linux/net/rds/ib_recv.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35#include <linux/pci.h>
  36#include <linux/dma-mapping.h>
  37#include <rdma/rdma_cm.h>
  38
  39#include "rds.h"
  40#include "ib.h"
  41
  42static struct kmem_cache *rds_ib_incoming_slab;
  43static struct kmem_cache *rds_ib_frag_slab;
  44static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  45
  46void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  47{
  48        struct rds_ib_recv_work *recv;
  49        u32 i;
  50
  51        for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  52                struct ib_sge *sge;
  53
  54                recv->r_ibinc = NULL;
  55                recv->r_frag = NULL;
  56
  57                recv->r_wr.next = NULL;
  58                recv->r_wr.wr_id = i;
  59                recv->r_wr.sg_list = recv->r_sge;
  60                recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  61
  62                sge = &recv->r_sge[0];
  63                sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  64                sge->length = sizeof(struct rds_header);
  65                sge->lkey = ic->i_mr->lkey;
  66
  67                sge = &recv->r_sge[1];
  68                sge->addr = 0;
  69                sge->length = RDS_FRAG_SIZE;
  70                sge->lkey = ic->i_mr->lkey;
  71        }
  72}
  73
  74/*
  75 * The entire 'from' list, including the from element itself, is put on
  76 * to the tail of the 'to' list.
  77 */
  78static void list_splice_entire_tail(struct list_head *from,
  79                                    struct list_head *to)
  80{
  81        struct list_head *from_last = from->prev;
  82
  83        list_splice_tail(from_last, to);
  84        list_add_tail(from_last, to);
  85}
  86
  87static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  88{
  89        struct list_head *tmp;
  90
  91        tmp = xchg(&cache->xfer, NULL);
  92        if (tmp) {
  93                if (cache->ready)
  94                        list_splice_entire_tail(tmp, cache->ready);
  95                else
  96                        cache->ready = tmp;
  97        }
  98}
  99
 100static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
 101{
 102        struct rds_ib_cache_head *head;
 103        int cpu;
 104
 105        cache->percpu = alloc_percpu(struct rds_ib_cache_head);
 106        if (!cache->percpu)
 107               return -ENOMEM;
 108
 109        for_each_possible_cpu(cpu) {
 110                head = per_cpu_ptr(cache->percpu, cpu);
 111                head->first = NULL;
 112                head->count = 0;
 113        }
 114        cache->xfer = NULL;
 115        cache->ready = NULL;
 116
 117        return 0;
 118}
 119
 120int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
 121{
 122        int ret;
 123
 124        ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
 125        if (!ret) {
 126                ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
 127                if (ret)
 128                        free_percpu(ic->i_cache_incs.percpu);
 129        }
 130
 131        return ret;
 132}
 133
 134static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 135                                          struct list_head *caller_list)
 136{
 137        struct rds_ib_cache_head *head;
 138        int cpu;
 139
 140        for_each_possible_cpu(cpu) {
 141                head = per_cpu_ptr(cache->percpu, cpu);
 142                if (head->first) {
 143                        list_splice_entire_tail(head->first, caller_list);
 144                        head->first = NULL;
 145                }
 146        }
 147
 148        if (cache->ready) {
 149                list_splice_entire_tail(cache->ready, caller_list);
 150                cache->ready = NULL;
 151        }
 152}
 153
 154void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 155{
 156        struct rds_ib_incoming *inc;
 157        struct rds_ib_incoming *inc_tmp;
 158        struct rds_page_frag *frag;
 159        struct rds_page_frag *frag_tmp;
 160        LIST_HEAD(list);
 161
 162        rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 163        rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 164        free_percpu(ic->i_cache_incs.percpu);
 165
 166        list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 167                list_del(&inc->ii_cache_entry);
 168                WARN_ON(!list_empty(&inc->ii_frags));
 169                kmem_cache_free(rds_ib_incoming_slab, inc);
 170        }
 171
 172        rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 173        rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 174        free_percpu(ic->i_cache_frags.percpu);
 175
 176        list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 177                list_del(&frag->f_cache_entry);
 178                WARN_ON(!list_empty(&frag->f_item));
 179                kmem_cache_free(rds_ib_frag_slab, frag);
 180        }
 181}
 182
 183/* fwd decl */
 184static void rds_ib_recv_cache_put(struct list_head *new_item,
 185                                  struct rds_ib_refill_cache *cache);
 186static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 187
 188
 189/* Recycle frag and attached recv buffer f_sg */
 190static void rds_ib_frag_free(struct rds_ib_connection *ic,
 191                             struct rds_page_frag *frag)
 192{
 193        rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 194
 195        rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 196}
 197
 198/* Recycle inc after freeing attached frags */
 199void rds_ib_inc_free(struct rds_incoming *inc)
 200{
 201        struct rds_ib_incoming *ibinc;
 202        struct rds_page_frag *frag;
 203        struct rds_page_frag *pos;
 204        struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 205
 206        ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 207
 208        /* Free attached frags */
 209        list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 210                list_del_init(&frag->f_item);
 211                rds_ib_frag_free(ic, frag);
 212        }
 213        BUG_ON(!list_empty(&ibinc->ii_frags));
 214
 215        rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 216        rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 217}
 218
 219static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 220                                  struct rds_ib_recv_work *recv)
 221{
 222        if (recv->r_ibinc) {
 223                rds_inc_put(&recv->r_ibinc->ii_inc);
 224                recv->r_ibinc = NULL;
 225        }
 226        if (recv->r_frag) {
 227                ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 228                rds_ib_frag_free(ic, recv->r_frag);
 229                recv->r_frag = NULL;
 230        }
 231}
 232
 233void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 234{
 235        u32 i;
 236
 237        for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 238                rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 239}
 240
 241static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 242                                                     gfp_t slab_mask)
 243{
 244        struct rds_ib_incoming *ibinc;
 245        struct list_head *cache_item;
 246        int avail_allocs;
 247
 248        cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 249        if (cache_item) {
 250                ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 251        } else {
 252                avail_allocs = atomic_add_unless(&rds_ib_allocation,
 253                                                 1, rds_ib_sysctl_max_recv_allocation);
 254                if (!avail_allocs) {
 255                        rds_ib_stats_inc(s_ib_rx_alloc_limit);
 256                        return NULL;
 257                }
 258                ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 259                if (!ibinc) {
 260                        atomic_dec(&rds_ib_allocation);
 261                        return NULL;
 262                }
 263        }
 264        INIT_LIST_HEAD(&ibinc->ii_frags);
 265        rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
 266
 267        return ibinc;
 268}
 269
 270static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 271                                                    gfp_t slab_mask, gfp_t page_mask)
 272{
 273        struct rds_page_frag *frag;
 274        struct list_head *cache_item;
 275        int ret;
 276
 277        cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 278        if (cache_item) {
 279                frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 280        } else {
 281                frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 282                if (!frag)
 283                        return NULL;
 284
 285                sg_init_table(&frag->f_sg, 1);
 286                ret = rds_page_remainder_alloc(&frag->f_sg,
 287                                               RDS_FRAG_SIZE, page_mask);
 288                if (ret) {
 289                        kmem_cache_free(rds_ib_frag_slab, frag);
 290                        return NULL;
 291                }
 292        }
 293
 294        INIT_LIST_HEAD(&frag->f_item);
 295
 296        return frag;
 297}
 298
 299static int rds_ib_recv_refill_one(struct rds_connection *conn,
 300                                  struct rds_ib_recv_work *recv, int prefill)
 301{
 302        struct rds_ib_connection *ic = conn->c_transport_data;
 303        struct ib_sge *sge;
 304        int ret = -ENOMEM;
 305        gfp_t slab_mask = GFP_NOWAIT;
 306        gfp_t page_mask = GFP_NOWAIT;
 307
 308        if (prefill) {
 309                slab_mask = GFP_KERNEL;
 310                page_mask = GFP_HIGHUSER;
 311        }
 312
 313        if (!ic->i_cache_incs.ready)
 314                rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 315        if (!ic->i_cache_frags.ready)
 316                rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 317
 318        /*
 319         * ibinc was taken from recv if recv contained the start of a message.
 320         * recvs that were continuations will still have this allocated.
 321         */
 322        if (!recv->r_ibinc) {
 323                recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 324                if (!recv->r_ibinc)
 325                        goto out;
 326        }
 327
 328        WARN_ON(recv->r_frag); /* leak! */
 329        recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 330        if (!recv->r_frag)
 331                goto out;
 332
 333        ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 334                            1, DMA_FROM_DEVICE);
 335        WARN_ON(ret != 1);
 336
 337        sge = &recv->r_sge[0];
 338        sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
 339        sge->length = sizeof(struct rds_header);
 340
 341        sge = &recv->r_sge[1];
 342        sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
 343        sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
 344
 345        ret = 0;
 346out:
 347        return ret;
 348}
 349
 350/*
 351 * This tries to allocate and post unused work requests after making sure that
 352 * they have all the allocations they need to queue received fragments into
 353 * sockets.
 354 *
 355 * -1 is returned if posting fails due to temporary resource exhaustion.
 356 */
 357void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
 358{
 359        struct rds_ib_connection *ic = conn->c_transport_data;
 360        struct rds_ib_recv_work *recv;
 361        struct ib_recv_wr *failed_wr;
 362        unsigned int posted = 0;
 363        int ret = 0;
 364        u32 pos;
 365
 366        while ((prefill || rds_conn_up(conn)) &&
 367               rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 368                if (pos >= ic->i_recv_ring.w_nr) {
 369                        printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 370                                        pos);
 371                        break;
 372                }
 373
 374                recv = &ic->i_recvs[pos];
 375                ret = rds_ib_recv_refill_one(conn, recv, prefill);
 376                if (ret) {
 377                        break;
 378                }
 379
 380                /* XXX when can this fail? */
 381                ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
 382                rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
 383                         recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 384                         (long) ib_sg_dma_address(
 385                                ic->i_cm_id->device,
 386                                &recv->r_frag->f_sg),
 387                        ret);
 388                if (ret) {
 389                        rds_ib_conn_error(conn, "recv post on "
 390                               "%pI4 returned %d, disconnecting and "
 391                               "reconnecting\n", &conn->c_faddr,
 392                               ret);
 393                        break;
 394                }
 395
 396                posted++;
 397        }
 398
 399        /* We're doing flow control - update the window. */
 400        if (ic->i_flowctl && posted)
 401                rds_ib_advertise_credits(conn, posted);
 402
 403        if (ret)
 404                rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 405}
 406
 407/*
 408 * We want to recycle several types of recv allocations, like incs and frags.
 409 * To use this, the *_free() function passes in the ptr to a list_head within
 410 * the recyclee, as well as the cache to put it on.
 411 *
 412 * First, we put the memory on a percpu list. When this reaches a certain size,
 413 * We move it to an intermediate non-percpu list in a lockless manner, with some
 414 * xchg/compxchg wizardry.
 415 *
 416 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 417 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 418 * list_empty() will return true with one element is actually present.
 419 */
 420static void rds_ib_recv_cache_put(struct list_head *new_item,
 421                                 struct rds_ib_refill_cache *cache)
 422{
 423        unsigned long flags;
 424        struct list_head *old, *chpfirst;
 425
 426        local_irq_save(flags);
 427
 428        chpfirst = __this_cpu_read(cache->percpu->first);
 429        if (!chpfirst)
 430                INIT_LIST_HEAD(new_item);
 431        else /* put on front */
 432                list_add_tail(new_item, chpfirst);
 433
 434        __this_cpu_write(cache->percpu->first, new_item);
 435        __this_cpu_inc(cache->percpu->count);
 436
 437        if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 438                goto end;
 439
 440        /*
 441         * Return our per-cpu first list to the cache's xfer by atomically
 442         * grabbing the current xfer list, appending it to our per-cpu list,
 443         * and then atomically returning that entire list back to the
 444         * cache's xfer list as long as it's still empty.
 445         */
 446        do {
 447                old = xchg(&cache->xfer, NULL);
 448                if (old)
 449                        list_splice_entire_tail(old, chpfirst);
 450                old = cmpxchg(&cache->xfer, NULL, chpfirst);
 451        } while (old);
 452
 453
 454        __this_cpu_write(cache->percpu->first, NULL);
 455        __this_cpu_write(cache->percpu->count, 0);
 456end:
 457        local_irq_restore(flags);
 458}
 459
 460static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 461{
 462        struct list_head *head = cache->ready;
 463
 464        if (head) {
 465                if (!list_empty(head)) {
 466                        cache->ready = head->next;
 467                        list_del_init(head);
 468                } else
 469                        cache->ready = NULL;
 470        }
 471
 472        return head;
 473}
 474
 475int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
 476{
 477        struct rds_ib_incoming *ibinc;
 478        struct rds_page_frag *frag;
 479        unsigned long to_copy;
 480        unsigned long frag_off = 0;
 481        int copied = 0;
 482        int ret;
 483        u32 len;
 484
 485        ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 486        frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 487        len = be32_to_cpu(inc->i_hdr.h_len);
 488
 489        while (iov_iter_count(to) && copied < len) {
 490                if (frag_off == RDS_FRAG_SIZE) {
 491                        frag = list_entry(frag->f_item.next,
 492                                          struct rds_page_frag, f_item);
 493                        frag_off = 0;
 494                }
 495                to_copy = min_t(unsigned long, iov_iter_count(to),
 496                                RDS_FRAG_SIZE - frag_off);
 497                to_copy = min_t(unsigned long, to_copy, len - copied);
 498
 499                /* XXX needs + offset for multiple recvs per page */
 500                rds_stats_add(s_copy_to_user, to_copy);
 501                ret = copy_page_to_iter(sg_page(&frag->f_sg),
 502                                        frag->f_sg.offset + frag_off,
 503                                        to_copy,
 504                                        to);
 505                if (ret != to_copy)
 506                        return -EFAULT;
 507
 508                frag_off += to_copy;
 509                copied += to_copy;
 510        }
 511
 512        return copied;
 513}
 514
 515/* ic starts out kzalloc()ed */
 516void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 517{
 518        struct ib_send_wr *wr = &ic->i_ack_wr;
 519        struct ib_sge *sge = &ic->i_ack_sge;
 520
 521        sge->addr = ic->i_ack_dma;
 522        sge->length = sizeof(struct rds_header);
 523        sge->lkey = ic->i_mr->lkey;
 524
 525        wr->sg_list = sge;
 526        wr->num_sge = 1;
 527        wr->opcode = IB_WR_SEND;
 528        wr->wr_id = RDS_IB_ACK_WR_ID;
 529        wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 530}
 531
 532/*
 533 * You'd think that with reliable IB connections you wouldn't need to ack
 534 * messages that have been received.  The problem is that IB hardware generates
 535 * an ack message before it has DMAed the message into memory.  This creates a
 536 * potential message loss if the HCA is disabled for any reason between when it
 537 * sends the ack and before the message is DMAed and processed.  This is only a
 538 * potential issue if another HCA is available for fail-over.
 539 *
 540 * When the remote host receives our ack they'll free the sent message from
 541 * their send queue.  To decrease the latency of this we always send an ack
 542 * immediately after we've received messages.
 543 *
 544 * For simplicity, we only have one ack in flight at a time.  This puts
 545 * pressure on senders to have deep enough send queues to absorb the latency of
 546 * a single ack frame being in flight.  This might not be good enough.
 547 *
 548 * This is implemented by have a long-lived send_wr and sge which point to a
 549 * statically allocated ack frame.  This ack wr does not fall under the ring
 550 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 551 * room for it beyond the ring size.  Send completion notices its special
 552 * wr_id and avoids working with the ring in that case.
 553 */
 554#ifndef KERNEL_HAS_ATOMIC64
 555static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
 556                                int ack_required)
 557{
 558        unsigned long flags;
 559
 560        spin_lock_irqsave(&ic->i_ack_lock, flags);
 561        ic->i_ack_next = seq;
 562        if (ack_required)
 563                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 564        spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 565}
 566
 567static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 568{
 569        unsigned long flags;
 570        u64 seq;
 571
 572        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 573
 574        spin_lock_irqsave(&ic->i_ack_lock, flags);
 575        seq = ic->i_ack_next;
 576        spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 577
 578        return seq;
 579}
 580#else
 581static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
 582                                int ack_required)
 583{
 584        atomic64_set(&ic->i_ack_next, seq);
 585        if (ack_required) {
 586                smp_mb__before_atomic();
 587                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 588        }
 589}
 590
 591static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 592{
 593        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 594        smp_mb__after_atomic();
 595
 596        return atomic64_read(&ic->i_ack_next);
 597}
 598#endif
 599
 600
 601static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 602{
 603        struct rds_header *hdr = ic->i_ack;
 604        struct ib_send_wr *failed_wr;
 605        u64 seq;
 606        int ret;
 607
 608        seq = rds_ib_get_ack(ic);
 609
 610        rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 611        rds_message_populate_header(hdr, 0, 0, 0);
 612        hdr->h_ack = cpu_to_be64(seq);
 613        hdr->h_credit = adv_credits;
 614        rds_message_make_checksum(hdr);
 615        ic->i_ack_queued = jiffies;
 616
 617        ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
 618        if (unlikely(ret)) {
 619                /* Failed to send. Release the WR, and
 620                 * force another ACK.
 621                 */
 622                clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 623                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 624
 625                rds_ib_stats_inc(s_ib_ack_send_failure);
 626
 627                rds_ib_conn_error(ic->conn, "sending ack failed\n");
 628        } else
 629                rds_ib_stats_inc(s_ib_ack_sent);
 630}
 631
 632/*
 633 * There are 3 ways of getting acknowledgements to the peer:
 634 *  1.  We call rds_ib_attempt_ack from the recv completion handler
 635 *      to send an ACK-only frame.
 636 *      However, there can be only one such frame in the send queue
 637 *      at any time, so we may have to postpone it.
 638 *  2.  When another (data) packet is transmitted while there's
 639 *      an ACK in the queue, we piggyback the ACK sequence number
 640 *      on the data packet.
 641 *  3.  If the ACK WR is done sending, we get called from the
 642 *      send queue completion handler, and check whether there's
 643 *      another ACK pending (postponed because the WR was on the
 644 *      queue). If so, we transmit it.
 645 *
 646 * We maintain 2 variables:
 647 *  -   i_ack_flags, which keeps track of whether the ACK WR
 648 *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 649 *  -   i_ack_next, which is the last sequence number we received
 650 *
 651 * Potentially, send queue and receive queue handlers can run concurrently.
 652 * It would be nice to not have to use a spinlock to synchronize things,
 653 * but the one problem that rules this out is that 64bit updates are
 654 * not atomic on all platforms. Things would be a lot simpler if
 655 * we had atomic64 or maybe cmpxchg64 everywhere.
 656 *
 657 * Reconnecting complicates this picture just slightly. When we
 658 * reconnect, we may be seeing duplicate packets. The peer
 659 * is retransmitting them, because it hasn't seen an ACK for
 660 * them. It is important that we ACK these.
 661 *
 662 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 663 * this flag set *MUST* be acknowledged immediately.
 664 */
 665
 666/*
 667 * When we get here, we're called from the recv queue handler.
 668 * Check whether we ought to transmit an ACK.
 669 */
 670void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 671{
 672        unsigned int adv_credits;
 673
 674        if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 675                return;
 676
 677        if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 678                rds_ib_stats_inc(s_ib_ack_send_delayed);
 679                return;
 680        }
 681
 682        /* Can we get a send credit? */
 683        if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 684                rds_ib_stats_inc(s_ib_tx_throttle);
 685                clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 686                return;
 687        }
 688
 689        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 690        rds_ib_send_ack(ic, adv_credits);
 691}
 692
 693/*
 694 * We get here from the send completion handler, when the
 695 * adapter tells us the ACK frame was sent.
 696 */
 697void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 698{
 699        clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 700        rds_ib_attempt_ack(ic);
 701}
 702
 703/*
 704 * This is called by the regular xmit code when it wants to piggyback
 705 * an ACK on an outgoing frame.
 706 */
 707u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 708{
 709        if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 710                rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 711        return rds_ib_get_ack(ic);
 712}
 713
 714/*
 715 * It's kind of lame that we're copying from the posted receive pages into
 716 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 717 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 718 * hopefully we won't need to invest that complexity in making it more
 719 * efficient.  By copying we can share a simpler core with TCP which has to
 720 * copy.
 721 */
 722static void rds_ib_cong_recv(struct rds_connection *conn,
 723                              struct rds_ib_incoming *ibinc)
 724{
 725        struct rds_cong_map *map;
 726        unsigned int map_off;
 727        unsigned int map_page;
 728        struct rds_page_frag *frag;
 729        unsigned long frag_off;
 730        unsigned long to_copy;
 731        unsigned long copied;
 732        uint64_t uncongested = 0;
 733        void *addr;
 734
 735        /* catch completely corrupt packets */
 736        if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 737                return;
 738
 739        map = conn->c_fcong;
 740        map_page = 0;
 741        map_off = 0;
 742
 743        frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 744        frag_off = 0;
 745
 746        copied = 0;
 747
 748        while (copied < RDS_CONG_MAP_BYTES) {
 749                uint64_t *src, *dst;
 750                unsigned int k;
 751
 752                to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 753                BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 754
 755                addr = kmap_atomic(sg_page(&frag->f_sg));
 756
 757                src = addr + frag_off;
 758                dst = (void *)map->m_page_addrs[map_page] + map_off;
 759                for (k = 0; k < to_copy; k += 8) {
 760                        /* Record ports that became uncongested, ie
 761                         * bits that changed from 0 to 1. */
 762                        uncongested |= ~(*src) & *dst;
 763                        *dst++ = *src++;
 764                }
 765                kunmap_atomic(addr);
 766
 767                copied += to_copy;
 768
 769                map_off += to_copy;
 770                if (map_off == PAGE_SIZE) {
 771                        map_off = 0;
 772                        map_page++;
 773                }
 774
 775                frag_off += to_copy;
 776                if (frag_off == RDS_FRAG_SIZE) {
 777                        frag = list_entry(frag->f_item.next,
 778                                          struct rds_page_frag, f_item);
 779                        frag_off = 0;
 780                }
 781        }
 782
 783        /* the congestion map is in little endian order */
 784        uncongested = le64_to_cpu(uncongested);
 785
 786        rds_cong_map_updated(map, uncongested);
 787}
 788
 789/*
 790 * Rings are posted with all the allocations they'll need to queue the
 791 * incoming message to the receiving socket so this can't fail.
 792 * All fragments start with a header, so we can make sure we're not receiving
 793 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
 794 */
 795struct rds_ib_ack_state {
 796        u64             ack_next;
 797        u64             ack_recv;
 798        unsigned int    ack_required:1;
 799        unsigned int    ack_next_valid:1;
 800        unsigned int    ack_recv_valid:1;
 801};
 802
 803static void rds_ib_process_recv(struct rds_connection *conn,
 804                                struct rds_ib_recv_work *recv, u32 data_len,
 805                                struct rds_ib_ack_state *state)
 806{
 807        struct rds_ib_connection *ic = conn->c_transport_data;
 808        struct rds_ib_incoming *ibinc = ic->i_ibinc;
 809        struct rds_header *ihdr, *hdr;
 810
 811        /* XXX shut down the connection if port 0,0 are seen? */
 812
 813        rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 814                 data_len);
 815
 816        if (data_len < sizeof(struct rds_header)) {
 817                rds_ib_conn_error(conn, "incoming message "
 818                       "from %pI4 didn't include a "
 819                       "header, disconnecting and "
 820                       "reconnecting\n",
 821                       &conn->c_faddr);
 822                return;
 823        }
 824        data_len -= sizeof(struct rds_header);
 825
 826        ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
 827
 828        /* Validate the checksum. */
 829        if (!rds_message_verify_checksum(ihdr)) {
 830                rds_ib_conn_error(conn, "incoming message "
 831                       "from %pI4 has corrupted header - "
 832                       "forcing a reconnect\n",
 833                       &conn->c_faddr);
 834                rds_stats_inc(s_recv_drop_bad_checksum);
 835                return;
 836        }
 837
 838        /* Process the ACK sequence which comes with every packet */
 839        state->ack_recv = be64_to_cpu(ihdr->h_ack);
 840        state->ack_recv_valid = 1;
 841
 842        /* Process the credits update if there was one */
 843        if (ihdr->h_credit)
 844                rds_ib_send_add_credits(conn, ihdr->h_credit);
 845
 846        if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 847                /* This is an ACK-only packet. The fact that it gets
 848                 * special treatment here is that historically, ACKs
 849                 * were rather special beasts.
 850                 */
 851                rds_ib_stats_inc(s_ib_ack_received);
 852
 853                /*
 854                 * Usually the frags make their way on to incs and are then freed as
 855                 * the inc is freed.  We don't go that route, so we have to drop the
 856                 * page ref ourselves.  We can't just leave the page on the recv
 857                 * because that confuses the dma mapping of pages and each recv's use
 858                 * of a partial page.
 859                 *
 860                 * FIXME: Fold this into the code path below.
 861                 */
 862                rds_ib_frag_free(ic, recv->r_frag);
 863                recv->r_frag = NULL;
 864                return;
 865        }
 866
 867        /*
 868         * If we don't already have an inc on the connection then this
 869         * fragment has a header and starts a message.. copy its header
 870         * into the inc and save the inc so we can hang upcoming fragments
 871         * off its list.
 872         */
 873        if (!ibinc) {
 874                ibinc = recv->r_ibinc;
 875                recv->r_ibinc = NULL;
 876                ic->i_ibinc = ibinc;
 877
 878                hdr = &ibinc->ii_inc.i_hdr;
 879                memcpy(hdr, ihdr, sizeof(*hdr));
 880                ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 881
 882                rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 883                         ic->i_recv_data_rem, hdr->h_flags);
 884        } else {
 885                hdr = &ibinc->ii_inc.i_hdr;
 886                /* We can't just use memcmp here; fragments of a
 887                 * single message may carry different ACKs */
 888                if (hdr->h_sequence != ihdr->h_sequence ||
 889                    hdr->h_len != ihdr->h_len ||
 890                    hdr->h_sport != ihdr->h_sport ||
 891                    hdr->h_dport != ihdr->h_dport) {
 892                        rds_ib_conn_error(conn,
 893                                "fragment header mismatch; forcing reconnect\n");
 894                        return;
 895                }
 896        }
 897
 898        list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 899        recv->r_frag = NULL;
 900
 901        if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 902                ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 903        else {
 904                ic->i_recv_data_rem = 0;
 905                ic->i_ibinc = NULL;
 906
 907                if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
 908                        rds_ib_cong_recv(conn, ibinc);
 909                else {
 910                        rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
 911                                          &ibinc->ii_inc, GFP_ATOMIC);
 912                        state->ack_next = be64_to_cpu(hdr->h_sequence);
 913                        state->ack_next_valid = 1;
 914                }
 915
 916                /* Evaluate the ACK_REQUIRED flag *after* we received
 917                 * the complete frame, and after bumping the next_rx
 918                 * sequence. */
 919                if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 920                        rds_stats_inc(s_recv_ack_required);
 921                        state->ack_required = 1;
 922                }
 923
 924                rds_inc_put(&ibinc->ii_inc);
 925        }
 926}
 927
 928/*
 929 * Plucking the oldest entry from the ring can be done concurrently with
 930 * the thread refilling the ring.  Each ring operation is protected by
 931 * spinlocks and the transient state of refilling doesn't change the
 932 * recording of which entry is oldest.
 933 *
 934 * This relies on IB only calling one cq comp_handler for each cq so that
 935 * there will only be one caller of rds_recv_incoming() per RDS connection.
 936 */
 937void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
 938{
 939        struct rds_connection *conn = context;
 940        struct rds_ib_connection *ic = conn->c_transport_data;
 941
 942        rdsdebug("conn %p cq %p\n", conn, cq);
 943
 944        rds_ib_stats_inc(s_ib_rx_cq_call);
 945
 946        tasklet_schedule(&ic->i_recv_tasklet);
 947}
 948
 949static inline void rds_poll_cq(struct rds_ib_connection *ic,
 950                               struct rds_ib_ack_state *state)
 951{
 952        struct rds_connection *conn = ic->conn;
 953        struct ib_wc wc;
 954        struct rds_ib_recv_work *recv;
 955
 956        while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
 957                rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 958                         (unsigned long long)wc.wr_id, wc.status,
 959                         rds_ib_wc_status_str(wc.status), wc.byte_len,
 960                         be32_to_cpu(wc.ex.imm_data));
 961                rds_ib_stats_inc(s_ib_rx_cq_event);
 962
 963                recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 964
 965                ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 966
 967                /*
 968                 * Also process recvs in connecting state because it is possible
 969                 * to get a recv completion _before_ the rdmacm ESTABLISHED
 970                 * event is processed.
 971                 */
 972                if (wc.status == IB_WC_SUCCESS) {
 973                        rds_ib_process_recv(conn, recv, wc.byte_len, state);
 974                } else {
 975                        /* We expect errors as the qp is drained during shutdown */
 976                        if (rds_conn_up(conn) || rds_conn_connecting(conn))
 977                                rds_ib_conn_error(conn, "recv completion on %pI4 had "
 978                                                  "status %u (%s), disconnecting and "
 979                                                  "reconnecting\n", &conn->c_faddr,
 980                                                  wc.status,
 981                                                  rds_ib_wc_status_str(wc.status));
 982                }
 983
 984                /*
 985                 * It's very important that we only free this ring entry if we've truly
 986                 * freed the resources allocated to the entry.  The refilling path can
 987                 * leak if we don't.
 988                 */
 989                rds_ib_ring_free(&ic->i_recv_ring, 1);
 990        }
 991}
 992
 993void rds_ib_recv_tasklet_fn(unsigned long data)
 994{
 995        struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
 996        struct rds_connection *conn = ic->conn;
 997        struct rds_ib_ack_state state = { 0, };
 998
 999        rds_poll_cq(ic, &state);
1000        ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1001        rds_poll_cq(ic, &state);
1002
1003        if (state.ack_next_valid)
1004                rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1005        if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1006                rds_send_drop_acked(conn, state.ack_recv, NULL);
1007                ic->i_ack_recv = state.ack_recv;
1008        }
1009        if (rds_conn_up(conn))
1010                rds_ib_attempt_ack(ic);
1011
1012        /* If we ever end up with a really empty receive ring, we're
1013         * in deep trouble, as the sender will definitely see RNR
1014         * timeouts. */
1015        if (rds_ib_ring_empty(&ic->i_recv_ring))
1016                rds_ib_stats_inc(s_ib_rx_ring_empty);
1017
1018        if (rds_ib_ring_low(&ic->i_recv_ring))
1019                rds_ib_recv_refill(conn, 0);
1020}
1021
1022int rds_ib_recv(struct rds_connection *conn)
1023{
1024        struct rds_ib_connection *ic = conn->c_transport_data;
1025        int ret = 0;
1026
1027        rdsdebug("conn %p\n", conn);
1028        if (rds_conn_up(conn))
1029                rds_ib_attempt_ack(ic);
1030
1031        return ret;
1032}
1033
1034int rds_ib_recv_init(void)
1035{
1036        struct sysinfo si;
1037        int ret = -ENOMEM;
1038
1039        /* Default to 30% of all available RAM for recv memory */
1040        si_meminfo(&si);
1041        rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1042
1043        rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1044                                        sizeof(struct rds_ib_incoming),
1045                                        0, SLAB_HWCACHE_ALIGN, NULL);
1046        if (!rds_ib_incoming_slab)
1047                goto out;
1048
1049        rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1050                                        sizeof(struct rds_page_frag),
1051                                        0, SLAB_HWCACHE_ALIGN, NULL);
1052        if (!rds_ib_frag_slab)
1053                kmem_cache_destroy(rds_ib_incoming_slab);
1054        else
1055                ret = 0;
1056out:
1057        return ret;
1058}
1059
1060void rds_ib_recv_exit(void)
1061{
1062        kmem_cache_destroy(rds_ib_incoming_slab);
1063        kmem_cache_destroy(rds_ib_frag_slab);
1064}
1065