linux/sound/core/pcm_lib.c
<<
>>
Prefs
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
  35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  36#define CREATE_TRACE_POINTS
  37#include "pcm_trace.h"
  38#else
  39#define trace_hwptr(substream, pos, in_interrupt)
  40#define trace_xrun(substream)
  41#define trace_hw_ptr_error(substream, reason)
  42#endif
  43
  44/*
  45 * fill ring buffer with silence
  46 * runtime->silence_start: starting pointer to silence area
  47 * runtime->silence_filled: size filled with silence
  48 * runtime->silence_threshold: threshold from application
  49 * runtime->silence_size: maximal size from application
  50 *
  51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  52 */
  53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  54{
  55        struct snd_pcm_runtime *runtime = substream->runtime;
  56        snd_pcm_uframes_t frames, ofs, transfer;
  57
  58        if (runtime->silence_size < runtime->boundary) {
  59                snd_pcm_sframes_t noise_dist, n;
  60                if (runtime->silence_start != runtime->control->appl_ptr) {
  61                        n = runtime->control->appl_ptr - runtime->silence_start;
  62                        if (n < 0)
  63                                n += runtime->boundary;
  64                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  65                                runtime->silence_filled -= n;
  66                        else
  67                                runtime->silence_filled = 0;
  68                        runtime->silence_start = runtime->control->appl_ptr;
  69                }
  70                if (runtime->silence_filled >= runtime->buffer_size)
  71                        return;
  72                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  73                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  74                        return;
  75                frames = runtime->silence_threshold - noise_dist;
  76                if (frames > runtime->silence_size)
  77                        frames = runtime->silence_size;
  78        } else {
  79                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
  80                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  81                        if (avail > runtime->buffer_size)
  82                                avail = runtime->buffer_size;
  83                        runtime->silence_filled = avail > 0 ? avail : 0;
  84                        runtime->silence_start = (runtime->status->hw_ptr +
  85                                                  runtime->silence_filled) %
  86                                                 runtime->boundary;
  87                } else {
  88                        ofs = runtime->status->hw_ptr;
  89                        frames = new_hw_ptr - ofs;
  90                        if ((snd_pcm_sframes_t)frames < 0)
  91                                frames += runtime->boundary;
  92                        runtime->silence_filled -= frames;
  93                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  94                                runtime->silence_filled = 0;
  95                                runtime->silence_start = new_hw_ptr;
  96                        } else {
  97                                runtime->silence_start = ofs;
  98                        }
  99                }
 100                frames = runtime->buffer_size - runtime->silence_filled;
 101        }
 102        if (snd_BUG_ON(frames > runtime->buffer_size))
 103                return;
 104        if (frames == 0)
 105                return;
 106        ofs = runtime->silence_start % runtime->buffer_size;
 107        while (frames > 0) {
 108                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 109                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 110                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 111                        if (substream->ops->silence) {
 112                                int err;
 113                                err = substream->ops->silence(substream, -1, ofs, transfer);
 114                                snd_BUG_ON(err < 0);
 115                        } else {
 116                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 117                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 118                        }
 119                } else {
 120                        unsigned int c;
 121                        unsigned int channels = runtime->channels;
 122                        if (substream->ops->silence) {
 123                                for (c = 0; c < channels; ++c) {
 124                                        int err;
 125                                        err = substream->ops->silence(substream, c, ofs, transfer);
 126                                        snd_BUG_ON(err < 0);
 127                                }
 128                        } else {
 129                                size_t dma_csize = runtime->dma_bytes / channels;
 130                                for (c = 0; c < channels; ++c) {
 131                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 132                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 133                                }
 134                        }
 135                }
 136                runtime->silence_filled += transfer;
 137                frames -= transfer;
 138                ofs = 0;
 139        }
 140}
 141
 142#ifdef CONFIG_SND_DEBUG
 143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 144                           char *name, size_t len)
 145{
 146        snprintf(name, len, "pcmC%dD%d%c:%d",
 147                 substream->pcm->card->number,
 148                 substream->pcm->device,
 149                 substream->stream ? 'c' : 'p',
 150                 substream->number);
 151}
 152EXPORT_SYMBOL(snd_pcm_debug_name);
 153#endif
 154
 155#define XRUN_DEBUG_BASIC        (1<<0)
 156#define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
 157#define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
 158
 159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 160
 161#define xrun_debug(substream, mask) \
 162                        ((substream)->pstr->xrun_debug & (mask))
 163#else
 164#define xrun_debug(substream, mask)     0
 165#endif
 166
 167#define dump_stack_on_xrun(substream) do {                      \
 168                if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
 169                        dump_stack();                           \
 170        } while (0)
 171
 172static void xrun(struct snd_pcm_substream *substream)
 173{
 174        struct snd_pcm_runtime *runtime = substream->runtime;
 175
 176        trace_xrun(substream);
 177        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 178                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 179        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 180        if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 181                char name[16];
 182                snd_pcm_debug_name(substream, name, sizeof(name));
 183                pcm_warn(substream->pcm, "XRUN: %s\n", name);
 184                dump_stack_on_xrun(substream);
 185        }
 186}
 187
 188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
 190        do {                                                            \
 191                trace_hw_ptr_error(substream, reason);  \
 192                if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
 193                        pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 194                                           (in_interrupt) ? 'Q' : 'P', ##args); \
 195                        dump_stack_on_xrun(substream);                  \
 196                }                                                       \
 197        } while (0)
 198
 199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 200
 201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 202
 203#endif
 204
 205int snd_pcm_update_state(struct snd_pcm_substream *substream,
 206                         struct snd_pcm_runtime *runtime)
 207{
 208        snd_pcm_uframes_t avail;
 209
 210        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 211                avail = snd_pcm_playback_avail(runtime);
 212        else
 213                avail = snd_pcm_capture_avail(runtime);
 214        if (avail > runtime->avail_max)
 215                runtime->avail_max = avail;
 216        if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 217                if (avail >= runtime->buffer_size) {
 218                        snd_pcm_drain_done(substream);
 219                        return -EPIPE;
 220                }
 221        } else {
 222                if (avail >= runtime->stop_threshold) {
 223                        xrun(substream);
 224                        return -EPIPE;
 225                }
 226        }
 227        if (runtime->twake) {
 228                if (avail >= runtime->twake)
 229                        wake_up(&runtime->tsleep);
 230        } else if (avail >= runtime->control->avail_min)
 231                wake_up(&runtime->sleep);
 232        return 0;
 233}
 234
 235static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 236                                  unsigned int in_interrupt)
 237{
 238        struct snd_pcm_runtime *runtime = substream->runtime;
 239        snd_pcm_uframes_t pos;
 240        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 241        snd_pcm_sframes_t hdelta, delta;
 242        unsigned long jdelta;
 243        unsigned long curr_jiffies;
 244        struct timespec curr_tstamp;
 245        struct timespec audio_tstamp;
 246        int crossed_boundary = 0;
 247
 248        old_hw_ptr = runtime->status->hw_ptr;
 249
 250        /*
 251         * group pointer, time and jiffies reads to allow for more
 252         * accurate correlations/corrections.
 253         * The values are stored at the end of this routine after
 254         * corrections for hw_ptr position
 255         */
 256        pos = substream->ops->pointer(substream);
 257        curr_jiffies = jiffies;
 258        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 259                snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 260
 261                if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
 262                        (substream->ops->wall_clock))
 263                        substream->ops->wall_clock(substream, &audio_tstamp);
 264        }
 265
 266        if (pos == SNDRV_PCM_POS_XRUN) {
 267                xrun(substream);
 268                return -EPIPE;
 269        }
 270        if (pos >= runtime->buffer_size) {
 271                if (printk_ratelimit()) {
 272                        char name[16];
 273                        snd_pcm_debug_name(substream, name, sizeof(name));
 274                        pcm_err(substream->pcm,
 275                                "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 276                                name, pos, runtime->buffer_size,
 277                                runtime->period_size);
 278                }
 279                pos = 0;
 280        }
 281        pos -= pos % runtime->min_align;
 282        trace_hwptr(substream, pos, in_interrupt);
 283        hw_base = runtime->hw_ptr_base;
 284        new_hw_ptr = hw_base + pos;
 285        if (in_interrupt) {
 286                /* we know that one period was processed */
 287                /* delta = "expected next hw_ptr" for in_interrupt != 0 */
 288                delta = runtime->hw_ptr_interrupt + runtime->period_size;
 289                if (delta > new_hw_ptr) {
 290                        /* check for double acknowledged interrupts */
 291                        hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 292                        if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 293                                hw_base += runtime->buffer_size;
 294                                if (hw_base >= runtime->boundary) {
 295                                        hw_base = 0;
 296                                        crossed_boundary++;
 297                                }
 298                                new_hw_ptr = hw_base + pos;
 299                                goto __delta;
 300                        }
 301                }
 302        }
 303        /* new_hw_ptr might be lower than old_hw_ptr in case when */
 304        /* pointer crosses the end of the ring buffer */
 305        if (new_hw_ptr < old_hw_ptr) {
 306                hw_base += runtime->buffer_size;
 307                if (hw_base >= runtime->boundary) {
 308                        hw_base = 0;
 309                        crossed_boundary++;
 310                }
 311                new_hw_ptr = hw_base + pos;
 312        }
 313      __delta:
 314        delta = new_hw_ptr - old_hw_ptr;
 315        if (delta < 0)
 316                delta += runtime->boundary;
 317
 318        if (runtime->no_period_wakeup) {
 319                snd_pcm_sframes_t xrun_threshold;
 320                /*
 321                 * Without regular period interrupts, we have to check
 322                 * the elapsed time to detect xruns.
 323                 */
 324                jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 325                if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 326                        goto no_delta_check;
 327                hdelta = jdelta - delta * HZ / runtime->rate;
 328                xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 329                while (hdelta > xrun_threshold) {
 330                        delta += runtime->buffer_size;
 331                        hw_base += runtime->buffer_size;
 332                        if (hw_base >= runtime->boundary) {
 333                                hw_base = 0;
 334                                crossed_boundary++;
 335                        }
 336                        new_hw_ptr = hw_base + pos;
 337                        hdelta -= runtime->hw_ptr_buffer_jiffies;
 338                }
 339                goto no_delta_check;
 340        }
 341
 342        /* something must be really wrong */
 343        if (delta >= runtime->buffer_size + runtime->period_size) {
 344                hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 345                             "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 346                             substream->stream, (long)pos,
 347                             (long)new_hw_ptr, (long)old_hw_ptr);
 348                return 0;
 349        }
 350
 351        /* Do jiffies check only in xrun_debug mode */
 352        if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 353                goto no_jiffies_check;
 354
 355        /* Skip the jiffies check for hardwares with BATCH flag.
 356         * Such hardware usually just increases the position at each IRQ,
 357         * thus it can't give any strange position.
 358         */
 359        if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 360                goto no_jiffies_check;
 361        hdelta = delta;
 362        if (hdelta < runtime->delay)
 363                goto no_jiffies_check;
 364        hdelta -= runtime->delay;
 365        jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 366        if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 367                delta = jdelta /
 368                        (((runtime->period_size * HZ) / runtime->rate)
 369                                                                + HZ/100);
 370                /* move new_hw_ptr according jiffies not pos variable */
 371                new_hw_ptr = old_hw_ptr;
 372                hw_base = delta;
 373                /* use loop to avoid checks for delta overflows */
 374                /* the delta value is small or zero in most cases */
 375                while (delta > 0) {
 376                        new_hw_ptr += runtime->period_size;
 377                        if (new_hw_ptr >= runtime->boundary) {
 378                                new_hw_ptr -= runtime->boundary;
 379                                crossed_boundary--;
 380                        }
 381                        delta--;
 382                }
 383                /* align hw_base to buffer_size */
 384                hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 385                             "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 386                             (long)pos, (long)hdelta,
 387                             (long)runtime->period_size, jdelta,
 388                             ((hdelta * HZ) / runtime->rate), hw_base,
 389                             (unsigned long)old_hw_ptr,
 390                             (unsigned long)new_hw_ptr);
 391                /* reset values to proper state */
 392                delta = 0;
 393                hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 394        }
 395 no_jiffies_check:
 396        if (delta > runtime->period_size + runtime->period_size / 2) {
 397                hw_ptr_error(substream, in_interrupt,
 398                             "Lost interrupts?",
 399                             "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 400                             substream->stream, (long)delta,
 401                             (long)new_hw_ptr,
 402                             (long)old_hw_ptr);
 403        }
 404
 405 no_delta_check:
 406        if (runtime->status->hw_ptr == new_hw_ptr)
 407                return 0;
 408
 409        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 410            runtime->silence_size > 0)
 411                snd_pcm_playback_silence(substream, new_hw_ptr);
 412
 413        if (in_interrupt) {
 414                delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 415                if (delta < 0)
 416                        delta += runtime->boundary;
 417                delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 418                runtime->hw_ptr_interrupt += delta;
 419                if (runtime->hw_ptr_interrupt >= runtime->boundary)
 420                        runtime->hw_ptr_interrupt -= runtime->boundary;
 421        }
 422        runtime->hw_ptr_base = hw_base;
 423        runtime->status->hw_ptr = new_hw_ptr;
 424        runtime->hw_ptr_jiffies = curr_jiffies;
 425        if (crossed_boundary) {
 426                snd_BUG_ON(crossed_boundary != 1);
 427                runtime->hw_ptr_wrap += runtime->boundary;
 428        }
 429        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 430                runtime->status->tstamp = curr_tstamp;
 431
 432                if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
 433                        /*
 434                         * no wall clock available, provide audio timestamp
 435                         * derived from pointer position+delay
 436                         */
 437                        u64 audio_frames, audio_nsecs;
 438
 439                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 440                                audio_frames = runtime->hw_ptr_wrap
 441                                        + runtime->status->hw_ptr
 442                                        - runtime->delay;
 443                        else
 444                                audio_frames = runtime->hw_ptr_wrap
 445                                        + runtime->status->hw_ptr
 446                                        + runtime->delay;
 447                        audio_nsecs = div_u64(audio_frames * 1000000000LL,
 448                                        runtime->rate);
 449                        audio_tstamp = ns_to_timespec(audio_nsecs);
 450                }
 451                runtime->status->audio_tstamp = audio_tstamp;
 452        }
 453
 454        return snd_pcm_update_state(substream, runtime);
 455}
 456
 457/* CAUTION: call it with irq disabled */
 458int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 459{
 460        return snd_pcm_update_hw_ptr0(substream, 0);
 461}
 462
 463/**
 464 * snd_pcm_set_ops - set the PCM operators
 465 * @pcm: the pcm instance
 466 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 467 * @ops: the operator table
 468 *
 469 * Sets the given PCM operators to the pcm instance.
 470 */
 471void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 472                     const struct snd_pcm_ops *ops)
 473{
 474        struct snd_pcm_str *stream = &pcm->streams[direction];
 475        struct snd_pcm_substream *substream;
 476        
 477        for (substream = stream->substream; substream != NULL; substream = substream->next)
 478                substream->ops = ops;
 479}
 480
 481EXPORT_SYMBOL(snd_pcm_set_ops);
 482
 483/**
 484 * snd_pcm_sync - set the PCM sync id
 485 * @substream: the pcm substream
 486 *
 487 * Sets the PCM sync identifier for the card.
 488 */
 489void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 490{
 491        struct snd_pcm_runtime *runtime = substream->runtime;
 492        
 493        runtime->sync.id32[0] = substream->pcm->card->number;
 494        runtime->sync.id32[1] = -1;
 495        runtime->sync.id32[2] = -1;
 496        runtime->sync.id32[3] = -1;
 497}
 498
 499EXPORT_SYMBOL(snd_pcm_set_sync);
 500
 501/*
 502 *  Standard ioctl routine
 503 */
 504
 505static inline unsigned int div32(unsigned int a, unsigned int b, 
 506                                 unsigned int *r)
 507{
 508        if (b == 0) {
 509                *r = 0;
 510                return UINT_MAX;
 511        }
 512        *r = a % b;
 513        return a / b;
 514}
 515
 516static inline unsigned int div_down(unsigned int a, unsigned int b)
 517{
 518        if (b == 0)
 519                return UINT_MAX;
 520        return a / b;
 521}
 522
 523static inline unsigned int div_up(unsigned int a, unsigned int b)
 524{
 525        unsigned int r;
 526        unsigned int q;
 527        if (b == 0)
 528                return UINT_MAX;
 529        q = div32(a, b, &r);
 530        if (r)
 531                ++q;
 532        return q;
 533}
 534
 535static inline unsigned int mul(unsigned int a, unsigned int b)
 536{
 537        if (a == 0)
 538                return 0;
 539        if (div_down(UINT_MAX, a) < b)
 540                return UINT_MAX;
 541        return a * b;
 542}
 543
 544static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 545                                    unsigned int c, unsigned int *r)
 546{
 547        u_int64_t n = (u_int64_t) a * b;
 548        if (c == 0) {
 549                snd_BUG_ON(!n);
 550                *r = 0;
 551                return UINT_MAX;
 552        }
 553        n = div_u64_rem(n, c, r);
 554        if (n >= UINT_MAX) {
 555                *r = 0;
 556                return UINT_MAX;
 557        }
 558        return n;
 559}
 560
 561/**
 562 * snd_interval_refine - refine the interval value of configurator
 563 * @i: the interval value to refine
 564 * @v: the interval value to refer to
 565 *
 566 * Refines the interval value with the reference value.
 567 * The interval is changed to the range satisfying both intervals.
 568 * The interval status (min, max, integer, etc.) are evaluated.
 569 *
 570 * Return: Positive if the value is changed, zero if it's not changed, or a
 571 * negative error code.
 572 */
 573int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 574{
 575        int changed = 0;
 576        if (snd_BUG_ON(snd_interval_empty(i)))
 577                return -EINVAL;
 578        if (i->min < v->min) {
 579                i->min = v->min;
 580                i->openmin = v->openmin;
 581                changed = 1;
 582        } else if (i->min == v->min && !i->openmin && v->openmin) {
 583                i->openmin = 1;
 584                changed = 1;
 585        }
 586        if (i->max > v->max) {
 587                i->max = v->max;
 588                i->openmax = v->openmax;
 589                changed = 1;
 590        } else if (i->max == v->max && !i->openmax && v->openmax) {
 591                i->openmax = 1;
 592                changed = 1;
 593        }
 594        if (!i->integer && v->integer) {
 595                i->integer = 1;
 596                changed = 1;
 597        }
 598        if (i->integer) {
 599                if (i->openmin) {
 600                        i->min++;
 601                        i->openmin = 0;
 602                }
 603                if (i->openmax) {
 604                        i->max--;
 605                        i->openmax = 0;
 606                }
 607        } else if (!i->openmin && !i->openmax && i->min == i->max)
 608                i->integer = 1;
 609        if (snd_interval_checkempty(i)) {
 610                snd_interval_none(i);
 611                return -EINVAL;
 612        }
 613        return changed;
 614}
 615
 616EXPORT_SYMBOL(snd_interval_refine);
 617
 618static int snd_interval_refine_first(struct snd_interval *i)
 619{
 620        if (snd_BUG_ON(snd_interval_empty(i)))
 621                return -EINVAL;
 622        if (snd_interval_single(i))
 623                return 0;
 624        i->max = i->min;
 625        i->openmax = i->openmin;
 626        if (i->openmax)
 627                i->max++;
 628        return 1;
 629}
 630
 631static int snd_interval_refine_last(struct snd_interval *i)
 632{
 633        if (snd_BUG_ON(snd_interval_empty(i)))
 634                return -EINVAL;
 635        if (snd_interval_single(i))
 636                return 0;
 637        i->min = i->max;
 638        i->openmin = i->openmax;
 639        if (i->openmin)
 640                i->min--;
 641        return 1;
 642}
 643
 644void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 645{
 646        if (a->empty || b->empty) {
 647                snd_interval_none(c);
 648                return;
 649        }
 650        c->empty = 0;
 651        c->min = mul(a->min, b->min);
 652        c->openmin = (a->openmin || b->openmin);
 653        c->max = mul(a->max,  b->max);
 654        c->openmax = (a->openmax || b->openmax);
 655        c->integer = (a->integer && b->integer);
 656}
 657
 658/**
 659 * snd_interval_div - refine the interval value with division
 660 * @a: dividend
 661 * @b: divisor
 662 * @c: quotient
 663 *
 664 * c = a / b
 665 *
 666 * Returns non-zero if the value is changed, zero if not changed.
 667 */
 668void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 669{
 670        unsigned int r;
 671        if (a->empty || b->empty) {
 672                snd_interval_none(c);
 673                return;
 674        }
 675        c->empty = 0;
 676        c->min = div32(a->min, b->max, &r);
 677        c->openmin = (r || a->openmin || b->openmax);
 678        if (b->min > 0) {
 679                c->max = div32(a->max, b->min, &r);
 680                if (r) {
 681                        c->max++;
 682                        c->openmax = 1;
 683                } else
 684                        c->openmax = (a->openmax || b->openmin);
 685        } else {
 686                c->max = UINT_MAX;
 687                c->openmax = 0;
 688        }
 689        c->integer = 0;
 690}
 691
 692/**
 693 * snd_interval_muldivk - refine the interval value
 694 * @a: dividend 1
 695 * @b: dividend 2
 696 * @k: divisor (as integer)
 697 * @c: result
 698  *
 699 * c = a * b / k
 700 *
 701 * Returns non-zero if the value is changed, zero if not changed.
 702 */
 703void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 704                      unsigned int k, struct snd_interval *c)
 705{
 706        unsigned int r;
 707        if (a->empty || b->empty) {
 708                snd_interval_none(c);
 709                return;
 710        }
 711        c->empty = 0;
 712        c->min = muldiv32(a->min, b->min, k, &r);
 713        c->openmin = (r || a->openmin || b->openmin);
 714        c->max = muldiv32(a->max, b->max, k, &r);
 715        if (r) {
 716                c->max++;
 717                c->openmax = 1;
 718        } else
 719                c->openmax = (a->openmax || b->openmax);
 720        c->integer = 0;
 721}
 722
 723/**
 724 * snd_interval_mulkdiv - refine the interval value
 725 * @a: dividend 1
 726 * @k: dividend 2 (as integer)
 727 * @b: divisor
 728 * @c: result
 729 *
 730 * c = a * k / b
 731 *
 732 * Returns non-zero if the value is changed, zero if not changed.
 733 */
 734void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 735                      const struct snd_interval *b, struct snd_interval *c)
 736{
 737        unsigned int r;
 738        if (a->empty || b->empty) {
 739                snd_interval_none(c);
 740                return;
 741        }
 742        c->empty = 0;
 743        c->min = muldiv32(a->min, k, b->max, &r);
 744        c->openmin = (r || a->openmin || b->openmax);
 745        if (b->min > 0) {
 746                c->max = muldiv32(a->max, k, b->min, &r);
 747                if (r) {
 748                        c->max++;
 749                        c->openmax = 1;
 750                } else
 751                        c->openmax = (a->openmax || b->openmin);
 752        } else {
 753                c->max = UINT_MAX;
 754                c->openmax = 0;
 755        }
 756        c->integer = 0;
 757}
 758
 759/* ---- */
 760
 761
 762/**
 763 * snd_interval_ratnum - refine the interval value
 764 * @i: interval to refine
 765 * @rats_count: number of ratnum_t 
 766 * @rats: ratnum_t array
 767 * @nump: pointer to store the resultant numerator
 768 * @denp: pointer to store the resultant denominator
 769 *
 770 * Return: Positive if the value is changed, zero if it's not changed, or a
 771 * negative error code.
 772 */
 773int snd_interval_ratnum(struct snd_interval *i,
 774                        unsigned int rats_count, struct snd_ratnum *rats,
 775                        unsigned int *nump, unsigned int *denp)
 776{
 777        unsigned int best_num, best_den;
 778        int best_diff;
 779        unsigned int k;
 780        struct snd_interval t;
 781        int err;
 782        unsigned int result_num, result_den;
 783        int result_diff;
 784
 785        best_num = best_den = best_diff = 0;
 786        for (k = 0; k < rats_count; ++k) {
 787                unsigned int num = rats[k].num;
 788                unsigned int den;
 789                unsigned int q = i->min;
 790                int diff;
 791                if (q == 0)
 792                        q = 1;
 793                den = div_up(num, q);
 794                if (den < rats[k].den_min)
 795                        continue;
 796                if (den > rats[k].den_max)
 797                        den = rats[k].den_max;
 798                else {
 799                        unsigned int r;
 800                        r = (den - rats[k].den_min) % rats[k].den_step;
 801                        if (r != 0)
 802                                den -= r;
 803                }
 804                diff = num - q * den;
 805                if (diff < 0)
 806                        diff = -diff;
 807                if (best_num == 0 ||
 808                    diff * best_den < best_diff * den) {
 809                        best_diff = diff;
 810                        best_den = den;
 811                        best_num = num;
 812                }
 813        }
 814        if (best_den == 0) {
 815                i->empty = 1;
 816                return -EINVAL;
 817        }
 818        t.min = div_down(best_num, best_den);
 819        t.openmin = !!(best_num % best_den);
 820        
 821        result_num = best_num;
 822        result_diff = best_diff;
 823        result_den = best_den;
 824        best_num = best_den = best_diff = 0;
 825        for (k = 0; k < rats_count; ++k) {
 826                unsigned int num = rats[k].num;
 827                unsigned int den;
 828                unsigned int q = i->max;
 829                int diff;
 830                if (q == 0) {
 831                        i->empty = 1;
 832                        return -EINVAL;
 833                }
 834                den = div_down(num, q);
 835                if (den > rats[k].den_max)
 836                        continue;
 837                if (den < rats[k].den_min)
 838                        den = rats[k].den_min;
 839                else {
 840                        unsigned int r;
 841                        r = (den - rats[k].den_min) % rats[k].den_step;
 842                        if (r != 0)
 843                                den += rats[k].den_step - r;
 844                }
 845                diff = q * den - num;
 846                if (diff < 0)
 847                        diff = -diff;
 848                if (best_num == 0 ||
 849                    diff * best_den < best_diff * den) {
 850                        best_diff = diff;
 851                        best_den = den;
 852                        best_num = num;
 853                }
 854        }
 855        if (best_den == 0) {
 856                i->empty = 1;
 857                return -EINVAL;
 858        }
 859        t.max = div_up(best_num, best_den);
 860        t.openmax = !!(best_num % best_den);
 861        t.integer = 0;
 862        err = snd_interval_refine(i, &t);
 863        if (err < 0)
 864                return err;
 865
 866        if (snd_interval_single(i)) {
 867                if (best_diff * result_den < result_diff * best_den) {
 868                        result_num = best_num;
 869                        result_den = best_den;
 870                }
 871                if (nump)
 872                        *nump = result_num;
 873                if (denp)
 874                        *denp = result_den;
 875        }
 876        return err;
 877}
 878
 879EXPORT_SYMBOL(snd_interval_ratnum);
 880
 881/**
 882 * snd_interval_ratden - refine the interval value
 883 * @i: interval to refine
 884 * @rats_count: number of struct ratden
 885 * @rats: struct ratden array
 886 * @nump: pointer to store the resultant numerator
 887 * @denp: pointer to store the resultant denominator
 888 *
 889 * Return: Positive if the value is changed, zero if it's not changed, or a
 890 * negative error code.
 891 */
 892static int snd_interval_ratden(struct snd_interval *i,
 893                               unsigned int rats_count, struct snd_ratden *rats,
 894                               unsigned int *nump, unsigned int *denp)
 895{
 896        unsigned int best_num, best_diff, best_den;
 897        unsigned int k;
 898        struct snd_interval t;
 899        int err;
 900
 901        best_num = best_den = best_diff = 0;
 902        for (k = 0; k < rats_count; ++k) {
 903                unsigned int num;
 904                unsigned int den = rats[k].den;
 905                unsigned int q = i->min;
 906                int diff;
 907                num = mul(q, den);
 908                if (num > rats[k].num_max)
 909                        continue;
 910                if (num < rats[k].num_min)
 911                        num = rats[k].num_max;
 912                else {
 913                        unsigned int r;
 914                        r = (num - rats[k].num_min) % rats[k].num_step;
 915                        if (r != 0)
 916                                num += rats[k].num_step - r;
 917                }
 918                diff = num - q * den;
 919                if (best_num == 0 ||
 920                    diff * best_den < best_diff * den) {
 921                        best_diff = diff;
 922                        best_den = den;
 923                        best_num = num;
 924                }
 925        }
 926        if (best_den == 0) {
 927                i->empty = 1;
 928                return -EINVAL;
 929        }
 930        t.min = div_down(best_num, best_den);
 931        t.openmin = !!(best_num % best_den);
 932        
 933        best_num = best_den = best_diff = 0;
 934        for (k = 0; k < rats_count; ++k) {
 935                unsigned int num;
 936                unsigned int den = rats[k].den;
 937                unsigned int q = i->max;
 938                int diff;
 939                num = mul(q, den);
 940                if (num < rats[k].num_min)
 941                        continue;
 942                if (num > rats[k].num_max)
 943                        num = rats[k].num_max;
 944                else {
 945                        unsigned int r;
 946                        r = (num - rats[k].num_min) % rats[k].num_step;
 947                        if (r != 0)
 948                                num -= r;
 949                }
 950                diff = q * den - num;
 951                if (best_num == 0 ||
 952                    diff * best_den < best_diff * den) {
 953                        best_diff = diff;
 954                        best_den = den;
 955                        best_num = num;
 956                }
 957        }
 958        if (best_den == 0) {
 959                i->empty = 1;
 960                return -EINVAL;
 961        }
 962        t.max = div_up(best_num, best_den);
 963        t.openmax = !!(best_num % best_den);
 964        t.integer = 0;
 965        err = snd_interval_refine(i, &t);
 966        if (err < 0)
 967                return err;
 968
 969        if (snd_interval_single(i)) {
 970                if (nump)
 971                        *nump = best_num;
 972                if (denp)
 973                        *denp = best_den;
 974        }
 975        return err;
 976}
 977
 978/**
 979 * snd_interval_list - refine the interval value from the list
 980 * @i: the interval value to refine
 981 * @count: the number of elements in the list
 982 * @list: the value list
 983 * @mask: the bit-mask to evaluate
 984 *
 985 * Refines the interval value from the list.
 986 * When mask is non-zero, only the elements corresponding to bit 1 are
 987 * evaluated.
 988 *
 989 * Return: Positive if the value is changed, zero if it's not changed, or a
 990 * negative error code.
 991 */
 992int snd_interval_list(struct snd_interval *i, unsigned int count,
 993                      const unsigned int *list, unsigned int mask)
 994{
 995        unsigned int k;
 996        struct snd_interval list_range;
 997
 998        if (!count) {
 999                i->empty = 1;
1000                return -EINVAL;
1001        }
1002        snd_interval_any(&list_range);
1003        list_range.min = UINT_MAX;
1004        list_range.max = 0;
1005        for (k = 0; k < count; k++) {
1006                if (mask && !(mask & (1 << k)))
1007                        continue;
1008                if (!snd_interval_test(i, list[k]))
1009                        continue;
1010                list_range.min = min(list_range.min, list[k]);
1011                list_range.max = max(list_range.max, list[k]);
1012        }
1013        return snd_interval_refine(i, &list_range);
1014}
1015
1016EXPORT_SYMBOL(snd_interval_list);
1017
1018static int snd_interval_step(struct snd_interval *i, unsigned int step)
1019{
1020        unsigned int n;
1021        int changed = 0;
1022        n = i->min % step;
1023        if (n != 0 || i->openmin) {
1024                i->min += step - n;
1025                i->openmin = 0;
1026                changed = 1;
1027        }
1028        n = i->max % step;
1029        if (n != 0 || i->openmax) {
1030                i->max -= n;
1031                i->openmax = 0;
1032                changed = 1;
1033        }
1034        if (snd_interval_checkempty(i)) {
1035                i->empty = 1;
1036                return -EINVAL;
1037        }
1038        return changed;
1039}
1040
1041/* Info constraints helpers */
1042
1043/**
1044 * snd_pcm_hw_rule_add - add the hw-constraint rule
1045 * @runtime: the pcm runtime instance
1046 * @cond: condition bits
1047 * @var: the variable to evaluate
1048 * @func: the evaluation function
1049 * @private: the private data pointer passed to function
1050 * @dep: the dependent variables
1051 *
1052 * Return: Zero if successful, or a negative error code on failure.
1053 */
1054int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1055                        int var,
1056                        snd_pcm_hw_rule_func_t func, void *private,
1057                        int dep, ...)
1058{
1059        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1060        struct snd_pcm_hw_rule *c;
1061        unsigned int k;
1062        va_list args;
1063        va_start(args, dep);
1064        if (constrs->rules_num >= constrs->rules_all) {
1065                struct snd_pcm_hw_rule *new;
1066                unsigned int new_rules = constrs->rules_all + 16;
1067                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1068                if (!new) {
1069                        va_end(args);
1070                        return -ENOMEM;
1071                }
1072                if (constrs->rules) {
1073                        memcpy(new, constrs->rules,
1074                               constrs->rules_num * sizeof(*c));
1075                        kfree(constrs->rules);
1076                }
1077                constrs->rules = new;
1078                constrs->rules_all = new_rules;
1079        }
1080        c = &constrs->rules[constrs->rules_num];
1081        c->cond = cond;
1082        c->func = func;
1083        c->var = var;
1084        c->private = private;
1085        k = 0;
1086        while (1) {
1087                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1088                        va_end(args);
1089                        return -EINVAL;
1090                }
1091                c->deps[k++] = dep;
1092                if (dep < 0)
1093                        break;
1094                dep = va_arg(args, int);
1095        }
1096        constrs->rules_num++;
1097        va_end(args);
1098        return 0;
1099}
1100
1101EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1102
1103/**
1104 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1105 * @runtime: PCM runtime instance
1106 * @var: hw_params variable to apply the mask
1107 * @mask: the bitmap mask
1108 *
1109 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1110 *
1111 * Return: Zero if successful, or a negative error code on failure.
1112 */
1113int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1114                               u_int32_t mask)
1115{
1116        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1117        struct snd_mask *maskp = constrs_mask(constrs, var);
1118        *maskp->bits &= mask;
1119        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1120        if (*maskp->bits == 0)
1121                return -EINVAL;
1122        return 0;
1123}
1124
1125/**
1126 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1127 * @runtime: PCM runtime instance
1128 * @var: hw_params variable to apply the mask
1129 * @mask: the 64bit bitmap mask
1130 *
1131 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1132 *
1133 * Return: Zero if successful, or a negative error code on failure.
1134 */
1135int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1136                                 u_int64_t mask)
1137{
1138        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1139        struct snd_mask *maskp = constrs_mask(constrs, var);
1140        maskp->bits[0] &= (u_int32_t)mask;
1141        maskp->bits[1] &= (u_int32_t)(mask >> 32);
1142        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1143        if (! maskp->bits[0] && ! maskp->bits[1])
1144                return -EINVAL;
1145        return 0;
1146}
1147EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1148
1149/**
1150 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1151 * @runtime: PCM runtime instance
1152 * @var: hw_params variable to apply the integer constraint
1153 *
1154 * Apply the constraint of integer to an interval parameter.
1155 *
1156 * Return: Positive if the value is changed, zero if it's not changed, or a
1157 * negative error code.
1158 */
1159int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1160{
1161        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162        return snd_interval_setinteger(constrs_interval(constrs, var));
1163}
1164
1165EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1166
1167/**
1168 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1169 * @runtime: PCM runtime instance
1170 * @var: hw_params variable to apply the range
1171 * @min: the minimal value
1172 * @max: the maximal value
1173 * 
1174 * Apply the min/max range constraint to an interval parameter.
1175 *
1176 * Return: Positive if the value is changed, zero if it's not changed, or a
1177 * negative error code.
1178 */
1179int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1180                                 unsigned int min, unsigned int max)
1181{
1182        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1183        struct snd_interval t;
1184        t.min = min;
1185        t.max = max;
1186        t.openmin = t.openmax = 0;
1187        t.integer = 0;
1188        return snd_interval_refine(constrs_interval(constrs, var), &t);
1189}
1190
1191EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1192
1193static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1194                                struct snd_pcm_hw_rule *rule)
1195{
1196        struct snd_pcm_hw_constraint_list *list = rule->private;
1197        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1198}               
1199
1200
1201/**
1202 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1203 * @runtime: PCM runtime instance
1204 * @cond: condition bits
1205 * @var: hw_params variable to apply the list constraint
1206 * @l: list
1207 * 
1208 * Apply the list of constraints to an interval parameter.
1209 *
1210 * Return: Zero if successful, or a negative error code on failure.
1211 */
1212int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1213                               unsigned int cond,
1214                               snd_pcm_hw_param_t var,
1215                               const struct snd_pcm_hw_constraint_list *l)
1216{
1217        return snd_pcm_hw_rule_add(runtime, cond, var,
1218                                   snd_pcm_hw_rule_list, (void *)l,
1219                                   var, -1);
1220}
1221
1222EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1223
1224static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1225                                   struct snd_pcm_hw_rule *rule)
1226{
1227        struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1228        unsigned int num = 0, den = 0;
1229        int err;
1230        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1231                                  r->nrats, r->rats, &num, &den);
1232        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1233                params->rate_num = num;
1234                params->rate_den = den;
1235        }
1236        return err;
1237}
1238
1239/**
1240 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1241 * @runtime: PCM runtime instance
1242 * @cond: condition bits
1243 * @var: hw_params variable to apply the ratnums constraint
1244 * @r: struct snd_ratnums constriants
1245 *
1246 * Return: Zero if successful, or a negative error code on failure.
1247 */
1248int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1249                                  unsigned int cond,
1250                                  snd_pcm_hw_param_t var,
1251                                  struct snd_pcm_hw_constraint_ratnums *r)
1252{
1253        return snd_pcm_hw_rule_add(runtime, cond, var,
1254                                   snd_pcm_hw_rule_ratnums, r,
1255                                   var, -1);
1256}
1257
1258EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1259
1260static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1261                                   struct snd_pcm_hw_rule *rule)
1262{
1263        struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1264        unsigned int num = 0, den = 0;
1265        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1266                                  r->nrats, r->rats, &num, &den);
1267        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1268                params->rate_num = num;
1269                params->rate_den = den;
1270        }
1271        return err;
1272}
1273
1274/**
1275 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1276 * @runtime: PCM runtime instance
1277 * @cond: condition bits
1278 * @var: hw_params variable to apply the ratdens constraint
1279 * @r: struct snd_ratdens constriants
1280 *
1281 * Return: Zero if successful, or a negative error code on failure.
1282 */
1283int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1284                                  unsigned int cond,
1285                                  snd_pcm_hw_param_t var,
1286                                  struct snd_pcm_hw_constraint_ratdens *r)
1287{
1288        return snd_pcm_hw_rule_add(runtime, cond, var,
1289                                   snd_pcm_hw_rule_ratdens, r,
1290                                   var, -1);
1291}
1292
1293EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1294
1295static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1296                                  struct snd_pcm_hw_rule *rule)
1297{
1298        unsigned int l = (unsigned long) rule->private;
1299        int width = l & 0xffff;
1300        unsigned int msbits = l >> 16;
1301        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1302        if (snd_interval_single(i) && snd_interval_value(i) == width)
1303                params->msbits = msbits;
1304        return 0;
1305}
1306
1307/**
1308 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1309 * @runtime: PCM runtime instance
1310 * @cond: condition bits
1311 * @width: sample bits width
1312 * @msbits: msbits width
1313 *
1314 * Return: Zero if successful, or a negative error code on failure.
1315 */
1316int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1317                                 unsigned int cond,
1318                                 unsigned int width,
1319                                 unsigned int msbits)
1320{
1321        unsigned long l = (msbits << 16) | width;
1322        return snd_pcm_hw_rule_add(runtime, cond, -1,
1323                                    snd_pcm_hw_rule_msbits,
1324                                    (void*) l,
1325                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1326}
1327
1328EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1329
1330static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1331                                struct snd_pcm_hw_rule *rule)
1332{
1333        unsigned long step = (unsigned long) rule->private;
1334        return snd_interval_step(hw_param_interval(params, rule->var), step);
1335}
1336
1337/**
1338 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1339 * @runtime: PCM runtime instance
1340 * @cond: condition bits
1341 * @var: hw_params variable to apply the step constraint
1342 * @step: step size
1343 *
1344 * Return: Zero if successful, or a negative error code on failure.
1345 */
1346int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1347                               unsigned int cond,
1348                               snd_pcm_hw_param_t var,
1349                               unsigned long step)
1350{
1351        return snd_pcm_hw_rule_add(runtime, cond, var, 
1352                                   snd_pcm_hw_rule_step, (void *) step,
1353                                   var, -1);
1354}
1355
1356EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1357
1358static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1359{
1360        static unsigned int pow2_sizes[] = {
1361                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1362                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1363                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1364                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1365        };
1366        return snd_interval_list(hw_param_interval(params, rule->var),
1367                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1368}               
1369
1370/**
1371 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1372 * @runtime: PCM runtime instance
1373 * @cond: condition bits
1374 * @var: hw_params variable to apply the power-of-2 constraint
1375 *
1376 * Return: Zero if successful, or a negative error code on failure.
1377 */
1378int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1379                               unsigned int cond,
1380                               snd_pcm_hw_param_t var)
1381{
1382        return snd_pcm_hw_rule_add(runtime, cond, var, 
1383                                   snd_pcm_hw_rule_pow2, NULL,
1384                                   var, -1);
1385}
1386
1387EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1388
1389static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1390                                           struct snd_pcm_hw_rule *rule)
1391{
1392        unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1393        struct snd_interval *rate;
1394
1395        rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1396        return snd_interval_list(rate, 1, &base_rate, 0);
1397}
1398
1399/**
1400 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1401 * @runtime: PCM runtime instance
1402 * @base_rate: the rate at which the hardware does not resample
1403 *
1404 * Return: Zero if successful, or a negative error code on failure.
1405 */
1406int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1407                               unsigned int base_rate)
1408{
1409        return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1410                                   SNDRV_PCM_HW_PARAM_RATE,
1411                                   snd_pcm_hw_rule_noresample_func,
1412                                   (void *)(uintptr_t)base_rate,
1413                                   SNDRV_PCM_HW_PARAM_RATE, -1);
1414}
1415EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1416
1417static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1418                                  snd_pcm_hw_param_t var)
1419{
1420        if (hw_is_mask(var)) {
1421                snd_mask_any(hw_param_mask(params, var));
1422                params->cmask |= 1 << var;
1423                params->rmask |= 1 << var;
1424                return;
1425        }
1426        if (hw_is_interval(var)) {
1427                snd_interval_any(hw_param_interval(params, var));
1428                params->cmask |= 1 << var;
1429                params->rmask |= 1 << var;
1430                return;
1431        }
1432        snd_BUG();
1433}
1434
1435void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1436{
1437        unsigned int k;
1438        memset(params, 0, sizeof(*params));
1439        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1440                _snd_pcm_hw_param_any(params, k);
1441        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1442                _snd_pcm_hw_param_any(params, k);
1443        params->info = ~0U;
1444}
1445
1446EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1447
1448/**
1449 * snd_pcm_hw_param_value - return @params field @var value
1450 * @params: the hw_params instance
1451 * @var: parameter to retrieve
1452 * @dir: pointer to the direction (-1,0,1) or %NULL
1453 *
1454 * Return: The value for field @var if it's fixed in configuration space
1455 * defined by @params. -%EINVAL otherwise.
1456 */
1457int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1458                           snd_pcm_hw_param_t var, int *dir)
1459{
1460        if (hw_is_mask(var)) {
1461                const struct snd_mask *mask = hw_param_mask_c(params, var);
1462                if (!snd_mask_single(mask))
1463                        return -EINVAL;
1464                if (dir)
1465                        *dir = 0;
1466                return snd_mask_value(mask);
1467        }
1468        if (hw_is_interval(var)) {
1469                const struct snd_interval *i = hw_param_interval_c(params, var);
1470                if (!snd_interval_single(i))
1471                        return -EINVAL;
1472                if (dir)
1473                        *dir = i->openmin;
1474                return snd_interval_value(i);
1475        }
1476        return -EINVAL;
1477}
1478
1479EXPORT_SYMBOL(snd_pcm_hw_param_value);
1480
1481void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1482                                snd_pcm_hw_param_t var)
1483{
1484        if (hw_is_mask(var)) {
1485                snd_mask_none(hw_param_mask(params, var));
1486                params->cmask |= 1 << var;
1487                params->rmask |= 1 << var;
1488        } else if (hw_is_interval(var)) {
1489                snd_interval_none(hw_param_interval(params, var));
1490                params->cmask |= 1 << var;
1491                params->rmask |= 1 << var;
1492        } else {
1493                snd_BUG();
1494        }
1495}
1496
1497EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1498
1499static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1500                                   snd_pcm_hw_param_t var)
1501{
1502        int changed;
1503        if (hw_is_mask(var))
1504                changed = snd_mask_refine_first(hw_param_mask(params, var));
1505        else if (hw_is_interval(var))
1506                changed = snd_interval_refine_first(hw_param_interval(params, var));
1507        else
1508                return -EINVAL;
1509        if (changed) {
1510                params->cmask |= 1 << var;
1511                params->rmask |= 1 << var;
1512        }
1513        return changed;
1514}
1515
1516
1517/**
1518 * snd_pcm_hw_param_first - refine config space and return minimum value
1519 * @pcm: PCM instance
1520 * @params: the hw_params instance
1521 * @var: parameter to retrieve
1522 * @dir: pointer to the direction (-1,0,1) or %NULL
1523 *
1524 * Inside configuration space defined by @params remove from @var all
1525 * values > minimum. Reduce configuration space accordingly.
1526 *
1527 * Return: The minimum, or a negative error code on failure.
1528 */
1529int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1530                           struct snd_pcm_hw_params *params, 
1531                           snd_pcm_hw_param_t var, int *dir)
1532{
1533        int changed = _snd_pcm_hw_param_first(params, var);
1534        if (changed < 0)
1535                return changed;
1536        if (params->rmask) {
1537                int err = snd_pcm_hw_refine(pcm, params);
1538                if (snd_BUG_ON(err < 0))
1539                        return err;
1540        }
1541        return snd_pcm_hw_param_value(params, var, dir);
1542}
1543
1544EXPORT_SYMBOL(snd_pcm_hw_param_first);
1545
1546static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1547                                  snd_pcm_hw_param_t var)
1548{
1549        int changed;
1550        if (hw_is_mask(var))
1551                changed = snd_mask_refine_last(hw_param_mask(params, var));
1552        else if (hw_is_interval(var))
1553                changed = snd_interval_refine_last(hw_param_interval(params, var));
1554        else
1555                return -EINVAL;
1556        if (changed) {
1557                params->cmask |= 1 << var;
1558                params->rmask |= 1 << var;
1559        }
1560        return changed;
1561}
1562
1563
1564/**
1565 * snd_pcm_hw_param_last - refine config space and return maximum value
1566 * @pcm: PCM instance
1567 * @params: the hw_params instance
1568 * @var: parameter to retrieve
1569 * @dir: pointer to the direction (-1,0,1) or %NULL
1570 *
1571 * Inside configuration space defined by @params remove from @var all
1572 * values < maximum. Reduce configuration space accordingly.
1573 *
1574 * Return: The maximum, or a negative error code on failure.
1575 */
1576int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1577                          struct snd_pcm_hw_params *params,
1578                          snd_pcm_hw_param_t var, int *dir)
1579{
1580        int changed = _snd_pcm_hw_param_last(params, var);
1581        if (changed < 0)
1582                return changed;
1583        if (params->rmask) {
1584                int err = snd_pcm_hw_refine(pcm, params);
1585                if (snd_BUG_ON(err < 0))
1586                        return err;
1587        }
1588        return snd_pcm_hw_param_value(params, var, dir);
1589}
1590
1591EXPORT_SYMBOL(snd_pcm_hw_param_last);
1592
1593/**
1594 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1595 * @pcm: PCM instance
1596 * @params: the hw_params instance
1597 *
1598 * Choose one configuration from configuration space defined by @params.
1599 * The configuration chosen is that obtained fixing in this order:
1600 * first access, first format, first subformat, min channels,
1601 * min rate, min period time, max buffer size, min tick time
1602 *
1603 * Return: Zero if successful, or a negative error code on failure.
1604 */
1605int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1606                             struct snd_pcm_hw_params *params)
1607{
1608        static int vars[] = {
1609                SNDRV_PCM_HW_PARAM_ACCESS,
1610                SNDRV_PCM_HW_PARAM_FORMAT,
1611                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1612                SNDRV_PCM_HW_PARAM_CHANNELS,
1613                SNDRV_PCM_HW_PARAM_RATE,
1614                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1615                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1616                SNDRV_PCM_HW_PARAM_TICK_TIME,
1617                -1
1618        };
1619        int err, *v;
1620
1621        for (v = vars; *v != -1; v++) {
1622                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1623                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1624                else
1625                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1626                if (snd_BUG_ON(err < 0))
1627                        return err;
1628        }
1629        return 0;
1630}
1631
1632static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1633                                   void *arg)
1634{
1635        struct snd_pcm_runtime *runtime = substream->runtime;
1636        unsigned long flags;
1637        snd_pcm_stream_lock_irqsave(substream, flags);
1638        if (snd_pcm_running(substream) &&
1639            snd_pcm_update_hw_ptr(substream) >= 0)
1640                runtime->status->hw_ptr %= runtime->buffer_size;
1641        else {
1642                runtime->status->hw_ptr = 0;
1643                runtime->hw_ptr_wrap = 0;
1644        }
1645        snd_pcm_stream_unlock_irqrestore(substream, flags);
1646        return 0;
1647}
1648
1649static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1650                                          void *arg)
1651{
1652        struct snd_pcm_channel_info *info = arg;
1653        struct snd_pcm_runtime *runtime = substream->runtime;
1654        int width;
1655        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1656                info->offset = -1;
1657                return 0;
1658        }
1659        width = snd_pcm_format_physical_width(runtime->format);
1660        if (width < 0)
1661                return width;
1662        info->offset = 0;
1663        switch (runtime->access) {
1664        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1665        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1666                info->first = info->channel * width;
1667                info->step = runtime->channels * width;
1668                break;
1669        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1670        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1671        {
1672                size_t size = runtime->dma_bytes / runtime->channels;
1673                info->first = info->channel * size * 8;
1674                info->step = width;
1675                break;
1676        }
1677        default:
1678                snd_BUG();
1679                break;
1680        }
1681        return 0;
1682}
1683
1684static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1685                                       void *arg)
1686{
1687        struct snd_pcm_hw_params *params = arg;
1688        snd_pcm_format_t format;
1689        int channels;
1690        ssize_t frame_size;
1691
1692        params->fifo_size = substream->runtime->hw.fifo_size;
1693        if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1694                format = params_format(params);
1695                channels = params_channels(params);
1696                frame_size = snd_pcm_format_size(format, channels);
1697                if (frame_size > 0)
1698                        params->fifo_size /= (unsigned)frame_size;
1699        }
1700        return 0;
1701}
1702
1703/**
1704 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1705 * @substream: the pcm substream instance
1706 * @cmd: ioctl command
1707 * @arg: ioctl argument
1708 *
1709 * Processes the generic ioctl commands for PCM.
1710 * Can be passed as the ioctl callback for PCM ops.
1711 *
1712 * Return: Zero if successful, or a negative error code on failure.
1713 */
1714int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1715                      unsigned int cmd, void *arg)
1716{
1717        switch (cmd) {
1718        case SNDRV_PCM_IOCTL1_INFO:
1719                return 0;
1720        case SNDRV_PCM_IOCTL1_RESET:
1721                return snd_pcm_lib_ioctl_reset(substream, arg);
1722        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1723                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1724        case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1725                return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1726        }
1727        return -ENXIO;
1728}
1729
1730EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1731
1732/**
1733 * snd_pcm_period_elapsed - update the pcm status for the next period
1734 * @substream: the pcm substream instance
1735 *
1736 * This function is called from the interrupt handler when the
1737 * PCM has processed the period size.  It will update the current
1738 * pointer, wake up sleepers, etc.
1739 *
1740 * Even if more than one periods have elapsed since the last call, you
1741 * have to call this only once.
1742 */
1743void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1744{
1745        struct snd_pcm_runtime *runtime;
1746        unsigned long flags;
1747
1748        if (PCM_RUNTIME_CHECK(substream))
1749                return;
1750        runtime = substream->runtime;
1751
1752        if (runtime->transfer_ack_begin)
1753                runtime->transfer_ack_begin(substream);
1754
1755        snd_pcm_stream_lock_irqsave(substream, flags);
1756        if (!snd_pcm_running(substream) ||
1757            snd_pcm_update_hw_ptr0(substream, 1) < 0)
1758                goto _end;
1759
1760        if (substream->timer_running)
1761                snd_timer_interrupt(substream->timer, 1);
1762 _end:
1763        snd_pcm_stream_unlock_irqrestore(substream, flags);
1764        if (runtime->transfer_ack_end)
1765                runtime->transfer_ack_end(substream);
1766        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1767}
1768
1769EXPORT_SYMBOL(snd_pcm_period_elapsed);
1770
1771/*
1772 * Wait until avail_min data becomes available
1773 * Returns a negative error code if any error occurs during operation.
1774 * The available space is stored on availp.  When err = 0 and avail = 0
1775 * on the capture stream, it indicates the stream is in DRAINING state.
1776 */
1777static int wait_for_avail(struct snd_pcm_substream *substream,
1778                              snd_pcm_uframes_t *availp)
1779{
1780        struct snd_pcm_runtime *runtime = substream->runtime;
1781        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1782        wait_queue_t wait;
1783        int err = 0;
1784        snd_pcm_uframes_t avail = 0;
1785        long wait_time, tout;
1786
1787        init_waitqueue_entry(&wait, current);
1788        set_current_state(TASK_INTERRUPTIBLE);
1789        add_wait_queue(&runtime->tsleep, &wait);
1790
1791        if (runtime->no_period_wakeup)
1792                wait_time = MAX_SCHEDULE_TIMEOUT;
1793        else {
1794                wait_time = 10;
1795                if (runtime->rate) {
1796                        long t = runtime->period_size * 2 / runtime->rate;
1797                        wait_time = max(t, wait_time);
1798                }
1799                wait_time = msecs_to_jiffies(wait_time * 1000);
1800        }
1801
1802        for (;;) {
1803                if (signal_pending(current)) {
1804                        err = -ERESTARTSYS;
1805                        break;
1806                }
1807
1808                /*
1809                 * We need to check if space became available already
1810                 * (and thus the wakeup happened already) first to close
1811                 * the race of space already having become available.
1812                 * This check must happen after been added to the waitqueue
1813                 * and having current state be INTERRUPTIBLE.
1814                 */
1815                if (is_playback)
1816                        avail = snd_pcm_playback_avail(runtime);
1817                else
1818                        avail = snd_pcm_capture_avail(runtime);
1819                if (avail >= runtime->twake)
1820                        break;
1821                snd_pcm_stream_unlock_irq(substream);
1822
1823                tout = schedule_timeout(wait_time);
1824
1825                snd_pcm_stream_lock_irq(substream);
1826                set_current_state(TASK_INTERRUPTIBLE);
1827                switch (runtime->status->state) {
1828                case SNDRV_PCM_STATE_SUSPENDED:
1829                        err = -ESTRPIPE;
1830                        goto _endloop;
1831                case SNDRV_PCM_STATE_XRUN:
1832                        err = -EPIPE;
1833                        goto _endloop;
1834                case SNDRV_PCM_STATE_DRAINING:
1835                        if (is_playback)
1836                                err = -EPIPE;
1837                        else 
1838                                avail = 0; /* indicate draining */
1839                        goto _endloop;
1840                case SNDRV_PCM_STATE_OPEN:
1841                case SNDRV_PCM_STATE_SETUP:
1842                case SNDRV_PCM_STATE_DISCONNECTED:
1843                        err = -EBADFD;
1844                        goto _endloop;
1845                case SNDRV_PCM_STATE_PAUSED:
1846                        continue;
1847                }
1848                if (!tout) {
1849                        pcm_dbg(substream->pcm,
1850                                "%s write error (DMA or IRQ trouble?)\n",
1851                                is_playback ? "playback" : "capture");
1852                        err = -EIO;
1853                        break;
1854                }
1855        }
1856 _endloop:
1857        set_current_state(TASK_RUNNING);
1858        remove_wait_queue(&runtime->tsleep, &wait);
1859        *availp = avail;
1860        return err;
1861}
1862        
1863static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1864                                      unsigned int hwoff,
1865                                      unsigned long data, unsigned int off,
1866                                      snd_pcm_uframes_t frames)
1867{
1868        struct snd_pcm_runtime *runtime = substream->runtime;
1869        int err;
1870        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1871        if (substream->ops->copy) {
1872                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1873                        return err;
1874        } else {
1875                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1876                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1877                        return -EFAULT;
1878        }
1879        return 0;
1880}
1881 
1882typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1883                          unsigned long data, unsigned int off,
1884                          snd_pcm_uframes_t size);
1885
1886static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1887                                            unsigned long data,
1888                                            snd_pcm_uframes_t size,
1889                                            int nonblock,
1890                                            transfer_f transfer)
1891{
1892        struct snd_pcm_runtime *runtime = substream->runtime;
1893        snd_pcm_uframes_t xfer = 0;
1894        snd_pcm_uframes_t offset = 0;
1895        snd_pcm_uframes_t avail;
1896        int err = 0;
1897
1898        if (size == 0)
1899                return 0;
1900
1901        snd_pcm_stream_lock_irq(substream);
1902        switch (runtime->status->state) {
1903        case SNDRV_PCM_STATE_PREPARED:
1904        case SNDRV_PCM_STATE_RUNNING:
1905        case SNDRV_PCM_STATE_PAUSED:
1906                break;
1907        case SNDRV_PCM_STATE_XRUN:
1908                err = -EPIPE;
1909                goto _end_unlock;
1910        case SNDRV_PCM_STATE_SUSPENDED:
1911                err = -ESTRPIPE;
1912                goto _end_unlock;
1913        default:
1914                err = -EBADFD;
1915                goto _end_unlock;
1916        }
1917
1918        runtime->twake = runtime->control->avail_min ? : 1;
1919        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1920                snd_pcm_update_hw_ptr(substream);
1921        avail = snd_pcm_playback_avail(runtime);
1922        while (size > 0) {
1923                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1924                snd_pcm_uframes_t cont;
1925                if (!avail) {
1926                        if (nonblock) {
1927                                err = -EAGAIN;
1928                                goto _end_unlock;
1929                        }
1930                        runtime->twake = min_t(snd_pcm_uframes_t, size,
1931                                        runtime->control->avail_min ? : 1);
1932                        err = wait_for_avail(substream, &avail);
1933                        if (err < 0)
1934                                goto _end_unlock;
1935                }
1936                frames = size > avail ? avail : size;
1937                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1938                if (frames > cont)
1939                        frames = cont;
1940                if (snd_BUG_ON(!frames)) {
1941                        runtime->twake = 0;
1942                        snd_pcm_stream_unlock_irq(substream);
1943                        return -EINVAL;
1944                }
1945                appl_ptr = runtime->control->appl_ptr;
1946                appl_ofs = appl_ptr % runtime->buffer_size;
1947                snd_pcm_stream_unlock_irq(substream);
1948                err = transfer(substream, appl_ofs, data, offset, frames);
1949                snd_pcm_stream_lock_irq(substream);
1950                if (err < 0)
1951                        goto _end_unlock;
1952                switch (runtime->status->state) {
1953                case SNDRV_PCM_STATE_XRUN:
1954                        err = -EPIPE;
1955                        goto _end_unlock;
1956                case SNDRV_PCM_STATE_SUSPENDED:
1957                        err = -ESTRPIPE;
1958                        goto _end_unlock;
1959                default:
1960                        break;
1961                }
1962                appl_ptr += frames;
1963                if (appl_ptr >= runtime->boundary)
1964                        appl_ptr -= runtime->boundary;
1965                runtime->control->appl_ptr = appl_ptr;
1966                if (substream->ops->ack)
1967                        substream->ops->ack(substream);
1968
1969                offset += frames;
1970                size -= frames;
1971                xfer += frames;
1972                avail -= frames;
1973                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1974                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1975                        err = snd_pcm_start(substream);
1976                        if (err < 0)
1977                                goto _end_unlock;
1978                }
1979        }
1980 _end_unlock:
1981        runtime->twake = 0;
1982        if (xfer > 0 && err >= 0)
1983                snd_pcm_update_state(substream, runtime);
1984        snd_pcm_stream_unlock_irq(substream);
1985        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1986}
1987
1988/* sanity-check for read/write methods */
1989static int pcm_sanity_check(struct snd_pcm_substream *substream)
1990{
1991        struct snd_pcm_runtime *runtime;
1992        if (PCM_RUNTIME_CHECK(substream))
1993                return -ENXIO;
1994        runtime = substream->runtime;
1995        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1996                return -EINVAL;
1997        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1998                return -EBADFD;
1999        return 0;
2000}
2001
2002snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2003{
2004        struct snd_pcm_runtime *runtime;
2005        int nonblock;
2006        int err;
2007
2008        err = pcm_sanity_check(substream);
2009        if (err < 0)
2010                return err;
2011        runtime = substream->runtime;
2012        nonblock = !!(substream->f_flags & O_NONBLOCK);
2013
2014        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2015            runtime->channels > 1)
2016                return -EINVAL;
2017        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2018                                  snd_pcm_lib_write_transfer);
2019}
2020
2021EXPORT_SYMBOL(snd_pcm_lib_write);
2022
2023static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2024                                       unsigned int hwoff,
2025                                       unsigned long data, unsigned int off,
2026                                       snd_pcm_uframes_t frames)
2027{
2028        struct snd_pcm_runtime *runtime = substream->runtime;
2029        int err;
2030        void __user **bufs = (void __user **)data;
2031        int channels = runtime->channels;
2032        int c;
2033        if (substream->ops->copy) {
2034                if (snd_BUG_ON(!substream->ops->silence))
2035                        return -EINVAL;
2036                for (c = 0; c < channels; ++c, ++bufs) {
2037                        if (*bufs == NULL) {
2038                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2039                                        return err;
2040                        } else {
2041                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2042                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2043                                        return err;
2044                        }
2045                }
2046        } else {
2047                /* default transfer behaviour */
2048                size_t dma_csize = runtime->dma_bytes / channels;
2049                for (c = 0; c < channels; ++c, ++bufs) {
2050                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2051                        if (*bufs == NULL) {
2052                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2053                        } else {
2054                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2055                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2056                                        return -EFAULT;
2057                        }
2058                }
2059        }
2060        return 0;
2061}
2062 
2063snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2064                                     void __user **bufs,
2065                                     snd_pcm_uframes_t frames)
2066{
2067        struct snd_pcm_runtime *runtime;
2068        int nonblock;
2069        int err;
2070
2071        err = pcm_sanity_check(substream);
2072        if (err < 0)
2073                return err;
2074        runtime = substream->runtime;
2075        nonblock = !!(substream->f_flags & O_NONBLOCK);
2076
2077        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2078                return -EINVAL;
2079        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2080                                  nonblock, snd_pcm_lib_writev_transfer);
2081}
2082
2083EXPORT_SYMBOL(snd_pcm_lib_writev);
2084
2085static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2086                                     unsigned int hwoff,
2087                                     unsigned long data, unsigned int off,
2088                                     snd_pcm_uframes_t frames)
2089{
2090        struct snd_pcm_runtime *runtime = substream->runtime;
2091        int err;
2092        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2093        if (substream->ops->copy) {
2094                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2095                        return err;
2096        } else {
2097                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2098                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2099                        return -EFAULT;
2100        }
2101        return 0;
2102}
2103
2104static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2105                                           unsigned long data,
2106                                           snd_pcm_uframes_t size,
2107                                           int nonblock,
2108                                           transfer_f transfer)
2109{
2110        struct snd_pcm_runtime *runtime = substream->runtime;
2111        snd_pcm_uframes_t xfer = 0;
2112        snd_pcm_uframes_t offset = 0;
2113        snd_pcm_uframes_t avail;
2114        int err = 0;
2115
2116        if (size == 0)
2117                return 0;
2118
2119        snd_pcm_stream_lock_irq(substream);
2120        switch (runtime->status->state) {
2121        case SNDRV_PCM_STATE_PREPARED:
2122                if (size >= runtime->start_threshold) {
2123                        err = snd_pcm_start(substream);
2124                        if (err < 0)
2125                                goto _end_unlock;
2126                }
2127                break;
2128        case SNDRV_PCM_STATE_DRAINING:
2129        case SNDRV_PCM_STATE_RUNNING:
2130        case SNDRV_PCM_STATE_PAUSED:
2131                break;
2132        case SNDRV_PCM_STATE_XRUN:
2133                err = -EPIPE;
2134                goto _end_unlock;
2135        case SNDRV_PCM_STATE_SUSPENDED:
2136                err = -ESTRPIPE;
2137                goto _end_unlock;
2138        default:
2139                err = -EBADFD;
2140                goto _end_unlock;
2141        }
2142
2143        runtime->twake = runtime->control->avail_min ? : 1;
2144        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2145                snd_pcm_update_hw_ptr(substream);
2146        avail = snd_pcm_capture_avail(runtime);
2147        while (size > 0) {
2148                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2149                snd_pcm_uframes_t cont;
2150                if (!avail) {
2151                        if (runtime->status->state ==
2152                            SNDRV_PCM_STATE_DRAINING) {
2153                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2154                                goto _end_unlock;
2155                        }
2156                        if (nonblock) {
2157                                err = -EAGAIN;
2158                                goto _end_unlock;
2159                        }
2160                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2161                                        runtime->control->avail_min ? : 1);
2162                        err = wait_for_avail(substream, &avail);
2163                        if (err < 0)
2164                                goto _end_unlock;
2165                        if (!avail)
2166                                continue; /* draining */
2167                }
2168                frames = size > avail ? avail : size;
2169                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2170                if (frames > cont)
2171                        frames = cont;
2172                if (snd_BUG_ON(!frames)) {
2173                        runtime->twake = 0;
2174                        snd_pcm_stream_unlock_irq(substream);
2175                        return -EINVAL;
2176                }
2177                appl_ptr = runtime->control->appl_ptr;
2178                appl_ofs = appl_ptr % runtime->buffer_size;
2179                snd_pcm_stream_unlock_irq(substream);
2180                err = transfer(substream, appl_ofs, data, offset, frames);
2181                snd_pcm_stream_lock_irq(substream);
2182                if (err < 0)
2183                        goto _end_unlock;
2184                switch (runtime->status->state) {
2185                case SNDRV_PCM_STATE_XRUN:
2186                        err = -EPIPE;
2187                        goto _end_unlock;
2188                case SNDRV_PCM_STATE_SUSPENDED:
2189                        err = -ESTRPIPE;
2190                        goto _end_unlock;
2191                default:
2192                        break;
2193                }
2194                appl_ptr += frames;
2195                if (appl_ptr >= runtime->boundary)
2196                        appl_ptr -= runtime->boundary;
2197                runtime->control->appl_ptr = appl_ptr;
2198                if (substream->ops->ack)
2199                        substream->ops->ack(substream);
2200
2201                offset += frames;
2202                size -= frames;
2203                xfer += frames;
2204                avail -= frames;
2205        }
2206 _end_unlock:
2207        runtime->twake = 0;
2208        if (xfer > 0 && err >= 0)
2209                snd_pcm_update_state(substream, runtime);
2210        snd_pcm_stream_unlock_irq(substream);
2211        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2212}
2213
2214snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2215{
2216        struct snd_pcm_runtime *runtime;
2217        int nonblock;
2218        int err;
2219        
2220        err = pcm_sanity_check(substream);
2221        if (err < 0)
2222                return err;
2223        runtime = substream->runtime;
2224        nonblock = !!(substream->f_flags & O_NONBLOCK);
2225        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2226                return -EINVAL;
2227        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2228}
2229
2230EXPORT_SYMBOL(snd_pcm_lib_read);
2231
2232static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2233                                      unsigned int hwoff,
2234                                      unsigned long data, unsigned int off,
2235                                      snd_pcm_uframes_t frames)
2236{
2237        struct snd_pcm_runtime *runtime = substream->runtime;
2238        int err;
2239        void __user **bufs = (void __user **)data;
2240        int channels = runtime->channels;
2241        int c;
2242        if (substream->ops->copy) {
2243                for (c = 0; c < channels; ++c, ++bufs) {
2244                        char __user *buf;
2245                        if (*bufs == NULL)
2246                                continue;
2247                        buf = *bufs + samples_to_bytes(runtime, off);
2248                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2249                                return err;
2250                }
2251        } else {
2252                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2253                for (c = 0; c < channels; ++c, ++bufs) {
2254                        char *hwbuf;
2255                        char __user *buf;
2256                        if (*bufs == NULL)
2257                                continue;
2258
2259                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2260                        buf = *bufs + samples_to_bytes(runtime, off);
2261                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2262                                return -EFAULT;
2263                }
2264        }
2265        return 0;
2266}
2267 
2268snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2269                                    void __user **bufs,
2270                                    snd_pcm_uframes_t frames)
2271{
2272        struct snd_pcm_runtime *runtime;
2273        int nonblock;
2274        int err;
2275
2276        err = pcm_sanity_check(substream);
2277        if (err < 0)
2278                return err;
2279        runtime = substream->runtime;
2280        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2281                return -EBADFD;
2282
2283        nonblock = !!(substream->f_flags & O_NONBLOCK);
2284        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2285                return -EINVAL;
2286        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2287}
2288
2289EXPORT_SYMBOL(snd_pcm_lib_readv);
2290
2291/*
2292 * standard channel mapping helpers
2293 */
2294
2295/* default channel maps for multi-channel playbacks, up to 8 channels */
2296const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2297        { .channels = 1,
2298          .map = { SNDRV_CHMAP_MONO } },
2299        { .channels = 2,
2300          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2301        { .channels = 4,
2302          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2304        { .channels = 6,
2305          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2306                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2307                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2308        { .channels = 8,
2309          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2310                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2311                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2312                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2313        { }
2314};
2315EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2316
2317/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2318const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2319        { .channels = 1,
2320          .map = { SNDRV_CHMAP_MONO } },
2321        { .channels = 2,
2322          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2323        { .channels = 4,
2324          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2325                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2326        { .channels = 6,
2327          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2328                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2329                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2330        { .channels = 8,
2331          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2332                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2333                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2334                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2335        { }
2336};
2337EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2338
2339static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2340{
2341        if (ch > info->max_channels)
2342                return false;
2343        return !info->channel_mask || (info->channel_mask & (1U << ch));
2344}
2345
2346static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2347                              struct snd_ctl_elem_info *uinfo)
2348{
2349        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2350
2351        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2352        uinfo->count = 0;
2353        uinfo->count = info->max_channels;
2354        uinfo->value.integer.min = 0;
2355        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2356        return 0;
2357}
2358
2359/* get callback for channel map ctl element
2360 * stores the channel position firstly matching with the current channels
2361 */
2362static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2363                             struct snd_ctl_elem_value *ucontrol)
2364{
2365        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2366        unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2367        struct snd_pcm_substream *substream;
2368        const struct snd_pcm_chmap_elem *map;
2369
2370        if (snd_BUG_ON(!info->chmap))
2371                return -EINVAL;
2372        substream = snd_pcm_chmap_substream(info, idx);
2373        if (!substream)
2374                return -ENODEV;
2375        memset(ucontrol->value.integer.value, 0,
2376               sizeof(ucontrol->value.integer.value));
2377        if (!substream->runtime)
2378                return 0; /* no channels set */
2379        for (map = info->chmap; map->channels; map++) {
2380                int i;
2381                if (map->channels == substream->runtime->channels &&
2382                    valid_chmap_channels(info, map->channels)) {
2383                        for (i = 0; i < map->channels; i++)
2384                                ucontrol->value.integer.value[i] = map->map[i];
2385                        return 0;
2386                }
2387        }
2388        return -EINVAL;
2389}
2390
2391/* tlv callback for channel map ctl element
2392 * expands the pre-defined channel maps in a form of TLV
2393 */
2394static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2395                             unsigned int size, unsigned int __user *tlv)
2396{
2397        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2398        const struct snd_pcm_chmap_elem *map;
2399        unsigned int __user *dst;
2400        int c, count = 0;
2401
2402        if (snd_BUG_ON(!info->chmap))
2403                return -EINVAL;
2404        if (size < 8)
2405                return -ENOMEM;
2406        if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2407                return -EFAULT;
2408        size -= 8;
2409        dst = tlv + 2;
2410        for (map = info->chmap; map->channels; map++) {
2411                int chs_bytes = map->channels * 4;
2412                if (!valid_chmap_channels(info, map->channels))
2413                        continue;
2414                if (size < 8)
2415                        return -ENOMEM;
2416                if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2417                    put_user(chs_bytes, dst + 1))
2418                        return -EFAULT;
2419                dst += 2;
2420                size -= 8;
2421                count += 8;
2422                if (size < chs_bytes)
2423                        return -ENOMEM;
2424                size -= chs_bytes;
2425                count += chs_bytes;
2426                for (c = 0; c < map->channels; c++) {
2427                        if (put_user(map->map[c], dst))
2428                                return -EFAULT;
2429                        dst++;
2430                }
2431        }
2432        if (put_user(count, tlv + 1))
2433                return -EFAULT;
2434        return 0;
2435}
2436
2437static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2438{
2439        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2440        info->pcm->streams[info->stream].chmap_kctl = NULL;
2441        kfree(info);
2442}
2443
2444/**
2445 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2446 * @pcm: the assigned PCM instance
2447 * @stream: stream direction
2448 * @chmap: channel map elements (for query)
2449 * @max_channels: the max number of channels for the stream
2450 * @private_value: the value passed to each kcontrol's private_value field
2451 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2452 *
2453 * Create channel-mapping control elements assigned to the given PCM stream(s).
2454 * Return: Zero if successful, or a negative error value.
2455 */
2456int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2457                           const struct snd_pcm_chmap_elem *chmap,
2458                           int max_channels,
2459                           unsigned long private_value,
2460                           struct snd_pcm_chmap **info_ret)
2461{
2462        struct snd_pcm_chmap *info;
2463        struct snd_kcontrol_new knew = {
2464                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2465                .access = SNDRV_CTL_ELEM_ACCESS_READ |
2466                        SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2467                        SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2468                .info = pcm_chmap_ctl_info,
2469                .get = pcm_chmap_ctl_get,
2470                .tlv.c = pcm_chmap_ctl_tlv,
2471        };
2472        int err;
2473
2474        info = kzalloc(sizeof(*info), GFP_KERNEL);
2475        if (!info)
2476                return -ENOMEM;
2477        info->pcm = pcm;
2478        info->stream = stream;
2479        info->chmap = chmap;
2480        info->max_channels = max_channels;
2481        if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2482                knew.name = "Playback Channel Map";
2483        else
2484                knew.name = "Capture Channel Map";
2485        knew.device = pcm->device;
2486        knew.count = pcm->streams[stream].substream_count;
2487        knew.private_value = private_value;
2488        info->kctl = snd_ctl_new1(&knew, info);
2489        if (!info->kctl) {
2490                kfree(info);
2491                return -ENOMEM;
2492        }
2493        info->kctl->private_free = pcm_chmap_ctl_private_free;
2494        err = snd_ctl_add(pcm->card, info->kctl);
2495        if (err < 0)
2496                return err;
2497        pcm->streams[stream].chmap_kctl = info->kctl;
2498        if (info_ret)
2499                *info_ret = info;
2500        return 0;
2501}
2502EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2503