linux/mm/util.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/slab.h>
   3#include <linux/string.h>
   4#include <linux/compiler.h>
   5#include <linux/export.h>
   6#include <linux/err.h>
   7#include <linux/sched.h>
   8#include <linux/security.h>
   9#include <linux/swap.h>
  10#include <linux/swapops.h>
  11#include <linux/mman.h>
  12#include <linux/hugetlb.h>
  13#include <linux/vmalloc.h>
  14
  15#include <asm/uaccess.h>
  16
  17#include "internal.h"
  18
  19/**
  20 * kstrdup - allocate space for and copy an existing string
  21 * @s: the string to duplicate
  22 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  23 */
  24char *kstrdup(const char *s, gfp_t gfp)
  25{
  26        size_t len;
  27        char *buf;
  28
  29        if (!s)
  30                return NULL;
  31
  32        len = strlen(s) + 1;
  33        buf = kmalloc_track_caller(len, gfp);
  34        if (buf)
  35                memcpy(buf, s, len);
  36        return buf;
  37}
  38EXPORT_SYMBOL(kstrdup);
  39
  40/**
  41 * kstrndup - allocate space for and copy an existing string
  42 * @s: the string to duplicate
  43 * @max: read at most @max chars from @s
  44 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  45 */
  46char *kstrndup(const char *s, size_t max, gfp_t gfp)
  47{
  48        size_t len;
  49        char *buf;
  50
  51        if (!s)
  52                return NULL;
  53
  54        len = strnlen(s, max);
  55        buf = kmalloc_track_caller(len+1, gfp);
  56        if (buf) {
  57                memcpy(buf, s, len);
  58                buf[len] = '\0';
  59        }
  60        return buf;
  61}
  62EXPORT_SYMBOL(kstrndup);
  63
  64/**
  65 * kmemdup - duplicate region of memory
  66 *
  67 * @src: memory region to duplicate
  68 * @len: memory region length
  69 * @gfp: GFP mask to use
  70 */
  71void *kmemdup(const void *src, size_t len, gfp_t gfp)
  72{
  73        void *p;
  74
  75        p = kmalloc_track_caller(len, gfp);
  76        if (p)
  77                memcpy(p, src, len);
  78        return p;
  79}
  80EXPORT_SYMBOL(kmemdup);
  81
  82/**
  83 * memdup_user - duplicate memory region from user space
  84 *
  85 * @src: source address in user space
  86 * @len: number of bytes to copy
  87 *
  88 * Returns an ERR_PTR() on failure.
  89 */
  90void *memdup_user(const void __user *src, size_t len)
  91{
  92        void *p;
  93
  94        /*
  95         * Always use GFP_KERNEL, since copy_from_user() can sleep and
  96         * cause pagefault, which makes it pointless to use GFP_NOFS
  97         * or GFP_ATOMIC.
  98         */
  99        p = kmalloc_track_caller(len, GFP_KERNEL);
 100        if (!p)
 101                return ERR_PTR(-ENOMEM);
 102
 103        if (copy_from_user(p, src, len)) {
 104                kfree(p);
 105                return ERR_PTR(-EFAULT);
 106        }
 107
 108        return p;
 109}
 110EXPORT_SYMBOL(memdup_user);
 111
 112/*
 113 * strndup_user - duplicate an existing string from user space
 114 * @s: The string to duplicate
 115 * @n: Maximum number of bytes to copy, including the trailing NUL.
 116 */
 117char *strndup_user(const char __user *s, long n)
 118{
 119        char *p;
 120        long length;
 121
 122        length = strnlen_user(s, n);
 123
 124        if (!length)
 125                return ERR_PTR(-EFAULT);
 126
 127        if (length > n)
 128                return ERR_PTR(-EINVAL);
 129
 130        p = memdup_user(s, length);
 131
 132        if (IS_ERR(p))
 133                return p;
 134
 135        p[length - 1] = '\0';
 136
 137        return p;
 138}
 139EXPORT_SYMBOL(strndup_user);
 140
 141void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 142                struct vm_area_struct *prev, struct rb_node *rb_parent)
 143{
 144        struct vm_area_struct *next;
 145
 146        vma->vm_prev = prev;
 147        if (prev) {
 148                next = prev->vm_next;
 149                prev->vm_next = vma;
 150        } else {
 151                mm->mmap = vma;
 152                if (rb_parent)
 153                        next = rb_entry(rb_parent,
 154                                        struct vm_area_struct, vm_rb);
 155                else
 156                        next = NULL;
 157        }
 158        vma->vm_next = next;
 159        if (next)
 160                next->vm_prev = vma;
 161}
 162
 163/* Check if the vma is being used as a stack by this task */
 164static int vm_is_stack_for_task(struct task_struct *t,
 165                                struct vm_area_struct *vma)
 166{
 167        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 168}
 169
 170/*
 171 * Check if the vma is being used as a stack.
 172 * If is_group is non-zero, check in the entire thread group or else
 173 * just check in the current task. Returns the task_struct of the task
 174 * that the vma is stack for. Must be called under rcu_read_lock().
 175 */
 176struct task_struct *task_of_stack(struct task_struct *task,
 177                                struct vm_area_struct *vma, bool in_group)
 178{
 179        if (vm_is_stack_for_task(task, vma))
 180                return task;
 181
 182        if (in_group) {
 183                struct task_struct *t;
 184
 185                for_each_thread(task, t) {
 186                        if (vm_is_stack_for_task(t, vma))
 187                                return t;
 188                }
 189        }
 190
 191        return NULL;
 192}
 193
 194#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 195void arch_pick_mmap_layout(struct mm_struct *mm)
 196{
 197        mm->mmap_base = TASK_UNMAPPED_BASE;
 198        mm->get_unmapped_area = arch_get_unmapped_area;
 199}
 200#endif
 201
 202/*
 203 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 204 * back to the regular GUP.
 205 * If the architecture not support this function, simply return with no
 206 * page pinned
 207 */
 208int __weak __get_user_pages_fast(unsigned long start,
 209                                 int nr_pages, int write, struct page **pages)
 210{
 211        return 0;
 212}
 213EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 214
 215/**
 216 * get_user_pages_fast() - pin user pages in memory
 217 * @start:      starting user address
 218 * @nr_pages:   number of pages from start to pin
 219 * @write:      whether pages will be written to
 220 * @pages:      array that receives pointers to the pages pinned.
 221 *              Should be at least nr_pages long.
 222 *
 223 * Returns number of pages pinned. This may be fewer than the number
 224 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 225 * were pinned, returns -errno.
 226 *
 227 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 228 * operating on current and current->mm, with force=0 and vma=NULL. However
 229 * unlike get_user_pages, it must be called without mmap_sem held.
 230 *
 231 * get_user_pages_fast may take mmap_sem and page table locks, so no
 232 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 233 * implemented in a way that is advantageous (vs get_user_pages()) when the
 234 * user memory area is already faulted in and present in ptes. However if the
 235 * pages have to be faulted in, it may turn out to be slightly slower so
 236 * callers need to carefully consider what to use. On many architectures,
 237 * get_user_pages_fast simply falls back to get_user_pages.
 238 */
 239int __weak get_user_pages_fast(unsigned long start,
 240                                int nr_pages, int write, struct page **pages)
 241{
 242        struct mm_struct *mm = current->mm;
 243        int ret;
 244
 245        down_read(&mm->mmap_sem);
 246        ret = get_user_pages(current, mm, start, nr_pages,
 247                                        write, 0, pages, NULL);
 248        up_read(&mm->mmap_sem);
 249
 250        return ret;
 251}
 252EXPORT_SYMBOL_GPL(get_user_pages_fast);
 253
 254unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 255        unsigned long len, unsigned long prot,
 256        unsigned long flag, unsigned long pgoff)
 257{
 258        unsigned long ret;
 259        struct mm_struct *mm = current->mm;
 260        unsigned long populate;
 261
 262        ret = security_mmap_file(file, prot, flag);
 263        if (!ret) {
 264                down_write(&mm->mmap_sem);
 265                ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 266                                    &populate);
 267                up_write(&mm->mmap_sem);
 268                if (populate)
 269                        mm_populate(ret, populate);
 270        }
 271        return ret;
 272}
 273
 274unsigned long vm_mmap(struct file *file, unsigned long addr,
 275        unsigned long len, unsigned long prot,
 276        unsigned long flag, unsigned long offset)
 277{
 278        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 279                return -EINVAL;
 280        if (unlikely(offset & ~PAGE_MASK))
 281                return -EINVAL;
 282
 283        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 284}
 285EXPORT_SYMBOL(vm_mmap);
 286
 287void kvfree(const void *addr)
 288{
 289        if (is_vmalloc_addr(addr))
 290                vfree(addr);
 291        else
 292                kfree(addr);
 293}
 294EXPORT_SYMBOL(kvfree);
 295
 296struct address_space *page_mapping(struct page *page)
 297{
 298        struct address_space *mapping = page->mapping;
 299
 300        /* This happens if someone calls flush_dcache_page on slab page */
 301        if (unlikely(PageSlab(page)))
 302                return NULL;
 303
 304        if (unlikely(PageSwapCache(page))) {
 305                swp_entry_t entry;
 306
 307                entry.val = page_private(page);
 308                mapping = swap_address_space(entry);
 309        } else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 310                mapping = NULL;
 311        return mapping;
 312}
 313
 314int overcommit_ratio_handler(struct ctl_table *table, int write,
 315                             void __user *buffer, size_t *lenp,
 316                             loff_t *ppos)
 317{
 318        int ret;
 319
 320        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 321        if (ret == 0 && write)
 322                sysctl_overcommit_kbytes = 0;
 323        return ret;
 324}
 325
 326int overcommit_kbytes_handler(struct ctl_table *table, int write,
 327                             void __user *buffer, size_t *lenp,
 328                             loff_t *ppos)
 329{
 330        int ret;
 331
 332        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 333        if (ret == 0 && write)
 334                sysctl_overcommit_ratio = 0;
 335        return ret;
 336}
 337
 338/*
 339 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 340 */
 341unsigned long vm_commit_limit(void)
 342{
 343        unsigned long allowed;
 344
 345        if (sysctl_overcommit_kbytes)
 346                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 347        else
 348                allowed = ((totalram_pages - hugetlb_total_pages())
 349                           * sysctl_overcommit_ratio / 100);
 350        allowed += total_swap_pages;
 351
 352        return allowed;
 353}
 354
 355/**
 356 * get_cmdline() - copy the cmdline value to a buffer.
 357 * @task:     the task whose cmdline value to copy.
 358 * @buffer:   the buffer to copy to.
 359 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 360 *            to this length.
 361 * Returns the size of the cmdline field copied. Note that the copy does
 362 * not guarantee an ending NULL byte.
 363 */
 364int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 365{
 366        int res = 0;
 367        unsigned int len;
 368        struct mm_struct *mm = get_task_mm(task);
 369        if (!mm)
 370                goto out;
 371        if (!mm->arg_end)
 372                goto out_mm;    /* Shh! No looking before we're done */
 373
 374        len = mm->arg_end - mm->arg_start;
 375
 376        if (len > buflen)
 377                len = buflen;
 378
 379        res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 380
 381        /*
 382         * If the nul at the end of args has been overwritten, then
 383         * assume application is using setproctitle(3).
 384         */
 385        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 386                len = strnlen(buffer, res);
 387                if (len < res) {
 388                        res = len;
 389                } else {
 390                        len = mm->env_end - mm->env_start;
 391                        if (len > buflen - res)
 392                                len = buflen - res;
 393                        res += access_process_vm(task, mm->env_start,
 394                                                 buffer+res, len, 0);
 395                        res = strnlen(buffer, res);
 396                }
 397        }
 398out_mm:
 399        mmput(mm);
 400out:
 401        return res;
 402}
 403