu_extend_area_map - extend area map of a chunk
 423 * @chunk: chunk of interest
 424 * @new_alloc: new target allocation length of the area map
 425 *
 426 * Extend area map of @chunk to have @new_alloc entries.
 427 *
 428 * CONTEXT:
 429 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 430 *
 431 * RETURNS:
 432 * 0 on success, -errno on failure.
 433 */
 434static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
 435{
 436        int *old = NULL, *new = NULL;
 437        size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
 438        unsigned long flags;
 439
 440        new = pcpu_mem_zalloc(new_size);
 441        if (!new)
 442                return -ENOMEM;
 443
 444        /* acquire pcpu_lock and switch to new area map */
 445        spin_lock_irqsave(&pcpu_lock, flags);
 446
 447        if (new_alloc <= chunk->map_alloc)
 448                goto out_unlock;
 449
 450        old_size = chunk->map_alloc * sizeof(chunk->map[0]);
 451        old = chunk->map;
 452
 453        memcpy(new, old, old_size);
 454
 455        chunk->map_alloc = new_alloc;
 456        chunk->map = new;
 457        new = NULL;
 458
 459out_unlock:
 460        spin_unlock_irqrestore(&pcpu_lock, flags);
 461
 462        /*
 463         * pcpu_mem_free() might end up calling vfree() which uses
 464         * IRQ-unsafe lock and thus can't be called under pcpu_lock.
 465         */
 466        pcpu_mem_free(old, old_size);
 467        pcpu_mem_free(new, new_size);
 468
 469        return 0;
 470}
 471
 472static void pcpu_map_extend_workfn(struct work_struct *work)
 473{
 474        struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
 475                                                map_extend_work);
 476        int new_alloc;
 477
 478        spin_lock_irq(&pcpu_lock);
 479        new_alloc = pcpu_need_to_extend(chunk, false);
 480        spin_unlock_irq(&pcpu_lock);
 481
 482        if (new_alloc)
 483                pcpu_extend_area_map(chunk, new_alloc);
 484}
 485
 486/**
 487 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 488 * @chunk: chunk the candidate area belongs to
 489 * @off: the offset to the start of the candidate area
 490 * @this_size: the size of the candidate area
 491 * @size: the size of the target allocation
 492 * @align: the alignment of the target allocation
 493 * @pop_only: only allocate from already populated region
 494 *
 495 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 496 * at @off sized @this_size is a candidate.  This function determines
 497 * whether the target allocation fits in the candidate area and returns the
 498 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 499 * is returned.
 500 *
 501 * If @pop_only is %true, this function only considers the already
 502 * populated part of the candidate area.
 503 */
 504static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
 505                            int size, int align, bool pop_only)
 506{
 507        int cand_off = off;
 508
 509        while (true) {
 510                int head = ALIGN(cand_off, align) - off;
 511                int page_start, page_end, rs, re;
 512
 513                if (this_size < head + size)
 514                        return -1;
 515
 516                if (!pop_only)
 517                        return head;
 518
 519                /*
 520                 * If the first unpopulated page is beyond the end of the
 521                 * allocation, the whole allocation is populated;
 522                 * otherwise, retry from the end of the unpopulated area.
 523                 */
 524                page_start = PFN_DOWN(head + off);
 525                page_end = PFN_UP(head + off + size);
 526
 527                rs = page_start;
 528                pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
 529                if (rs >= page_end)
 530                        return head;
 531                cand_off = re * PAGE_SIZE;
 532        }
 533}
 534
 535/**
 536 * pcpu_alloc_area - allocate area from a pcpu_chunk
 537 * @chunk: chunk of interest
 538 * @size: wanted size in bytes
 539 * @align: wanted align
 540 * @pop_only: allocate only from the populated area
 541 * @occ_pages_p: out param for the number of pages the area occupies
 542 *
 543 * Try to allocate @size bytes area aligned at @align from @chunk.
 544 * Note that this function only allocates the offset.  It doesn't
 545 * populate or map the area.
 546 *
 547 * @chunk->map must have at least two free slots.
 548 *
 549 * CONTEXT:
 550 * pcpu_lock.
 551 *
 552 * RETURNS:
 553 * Allocated offset in @chunk on success, -1 if no matching area is
 554 * found.
 555 */
 556static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
 557                           bool pop_only, int *occ_pages_p)
 558{
 559        int oslot = pcpu_chunk_slot(chunk);
 560        int max_contig = 0;
 561        int i, off;
 562        bool seen_free = false;
 563        int *p;
 564
 565        for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
 566                int head, tail;
 567                int this_size;
 568
 569                off = *p;
 570                if (off & 1)
 571                        continue;
 572
 573                this_size = (p[1] & ~1) - off;
 574
 575                head = pcpu_fit_in_area(chunk, off, this_size, size, align,
 576                                        pop_only);
 577                if (head < 0) {
 578                        if (!seen_free) {
 579                                chunk->first_free = i;
 580                                seen_free = true;
 581                        }
 582                        max_contig = max(this_size, max_contig);
 583                        continue;
 584                }
 585
 586                /*
 587                 * If head is small or the previous block is free,
 588                 * merge'em.  Note that 'small' is defined as smaller
 589                 * than sizeof(int), which is very small but isn't too
 590                 * uncommon for percpu allocations.
 591                 */
 592                if (head && (head < sizeof(int) || !(p[-1] & 1))) {
 593                        *p = off += head;
 594                        if (p[-1] & 1)
 595                                chunk->free_size -= head;
 596                        else
 597                                max_contig = max(*p - p[-1], max_contig);
 598                        this_size -= head;
 599                        head = 0;
 600                }
 601
 602                /* if tail is small, just keep it around */
 603                tail = this_size - head - size;
 604                if (tail < sizeof(int)) {
 605                        tail = 0;
 606                        size = this_size - head;
 607                }
 608
 609                /* split if warranted */
 610                if (head || tail) {
 611                        int nr_extra = !!head + !!tail;
 612
 613                        /* insert new subblocks */
 614                        memmove(p + nr_extra + 1, p + 1,
 615                                sizeof(chunk->map[0]) * (chunk->map_used - i));
 616                        chunk->map_used += nr_extra;
 617
 618                        if (head) {
 619                                if (!seen_free) {
 620                                        chunk->first_free = i;
 621                                        seen_free = true;
 622                                }
 623                                *++p = off += head;
 624                                ++i;
 625                                max_contig = max(head, max_contig);
 626                        }
 627                        if (tail) {
 628                                p[1] = off + size;
 629                                max_contig = max(tail, max_contig);
 630                        }
 631                }
 632
 633                if (!seen_free)
 634                        chunk->first_free = i + 1;
 635
 636                /* update hint and mark allocated */
 637                if (i + 1 == chunk->map_used)
 638                        chunk->contig_hint = max_contig; /* fully scanned */
 639                else
 640                        chunk->contig_hint = max(chunk->contig_hint,
 641                                                 max_contig);
 642
 643                chunk->free_size -= size;
 644                *p |= 1;
 645
 646                *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
 647                pcpu_chunk_relocate(chunk, oslot);
 648                return off;
 649        }
 650
 651        chunk->contig_hint = max_contig;        /* fully scanned */
 652        pcpu_chunk_relocate(chunk, oslot);
 653
 654        /* tell the upper layer that this chunk has no matching area */
 655        return -1;
 656}
 657
 658/**
 659 * pcpu_free_area - free area to a pcpu_chunk
 660 * @chunk: chunk of interest
 661 * @freeme: offset of area to free
 662 * @occ_pages_p: out param for the number of pages the area occupies
 663 *
 664 * Free area starting from @freeme to @chunk.  Note that this function
 665 * only modifies the allocation map.  It doesn't depopulate or unmap
 666 * the area.
 667 *
 668 * CONTEXT:
 669 * pcpu_lock.
 670 */
 671static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
 672                           int *occ_pages_p)
 673{
 674        int oslot = pcpu_chunk_slot(chunk);
 675        int off = 0;
 676        unsigned i, j;
 677        int to_free = 0;
 678        int *p;
 679
 680        freeme |= 1;    /* we are searching for <given offset, in use> pair */
 681
 682        i = 0;
 683        j = chunk->map_used;
 684        while (i != j) {
 685                unsigned k = (i + j) / 2;
 686                off = chunk->map[k];
 687                if (off < freeme)
 688                        i = k + 1;
 689                else if (off > freeme)
 690                        j = k;
 691                else
 692                        i = j = k;
 693        }
 694        BUG_ON(off != freeme);
 695
 696        if (i < chunk->first_free)
 697                chunk->first_free = i;
 698
 699        p = chunk->map + i;
 700        *p = off &= ~1;
 701        chunk->free_size += (p[1] & ~1) - off;
 702
 703        *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
 704
 705        /* merge with next? */
 706        if (!(p[1] & 1))
 707                to_free++;
 708        /* merge with previous? */
 709        if (i > 0 && !(p[-1] & 1)) {
 710                to_free++;
 711                i--;
 712                p--;
 713        }
 714        if (to_free) {
 715                chunk->map_used -= to_free;
 716                memmove(p + 1, p + 1 + to_free,
 717                        (chunk->map_used - i) * sizeof(chunk->map[0]));
 718        }
 719
 720        chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
 721        pcpu_chunk_relocate(chunk, oslot);
 722}
 723
 724static struct pcpu_chunk *pcpu_alloc_chunk(void)
 725{
 726        struct pcpu_chunk *chunk;
 727
 728        chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
 729        if (!chunk)
 730                return NULL;
 731
 732        chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
 733                                                sizeof(chunk->map[0]));
 734        if (!chunk->map) {
 735                pcpu_mem_free(chunk, pcpu_chunk_struct_size);
 736                return NULL;
 737        }
 738
 739        chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 740        chunk->map[0] = 0;
 741        chunk->map[1] = pcpu_unit_size | 1;
 742        chunk->map_used = 1;
 743
 744        INIT_LIST_HEAD(&chunk->list);
 745        INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
 746        chunk->free_size = pcpu_unit_size;
 747        chunk->contig_hint = pcpu_unit_size;
 748
 749        return chunk;
 750}
 751
 752static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 753{
 754        if (!chunk)
 755                return;
 756        pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
 757        pcpu_mem_free(chunk, pcpu_chunk_struct_size);
 758}
 759
 760/**
 761 * pcpu_chunk_populated - post-population bookkeeping
 762 * @chunk: pcpu_chunk which got populated
 763 * @page_start: the start page
 764 * @page_end: the end page
 765 *
 766 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 767 * the bookkeeping information accordingly.  Must be called after each
 768 * successful population.
 769 */
 770static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
 771                                 int page_start, int page_end)
 772{
 773        int nr = page_end - page_start;
 774
 775        lockdep_assert_held(&pcpu_lock);
 776
 777        bitmap_set(chunk->populated, page_start, nr);
 778        chunk->nr_populated += nr;
 779        pcpu_nr_empty_pop_pages += nr;
 780}
 781
 782/**
 783 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 784 * @chunk: pcpu_chunk which got depopulated
 785 * @page_start: the start page
 786 * @page_end: the end page
 787 *
 788 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 789 * Update the bookkeeping information accordingly.  Must be called after
 790 * each successful depopulation.
 791 */
 792static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
 793                                   int page_start, int page_end)
 794{
 795        int nr = page_end - page_start;
 796
 797        lockdep_assert_held(&pcpu_lock);
 798
 799        bitmap_clear(chunk->populated, page_start, nr);
 800        chunk->nr_populated -= nr;
 801        pcpu_nr_empty_pop_pages -= nr;
 802}
 803
 804/*
 805 * Chunk management implementation.
 806 *
 807 * To allow different implementations, chunk alloc/free and
 808 * [de]population are implemented in a separate file which is pulled
 809 * into this file and compiled together.  The following functions
 810 * should be implemented.
 811 *
 812 * pcpu_populate_chunk          - populate the specified range of a chunk
 813 * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
 814 * pcpu_create_chunk            - create a new chunk
 815 * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
 816 * pcpu_addr_to_page            - translate address to physical address
 817 * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
 818 */
 819static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
 820static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
 821static struct pcpu_chunk *pcpu_create_chunk(void);
 822static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 823static struct page *pcpu_addr_to_page(void *addr);
 824static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 825
 826#ifdef CONFIG_NEED_PER_CPU_KM
 827#include "percpu-km.c"
 828#else
 829#include "percpu-vm.c"
 830#endif
 831
 832/**
 833 * pcpu_chunk_addr_search - determine chunk containing specified address
 834 * @addr: address for which the chunk needs to be determined.
 835 *
 836 * RETURNS:
 837 * The address of the found chunk.
 838 */
 839static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 840{
 841        /* is it in the first chunk? */
 842        if (pcpu_addr_in_first_chunk(addr)) {
 843                /* is it in the reserved area? */
 844                if (pcpu_addr_in_reserved_chunk(addr))
 845                        return pcpu_reserved_chunk;
 846                return pcpu_first_chunk;
 847        }
 848
 849        /*
 850         * The address is relative to unit0 which might be unused and
 851         * thus unmapped.  Offset the address to the unit space of the
 852         * current processor before looking it up in the vmalloc
 853         * space.  Note that any possible cpu id can be used here, so
 854         * there's no need to worry about preemption or cpu hotplug.
 855         */
 856        addr += pcpu_unit_offsets[raw_smp_processor_id()];
 857        return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 858}
 859
 860/**
 861 * pcpu_alloc - the percpu allocator
 862 * @size: size of area to allocate in bytes
 863 * @align: alignment of area (max PAGE_SIZE)
 864 * @reserved: allocate from the reserved chunk if available
 865 * @gfp: allocation flags
 866 *
 867 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 868 * contain %GFP_KERNEL, the allocation is atomic.
 869 *
 870 * RETURNS:
 871 * Percpu pointer to the allocated area on success, NULL on failure.
 872 */
 873static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
 874                                 gfp_t gfp)
 875{
 876        static int warn_limit = 10;
 877        struct pcpu_chunk *chunk;
 878        const char *err;
 879        bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
 880        int occ_pages = 0;
 881        int slot, off, new_alloc, cpu, ret;
 882        unsigned long flags;
 883        void __percpu *ptr;
 884
 885        /*
 886         * We want the lowest bit of offset available for in-use/free
 887         * indicator, so force >= 16bit alignment and make size even.
 888         */
 889        if (unlikely(align < 2))
 890                align = 2;
 891
 892        size = ALIGN(size, 2);
 893
 894        if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
 895                WARN(true, "illegal size (%zu) or align (%zu) for "
 896                     "percpu allocation\n", size, align);
 897                return NULL;
 898        }
 899
 900        spin_lock_irqsave(&pcpu_lock, flags);
 901
 902        /* serve reserved allocations from the reserved chunk if available */
 903        if (reserved && pcpu_reserved_chunk) {
 904                chunk = pcpu_reserved_chunk;
 905
 906                if (size > chunk->contig_hint) {
 907                        err = "alloc from reserved chunk failed";
 908                        goto fail_unlock;
 909                }
 910
 911                while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
 912                        spin_unlock_irqrestore(&pcpu_lock, flags);
 913                        if (is_atomic ||
 914                            pcpu_extend_area_map(chunk, new_alloc) < 0) {
 915                                err = "failed to extend area map of reserved chunk";
 916                                goto fail;
 917                        }
 918                        spin_lock_irqsave(&pcpu_lock, flags);
 919                }
 920
 921                off = pcpu_alloc_area(chunk, size, align, is_atomic,
 922                                      &occ_pages);
 923                if (off >= 0)
 924                        goto area_found;
 925
 926                err = "alloc from reserved chunk failed";
 927                goto fail_unlock;
 928        }
 929
 930restart:
 931        /* search through normal chunks */
 932        for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 933                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 934                        if (size > chunk->contig_hint)
 935                                continue;
 936
 937                        new_alloc = pcpu_need_to_extend(chunk, is_atomic);
 938                        if (new_alloc) {
 939                                if (is_atomic)
 940                                        continue;
 941                                spin_unlock_irqrestore(&pcpu_lock, flags);
 942                                if (pcpu_extend_area_map(chunk,
 943                                                         new_alloc) < 0) {
 944                                        err = "failed to extend area map";
 945                                        goto fail;
 946                                }
 947                                spin_lock_irqsave(&pcpu_lock, flags);
 948                                /*
 949                                 * pcpu_lock has been dropped, need to
 950                                 * restart cpu_slot list walking.
 951                                 */
 952                                goto restart;
 953                        }
 954
 955                        off = pcpu_alloc_area(chunk, size, align, is_atomic,
 956                                              &occ_pages);
 957                        if (off >= 0)
 958                                goto area_found;
 959                }
 960        }
 961
 962        spin_unlock_irqrestore(&pcpu_lock, flags);
 963
 964        /*
 965         * No space left.  Create a new chunk.  We don't want multiple
 966         * tasks to create chunks simultaneously.  Serialize and create iff
 967         * there's still no empty chunk after grabbing the mutex.
 968         */
 969        if (is_atomic)
 970                goto fail;
 971
 972        mutex_lock(&pcpu_alloc_mutex);
 973
 974        if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
 975                chunk = pcpu_create_chunk();
 976                if (!chunk) {
 977                        mutex_unlock(&pcpu_alloc_mutex);
 978                        err = "failed to allocate new chunk";
 979                        goto fail;
 980                }
 981
 982                spin_lock_irqsave(&pcpu_lock, flags);
 983                pcpu_chunk_relocate(chunk, -1);
 984        } else {
 985                spin_lock_irqsave(&pcpu_lock, flags);
 986        }
 987
 988        mutex_unlock(&pcpu_alloc_mutex);
 989        goto restart;
 990
 991area_found:
 992        spin_unlock_irqrestore(&pcpu_lock, flags);
 993
 994        /* populate if not all pages are already there */
 995        if (!is_atomic) {
 996                int page_start, page_end, rs, re;
 997
 998                mutex_lock(&pcpu_alloc_mutex);
 999
1000                page_start = PFN_DOWN(off);
1001                page_end = PFN_UP(off + size);
1002
1003                pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1004                        WARN_ON(chunk->immutable);
1005
1006                        ret = pcpu_populate_chunk(chunk, rs, re);
1007
1008                        spin_lock_irqsave(&pcpu_lock, flags);
1009                        if (ret) {
1010                                mutex_unlock(&pcpu_alloc_mutex);
1011                                pcpu_free_area(chunk, off, &occ_pages);
1012                                err = "failed to populate";
1013                                goto fail_unlock;
1014                        }
1015                        pcpu_chunk_populated(chunk, rs, re);
1016                        spin_unlock_irqrestore(&pcpu_lock, flags);
1017                }
1018
1019                mutex_unlock(&pcpu_alloc_mutex);
1020        }
1021
1022        if (chunk != pcpu_reserved_chunk)
1023                pcpu_nr_empty_pop_pages -= occ_pages;
1024
1025        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1026                pcpu_schedule_balance_work();
1027
1028        /* clear the areas and return address relative to base address */
1029        for_each_possible_cpu(cpu)
1030                memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1031
1032        ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1033        kmemleak_alloc_percpu(ptr, size);
1034        return ptr;
1035
1036fail_unlock:
1037        spin_unlock_irqrestore(&pcpu_lock, flags);
1038fail:
1039        if (!is_atomic && warn_limit) {
1040                pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1041                           size, align, is_atomic, err);
1042                dump_stack();
1043                if (!--warn_limit)
1044                        pr_info("PERCPU: limit reached, disable warning\n");
1045        }
1046        if (is_atomic) {
1047                /* see the flag handling in pcpu_blance_workfn() */
1048                pcpu_atomic_alloc_failed = true;
1049                pcpu_schedule_balance_work();
1050        }
1051        return NULL;
1052}
1053
1054/**
1055 * __alloc_percpu_gfp - allocate dynamic percpu area
1056 * @size: size of area to allocate in bytes
1057 * @align: alignment of area (max PAGE_SIZE)
1058 * @gfp: allocation flags
1059 *
1060 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1061 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1062 * be called from any context but is a lot more likely to fail.
1063 *
1064 * RETURNS:
1065 * Percpu pointer to the allocated area on success, NULL on failure.
1066 */
1067void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1068{
1069        return pcpu_alloc(size, align, false, gfp);
1070}
1071EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1072
1073/**
1074 * __alloc_percpu - allocate dynamic percpu area
1075 * @size: size of area to allocate in bytes
1076 * @align: alignment of area (max PAGE_SIZE)
1077 *
1078 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1079 */
1080void __percpu *__alloc_percpu(size_t size, size_t align)
1081{
1082        return pcpu_alloc(size, align, false, GFP_KERNEL);
1083}
1084EXPORT_SYMBOL_GPL(__alloc_percpu);
1085
1086/**
1087 * __alloc_reserved_percpu - allocate reserved percpu area
1088 * @size: size of area to allocate in bytes
1089 * @align: alignment of area (max PAGE_SIZE)
1090 *
1091 * Allocate zero-filled percpu area of @size bytes aligned at @align
1092 * from reserved percpu area if arch has set it up; otherwise,
1093 * allocation is served from the same dynamic area.  Might sleep.
1094 * Might trigger writeouts.
1095 *
1096 * CONTEXT:
1097 * Does GFP_KERNEL allocation.
1098 *
1099 * RETURNS:
1100 * Percpu pointer to the allocated area on success, NULL on failure.
1101 */
1102void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1103{
1104        return pcpu_alloc(size, align, true, GFP_KERNEL);
1105}
1106
1107/**
1108 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1109 * @work: unused
1110 *
1111 * Reclaim all fully free chunks except for the first one.
1112 */
1113static void pcpu_balance_workfn(struct work_struct *work)
1114{
1115        LIST_HEAD(to_free);
1116        struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1117        struct pcpu_chunk *chunk, *next;
1118        int slot, nr_to_pop, ret;
1119
1120        /*
1121         * There's no reason to keep around multiple unused chunks and VM
1122         * areas can be scarce.  Destroy all free chunks except for one.
1123         */
1124        mutex_lock(&pcpu_alloc_mutex);
1125        spin_lock_irq(&pcpu_lock);
1126
1127        list_for_each_entry_safe(chunk, next, free_head, list) {
1128                WARN_ON(chunk->immutable);
1129
1130                /* spare the first one */
1131                if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1132                        continue;
1133
1134                list_move(&chunk->list, &to_free);
1135        }
1136
1137        spin_unlock_irq(&pcpu_lock);
1138
1139        list_for_each_entry_safe(chunk, next, &to_free, list) {
1140                int rs, re;
1141
1142                pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1143                        pcpu_depopulate_chunk(chunk, rs, re);
1144                        spin_lock_irq(&pcpu_lock);
1145                        pcpu_chunk_depopulated(chunk, rs, re);
1146                        spin_unlock_irq(&pcpu_lock);
1147                }
1148                pcpu_destroy_chunk(chunk);
1149        }
1150
1151        /*
1152         * Ensure there are certain number of free populated pages for
1153         * atomic allocs.  Fill up from the most packed so that atomic
1154         * allocs don't increase fragmentation.  If atomic allocation
1155         * failed previously, always populate the maximum amount.  This
1156         * should prevent atomic allocs larger than PAGE_SIZE from keeping
1157         * failing indefinitely; however, large atomic allocs are not
1158         * something we support properly and can be highly unreliable and
1159         * inefficient.
1160         */
1161retry_pop:
1162        if (pcpu_atomic_alloc_failed) {
1163                nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1164                /* best effort anyway, don't worry about synchronization */
1165                pcpu_atomic_alloc_failed = false;
1166        } else {
1167                nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1168                                  pcpu_nr_empty_pop_pages,
1169                                  0, PCPU_EMPTY_POP_PAGES_HIGH);
1170        }
1171
1172        for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1173                int nr_unpop = 0, rs, re;
1174
1175                if (!nr_to_pop)
1176                        break;
1177
1178                spin_lock_irq(&pcpu_lock);
1179                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1180                        nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1181                        if (nr_unpop)
1182                                break;
1183                }
1184                spin_unlock_irq(&pcpu_lock);
1185
1186                if (!nr_unpop)
1187                        continue;
1188
1189                /* @chunk can't go away while pcpu_alloc_mutex is held */
1190                pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1191                        int nr = min(re - rs, nr_to_pop);
1192
1193                        ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1194                        if (!ret) {
1195                                nr_to_pop -= nr;
1196                                spin_lock_irq(&pcpu_lock);
1197                                pcpu_chunk_populated(chunk, rs, rs + nr);
1198                                spin_unlock_irq(&pcpu_lock);
1199                        } else {
1200                                nr_to_pop = 0;
1201                        }
1202
1203                        if (!nr_to_pop)
1204                                break;
1205                }
1206        }
1207
1208        if (nr_to_pop) {
1209                /* ran out of chunks to populate, create a new one and retry */
1210                chunk = pcpu_create_chunk();
1211                if (chunk) {
1212                        spin_lock_irq(&pcpu_lock);
1213                        pcpu_chunk_relocate(chunk, -1);
1214                        spin_unlock_irq(&pcpu_lock);
1215                        goto retry_pop;
1216                }
1217        }
1218
1219        mutex_unlock(&pcpu_alloc_mutex);
1220}
1221
1222/**
1223 * free_percpu - free percpu area
1224 * @ptr: pointer to area to free
1225 *
1226 * Free percpu area @ptr.
1227 *
1228 * CONTEXT:
1229 * Can be called from atomic context.
1230 */
1231void free_percpu(void __percpu *ptr)
1232{
1233        void *addr;
1234        struct pcpu_chunk *chunk;
1235        unsigned long flags;
1236        int off, occ_pages;
1237
1238        if (!ptr)
1239                return;
1240
1241        kmemleak_free_percpu(ptr);
1242
1243        addr = __pcpu_ptr_to_addr(ptr);
1244
1245        spin_lock_irqsave(&pcpu_lock, flags);
1246
1247        chunk = pcpu_chunk_addr_search(addr);
1248        off = addr - chunk->base_addr;
1249
1250        pcpu_free_area(chunk, off, &occ_pages);
1251
1252        if (chunk != pcpu_reserved_chunk)
1253                pcpu_nr_empty_pop_pages += occ_pages;
1254
1255        /* if there are more than one fully free chunks, wake up grim reaper */
1256        if (chunk->free_size == pcpu_unit_size) {
1257                struct pcpu_chunk *pos;
1258
1259                list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1260                        if (pos != chunk) {
1261                                pcpu_schedule_balance_work();
1262                                break;
1263                        }
1264        }
1265
1266        spin_unlock_irqrestore(&pcpu_lock, flags);
1267}
1268EXPORT_SYMBOL_GPL(free_percpu);
1269
1270/**
1271 * is_kernel_percpu_address - test whether address is from static percpu area
1272 * @addr: address to test
1273 *
1274 * Test whether @addr belongs to in-kernel static percpu area.  Module
1275 * static percpu areas are not considered.  For those, use
1276 * is_module_percpu_address().
1277 *
1278 * RETURNS:
1279 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1280 */
1281bool is_kernel_percpu_address(unsigned long addr)
1282{
1283#ifdef CONFIG_SMP
1284        const size_t static_size = __per_cpu_end - __per_cpu_start;
1285        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1286        unsigned int cpu;
1287
1288        for_each_possible_cpu(cpu) {
1289                void *start = per_cpu_ptr(base, cpu);
1290
1291                if ((void *)addr >= start && (void *)addr < start + static_size)
1292                        return true;
1293        }
1294#endif
1295        /* on UP, can't distinguish from other static vars, always false */
1296        return false;
1297}
1298
1299/**
1300 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1301 * @addr: the address to be converted to physical address
1302 *
1303 * Given @addr which is dereferenceable address obtained via one of
1304 * percpu access macros, this function translates it into its physical
1305 * address.  The caller is responsible for ensuring @addr stays valid
1306 * until this function finishes.
1307 *
1308 * percpu allocator has special setup for the first chunk, which currently
1309 * supports either embedding in linear address space or vmalloc mapping,
1310 * and, from the second one, the backing allocator (currently either vm or
1311 * km) provides translation.
1312 *
1313 * The addr can be tranlated simply without checking if it falls into the
1314 * first chunk. But the current code reflects better how percpu allocator
1315 * actually works, and the verification can discover both bugs in percpu
1316 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1317 * code.
1318 *
1319 * RETURNS:
1320 * The physical address for @addr.
1321 */
1322phys_addr_t per_cpu_ptr_to_phys(void *addr)
1323{
1324        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1325        bool in_first_chunk = false;
1326        unsigned long first_low, first_high;
1327        unsigned int cpu;
1328
1329        /*
1330         * The following test on unit_low/high isn't strictly
1331         * necessary but will speed up lookups of addresses which
1332         * aren't in the first chunk.
1333         */
1334        first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1335        first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1336                                     pcpu_unit_pages);
1337        if ((unsigned long)addr >= first_low &&
1338            (unsigned long)addr < first_high) {
1339                for_each_possible_cpu(cpu) {
1340                        void *start = per_cpu_ptr(base, cpu);
1341
1342                        if (addr >= start && addr < start + pcpu_unit_size) {
1343                                in_first_chunk = true;
1344                                break;
1345                        }
1346                }
1347        }
1348
1349        if (in_first_chunk) {
1350                if (!is_vmalloc_addr(addr))
1351                        return __pa(addr);
1352                else
1353                        return page_to_phys(vmalloc_to_page(addr)) +
1354                               offset_in_page(addr);
1355        } else
1356                return page_to_phys(pcpu_addr_to_page(addr)) +
1357                       offset_in_page(addr);
1358}
1359
1360/**
1361 * pcpu_alloc_alloc_info - allocate percpu allocation info
1362 * @nr_groups: the number of groups
1363 * @nr_units: the number of units
1364 *
1365 * Allocate ai which is large enough for @nr_groups groups containing
1366 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1367 * cpu_map array which is long enough for @nr_units and filled with
1368 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1369 * pointer of other groups.
1370 *
1371 * RETURNS:
1372 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1373 * failure.
1374 */
1375struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1376                                                      int nr_units)
1377{
1378        struct pcpu_alloc_info *ai;
1379        size_t base_size, ai_size;
1380        void *ptr;
1381        int unit;
1382
1383        base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1384                          __alignof__(ai->groups[0].cpu_map[0]));
1385        ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1386
1387        ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1388        if (!ptr)
1389                return NULL;
1390        ai = ptr;
1391        ptr += base_size;
1392
1393        ai->groups[0].cpu_map = ptr;
1394
1395        for (unit = 0; unit < nr_units; unit++)
1396                ai->groups[0].cpu_map[unit] = NR_CPUS;
1397
1398        ai->nr_groups = nr_groups;
1399        ai->__ai_size = PFN_ALIGN(ai_size);
1400
1401        return ai;
1402}
1403
1404/**
1405 * pcpu_free_alloc_info - free percpu allocation info
1406 * @ai: pcpu_alloc_info to free
1407 *
1408 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1409 */
1410void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1411{
1412        memblock_free_early(__pa(ai), ai->__ai_size);
1413}
1414
1415/**
1416 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1417 * @lvl: loglevel
1418 * @ai: allocation info to dump
1419 *
1420 * Print out information about @ai using loglevel @lvl.
1421 */
1422static void pcpu_dump_alloc_info(const char *lvl,
1423                                 const struct pcpu_alloc_info *ai)
1424{
1425        int group_width = 1, cpu_width = 1, width;
1426        char empty_str[] = "--------";
1427        int alloc = 0, alloc_end = 0;
1428        int group, v;
1429        int upa, apl;   /* units per alloc, allocs per line */
1430
1431        v = ai->nr_groups;
1432        while (v /= 10)
1433                group_width++;
1434
1435        v = num_possible_cpus();
1436        while (v /= 10)
1437                cpu_width++;
1438        empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1439
1440        upa = ai->alloc_size / ai->unit_size;
1441        width = upa * (cpu_width + 1) + group_width + 3;
1442        apl = rounddown_pow_of_two(max(60 / width, 1));
1443
1444        printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1445               lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1446               ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1447
1448        for (group = 0; group < ai->nr_groups; group++) {
1449                const struct pcpu_group_info *gi = &ai->groups[group];
1450                int unit = 0, unit_end = 0;
1451
1452                BUG_ON(gi->nr_units % upa);
1453                for (alloc_end += gi->nr_units / upa;
1454                     alloc < alloc_end; alloc++) {
1455                        if (!(alloc % apl)) {
1456                                printk(KERN_CONT "\n");
1457                                printk("%spcpu-alloc: ", lvl);
1458                        }
1459                        printk(KERN_CONT "[%0*d] ", group_width, group);
1460
1461                        for (unit_end += upa; unit < unit_end; unit++)
1462                                if (gi->cpu_map[unit] != NR_CPUS)
1463                                        printk(KERN_CONT "%0*d ", cpu_width,
1464                                               gi->cpu_map[unit]);
1465                                else
1466                                        printk(KERN_CONT "%s ", empty_str);
1467                }
1468        }
1469        printk(KERN_CONT "\n");
1470}
1471
1472/**
1473 * pcpu_setup_first_chunk - initialize the first percpu chunk
1474 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1475 * @base_addr: mapped address
1476 *
1477 * Initialize the first percpu chunk which contains the kernel static
1478 * perpcu area.  This function is to be called from arch percpu area
1479 * setup path.
1480 *
1481 * @ai contains all information necessary to initialize the first
1482 * chunk and prime the dynamic percpu allocator.
1483 *
1484 * @ai->static_size is the size of static percpu area.
1485 *
1486 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1487 * reserve after the static area in the first chunk.  This reserves
1488 * the first chunk such that it's available only through reserved
1489 * percpu allocation.  This is primarily used to serve module percpu
1490 * static areas on architectures where the addressing model has
1491 * limited offset range for symbol relocations to guarantee module
1492 * percpu symbols fall inside the relocatable range.
1493 *
1494 * @ai->dyn_size determines the number of bytes available for dynamic
1495 * allocation in the first chunk.  The area between @ai->static_size +
1496 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1497 *
1498 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1499 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1500 * @ai->dyn_size.
1501 *
1502 * @ai->atom_size is the allocation atom size and used as alignment
1503 * for vm areas.
1504 *
1505 * @ai->alloc_size is the allocation size and always multiple of
1506 * @ai->atom_size.  This is larger than @ai->atom_size if
1507 * @ai->unit_size is larger than @ai->atom_size.
1508 *
1509 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1510 * percpu areas.  Units which should be colocated are put into the
1511 * same group.  Dynamic VM areas will be allocated according to these
1512 * groupings.  If @ai->nr_groups is zero, a single group containing
1513 * all units is assumed.
1514 *
1515 * The caller should have mapped the first chunk at @base_addr and
1516 * copied static data to each unit.
1517 *
1518 * If the first chunk ends up with both reserved and dynamic areas, it
1519 * is served by two chunks - one to serve the core static and reserved
1520 * areas and the other for the dynamic area.  They share the same vm
1521 * and page map but uses different area allocation map to stay away
1522 * from each other.  The latter chunk is circulated in the chunk slots
1523 * and available for dynamic allocation like any other chunks.
1524 *
1525 * RETURNS:
1526 * 0 on success, -errno on failure.
1527 */
1528int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1529                                  void *base_addr)
1530{
1531        static char cpus_buf[4096] __initdata;
1532        static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1533        static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1534        size_t dyn_size = ai->dyn_size;
1535        size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1536        struct pcpu_chunk *schunk, *dchunk = NULL;
1537        unsigned long *group_offsets;
1538        size_t *group_sizes;
1539        unsigned long *unit_off;
1540        unsigned int cpu;
1541        int *unit_map;
1542        int group, unit, i;
1543
1544        cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1545
1546#define PCPU_SETUP_BUG_ON(cond) do {                                    \
1547        if (unlikely(cond)) {                                           \
1548                pr_emerg("PERCPU: failed to initialize, %s", #cond);    \
1549                pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);   \
1550                pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
1551                BUG();                                                  \
1552        }                                                               \
1553} while (0)
1554
1555        /* sanity checks */
1556        PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1557#ifdef CONFIG_SMP
1558        PCPU_SETUP_BUG_ON(!ai->static_size);
1559        PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1560#endif
1561        PCPU_SETUP_BUG_ON(!base_addr);
1562        PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1563        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1564        PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1565        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1566        PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1567        PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1568
1569        /* process group information and build config tables accordingly */
1570        group_offsets = memblock_virt_alloc(ai->nr_groups *
1571                                             sizeof(group_offsets[0]), 0);
1572        group_sizes = memblock_virt_alloc(ai->nr_groups *
1573                                           sizeof(group_sizes[0]), 0);
1574        unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1575        unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1576
1577        for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1578                unit_map[cpu] = UINT_MAX;
1579
1580        pcpu_low_unit_cpu = NR_CPUS;
1581        pcpu_high_unit_cpu = NR_CPUS;
1582
1583        for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1584                const struct pcpu_group_info *gi = &ai->groups[group];
1585
1586                group_offsets[group] = gi->base_offset;
1587                group_sizes[group] = gi->nr_units * ai->unit_size;
1588
1589                for (i = 0; i < gi->nr_units; i++) {
1590                        cpu = gi->cpu_map[i];
1591                        if (cpu == NR_CPUS)
1592                                continue;
1593
1594                        PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1595                        PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1596                        PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1597
1598                        unit_map[cpu] = unit + i;
1599                        unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1600
1601                        /* determine low/high unit_cpu */
1602                        if (pcpu_low_unit_cpu == NR_CPUS ||
1603                            unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1604                                pcpu_low_unit_cpu = cpu;
1605                        if (pcpu_high_unit_cpu == NR_CPUS ||
1606                            unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1607                                pcpu_high_unit_cpu = cpu;
1608                }
1609        }
1610        pcpu_nr_units = unit;
1611
1612        for_each_possible_cpu(cpu)
1613                PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1614
1615        /* we're done parsing the input, undefine BUG macro and dump config */
1616#undef PCPU_SETUP_BUG_ON
1617        pcpu_dump_alloc_info(KERN_DEBUG, ai);
1618
1619        pcpu_nr_groups = ai->nr_groups;
1620        pcpu_group_offsets = group_offsets;
1621        pcpu_group_sizes = group_sizes;
1622        pcpu_unit_map = unit_map;
1623        pcpu_unit_offsets = unit_off;
1624
1625        /* determine basic parameters */
1626        pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1627        pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1628        pcpu_atom_size = ai->atom_size;
1629        pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1630                BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1631
1632        /*
1633         * Allocate chunk slots.  The additional last slot is for
1634         * empty chunks.
1635         */
1636        pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1637        pcpu_slot = memblock_virt_alloc(
1638                        pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1639        for (i = 0; i < pcpu_nr_slots; i++)
1640                INIT_LIST_HEAD(&pcpu_slot[i]);
1641
1642        /*
1643         * Initialize static chunk.  If reserved_size is zero, the
1644         * static chunk covers static area + dynamic allocation area
1645         * in the first chunk.  If reserved_size is not zero, it
1646         * covers static area + reserved area (mostly used for module
1647         * static percpu allocation).
1648         */
1649        schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1650        INIT_LIST_HEAD(&schunk->list);
1651        INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1652        schunk->base_addr = base_addr;
1653        schunk->map = smap;
1654        schunk->map_alloc = ARRAY_SIZE(smap);
1655        schunk->immutable = true;
1656        bitmap_fill(schunk->populated, pcpu_unit_pages);
1657        schunk->nr_populated = pcpu_unit_pages;
1658
1659        if (ai->reserved_size) {
1660                schunk->free_size = ai->reserved_size;
1661                pcpu_reserved_chunk = schunk;
1662                pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1663        } else {
1664                schunk->free_size = dyn_size;
1665                dyn_size = 0;                   /* dynamic area covered */
1666        }
1667        schunk->contig_hint = schunk->free_size;
1668
1669        schunk->map[0] = 1;
1670        schunk->map[1] = ai->static_size;
1671        schunk->map_used = 1;
1672        if (schunk->free_size)
1673                schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1674        else
1675                schunk->map[1] |= 1;
1676
1677        /* init dynamic chunk if necessary */
1678        if (dyn_size) {
1679                dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1680                INIT_LIST_HEAD(&dchunk->list);
1681                INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1682                dchunk->base_addr = base_addr;
1683                dchunk->map = dmap;
1684                dchunk->map_alloc = ARRAY_SIZE(dmap);
1685                dchunk->immutable = true;
1686                bitmap_fill(dchunk->populated, pcpu_unit_pages);
1687                dchunk->nr_populated = pcpu_unit_pages;
1688
1689                dchunk->contig_hint = dchunk->free_size = dyn_size;
1690                dchunk->map[0] = 1;
1691                dchunk->map[1] = pcpu_reserved_chunk_limit;
1692                dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1693                dchunk->map_used = 2;
1694        }
1695
1696        /* link the first chunk in */
1697        pcpu_first_chunk = dchunk ?: schunk;
1698        pcpu_nr_empty_pop_pages +=
1699                pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1700        pcpu_chunk_relocate(pcpu_first_chunk, -1);
1701
1702        /* we're done */
1703        pcpu_base_addr = base_addr;
1704        return 0;
1705}
1706
1707#ifdef CONFIG_SMP
1708
1709const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1710        [PCPU_FC_AUTO]  = "auto",
1711        [PCPU_FC_EMBED] = "embed",
1712        [PCPU_FC_PAGE]  = "page",
1713};
1714
1715enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1716
1717static int __init percpu_alloc_setup(char *str)
1718{
1719        if (!str)
1720                return -EINVAL;
1721
1722        if (0)
1723                /* nada */;
1724#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1725        else if (!strcmp(str, "embed"))
1726                pcpu_chosen_fc = PCPU_FC_EMBED;
1727#endif
1728#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1729        else if (!strcmp(str, "page"))
1730                pcpu_chosen_fc = PCPU_FC_PAGE;
1731#endif
1732        else
1733                pr_warning("PERCPU: unknown allocator %s specified\n", str);
1734
1735        return 0;
1736}
1737early_param("percpu_alloc", percpu_alloc_setup);
1738
1739/*
1740 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1741 * Build it if needed by the arch config or the generic setup is going
1742 * to be used.
1743 */
1744#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1745        !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1746#define BUILD_EMBED_FIRST_CHUNK
1747#endif
1748
1749/* build pcpu_page_first_chunk() iff needed by the arch config */
1750#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1751#define BUILD_PAGE_FIRST_CHUNK
1752#endif
1753
1754/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1755#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1756/**
1757 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1758 * @reserved_size: the size of reserved percpu area in bytes
1759 * @dyn_size: minimum free size for dynamic allocation in bytes
1760 * @atom_size: allocation atom size
1761 * @cpu_distance_fn: callback to determine distance between cpus, optional
1762 *
1763 * This function determines grouping of units, their mappings to cpus
1764 * and other parameters considering needed percpu size, allocation
1765 * atom size and distances between CPUs.
1766 *
1767 * Groups are always mutliples of atom size and CPUs which are of
1768 * LOCAL_DISTANCE both ways are grouped together and share space for
1769 * units in the same group.  The returned configuration is guaranteed
1770 * to have CPUs on different nodes on different groups and >=75% usage
1771 * of allocated virtual address space.
1772 *
1773 * RETURNS:
1774 * On success, pointer to the new allocation_info is returned.  On
1775 * failure, ERR_PTR value is returned.
1776 */
1777static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1778                                size_t reserved_size, size_t dyn_size,
1779                                size_t atom_size,
1780                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1781{
1782        static int group_map[NR_CPUS] __initdata;
1783        static int group_cnt[NR_CPUS] __initdata;
1784        const size_t static_size = __per_cpu_end - __per_cpu_start;
1785        int nr_groups = 1, nr_units = 0;
1786        size_t size_sum, min_unit_size, alloc_size;
1787        int upa, max_upa, uninitialized_var(best_upa);  /* units_per_alloc */
1788        int last_allocs, group, unit;
1789        unsigned int cpu, tcpu;
1790        struct pcpu_alloc_info *ai;
1791        unsigned int *cpu_map;
1792
1793        /* this function may be called multiple times */
1794        memset(group_map, 0, sizeof(group_map));
1795        memset(group_cnt, 0, sizeof(group_cnt));
1796
1797        /* calculate size_sum and ensure dyn_size is enough for early alloc */
1798        size_sum = PFN_ALIGN(static_size + reserved_size +
1799                            max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1800        dyn_size = size_sum - static_size - reserved_size;
1801
1802        /*
1803         * Determine min_unit_size, alloc_size and max_upa such that
1804         * alloc_size is multiple of atom_size and is the smallest
1805         * which can accommodate 4k aligned segments which are equal to
1806         * or larger than min_unit_size.
1807         */
1808        min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1809
1810        alloc_size = roundup(min_unit_size, atom_size);
1811        upa = alloc_size / min_unit_size;
1812        while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1813                upa--;
1814        max_upa = upa;
1815
1816        /* group cpus according to their proximity */
1817        for_each_possible_cpu(cpu) {
1818                group = 0;
1819        next_group:
1820                for_each_possible_cpu(tcpu) {
1821                        if (cpu == tcpu)
1822                                break;
1823                        if (group_map[tcpu] == group && cpu_distance_fn &&
1824                            (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1825                             cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1826                                group++;
1827                                nr_groups = max(nr_groups, group + 1);
1828                                goto next_group;
1829                        }
1830                }
1831                group_map[cpu] = group;
1832                group_cnt[group]++;
1833        }
1834
1835        /*
1836         * Expand unit size until address space usage goes over 75%
1837         * and then as much as possible without using more address
1838         * space.
1839         */
1840        last_allocs = INT_MAX;
1841        for (upa = max_upa; upa; upa--) {
1842                int allocs = 0, wasted = 0;
1843
1844                if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1845                        continue;
1846
1847                for (group = 0; group < nr_groups; group++) {
1848                        int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1849                        allocs += this_allocs;
1850                        wasted += this_allocs * upa - group_cnt[group];
1851                }
1852
1853                /*
1854                 * Don't accept if wastage is over 1/3.  The
1855                 * greater-than comparison ensures upa==1 always
1856                 * passes the following check.
1857                 */
1858                if (wasted > num_possible_cpus() / 3)
1859                        continue;
1860
1861                /* and then don't consume more memory */
1862                if (allocs > last_allocs)
1863                        break;
1864                last_allocs = allocs;
1865                best_upa = upa;
1866        }
1867        upa = best_upa;
1868
1869        /* allocate and fill alloc_info */
1870        for (group = 0; group < nr_groups; group++)
1871                nr_units += roundup(group_cnt[group], upa);
1872
1873        ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1874        if (!ai)
1875                return ERR_PTR(-ENOMEM);
1876        cpu_map = ai->groups[0].cpu_map;
1877
1878        for (group = 0; group < nr_groups; group++) {
1879                ai->groups[group].cpu_map = cpu_map;
1880                cpu_map += roundup(group_cnt[group], upa);
1881        }
1882
1883        ai->static_size = static_size;
1884        ai->reserved_size = reserved_size;
1885        ai->dyn_size = dyn_size;
1886        ai->unit_size = alloc_size / upa;
1887        ai->atom_size = atom_size;
1888        ai->alloc_size = alloc_size;
1889
1890        for (group = 0, unit = 0; group_cnt[group]; group++) {
1891                struct pcpu_group_info *gi = &ai->groups[group];
1892
1893                /*
1894                 * Initialize base_offset as if all groups are located
1895                 * back-to-back.  The caller should update this to
1896                 * reflect actual allocation.
1897                 */
1898                gi->base_offset = unit * ai->unit_size;
1899
1900                for_each_possible_cpu(cpu)
1901                        if (group_map[cpu] == group)
1902                                gi->cpu_map[gi->nr_units++] = cpu;
1903                gi->nr_units = roundup(gi->nr_units, upa);
1904                unit += gi->nr_units;
1905        }
1906        BUG_ON(unit != nr_units);
1907
1908        return ai;
1909}
1910#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1911
1912#if defined(BUILD_EMBED_FIRST_CHUNK)
1913/**
1914 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1915 * @reserved_size: the size of reserved percpu area in bytes
1916 * @dyn_size: minimum free size for dynamic allocation in bytes
1917 * @atom_size: allocation atom size
1918 * @cpu_distance_fn: callback to determine distance between cpus, optional
1919 * @alloc_fn: function to allocate percpu page
1920 * @free_fn: function to free percpu page
1921 *
1922 * This is a helper to ease setting up embedded first percpu chunk and
1923 * can be called where pcpu_setup_first_chunk() is expected.
1924 *
1925 * If this function is used to setup the first chunk, it is allocated
1926 * by calling @alloc_fn and used as-is without being mapped into
1927 * vmalloc area.  Allocations are always whole multiples of @atom_size
1928 * aligned to @atom_size.
1929 *
1930 * This enables the first chunk to piggy back on the linear physical
1931 * mapping which often uses larger page size.  Please note that this
1932 * can result in very sparse cpu->unit mapping on NUMA machines thus
1933 * requiring large vmalloc address space.  Don't use this allocator if
1934 * vmalloc space is not orders of magnitude larger than distances
1935 * between node memory addresses (ie. 32bit NUMA machines).
1936 *
1937 * @dyn_size specifies the minimum dynamic area size.
1938 *
1939 * If the needed size is smaller than the minimum or specified unit
1940 * size, the leftover is returned using @free_fn.
1941 *
1942 * RETURNS:
1943 * 0 on success, -errno on failure.
1944 */
1945int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1946                                  size_t atom_size,
1947                                  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1948                                  pcpu_fc_alloc_fn_t alloc_fn,
1949                                  pcpu_fc_free_fn_t free_fn)
1950{
1951        void *base = (void *)ULONG_MAX;
1952        void **areas = NULL;
1953        struct pcpu_alloc_info *ai;
1954        size_t size_sum, areas_size, max_distance;
1955        int group, i, rc;
1956
1957        ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1958                                   cpu_distance_fn);
1959        if (IS_ERR(ai))
1960                return PTR_ERR(ai);
1961
1962        size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1963        areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1964
1965        areas = memblock_virt_alloc_nopanic(areas_size, 0);
1966        if (!areas) {
1967                rc = -ENOMEM;
1968                goto out_free;
1969        }
1970
1971        /* allocate, copy and determine base address */
1972        for (group = 0; group < ai->nr_groups; group++) {
1973                struct pcpu_group_info *gi = &ai->groups[group];
1974                unsigned int cpu = NR_CPUS;
1975                void *ptr;
1976
1977                for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1978                        cpu = gi->cpu_map[i];
1979                BUG_ON(cpu == NR_CPUS);
1980
1981                /* allocate space for the whole group */
1982                ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1983                if (!ptr) {
1984                        rc = -ENOMEM;
1985                        goto out_free_areas;
1986                }
1987                /* kmemleak tracks the percpu allocations separately */
1988                kmemleak_free(ptr);
1989                areas[group] = ptr;
1990
1991                base = min(ptr, base);
1992        }
1993
1994        /*
1995         * Copy data and free unused parts.  This should happen after all
1996         * allocations are complete; otherwise, we may end up with
1997         * overlapping groups.
1998         */
1999        for (group = 0; group < ai->nr_groups; group++) {
2000                struct pcpu_group_info *gi = &ai->groups[group];
2001                void *ptr = areas[group];
2002
2003                for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2004                        if (gi->cpu_map[i] == NR_CPUS) {
2005                                /* unused unit, free whole */
2006                                free_fn(ptr, ai->unit_size);
2007                                continue;
2008                        }
2009                        /* copy and return the unused part */
2010                        memcpy(ptr, __per_cpu_load, ai->static_size);
2011                        free_fn(ptr + size_sum, ai->unit_size - size_sum);
2012                }
2013        }
2014
2015        /* base address is now known, determine group base offsets */
2016        max_distance = 0;
2017        for (group = 0; group < ai->nr_groups; group++) {
2018                ai->groups[group].base_offset = areas[group] - base;
2019                max_distance = max_t(size_t, max_distance,
2020                                     ai->groups[group].base_offset);
2021        }
2022        max_distance += ai->unit_size;
2023
2024        /* warn if maximum distance is further than 75% of vmalloc space */
2025        if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2026                pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2027                           "space 0x%lx\n", max_distance,
2028                           VMALLOC_TOTAL);
2029#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2030                /* and fail if we have fallback */
2031                rc = -EINVAL;
2032                goto out_free;
2033#endif
2034        }
2035
2036        pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2037                PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2038                ai->dyn_size, ai->unit_size);
2039
2040        rc = pcpu_setup_first_chunk(ai, base);
2041        goto out_free;
2042
2043out_free_areas:
2044        for (group = 0; group < ai->nr_groups; group++)
2045                if (areas[group])
2046                        free_fn(areas[group],
2047                                ai->groups[group].nr_units * ai->unit_size);
2048out_free:
2049        pcpu_free_alloc_info(ai);
2050        if (areas)
2051                memblock_free_early(__pa(areas), areas_size);
2052        return rc;
2053}
2054#endif /* BUILD_EMBED_FIRST_CHUNK */
2055
2056#ifdef BUILD_PAGE_FIRST_CHUNK
2057/**
2058 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2059 * @reserved_size: the size of reserved percpu area in bytes
2060 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2061 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2062 * @populate_pte_fn: function to populate pte
2063 *
2064 * This is a helper to ease setting up page-remapped first percpu
2065 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2066 *
2067 * This is the basic allocator.  Static percpu area is allocated
2068 * page-by-page into vmalloc area.
2069 *
2070 * RETURNS:
2071 * 0 on success, -errno on failure.
2072 */
2073int __init pcpu_page_first_chunk(size_t reserved_size,
2074                                 pcpu_fc_alloc_fn_t alloc_fn,
2075                                 pcpu_fc_free_fn_t free_fn,
2076                                 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2077{
2078        static struct vm_struct vm;
2079        struct pcpu_alloc_info *ai;
2080        char psize_str[16];
2081        int unit_pages;
2082        size_t pages_size;
2083        struct page **pages;
2084        int unit, i, j, rc;
2085
2086        snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2087
2088        ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2089        if (IS_ERR(ai))
2090                return PTR_ERR(ai);
2091        BUG_ON(ai->nr_groups != 1);
2092        BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2093
2094        unit_pages = ai->unit_size >> PAGE_SHIFT;
2095
2096        /* unaligned allocations can't be freed, round up to page size */
2097        pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2098                               sizeof(pages[0]));
2099        pages = memblock_virt_alloc(pages_size, 0);
2100
2101        /* allocate pages */
2102        j = 0;
2103        for (unit = 0; unit < num_possible_cpus(); unit++)
2104                for (i = 0; i < unit_pages; i++) {
2105                        unsigned int cpu = ai->groups[0].cpu_map[unit];
2106                        void *ptr;
2107
2108                        ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2109                        if (!ptr) {
2110                                pr_warning("PERCPU: failed to allocate %s page "
2111                                           "for cpu%u\n", psize_str, cpu);
2112                                goto enomem;
2113                        }
2114                        /* kmemleak tracks the percpu allocations separately */
2115                        kmemleak_free(ptr);
2116                        pages[j++] = virt_to_page(ptr);
2117                }
2118
2119        /* allocate vm area, map the pages and copy static data */
2120        vm.flags = VM_ALLOC;
2121        vm.size = num_possible_cpus() * ai->unit_size;
2122        vm_area_register_early(&vm, PAGE_SIZE);
2123
2124        for (unit = 0; unit < num_possible_cpus(); unit++) {
2125                unsigned long unit_addr =
2126                        (unsigned long)vm.addr + unit * ai->unit_size;
2127
2128                for (i = 0; i < unit_pages; i++)
2129                        populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2130
2131                /* pte already populated, the following shouldn't fail */
2132                rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2133                                      unit_pages);
2134                if (rc < 0)
2135                        panic("failed to map percpu area, err=%d\n", rc);
2136
2137                /*
2138                 * FIXME: Archs with virtual cache should flush local
2139                 * cache for the linear mapping here - something
2140                 * equivalent to flush_cache_vmap() on the local cpu.
2141                 * flush_cache_vmap() can't be used as most supporting
2142                 * data structures are not set up yet.
2143                 */
2144
2145                /* copy static data */
2146                memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2147        }
2148
2149        /* we're ready, commit */
2150        pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2151                unit_pages, psize_str, vm.addr, ai->static_size,
2152                ai->reserved_size, ai->dyn_size);
2153
2154        rc = pcpu_setup_first_chunk(ai, vm.addr);
2155        goto out_free_ar;
2156
2157enomem:
2158        while (--j >= 0)
2159                free_fn(page_address(pages[j]), PAGE_SIZE);
2160        rc = -ENOMEM;
2161out_free_ar:
2162        memblock_free_early(__pa(pages), pages_size);
2163        pcpu_free_alloc_info(ai);
2164        return rc;
2165}
2166#endif /* BUILD_PAGE_FIRST_CHUNK */
2167
2168#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2169/*
2170 * Generic SMP percpu area setup.
2171 *
2172 * The embedding helper is used because its behavior closely resembles
2173 * the original non-dynamic generic percpu area setup.  This is
2174 * important because many archs have addressing restrictions and might
2175 * fail if the percpu area is located far away from the previous
2176 * location.  As an added bonus, in non-NUMA cases, embedding is
2177 * generally a good idea TLB-wise because percpu area can piggy back
2178 * on the physical linear memory mapping which uses large page
2179 * mappings on applicable archs.
2180 */
2181unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2182EXPORT_SYMBOL(__per_cpu_offset);
2183
2184static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2185                                       size_t align)
2186{
2187        return  memblock_virt_alloc_from_nopanic(
2188                        size, align, __pa(MAX_DMA_ADDRESS));
2189}
2190
2191static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2192{
2193        memblock_free_early(__pa(ptr), size);
2194}
2195
2196void __init setup_per_cpu_areas(void)
2197{
2198        unsigned long delta;
2199        unsigned int cpu;
2200        int rc;
2201
2202        /*
2203         * Always reserve area for module percpu variables.  That's
2204         * what the legacy allocator did.
2205         */
2206        rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2207                                    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2208                                    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2209        if (rc < 0)
2210                panic("Failed to initialize percpu areas.");
2211
2212        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2213        for_each_possible_cpu(cpu)
2214                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2215}
2216#endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2217
2218#else   /* CONFIG_SMP */
2219
2220/*
2221 * UP percpu area setup.
2222 *
2223 * UP always uses km-based percpu allocator with identity mapping.
2224 * Static percpu variables are indistinguishable from the usual static
2225 * variables and don't require any special preparation.
2226 */
2227void __init setup_per_cpu_areas(void)
2228{
2229        const size_t unit_size =
2230                roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2231                                         PERCPU_DYNAMIC_RESERVE));
2232        struct pcpu_alloc_info *ai;
2233        void *fc;
2234
2235        ai = pcpu_alloc_alloc_info(1, 1);
2236        fc = memblock_virt_alloc_from_nopanic(unit_size,
2237                                              PAGE_SIZE,
2238                                              __pa(MAX_DMA_ADDRESS));
2239        if (!ai || !fc)
2240                panic("Failed to allocate memory for percpu areas.");
2241        /* kmemleak tracks the percpu allocations separately */
2242        kmemleak_free(fc);
2243
2244        ai->dyn_size = unit_size;
2245        ai->unit_size = unit_size;
2246        ai->atom_size = unit_size;
2247        ai->alloc_size = unit_size;
2248        ai->groups[0].nr_units = 1;
2249        ai->groups[0].cpu_map[0] = 0;
2250
2251        if (pcpu_setup_first_chunk(ai, fc) < 0)
2252                panic("Failed to initialize percpu areas.");
2253}
2254
2255#endif  /* CONFIG_SMP */
2256
2257/*
2258 * First and reserved chunks are initialized with temporary allocation
2259 * map in initdata so that they can be used before slab is online.
2260 * This function is called after slab is brought up and replaces those
2261 * with properly allocated maps.
2262 */
2263void __init percpu_init_late(void)
2264{
2265        struct pcpu_chunk *target_chunks[] =
2266                { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2267        struct pcpu_chunk *chunk;
2268        unsigned long flags;
2269        int i;
2270
2271        for (i = 0; (chunk = target_chunks[i]); i++) {
2272                int *map;
2273                const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2274
2275                BUILD_BUG_ON(size > PAGE_SIZE);
2276
2277                map = pcpu_mem_zalloc(size);
2278                BUG_ON(!map);
2279
2280                spin_lock_irqsave(&pcpu_lock, flags);
2281                memcpy(map, chunk->map, size);
2282                chunk->map = map;
2283                spin_unlock_irqrestore(&pcpu_lock, flags);
2284        }
2285}
2286
2287/*
2288 * Percpu allocator is initialized early during boot when neither slab or
2289 * workqueue is available.  Plug async management until everything is up
2290 * and running.
2291 */
2292static int __init percpu_enable_async(void)
2293{
2294        pcpu_async_enabled = true;
2295        return 0;
2296}
2297subsys_initcall(percpu_enable_async);
2298