linux/mm/vmstat.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *              Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/sched.h>
  21#include <linux/math64.h>
  22#include <linux/writeback.h>
  23#include <linux/compaction.h>
  24#include <linux/mm_inline.h>
  25#include <linux/page_ext.h>
  26#include <linux/page_owner.h>
  27
  28#include "internal.h"
  29
  30#ifdef CONFIG_VM_EVENT_COUNTERS
  31DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  32EXPORT_PER_CPU_SYMBOL(vm_event_states);
  33
  34static void sum_vm_events(unsigned long *ret)
  35{
  36        int cpu;
  37        int i;
  38
  39        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  40
  41        for_each_online_cpu(cpu) {
  42                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  43
  44                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  45                        ret[i] += this->event[i];
  46        }
  47}
  48
  49/*
  50 * Accumulate the vm event counters across all CPUs.
  51 * The result is unavoidably approximate - it can change
  52 * during and after execution of this function.
  53*/
  54void all_vm_events(unsigned long *ret)
  55{
  56        get_online_cpus();
  57        sum_vm_events(ret);
  58        put_online_cpus();
  59}
  60EXPORT_SYMBOL_GPL(all_vm_events);
  61
  62/*
  63 * Fold the foreign cpu events into our own.
  64 *
  65 * This is adding to the events on one processor
  66 * but keeps the global counts constant.
  67 */
  68void vm_events_fold_cpu(int cpu)
  69{
  70        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  71        int i;
  72
  73        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  74                count_vm_events(i, fold_state->event[i]);
  75                fold_state->event[i] = 0;
  76        }
  77}
  78
  79#endif /* CONFIG_VM_EVENT_COUNTERS */
  80
  81/*
  82 * Manage combined zone based / global counters
  83 *
  84 * vm_stat contains the global counters
  85 */
  86atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  87EXPORT_SYMBOL(vm_stat);
  88
  89#ifdef CONFIG_SMP
  90
  91int calculate_pressure_threshold(struct zone *zone)
  92{
  93        int threshold;
  94        int watermark_distance;
  95
  96        /*
  97         * As vmstats are not up to date, there is drift between the estimated
  98         * and real values. For high thresholds and a high number of CPUs, it
  99         * is possible for the min watermark to be breached while the estimated
 100         * value looks fine. The pressure threshold is a reduced value such
 101         * that even the maximum amount of drift will not accidentally breach
 102         * the min watermark
 103         */
 104        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 105        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 106
 107        /*
 108         * Maximum threshold is 125
 109         */
 110        threshold = min(125, threshold);
 111
 112        return threshold;
 113}
 114
 115int calculate_normal_threshold(struct zone *zone)
 116{
 117        int threshold;
 118        int mem;        /* memory in 128 MB units */
 119
 120        /*
 121         * The threshold scales with the number of processors and the amount
 122         * of memory per zone. More memory means that we can defer updates for
 123         * longer, more processors could lead to more contention.
 124         * fls() is used to have a cheap way of logarithmic scaling.
 125         *
 126         * Some sample thresholds:
 127         *
 128         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 129         * ------------------------------------------------------------------
 130         * 8            1               1       0.9-1 GB        4
 131         * 16           2               2       0.9-1 GB        4
 132         * 20           2               2       1-2 GB          5
 133         * 24           2               2       2-4 GB          6
 134         * 28           2               2       4-8 GB          7
 135         * 32           2               2       8-16 GB         8
 136         * 4            2               2       <128M           1
 137         * 30           4               3       2-4 GB          5
 138         * 48           4               3       8-16 GB         8
 139         * 32           8               4       1-2 GB          4
 140         * 32           8               4       0.9-1GB         4
 141         * 10           16              5       <128M           1
 142         * 40           16              5       900M            4
 143         * 70           64              7       2-4 GB          5
 144         * 84           64              7       4-8 GB          6
 145         * 108          512             9       4-8 GB          6
 146         * 125          1024            10      8-16 GB         8
 147         * 125          1024            10      16-32 GB        9
 148         */
 149
 150        mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 151
 152        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 153
 154        /*
 155         * Maximum threshold is 125
 156         */
 157        threshold = min(125, threshold);
 158
 159        return threshold;
 160}
 161
 162/*
 163 * Refresh the thresholds for each zone.
 164 */
 165void refresh_zone_stat_thresholds(void)
 166{
 167        struct zone *zone;
 168        int cpu;
 169        int threshold;
 170
 171        for_each_populated_zone(zone) {
 172                unsigned long max_drift, tolerate_drift;
 173
 174                threshold = calculate_normal_threshold(zone);
 175
 176                for_each_online_cpu(cpu)
 177                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 178                                                        = threshold;
 179
 180                /*
 181                 * Only set percpu_drift_mark if there is a danger that
 182                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 183                 * the min watermark could be breached by an allocation
 184                 */
 185                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 186                max_drift = num_online_cpus() * threshold;
 187                if (max_drift > tolerate_drift)
 188                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 189                                        max_drift;
 190        }
 191}
 192
 193void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 194                                int (*calculate_pressure)(struct zone *))
 195{
 196        struct zone *zone;
 197        int cpu;
 198        int threshold;
 199        int i;
 200
 201        for (i = 0; i < pgdat->nr_zones; i++) {
 202                zone = &pgdat->node_zones[i];
 203                if (!zone->percpu_drift_mark)
 204                        continue;
 205
 206                threshold = (*calculate_pressure)(zone);
 207                for_each_online_cpu(cpu)
 208                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 209                                                        = threshold;
 210        }
 211}
 212
 213/*
 214 * For use when we know that interrupts are disabled,
 215 * or when we know that preemption is disabled and that
 216 * particular counter cannot be updated from interrupt context.
 217 */
 218void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 219                                int delta)
 220{
 221        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 222        s8 __percpu *p = pcp->vm_stat_diff + item;
 223        long x;
 224        long t;
 225
 226        x = delta + __this_cpu_read(*p);
 227
 228        t = __this_cpu_read(pcp->stat_threshold);
 229
 230        if (unlikely(x > t || x < -t)) {
 231                zone_page_state_add(x, zone, item);
 232                x = 0;
 233        }
 234        __this_cpu_write(*p, x);
 235}
 236EXPORT_SYMBOL(__mod_zone_page_state);
 237
 238/*
 239 * Optimized increment and decrement functions.
 240 *
 241 * These are only for a single page and therefore can take a struct page *
 242 * argument instead of struct zone *. This allows the inclusion of the code
 243 * generated for page_zone(page) into the optimized functions.
 244 *
 245 * No overflow check is necessary and therefore the differential can be
 246 * incremented or decremented in place which may allow the compilers to
 247 * generate better code.
 248 * The increment or decrement is known and therefore one boundary check can
 249 * be omitted.
 250 *
 251 * NOTE: These functions are very performance sensitive. Change only
 252 * with care.
 253 *
 254 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 255 * However, the code must first determine the differential location in a zone
 256 * based on the processor number and then inc/dec the counter. There is no
 257 * guarantee without disabling preemption that the processor will not change
 258 * in between and therefore the atomicity vs. interrupt cannot be exploited
 259 * in a useful way here.
 260 */
 261void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 262{
 263        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 264        s8 __percpu *p = pcp->vm_stat_diff + item;
 265        s8 v, t;
 266
 267        v = __this_cpu_inc_return(*p);
 268        t = __this_cpu_read(pcp->stat_threshold);
 269        if (unlikely(v > t)) {
 270                s8 overstep = t >> 1;
 271
 272                zone_page_state_add(v + overstep, zone, item);
 273                __this_cpu_write(*p, -overstep);
 274        }
 275}
 276
 277void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 278{
 279        __inc_zone_state(page_zone(page), item);
 280}
 281EXPORT_SYMBOL(__inc_zone_page_state);
 282
 283void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 284{
 285        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 286        s8 __percpu *p = pcp->vm_stat_diff + item;
 287        s8 v, t;
 288
 289        v = __this_cpu_dec_return(*p);
 290        t = __this_cpu_read(pcp->stat_threshold);
 291        if (unlikely(v < - t)) {
 292                s8 overstep = t >> 1;
 293
 294                zone_page_state_add(v - overstep, zone, item);
 295                __this_cpu_write(*p, overstep);
 296        }
 297}
 298
 299void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 300{
 301        __dec_zone_state(page_zone(page), item);
 302}
 303EXPORT_SYMBOL(__dec_zone_page_state);
 304
 305#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 306/*
 307 * If we have cmpxchg_local support then we do not need to incur the overhead
 308 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 309 *
 310 * mod_state() modifies the zone counter state through atomic per cpu
 311 * operations.
 312 *
 313 * Overstep mode specifies how overstep should handled:
 314 *     0       No overstepping
 315 *     1       Overstepping half of threshold
 316 *     -1      Overstepping minus half of threshold
 317*/
 318static inline void mod_state(struct zone *zone,
 319       enum zone_stat_item item, int delta, int overstep_mode)
 320{
 321        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 322        s8 __percpu *p = pcp->vm_stat_diff + item;
 323        long o, n, t, z;
 324
 325        do {
 326                z = 0;  /* overflow to zone counters */
 327
 328                /*
 329                 * The fetching of the stat_threshold is racy. We may apply
 330                 * a counter threshold to the wrong the cpu if we get
 331                 * rescheduled while executing here. However, the next
 332                 * counter update will apply the threshold again and
 333                 * therefore bring the counter under the threshold again.
 334                 *
 335                 * Most of the time the thresholds are the same anyways
 336                 * for all cpus in a zone.
 337                 */
 338                t = this_cpu_read(pcp->stat_threshold);
 339
 340                o = this_cpu_read(*p);
 341                n = delta + o;
 342
 343                if (n > t || n < -t) {
 344                        int os = overstep_mode * (t >> 1) ;
 345
 346                        /* Overflow must be added to zone counters */
 347                        z = n + os;
 348                        n = -os;
 349                }
 350        } while (this_cpu_cmpxchg(*p, o, n) != o);
 351
 352        if (z)
 353                zone_page_state_add(z, zone, item);
 354}
 355
 356void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 357                                        int delta)
 358{
 359        mod_state(zone, item, delta, 0);
 360}
 361EXPORT_SYMBOL(mod_zone_page_state);
 362
 363void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 364{
 365        mod_state(zone, item, 1, 1);
 366}
 367
 368void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 369{
 370        mod_state(page_zone(page), item, 1, 1);
 371}
 372EXPORT_SYMBOL(inc_zone_page_state);
 373
 374void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 375{
 376        mod_state(page_zone(page), item, -1, -1);
 377}
 378EXPORT_SYMBOL(dec_zone_page_state);
 379#else
 380/*
 381 * Use interrupt disable to serialize counter updates
 382 */
 383void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 384                                        int delta)
 385{
 386        unsigned long flags;
 387
 388        local_irq_save(flags);
 389        __mod_zone_page_state(zone, item, delta);
 390        local_irq_restore(flags);
 391}
 392EXPORT_SYMBOL(mod_zone_page_state);
 393
 394void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 395{
 396        unsigned long flags;
 397
 398        local_irq_save(flags);
 399        __inc_zone_state(zone, item);
 400        local_irq_restore(flags);
 401}
 402
 403void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 404{
 405        unsigned long flags;
 406        struct zone *zone;
 407
 408        zone = page_zone(page);
 409        local_irq_save(flags);
 410        __inc_zone_state(zone, item);
 411        local_irq_restore(flags);
 412}
 413EXPORT_SYMBOL(inc_zone_page_state);
 414
 415void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 416{
 417        unsigned long flags;
 418
 419        local_irq_save(flags);
 420        __dec_zone_page_state(page, item);
 421        local_irq_restore(flags);
 422}
 423EXPORT_SYMBOL(dec_zone_page_state);
 424#endif
 425
 426
 427/*
 428 * Fold a differential into the global counters.
 429 * Returns the number of counters updated.
 430 */
 431static int fold_diff(int *diff)
 432{
 433        int i;
 434        int changes = 0;
 435
 436        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 437                if (diff[i]) {
 438                        atomic_long_add(diff[i], &vm_stat[i]);
 439                        changes++;
 440        }
 441        return changes;
 442}
 443
 444/*
 445 * Update the zone counters for the current cpu.
 446 *
 447 * Note that refresh_cpu_vm_stats strives to only access
 448 * node local memory. The per cpu pagesets on remote zones are placed
 449 * in the memory local to the processor using that pageset. So the
 450 * loop over all zones will access a series of cachelines local to
 451 * the processor.
 452 *
 453 * The call to zone_page_state_add updates the cachelines with the
 454 * statistics in the remote zone struct as well as the global cachelines
 455 * with the global counters. These could cause remote node cache line
 456 * bouncing and will have to be only done when necessary.
 457 *
 458 * The function returns the number of global counters updated.
 459 */
 460static int refresh_cpu_vm_stats(void)
 461{
 462        struct zone *zone;
 463        int i;
 464        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 465        int changes = 0;
 466
 467        for_each_populated_zone(zone) {
 468                struct per_cpu_pageset __percpu *p = zone->pageset;
 469
 470                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 471                        int v;
 472
 473                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 474                        if (v) {
 475
 476                                atomic_long_add(v, &zone->vm_stat[i]);
 477                                global_diff[i] += v;
 478#ifdef CONFIG_NUMA
 479                                /* 3 seconds idle till flush */
 480                                __this_cpu_write(p->expire, 3);
 481#endif
 482                        }
 483                }
 484                cond_resched();
 485#ifdef CONFIG_NUMA
 486                /*
 487                 * Deal with draining the remote pageset of this
 488                 * processor
 489                 *
 490                 * Check if there are pages remaining in this pageset
 491                 * if not then there is nothing to expire.
 492                 */
 493                if (!__this_cpu_read(p->expire) ||
 494                               !__this_cpu_read(p->pcp.count))
 495                        continue;
 496
 497                /*
 498                 * We never drain zones local to this processor.
 499                 */
 500                if (zone_to_nid(zone) == numa_node_id()) {
 501                        __this_cpu_write(p->expire, 0);
 502                        continue;
 503                }
 504
 505                if (__this_cpu_dec_return(p->expire))
 506                        continue;
 507
 508                if (__this_cpu_read(p->pcp.count)) {
 509                        drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 510                        changes++;
 511                }
 512#endif
 513        }
 514        changes += fold_diff(global_diff);
 515        return changes;
 516}
 517
 518/*
 519 * Fold the data for an offline cpu into the global array.
 520 * There cannot be any access by the offline cpu and therefore
 521 * synchronization is simplified.
 522 */
 523void cpu_vm_stats_fold(int cpu)
 524{
 525        struct zone *zone;
 526        int i;
 527        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 528
 529        for_each_populated_zone(zone) {
 530                struct per_cpu_pageset *p;
 531
 532                p = per_cpu_ptr(zone->pageset, cpu);
 533
 534                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 535                        if (p->vm_stat_diff[i]) {
 536                                int v;
 537
 538                                v = p->vm_stat_diff[i];
 539                                p->vm_stat_diff[i] = 0;
 540                                atomic_long_add(v, &zone->vm_stat[i]);
 541                                global_diff[i] += v;
 542                        }
 543        }
 544
 545        fold_diff(global_diff);
 546}
 547
 548/*
 549 * this is only called if !populated_zone(zone), which implies no other users of
 550 * pset->vm_stat_diff[] exsist.
 551 */
 552void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 553{
 554        int i;
 555
 556        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 557                if (pset->vm_stat_diff[i]) {
 558                        int v = pset->vm_stat_diff[i];
 559                        pset->vm_stat_diff[i] = 0;
 560                        atomic_long_add(v, &zone->vm_stat[i]);
 561                        atomic_long_add(v, &vm_stat[i]);
 562                }
 563}
 564#endif
 565
 566#ifdef CONFIG_NUMA
 567/*
 568 * zonelist = the list of zones passed to the allocator
 569 * z        = the zone from which the allocation occurred.
 570 *
 571 * Must be called with interrupts disabled.
 572 *
 573 * When __GFP_OTHER_NODE is set assume the node of the preferred
 574 * zone is the local node. This is useful for daemons who allocate
 575 * memory on behalf of other processes.
 576 */
 577void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
 578{
 579        if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 580                __inc_zone_state(z, NUMA_HIT);
 581        } else {
 582                __inc_zone_state(z, NUMA_MISS);
 583                __inc_zone_state(preferred_zone, NUMA_FOREIGN);
 584        }
 585        if (z->node == ((flags & __GFP_OTHER_NODE) ?
 586                        preferred_zone->node : numa_node_id()))
 587                __inc_zone_state(z, NUMA_LOCAL);
 588        else
 589                __inc_zone_state(z, NUMA_OTHER);
 590}
 591#endif
 592
 593#ifdef CONFIG_COMPACTION
 594
 595struct contig_page_info {
 596        unsigned long free_pages;
 597        unsigned long free_blocks_total;
 598        unsigned long free_blocks_suitable;
 599};
 600
 601/*
 602 * Calculate the number of free pages in a zone, how many contiguous
 603 * pages are free and how many are large enough to satisfy an allocation of
 604 * the target size. Note that this function makes no attempt to estimate
 605 * how many suitable free blocks there *might* be if MOVABLE pages were
 606 * migrated. Calculating that is possible, but expensive and can be
 607 * figured out from userspace
 608 */
 609static void fill_contig_page_info(struct zone *zone,
 610                                unsigned int suitable_order,
 611                                struct contig_page_info *info)
 612{
 613        unsigned int order;
 614
 615        info->free_pages = 0;
 616        info->free_blocks_total = 0;
 617        info->free_blocks_suitable = 0;
 618
 619        for (order = 0; order < MAX_ORDER; order++) {
 620                unsigned long blocks;
 621
 622                /* Count number of free blocks */
 623                blocks = zone->free_area[order].nr_free;
 624                info->free_blocks_total += blocks;
 625
 626                /* Count free base pages */
 627                info->free_pages += blocks << order;
 628
 629                /* Count the suitable free blocks */
 630                if (order >= suitable_order)
 631                        info->free_blocks_suitable += blocks <<
 632                                                (order - suitable_order);
 633        }
 634}
 635
 636/*
 637 * A fragmentation index only makes sense if an allocation of a requested
 638 * size would fail. If that is true, the fragmentation index indicates
 639 * whether external fragmentation or a lack of memory was the problem.
 640 * The value can be used to determine if page reclaim or compaction
 641 * should be used
 642 */
 643static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 644{
 645        unsigned long requested = 1UL << order;
 646
 647        if (!info->free_blocks_total)
 648                return 0;
 649
 650        /* Fragmentation index only makes sense when a request would fail */
 651        if (info->free_blocks_suitable)
 652                return -1000;
 653
 654        /*
 655         * Index is between 0 and 1 so return within 3 decimal places
 656         *
 657         * 0 => allocation would fail due to lack of memory
 658         * 1 => allocation would fail due to fragmentation
 659         */
 660        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 661}
 662
 663/* Same as __fragmentation index but allocs contig_page_info on stack */
 664int fragmentation_index(struct zone *zone, unsigned int order)
 665{
 666        struct contig_page_info info;
 667
 668        fill_contig_page_info(zone, order, &info);
 669        return __fragmentation_index(order, &info);
 670}
 671#endif
 672
 673#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
 674#include <linux/proc_fs.h>
 675#include <linux/seq_file.h>
 676
 677static char * const migratetype_names[MIGRATE_TYPES] = {
 678        "Unmovable",
 679        "Reclaimable",
 680        "Movable",
 681        "Reserve",
 682#ifdef CONFIG_CMA
 683        "CMA",
 684#endif
 685#ifdef CONFIG_MEMORY_ISOLATION
 686        "Isolate",
 687#endif
 688};
 689
 690static void *frag_start(struct seq_file *m, loff_t *pos)
 691{
 692        pg_data_t *pgdat;
 693        loff_t node = *pos;
 694        for (pgdat = first_online_pgdat();
 695             pgdat && node;
 696             pgdat = next_online_pgdat(pgdat))
 697                --node;
 698
 699        return pgdat;
 700}
 701
 702static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 703{
 704        pg_data_t *pgdat = (pg_data_t *)arg;
 705
 706        (*pos)++;
 707        return next_online_pgdat(pgdat);
 708}
 709
 710static void frag_stop(struct seq_file *m, void *arg)
 711{
 712}
 713
 714/* Walk all the zones in a node and print using a callback */
 715static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 716                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 717{
 718        struct zone *zone;
 719        struct zone *node_zones = pgdat->node_zones;
 720        unsigned long flags;
 721
 722        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 723                if (!populated_zone(zone))
 724                        continue;
 725
 726                spin_lock_irqsave(&zone->lock, flags);
 727                print(m, pgdat, zone);
 728                spin_unlock_irqrestore(&zone->lock, flags);
 729        }
 730}
 731#endif
 732
 733#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 734#ifdef CONFIG_ZONE_DMA
 735#define TEXT_FOR_DMA(xx) xx "_dma",
 736#else
 737#define TEXT_FOR_DMA(xx)
 738#endif
 739
 740#ifdef CONFIG_ZONE_DMA32
 741#define TEXT_FOR_DMA32(xx) xx "_dma32",
 742#else
 743#define TEXT_FOR_DMA32(xx)
 744#endif
 745
 746#ifdef CONFIG_HIGHMEM
 747#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 748#else
 749#define TEXT_FOR_HIGHMEM(xx)
 750#endif
 751
 752#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 753                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
 754
 755const char * const vmstat_text[] = {
 756        /* enum zone_stat_item countes */
 757        "nr_free_pages",
 758        "nr_alloc_batch",
 759        "nr_inactive_anon",
 760        "nr_active_anon",
 761        "nr_inactive_file",
 762        "nr_active_file",
 763        "nr_unevictable",
 764        "nr_mlock",
 765        "nr_anon_pages",
 766        "nr_mapped",
 767        "nr_file_pages",
 768        "nr_dirty",
 769        "nr_writeback",
 770        "nr_slab_reclaimable",
 771        "nr_slab_unreclaimable",
 772        "nr_page_table_pages",
 773        "nr_kernel_stack",
 774        "nr_unstable",
 775        "nr_bounce",
 776        "nr_vmscan_write",
 777        "nr_vmscan_immediate_reclaim",
 778        "nr_writeback_temp",
 779        "nr_isolated_anon",
 780        "nr_isolated_file",
 781        "nr_shmem",
 782        "nr_dirtied",
 783        "nr_written",
 784        "nr_pages_scanned",
 785
 786#ifdef CONFIG_NUMA
 787        "numa_hit",
 788        "numa_miss",
 789        "numa_foreign",
 790        "numa_interleave",
 791        "numa_local",
 792        "numa_other",
 793#endif
 794        "workingset_refault",
 795        "workingset_activate",
 796        "workingset_nodereclaim",
 797        "nr_anon_transparent_hugepages",
 798        "nr_free_cma",
 799
 800        /* enum writeback_stat_item counters */
 801        "nr_dirty_threshold",
 802        "nr_dirty_background_threshold",
 803
 804#ifdef CONFIG_VM_EVENT_COUNTERS
 805        /* enum vm_event_item counters */
 806        "pgpgin",
 807        "pgpgout",
 808        "pswpin",
 809        "pswpout",
 810
 811        TEXTS_FOR_ZONES("pgalloc")
 812
 813        "pgfree",
 814        "pgactivate",
 815        "pgdeactivate",
 816
 817        "pgfault",
 818        "pgmajfault",
 819
 820        TEXTS_FOR_ZONES("pgrefill")
 821        TEXTS_FOR_ZONES("pgsteal_kswapd")
 822        TEXTS_FOR_ZONES("pgsteal_direct")
 823        TEXTS_FOR_ZONES("pgscan_kswapd")
 824        TEXTS_FOR_ZONES("pgscan_direct")
 825        "pgscan_direct_throttle",
 826
 827#ifdef CONFIG_NUMA
 828        "zone_reclaim_failed",
 829#endif
 830        "pginodesteal",
 831        "slabs_scanned",
 832        "kswapd_inodesteal",
 833        "kswapd_low_wmark_hit_quickly",
 834        "kswapd_high_wmark_hit_quickly",
 835        "pageoutrun",
 836        "allocstall",
 837
 838        "pgrotated",
 839
 840        "drop_pagecache",
 841        "drop_slab",
 842
 843#ifdef CONFIG_NUMA_BALANCING
 844        "numa_pte_updates",
 845        "numa_huge_pte_updates",
 846        "numa_hint_faults",
 847        "numa_hint_faults_local",
 848        "numa_pages_migrated",
 849#endif
 850#ifdef CONFIG_MIGRATION
 851        "pgmigrate_success",
 852        "pgmigrate_fail",
 853#endif
 854#ifdef CONFIG_COMPACTION
 855        "compact_migrate_scanned",
 856        "compact_free_scanned",
 857        "compact_isolated",
 858        "compact_stall",
 859        "compact_fail",
 860        "compact_success",
 861#endif
 862
 863#ifdef CONFIG_HUGETLB_PAGE
 864        "htlb_buddy_alloc_success",
 865        "htlb_buddy_alloc_fail",
 866#endif
 867        "unevictable_pgs_culled",
 868        "unevictable_pgs_scanned",
 869        "unevictable_pgs_rescued",
 870        "unevictable_pgs_mlocked",
 871        "unevictable_pgs_munlocked",
 872        "unevictable_pgs_cleared",
 873        "unevictable_pgs_stranded",
 874
 875#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 876        "thp_fault_alloc",
 877        "thp_fault_fallback",
 878        "thp_collapse_alloc",
 879        "thp_collapse_alloc_failed",
 880        "thp_split",
 881        "thp_zero_page_alloc",
 882        "thp_zero_page_alloc_failed",
 883#endif
 884#ifdef CONFIG_MEMORY_BALLOON
 885        "balloon_inflate",
 886        "balloon_deflate",
 887#ifdef CONFIG_BALLOON_COMPACTION
 888        "balloon_migrate",
 889#endif
 890#endif /* CONFIG_MEMORY_BALLOON */
 891#ifdef CONFIG_DEBUG_TLBFLUSH
 892#ifdef CONFIG_SMP
 893        "nr_tlb_remote_flush",
 894        "nr_tlb_remote_flush_received",
 895#endif /* CONFIG_SMP */
 896        "nr_tlb_local_flush_all",
 897        "nr_tlb_local_flush_one",
 898#endif /* CONFIG_DEBUG_TLBFLUSH */
 899
 900#ifdef CONFIG_DEBUG_VM_VMACACHE
 901        "vmacache_find_calls",
 902        "vmacache_find_hits",
 903        "vmacache_full_flushes",
 904#endif
 905#endif /* CONFIG_VM_EVENTS_COUNTERS */
 906};
 907#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 908
 909
 910#ifdef CONFIG_PROC_FS
 911static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 912                                                struct zone *zone)
 913{
 914        int order;
 915
 916        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 917        for (order = 0; order < MAX_ORDER; ++order)
 918                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 919        seq_putc(m, '\n');
 920}
 921
 922/*
 923 * This walks the free areas for each zone.
 924 */
 925static int frag_show(struct seq_file *m, void *arg)
 926{
 927        pg_data_t *pgdat = (pg_data_t *)arg;
 928        walk_zones_in_node(m, pgdat, frag_show_print);
 929        return 0;
 930}
 931
 932static void pagetypeinfo_showfree_print(struct seq_file *m,
 933                                        pg_data_t *pgdat, struct zone *zone)
 934{
 935        int order, mtype;
 936
 937        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 938                seq_printf(m, "Node %4d, zone %8s, type %12s ",
 939                                        pgdat->node_id,
 940                                        zone->name,
 941                                        migratetype_names[mtype]);
 942                for (order = 0; order < MAX_ORDER; ++order) {
 943                        unsigned long freecount = 0;
 944                        struct free_area *area;
 945                        struct list_head *curr;
 946
 947                        area = &(zone->free_area[order]);
 948
 949                        list_for_each(curr, &area->free_list[mtype])
 950                                freecount++;
 951                        seq_printf(m, "%6lu ", freecount);
 952                }
 953                seq_putc(m, '\n');
 954        }
 955}
 956
 957/* Print out the free pages at each order for each migatetype */
 958static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 959{
 960        int order;
 961        pg_data_t *pgdat = (pg_data_t *)arg;
 962
 963        /* Print header */
 964        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 965        for (order = 0; order < MAX_ORDER; ++order)
 966                seq_printf(m, "%6d ", order);
 967        seq_putc(m, '\n');
 968
 969        walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 970
 971        return 0;
 972}
 973
 974static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 975                                        pg_data_t *pgdat, struct zone *zone)
 976{
 977        int mtype;
 978        unsigned long pfn;
 979        unsigned long start_pfn = zone->zone_start_pfn;
 980        unsigned long end_pfn = zone_end_pfn(zone);
 981        unsigned long count[MIGRATE_TYPES] = { 0, };
 982
 983        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 984                struct page *page;
 985
 986                if (!pfn_valid(pfn))
 987                        continue;
 988
 989                page = pfn_to_page(pfn);
 990
 991                /* Watch for unexpected holes punched in the memmap */
 992                if (!memmap_valid_within(pfn, page, zone))
 993                        continue;
 994
 995                mtype = get_pageblock_migratetype(page);
 996
 997                if (mtype < MIGRATE_TYPES)
 998                        count[mtype]++;
 999        }
1000
1001        /* Print counts */
1002        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1003        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1004                seq_printf(m, "%12lu ", count[mtype]);
1005        seq_putc(m, '\n');
1006}
1007
1008/* Print out the free pages at each order for each migratetype */
1009static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1010{
1011        int mtype;
1012        pg_data_t *pgdat = (pg_data_t *)arg;
1013
1014        seq_printf(m, "\n%-23s", "Number of blocks type ");
1015        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1016                seq_printf(m, "%12s ", migratetype_names[mtype]);
1017        seq_putc(m, '\n');
1018        walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1019
1020        return 0;
1021}
1022
1023#ifdef CONFIG_PAGE_OWNER
1024static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1025                                                        pg_data_t *pgdat,
1026                                                        struct zone *zone)
1027{
1028        struct page *page;
1029        struct page_ext *page_ext;
1030        unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1031        unsigned long end_pfn = pfn + zone->spanned_pages;
1032        unsigned long count[MIGRATE_TYPES] = { 0, };
1033        int pageblock_mt, page_mt;
1034        int i;
1035
1036        /* Scan block by block. First and last block may be incomplete */
1037        pfn = zone->zone_start_pfn;
1038
1039        /*
1040         * Walk the zone in pageblock_nr_pages steps. If a page block spans
1041         * a zone boundary, it will be double counted between zones. This does
1042         * not matter as the mixed block count will still be correct
1043         */
1044        for (; pfn < end_pfn; ) {
1045                if (!pfn_valid(pfn)) {
1046                        pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1047                        continue;
1048                }
1049
1050                block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1051                block_end_pfn = min(block_end_pfn, end_pfn);
1052
1053                page = pfn_to_page(pfn);
1054                pageblock_mt = get_pfnblock_migratetype(page, pfn);
1055
1056                for (; pfn < block_end_pfn; pfn++) {
1057                        if (!pfn_valid_within(pfn))
1058                                continue;
1059
1060                        page = pfn_to_page(pfn);
1061                        if (PageBuddy(page)) {
1062                                pfn += (1UL << page_order(page)) - 1;
1063                                continue;
1064                        }
1065
1066                        if (PageReserved(page))
1067                                continue;
1068
1069                        page_ext = lookup_page_ext(page);
1070
1071                        if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1072                                continue;
1073
1074                        page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1075                        if (pageblock_mt != page_mt) {
1076                                if (is_migrate_cma(pageblock_mt))
1077                                        count[MIGRATE_MOVABLE]++;
1078                                else
1079                                        count[pageblock_mt]++;
1080
1081                                pfn = block_end_pfn;
1082                                break;
1083                        }
1084                        pfn += (1UL << page_ext->order) - 1;
1085                }
1086        }
1087
1088        /* Print counts */
1089        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1090        for (i = 0; i < MIGRATE_TYPES; i++)
1091                seq_printf(m, "%12lu ", count[i]);
1092        seq_putc(m, '\n');
1093}
1094#endif /* CONFIG_PAGE_OWNER */
1095
1096/*
1097 * Print out the number of pageblocks for each migratetype that contain pages
1098 * of other types. This gives an indication of how well fallbacks are being
1099 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1100 * to determine what is going on
1101 */
1102static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1103{
1104#ifdef CONFIG_PAGE_OWNER
1105        int mtype;
1106
1107        if (!page_owner_inited)
1108                return;
1109
1110        drain_all_pages(NULL);
1111
1112        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1113        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1114                seq_printf(m, "%12s ", migratetype_names[mtype]);
1115        seq_putc(m, '\n');
1116
1117        walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1118#endif /* CONFIG_PAGE_OWNER */
1119}
1120
1121/*
1122 * This prints out statistics in relation to grouping pages by mobility.
1123 * It is expensive to collect so do not constantly read the file.
1124 */
1125static int pagetypeinfo_show(struct seq_file *m, void *arg)
1126{
1127        pg_data_t *pgdat = (pg_data_t *)arg;
1128
1129        /* check memoryless node */
1130        if (!node_state(pgdat->node_id, N_MEMORY))
1131                return 0;
1132
1133        seq_printf(m, "Page block order: %d\n", pageblock_order);
1134        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1135        seq_putc(m, '\n');
1136        pagetypeinfo_showfree(m, pgdat);
1137        pagetypeinfo_showblockcount(m, pgdat);
1138        pagetypeinfo_showmixedcount(m, pgdat);
1139
1140        return 0;
1141}
1142
1143static const struct seq_operations fragmentation_op = {
1144        .start  = frag_start,
1145        .next   = frag_next,
1146        .stop   = frag_stop,
1147        .show   = frag_show,
1148};
1149
1150static int fragmentation_open(struct inode *inode, struct file *file)
1151{
1152        return seq_open(file, &fragmentation_op);
1153}
1154
1155static const struct file_operations fragmentation_file_operations = {
1156        .open           = fragmentation_open,
1157        .read           = seq_read,
1158        .llseek         = seq_lseek,
1159        .release        = seq_release,
1160};
1161
1162static const struct seq_operations pagetypeinfo_op = {
1163        .start  = frag_start,
1164        .next   = frag_next,
1165        .stop   = frag_stop,
1166        .show   = pagetypeinfo_show,
1167};
1168
1169static int pagetypeinfo_open(struct inode *inode, struct file *file)
1170{
1171        return seq_open(file, &pagetypeinfo_op);
1172}
1173
1174static const struct file_operations pagetypeinfo_file_ops = {
1175        .open           = pagetypeinfo_open,
1176        .read           = seq_read,
1177        .llseek         = seq_lseek,
1178        .release        = seq_release,
1179};
1180
1181static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1182                                                        struct zone *zone)
1183{
1184        int i;
1185        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1186        seq_printf(m,
1187                   "\n  pages free     %lu"
1188                   "\n        min      %lu"
1189                   "\n        low      %lu"
1190                   "\n        high     %lu"
1191                   "\n        scanned  %lu"
1192                   "\n        spanned  %lu"
1193                   "\n        present  %lu"
1194                   "\n        managed  %lu",
1195                   zone_page_state(zone, NR_FREE_PAGES),
1196                   min_wmark_pages(zone),
1197                   low_wmark_pages(zone),
1198                   high_wmark_pages(zone),
1199                   zone_page_state(zone, NR_PAGES_SCANNED),
1200                   zone->spanned_pages,
1201                   zone->present_pages,
1202                   zone->managed_pages);
1203
1204        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1205                seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1206                                zone_page_state(zone, i));
1207
1208        seq_printf(m,
1209                   "\n        protection: (%ld",
1210                   zone->lowmem_reserve[0]);
1211        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1212                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1213        seq_printf(m,
1214                   ")"
1215                   "\n  pagesets");
1216        for_each_online_cpu(i) {
1217                struct per_cpu_pageset *pageset;
1218
1219                pageset = per_cpu_ptr(zone->pageset, i);
1220                seq_printf(m,
1221                           "\n    cpu: %i"
1222                           "\n              count: %i"
1223                           "\n              high:  %i"
1224                           "\n              batch: %i",
1225                           i,
1226                           pageset->pcp.count,
1227                           pageset->pcp.high,
1228                           pageset->pcp.batch);
1229#ifdef CONFIG_SMP
1230                seq_printf(m, "\n  vm stats threshold: %d",
1231                                pageset->stat_threshold);
1232#endif
1233        }
1234        seq_printf(m,
1235                   "\n  all_unreclaimable: %u"
1236                   "\n  start_pfn:         %lu"
1237                   "\n  inactive_ratio:    %u",
1238                   !zone_reclaimable(zone),
1239                   zone->zone_start_pfn,
1240                   zone->inactive_ratio);
1241        seq_putc(m, '\n');
1242}
1243
1244/*
1245 * Output information about zones in @pgdat.
1246 */
1247static int zoneinfo_show(struct seq_file *m, void *arg)
1248{
1249        pg_data_t *pgdat = (pg_data_t *)arg;
1250        walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1251        return 0;
1252}
1253
1254static const struct seq_operations zoneinfo_op = {
1255        .start  = frag_start, /* iterate over all zones. The same as in
1256                               * fragmentation. */
1257        .next   = frag_next,
1258        .stop   = frag_stop,
1259        .show   = zoneinfo_show,
1260};
1261
1262static int zoneinfo_open(struct inode *inode, struct file *file)
1263{
1264        return seq_open(file, &zoneinfo_op);
1265}
1266
1267static const struct file_operations proc_zoneinfo_file_operations = {
1268        .open           = zoneinfo_open,
1269        .read           = seq_read,
1270        .llseek         = seq_lseek,
1271        .release        = seq_release,
1272};
1273
1274enum writeback_stat_item {
1275        NR_DIRTY_THRESHOLD,
1276        NR_DIRTY_BG_THRESHOLD,
1277        NR_VM_WRITEBACK_STAT_ITEMS,
1278};
1279
1280static void *vmstat_start(struct seq_file *m, loff_t *pos)
1281{
1282        unsigned long *v;
1283        int i, stat_items_size;
1284
1285        if (*pos >= ARRAY_SIZE(vmstat_text))
1286                return NULL;
1287        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1288                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1289
1290#ifdef CONFIG_VM_EVENT_COUNTERS
1291        stat_items_size += sizeof(struct vm_event_state);
1292#endif
1293
1294        v = kmalloc(stat_items_size, GFP_KERNEL);
1295        m->private = v;
1296        if (!v)
1297                return ERR_PTR(-ENOMEM);
1298        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1299                v[i] = global_page_state(i);
1300        v += NR_VM_ZONE_STAT_ITEMS;
1301
1302        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1303                            v + NR_DIRTY_THRESHOLD);
1304        v += NR_VM_WRITEBACK_STAT_ITEMS;
1305
1306#ifdef CONFIG_VM_EVENT_COUNTERS
1307        all_vm_events(v);
1308        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1309        v[PGPGOUT] /= 2;
1310#endif
1311        return (unsigned long *)m->private + *pos;
1312}
1313
1314static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1315{
1316        (*pos)++;
1317        if (*pos >= ARRAY_SIZE(vmstat_text))
1318                return NULL;
1319        return (unsigned long *)m->private + *pos;
1320}
1321
1322static int vmstat_show(struct seq_file *m, void *arg)
1323{
1324        unsigned long *l = arg;
1325        unsigned long off = l - (unsigned long *)m->private;
1326
1327        seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1328        return 0;
1329}
1330
1331static void vmstat_stop(struct seq_file *m, void *arg)
1332{
1333        kfree(m->private);
1334        m->private = NULL;
1335}
1336
1337static const struct seq_operations vmstat_op = {
1338        .start  = vmstat_start,
1339        .next   = vmstat_next,
1340        .stop   = vmstat_stop,
1341        .show   = vmstat_show,
1342};
1343
1344static int vmstat_open(struct inode *inode, struct file *file)
1345{
1346        return seq_open(file, &vmstat_op);
1347}
1348
1349static const struct file_operations proc_vmstat_file_operations = {
1350        .open           = vmstat_open,
1351        .read           = seq_read,
1352        .llseek         = seq_lseek,
1353        .release        = seq_release,
1354};
1355#endif /* CONFIG_PROC_FS */
1356
1357#ifdef CONFIG_SMP
1358static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1359int sysctl_stat_interval __read_mostly = HZ;
1360static cpumask_var_t cpu_stat_off;
1361
1362static void vmstat_update(struct work_struct *w)
1363{
1364        if (refresh_cpu_vm_stats())
1365                /*
1366                 * Counters were updated so we expect more updates
1367                 * to occur in the future. Keep on running the
1368                 * update worker thread.
1369                 */
1370                schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1371                        round_jiffies_relative(sysctl_stat_interval));
1372        else {
1373                /*
1374                 * We did not update any counters so the app may be in
1375                 * a mode where it does not cause counter updates.
1376                 * We may be uselessly running vmstat_update.
1377                 * Defer the checking for differentials to the
1378                 * shepherd thread on a different processor.
1379                 */
1380                int r;
1381                /*
1382                 * Shepherd work thread does not race since it never
1383                 * changes the bit if its zero but the cpu
1384                 * online / off line code may race if
1385                 * worker threads are still allowed during
1386                 * shutdown / startup.
1387                 */
1388                r = cpumask_test_and_set_cpu(smp_processor_id(),
1389                        cpu_stat_off);
1390                VM_BUG_ON(r);
1391        }
1392}
1393
1394/*
1395 * Check if the diffs for a certain cpu indicate that
1396 * an update is needed.
1397 */
1398static bool need_update(int cpu)
1399{
1400        struct zone *zone;
1401
1402        for_each_populated_zone(zone) {
1403                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1404
1405                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1406                /*
1407                 * The fast way of checking if there are any vmstat diffs.
1408                 * This works because the diffs are byte sized items.
1409                 */
1410                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1411                        return true;
1412
1413        }
1414        return false;
1415}
1416
1417
1418/*
1419 * Shepherd worker thread that checks the
1420 * differentials of processors that have their worker
1421 * threads for vm statistics updates disabled because of
1422 * inactivity.
1423 */
1424static void vmstat_shepherd(struct work_struct *w);
1425
1426static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1427
1428static void vmstat_shepherd(struct work_struct *w)
1429{
1430        int cpu;
1431
1432        get_online_cpus();
1433        /* Check processors whose vmstat worker threads have been disabled */
1434        for_each_cpu(cpu, cpu_stat_off)
1435                if (need_update(cpu) &&
1436                        cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1437
1438                        schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1439                                __round_jiffies_relative(sysctl_stat_interval, cpu));
1440
1441        put_online_cpus();
1442
1443        schedule_delayed_work(&shepherd,
1444                round_jiffies_relative(sysctl_stat_interval));
1445
1446}
1447
1448static void __init start_shepherd_timer(void)
1449{
1450        int cpu;
1451
1452        for_each_possible_cpu(cpu)
1453                INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1454                        vmstat_update);
1455
1456        if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1457                BUG();
1458        cpumask_copy(cpu_stat_off, cpu_online_mask);
1459
1460        schedule_delayed_work(&shepherd,
1461                round_jiffies_relative(sysctl_stat_interval));
1462}
1463
1464static void vmstat_cpu_dead(int node)
1465{
1466        int cpu;
1467
1468        get_online_cpus();
1469        for_each_online_cpu(cpu)
1470                if (cpu_to_node(cpu) == node)
1471                        goto end;
1472
1473        node_clear_state(node, N_CPU);
1474end:
1475        put_online_cpus();
1476}
1477
1478/*
1479 * Use the cpu notifier to insure that the thresholds are recalculated
1480 * when necessary.
1481 */
1482static int vmstat_cpuup_callback(struct notifier_block *nfb,
1483                unsigned long action,
1484                void *hcpu)
1485{
1486        long cpu = (long)hcpu;
1487
1488        switch (action) {
1489        case CPU_ONLINE:
1490        case CPU_ONLINE_FROZEN:
1491                refresh_zone_stat_thresholds();
1492                node_set_state(cpu_to_node(cpu), N_CPU);
1493                cpumask_set_cpu(cpu, cpu_stat_off);
1494                break;
1495        case CPU_DOWN_PREPARE:
1496        case CPU_DOWN_PREPARE_FROZEN:
1497                cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1498                cpumask_clear_cpu(cpu, cpu_stat_off);
1499                break;
1500        case CPU_DOWN_FAILED:
1501        case CPU_DOWN_FAILED_FROZEN:
1502                cpumask_set_cpu(cpu, cpu_stat_off);
1503                break;
1504        case CPU_DEAD:
1505        case CPU_DEAD_FROZEN:
1506                refresh_zone_stat_thresholds();
1507                vmstat_cpu_dead(cpu_to_node(cpu));
1508                break;
1509        default:
1510                break;
1511        }
1512        return NOTIFY_OK;
1513}
1514
1515static struct notifier_block vmstat_notifier =
1516        { &vmstat_cpuup_callback, NULL, 0 };
1517#endif
1518
1519static int __init setup_vmstat(void)
1520{
1521#ifdef CONFIG_SMP
1522        cpu_notifier_register_begin();
1523        __register_cpu_notifier(&vmstat_notifier);
1524
1525        start_shepherd_timer();
1526        cpu_notifier_register_done();
1527#endif
1528#ifdef CONFIG_PROC_FS
1529        proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1530        proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1531        proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1532        proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1533#endif
1534        return 0;
1535}
1536module_init(setup_vmstat)
1537
1538#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1539#include <linux/debugfs.h>
1540
1541
1542/*
1543 * Return an index indicating how much of the available free memory is
1544 * unusable for an allocation of the requested size.
1545 */
1546static int unusable_free_index(unsigned int order,
1547                                struct contig_page_info *info)
1548{
1549        /* No free memory is interpreted as all free memory is unusable */
1550        if (info->free_pages == 0)
1551                return 1000;
1552
1553        /*
1554         * Index should be a value between 0 and 1. Return a value to 3
1555         * decimal places.
1556         *
1557         * 0 => no fragmentation
1558         * 1 => high fragmentation
1559         */
1560        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1561
1562}
1563
1564static void unusable_show_print(struct seq_file *m,
1565                                        pg_data_t *pgdat, struct zone *zone)
1566{
1567        unsigned int order;
1568        int index;
1569        struct contig_page_info info;
1570
1571        seq_printf(m, "Node %d, zone %8s ",
1572                                pgdat->node_id,
1573                                zone->name);
1574        for (order = 0; order < MAX_ORDER; ++order) {
1575                fill_contig_page_info(zone, order, &info);
1576                index = unusable_free_index(order, &info);
1577                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1578        }
1579
1580        seq_putc(m, '\n');
1581}
1582
1583/*
1584 * Display unusable free space index
1585 *
1586 * The unusable free space index measures how much of the available free
1587 * memory cannot be used to satisfy an allocation of a given size and is a
1588 * value between 0 and 1. The higher the value, the more of free memory is
1589 * unusable and by implication, the worse the external fragmentation is. This
1590 * can be expressed as a percentage by multiplying by 100.
1591 */
1592static int unusable_show(struct seq_file *m, void *arg)
1593{
1594        pg_data_t *pgdat = (pg_data_t *)arg;
1595
1596        /* check memoryless node */
1597        if (!node_state(pgdat->node_id, N_MEMORY))
1598                return 0;
1599
1600        walk_zones_in_node(m, pgdat, unusable_show_print);
1601
1602        return 0;
1603}
1604
1605static const struct seq_operations unusable_op = {
1606        .start  = frag_start,
1607        .next   = frag_next,
1608        .stop   = frag_stop,
1609        .show   = unusable_show,
1610};
1611
1612static int unusable_open(struct inode *inode, struct file *file)
1613{
1614        return seq_open(file, &unusable_op);
1615}
1616
1617static const struct file_operations unusable_file_ops = {
1618        .open           = unusable_open,
1619        .read           = seq_read,
1620        .llseek         = seq_lseek,
1621        .release        = seq_release,
1622};
1623
1624static void extfrag_show_print(struct seq_file *m,
1625                                        pg_data_t *pgdat, struct zone *zone)
1626{
1627        unsigned int order;
1628        int index;
1629
1630        /* Alloc on stack as interrupts are disabled for zone walk */
1631        struct contig_page_info info;
1632
1633        seq_printf(m, "Node %d, zone %8s ",
1634                                pgdat->node_id,
1635                                zone->name);
1636        for (order = 0; order < MAX_ORDER; ++order) {
1637                fill_contig_page_info(zone, order, &info);
1638                index = __fragmentation_index(order, &info);
1639                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1640        }
1641
1642        seq_putc(m, '\n');
1643}
1644
1645/*
1646 * Display fragmentation index for orders that allocations would fail for
1647 */
1648static int extfrag_show(struct seq_file *m, void *arg)
1649{
1650        pg_data_t *pgdat = (pg_data_t *)arg;
1651
1652        walk_zones_in_node(m, pgdat, extfrag_show_print);
1653
1654        return 0;
1655}
1656
1657static const struct seq_operations extfrag_op = {
1658        .start  = frag_start,
1659        .next   = frag_next,
1660        .stop   = frag_stop,
1661        .show   = extfrag_show,
1662};
1663
1664static int extfrag_open(struct inode *inode, struct file *file)
1665{
1666        return seq_open(file, &extfrag_op);
1667}
1668
1669static const struct file_operations extfrag_file_ops = {
1670        .open           = extfrag_open,
1671        .read           = seq_read,
1672        .llseek         = seq_lseek,
1673        .release        = seq_release,
1674};
1675
1676static int __init extfrag_debug_init(void)
1677{
1678        struct dentry *extfrag_debug_root;
1679
1680        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1681        if (!extfrag_debug_root)
1682                return -ENOMEM;
1683
1684        if (!debugfs_create_file("unusable_index", 0444,
1685                        extfrag_debug_root, NULL, &unusable_file_ops))
1686                goto fail;
1687
1688        if (!debugfs_create_file("extfrag_index", 0444,
1689                        extfrag_debug_root, NULL, &extfrag_file_ops))
1690                goto fail;
1691
1692        return 0;
1693fail:
1694        debugfs_remove_recursive(extfrag_debug_root);
1695        return -ENOMEM;
1696}
1697
1698module_init(extfrag_debug_init);
1699#endif
1700