linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14
  15#include "util/parse-options.h"
  16#include "util/trace-event.h"
  17
  18#include "util/debug.h"
  19
  20#include <sys/prctl.h>
  21#include <sys/resource.h>
  22
  23#include <semaphore.h>
  24#include <pthread.h>
  25#include <math.h>
  26
  27#define PR_SET_NAME             15               /* Set process name */
  28#define MAX_CPUS                4096
  29#define COMM_LEN                20
  30#define SYM_LEN                 129
  31#define MAX_PID                 65536
  32
  33struct sched_atom;
  34
  35struct task_desc {
  36        unsigned long           nr;
  37        unsigned long           pid;
  38        char                    comm[COMM_LEN];
  39
  40        unsigned long           nr_events;
  41        unsigned long           curr_event;
  42        struct sched_atom       **atoms;
  43
  44        pthread_t               thread;
  45        sem_t                   sleep_sem;
  46
  47        sem_t                   ready_for_work;
  48        sem_t                   work_done_sem;
  49
  50        u64                     cpu_usage;
  51};
  52
  53enum sched_event_type {
  54        SCHED_EVENT_RUN,
  55        SCHED_EVENT_SLEEP,
  56        SCHED_EVENT_WAKEUP,
  57        SCHED_EVENT_MIGRATION,
  58};
  59
  60struct sched_atom {
  61        enum sched_event_type   type;
  62        int                     specific_wait;
  63        u64                     timestamp;
  64        u64                     duration;
  65        unsigned long           nr;
  66        sem_t                   *wait_sem;
  67        struct task_desc        *wakee;
  68};
  69
  70#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  71
  72enum thread_state {
  73        THREAD_SLEEPING = 0,
  74        THREAD_WAIT_CPU,
  75        THREAD_SCHED_IN,
  76        THREAD_IGNORE
  77};
  78
  79struct work_atom {
  80        struct list_head        list;
  81        enum thread_state       state;
  82        u64                     sched_out_time;
  83        u64                     wake_up_time;
  84        u64                     sched_in_time;
  85        u64                     runtime;
  86};
  87
  88struct work_atoms {
  89        struct list_head        work_list;
  90        struct thread           *thread;
  91        struct rb_node          node;
  92        u64                     max_lat;
  93        u64                     max_lat_at;
  94        u64                     total_lat;
  95        u64                     nb_atoms;
  96        u64                     total_runtime;
  97};
  98
  99typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 100
 101struct perf_sched;
 102
 103struct trace_sched_handler {
 104        int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 105                            struct perf_sample *sample, struct machine *machine);
 106
 107        int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 108                             struct perf_sample *sample, struct machine *machine);
 109
 110        int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 111                            struct perf_sample *sample, struct machine *machine);
 112
 113        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 114        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 115                          struct machine *machine);
 116
 117        int (*migrate_task_event)(struct perf_sched *sched,
 118                                  struct perf_evsel *evsel,
 119                                  struct perf_sample *sample,
 120                                  struct machine *machine);
 121};
 122
 123struct perf_sched {
 124        struct perf_tool tool;
 125        const char       *sort_order;
 126        unsigned long    nr_tasks;
 127        struct task_desc *pid_to_task[MAX_PID];
 128        struct task_desc **tasks;
 129        const struct trace_sched_handler *tp_handler;
 130        pthread_mutex_t  start_work_mutex;
 131        pthread_mutex_t  work_done_wait_mutex;
 132        int              profile_cpu;
 133/*
 134 * Track the current task - that way we can know whether there's any
 135 * weird events, such as a task being switched away that is not current.
 136 */
 137        int              max_cpu;
 138        u32              curr_pid[MAX_CPUS];
 139        struct thread    *curr_thread[MAX_CPUS];
 140        char             next_shortname1;
 141        char             next_shortname2;
 142        unsigned int     replay_repeat;
 143        unsigned long    nr_run_events;
 144        unsigned long    nr_sleep_events;
 145        unsigned long    nr_wakeup_events;
 146        unsigned long    nr_sleep_corrections;
 147        unsigned long    nr_run_events_optimized;
 148        unsigned long    targetless_wakeups;
 149        unsigned long    multitarget_wakeups;
 150        unsigned long    nr_runs;
 151        unsigned long    nr_timestamps;
 152        unsigned long    nr_unordered_timestamps;
 153        unsigned long    nr_context_switch_bugs;
 154        unsigned long    nr_events;
 155        unsigned long    nr_lost_chunks;
 156        unsigned long    nr_lost_events;
 157        u64              run_measurement_overhead;
 158        u64              sleep_measurement_overhead;
 159        u64              start_time;
 160        u64              cpu_usage;
 161        u64              runavg_cpu_usage;
 162        u64              parent_cpu_usage;
 163        u64              runavg_parent_cpu_usage;
 164        u64              sum_runtime;
 165        u64              sum_fluct;
 166        u64              run_avg;
 167        u64              all_runtime;
 168        u64              all_count;
 169        u64              cpu_last_switched[MAX_CPUS];
 170        struct rb_root   atom_root, sorted_atom_root;
 171        struct list_head sort_list, cmp_pid;
 172};
 173
 174static u64 get_nsecs(void)
 175{
 176        struct timespec ts;
 177
 178        clock_gettime(CLOCK_MONOTONIC, &ts);
 179
 180        return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 181}
 182
 183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 184{
 185        u64 T0 = get_nsecs(), T1;
 186
 187        do {
 188                T1 = get_nsecs();
 189        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 190}
 191
 192static void sleep_nsecs(u64 nsecs)
 193{
 194        struct timespec ts;
 195
 196        ts.tv_nsec = nsecs % 999999999;
 197        ts.tv_sec = nsecs / 999999999;
 198
 199        nanosleep(&ts, NULL);
 200}
 201
 202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 203{
 204        u64 T0, T1, delta, min_delta = 1000000000ULL;
 205        int i;
 206
 207        for (i = 0; i < 10; i++) {
 208                T0 = get_nsecs();
 209                burn_nsecs(sched, 0);
 210                T1 = get_nsecs();
 211                delta = T1-T0;
 212                min_delta = min(min_delta, delta);
 213        }
 214        sched->run_measurement_overhead = min_delta;
 215
 216        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 217}
 218
 219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 220{
 221        u64 T0, T1, delta, min_delta = 1000000000ULL;
 222        int i;
 223
 224        for (i = 0; i < 10; i++) {
 225                T0 = get_nsecs();
 226                sleep_nsecs(10000);
 227                T1 = get_nsecs();
 228                delta = T1-T0;
 229                min_delta = min(min_delta, delta);
 230        }
 231        min_delta -= 10000;
 232        sched->sleep_measurement_overhead = min_delta;
 233
 234        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 235}
 236
 237static struct sched_atom *
 238get_new_event(struct task_desc *task, u64 timestamp)
 239{
 240        struct sched_atom *event = zalloc(sizeof(*event));
 241        unsigned long idx = task->nr_events;
 242        size_t size;
 243
 244        event->timestamp = timestamp;
 245        event->nr = idx;
 246
 247        task->nr_events++;
 248        size = sizeof(struct sched_atom *) * task->nr_events;
 249        task->atoms = realloc(task->atoms, size);
 250        BUG_ON(!task->atoms);
 251
 252        task->atoms[idx] = event;
 253
 254        return event;
 255}
 256
 257static struct sched_atom *last_event(struct task_desc *task)
 258{
 259        if (!task->nr_events)
 260                return NULL;
 261
 262        return task->atoms[task->nr_events - 1];
 263}
 264
 265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 266                                u64 timestamp, u64 duration)
 267{
 268        struct sched_atom *event, *curr_event = last_event(task);
 269
 270        /*
 271         * optimize an existing RUN event by merging this one
 272         * to it:
 273         */
 274        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 275                sched->nr_run_events_optimized++;
 276                curr_event->duration += duration;
 277                return;
 278        }
 279
 280        event = get_new_event(task, timestamp);
 281
 282        event->type = SCHED_EVENT_RUN;
 283        event->duration = duration;
 284
 285        sched->nr_run_events++;
 286}
 287
 288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 289                                   u64 timestamp, struct task_desc *wakee)
 290{
 291        struct sched_atom *event, *wakee_event;
 292
 293        event = get_new_event(task, timestamp);
 294        event->type = SCHED_EVENT_WAKEUP;
 295        event->wakee = wakee;
 296
 297        wakee_event = last_event(wakee);
 298        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 299                sched->targetless_wakeups++;
 300                return;
 301        }
 302        if (wakee_event->wait_sem) {
 303                sched->multitarget_wakeups++;
 304                return;
 305        }
 306
 307        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 308        sem_init(wakee_event->wait_sem, 0, 0);
 309        wakee_event->specific_wait = 1;
 310        event->wait_sem = wakee_event->wait_sem;
 311
 312        sched->nr_wakeup_events++;
 313}
 314
 315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 316                                  u64 timestamp, u64 task_state __maybe_unused)
 317{
 318        struct sched_atom *event = get_new_event(task, timestamp);
 319
 320        event->type = SCHED_EVENT_SLEEP;
 321
 322        sched->nr_sleep_events++;
 323}
 324
 325static struct task_desc *register_pid(struct perf_sched *sched,
 326                                      unsigned long pid, const char *comm)
 327{
 328        struct task_desc *task;
 329
 330        BUG_ON(pid >= MAX_PID);
 331
 332        task = sched->pid_to_task[pid];
 333
 334        if (task)
 335                return task;
 336
 337        task = zalloc(sizeof(*task));
 338        task->pid = pid;
 339        task->nr = sched->nr_tasks;
 340        strcpy(task->comm, comm);
 341        /*
 342         * every task starts in sleeping state - this gets ignored
 343         * if there's no wakeup pointing to this sleep state:
 344         */
 345        add_sched_event_sleep(sched, task, 0, 0);
 346
 347        sched->pid_to_task[pid] = task;
 348        sched->nr_tasks++;
 349        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
 350        BUG_ON(!sched->tasks);
 351        sched->tasks[task->nr] = task;
 352
 353        if (verbose)
 354                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 355
 356        return task;
 357}
 358
 359
 360static void print_task_traces(struct perf_sched *sched)
 361{
 362        struct task_desc *task;
 363        unsigned long i;
 364
 365        for (i = 0; i < sched->nr_tasks; i++) {
 366                task = sched->tasks[i];
 367                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 368                        task->nr, task->comm, task->pid, task->nr_events);
 369        }
 370}
 371
 372static void add_cross_task_wakeups(struct perf_sched *sched)
 373{
 374        struct task_desc *task1, *task2;
 375        unsigned long i, j;
 376
 377        for (i = 0; i < sched->nr_tasks; i++) {
 378                task1 = sched->tasks[i];
 379                j = i + 1;
 380                if (j == sched->nr_tasks)
 381                        j = 0;
 382                task2 = sched->tasks[j];
 383                add_sched_event_wakeup(sched, task1, 0, task2);
 384        }
 385}
 386
 387static void perf_sched__process_event(struct perf_sched *sched,
 388                                      struct sched_atom *atom)
 389{
 390        int ret = 0;
 391
 392        switch (atom->type) {
 393                case SCHED_EVENT_RUN:
 394                        burn_nsecs(sched, atom->duration);
 395                        break;
 396                case SCHED_EVENT_SLEEP:
 397                        if (atom->wait_sem)
 398                                ret = sem_wait(atom->wait_sem);
 399                        BUG_ON(ret);
 400                        break;
 401                case SCHED_EVENT_WAKEUP:
 402                        if (atom->wait_sem)
 403                                ret = sem_post(atom->wait_sem);
 404                        BUG_ON(ret);
 405                        break;
 406                case SCHED_EVENT_MIGRATION:
 407                        break;
 408                default:
 409                        BUG_ON(1);
 410        }
 411}
 412
 413static u64 get_cpu_usage_nsec_parent(void)
 414{
 415        struct rusage ru;
 416        u64 sum;
 417        int err;
 418
 419        err = getrusage(RUSAGE_SELF, &ru);
 420        BUG_ON(err);
 421
 422        sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 423        sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 424
 425        return sum;
 426}
 427
 428static int self_open_counters(void)
 429{
 430        struct perf_event_attr attr;
 431        char sbuf[STRERR_BUFSIZE];
 432        int fd;
 433
 434        memset(&attr, 0, sizeof(attr));
 435
 436        attr.type = PERF_TYPE_SOFTWARE;
 437        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 438
 439        fd = sys_perf_event_open(&attr, 0, -1, -1,
 440                                 perf_event_open_cloexec_flag());
 441
 442        if (fd < 0)
 443                pr_err("Error: sys_perf_event_open() syscall returned "
 444                       "with %d (%s)\n", fd,
 445                       strerror_r(errno, sbuf, sizeof(sbuf)));
 446        return fd;
 447}
 448
 449static u64 get_cpu_usage_nsec_self(int fd)
 450{
 451        u64 runtime;
 452        int ret;
 453
 454        ret = read(fd, &runtime, sizeof(runtime));
 455        BUG_ON(ret != sizeof(runtime));
 456
 457        return runtime;
 458}
 459
 460struct sched_thread_parms {
 461        struct task_desc  *task;
 462        struct perf_sched *sched;
 463};
 464
 465static void *thread_func(void *ctx)
 466{
 467        struct sched_thread_parms *parms = ctx;
 468        struct task_desc *this_task = parms->task;
 469        struct perf_sched *sched = parms->sched;
 470        u64 cpu_usage_0, cpu_usage_1;
 471        unsigned long i, ret;
 472        char comm2[22];
 473        int fd;
 474
 475        zfree(&parms);
 476
 477        sprintf(comm2, ":%s", this_task->comm);
 478        prctl(PR_SET_NAME, comm2);
 479        fd = self_open_counters();
 480        if (fd < 0)
 481                return NULL;
 482again:
 483        ret = sem_post(&this_task->ready_for_work);
 484        BUG_ON(ret);
 485        ret = pthread_mutex_lock(&sched->start_work_mutex);
 486        BUG_ON(ret);
 487        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 488        BUG_ON(ret);
 489
 490        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 491
 492        for (i = 0; i < this_task->nr_events; i++) {
 493                this_task->curr_event = i;
 494                perf_sched__process_event(sched, this_task->atoms[i]);
 495        }
 496
 497        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 498        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 499        ret = sem_post(&this_task->work_done_sem);
 500        BUG_ON(ret);
 501
 502        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 503        BUG_ON(ret);
 504        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 505        BUG_ON(ret);
 506
 507        goto again;
 508}
 509
 510static void create_tasks(struct perf_sched *sched)
 511{
 512        struct task_desc *task;
 513        pthread_attr_t attr;
 514        unsigned long i;
 515        int err;
 516
 517        err = pthread_attr_init(&attr);
 518        BUG_ON(err);
 519        err = pthread_attr_setstacksize(&attr,
 520                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 521        BUG_ON(err);
 522        err = pthread_mutex_lock(&sched->start_work_mutex);
 523        BUG_ON(err);
 524        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 525        BUG_ON(err);
 526        for (i = 0; i < sched->nr_tasks; i++) {
 527                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 528                BUG_ON(parms == NULL);
 529                parms->task = task = sched->tasks[i];
 530                parms->sched = sched;
 531                sem_init(&task->sleep_sem, 0, 0);
 532                sem_init(&task->ready_for_work, 0, 0);
 533                sem_init(&task->work_done_sem, 0, 0);
 534                task->curr_event = 0;
 535                err = pthread_create(&task->thread, &attr, thread_func, parms);
 536                BUG_ON(err);
 537        }
 538}
 539
 540static void wait_for_tasks(struct perf_sched *sched)
 541{
 542        u64 cpu_usage_0, cpu_usage_1;
 543        struct task_desc *task;
 544        unsigned long i, ret;
 545
 546        sched->start_time = get_nsecs();
 547        sched->cpu_usage = 0;
 548        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 549
 550        for (i = 0; i < sched->nr_tasks; i++) {
 551                task = sched->tasks[i];
 552                ret = sem_wait(&task->ready_for_work);
 553                BUG_ON(ret);
 554                sem_init(&task->ready_for_work, 0, 0);
 555        }
 556        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 557        BUG_ON(ret);
 558
 559        cpu_usage_0 = get_cpu_usage_nsec_parent();
 560
 561        pthread_mutex_unlock(&sched->start_work_mutex);
 562
 563        for (i = 0; i < sched->nr_tasks; i++) {
 564                task = sched->tasks[i];
 565                ret = sem_wait(&task->work_done_sem);
 566                BUG_ON(ret);
 567                sem_init(&task->work_done_sem, 0, 0);
 568                sched->cpu_usage += task->cpu_usage;
 569                task->cpu_usage = 0;
 570        }
 571
 572        cpu_usage_1 = get_cpu_usage_nsec_parent();
 573        if (!sched->runavg_cpu_usage)
 574                sched->runavg_cpu_usage = sched->cpu_usage;
 575        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
 576
 577        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 578        if (!sched->runavg_parent_cpu_usage)
 579                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 580        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
 581                                         sched->parent_cpu_usage)/10;
 582
 583        ret = pthread_mutex_lock(&sched->start_work_mutex);
 584        BUG_ON(ret);
 585
 586        for (i = 0; i < sched->nr_tasks; i++) {
 587                task = sched->tasks[i];
 588                sem_init(&task->sleep_sem, 0, 0);
 589                task->curr_event = 0;
 590        }
 591}
 592
 593static void run_one_test(struct perf_sched *sched)
 594{
 595        u64 T0, T1, delta, avg_delta, fluct;
 596
 597        T0 = get_nsecs();
 598        wait_for_tasks(sched);
 599        T1 = get_nsecs();
 600
 601        delta = T1 - T0;
 602        sched->sum_runtime += delta;
 603        sched->nr_runs++;
 604
 605        avg_delta = sched->sum_runtime / sched->nr_runs;
 606        if (delta < avg_delta)
 607                fluct = avg_delta - delta;
 608        else
 609                fluct = delta - avg_delta;
 610        sched->sum_fluct += fluct;
 611        if (!sched->run_avg)
 612                sched->run_avg = delta;
 613        sched->run_avg = (sched->run_avg * 9 + delta) / 10;
 614
 615        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 616
 617        printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 618
 619        printf("cpu: %0.2f / %0.2f",
 620                (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 621
 622#if 0
 623        /*
 624         * rusage statistics done by the parent, these are less
 625         * accurate than the sched->sum_exec_runtime based statistics:
 626         */
 627        printf(" [%0.2f / %0.2f]",
 628                (double)sched->parent_cpu_usage/1e6,
 629                (double)sched->runavg_parent_cpu_usage/1e6);
 630#endif
 631
 632        printf("\n");
 633
 634        if (sched->nr_sleep_corrections)
 635                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 636        sched->nr_sleep_corrections = 0;
 637}
 638
 639static void test_calibrations(struct perf_sched *sched)
 640{
 641        u64 T0, T1;
 642
 643        T0 = get_nsecs();
 644        burn_nsecs(sched, 1e6);
 645        T1 = get_nsecs();
 646
 647        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 648
 649        T0 = get_nsecs();
 650        sleep_nsecs(1e6);
 651        T1 = get_nsecs();
 652
 653        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 654}
 655
 656static int
 657replay_wakeup_event(struct perf_sched *sched,
 658                    struct perf_evsel *evsel, struct perf_sample *sample,
 659                    struct machine *machine __maybe_unused)
 660{
 661        const char *comm = perf_evsel__strval(evsel, sample, "comm");
 662        const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
 663        struct task_desc *waker, *wakee;
 664
 665        if (verbose) {
 666                printf("sched_wakeup event %p\n", evsel);
 667
 668                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 669        }
 670
 671        waker = register_pid(sched, sample->tid, "<unknown>");
 672        wakee = register_pid(sched, pid, comm);
 673
 674        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 675        return 0;
 676}
 677
 678static int replay_switch_event(struct perf_sched *sched,
 679                               struct perf_evsel *evsel,
 680                               struct perf_sample *sample,
 681                               struct machine *machine __maybe_unused)
 682{
 683        const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 684                   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 685        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 686                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 687        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 688        struct task_desc *prev, __maybe_unused *next;
 689        u64 timestamp0, timestamp = sample->time;
 690        int cpu = sample->cpu;
 691        s64 delta;
 692
 693        if (verbose)
 694                printf("sched_switch event %p\n", evsel);
 695
 696        if (cpu >= MAX_CPUS || cpu < 0)
 697                return 0;
 698
 699        timestamp0 = sched->cpu_last_switched[cpu];
 700        if (timestamp0)
 701                delta = timestamp - timestamp0;
 702        else
 703                delta = 0;
 704
 705        if (delta < 0) {
 706                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 707                return -1;
 708        }
 709
 710        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 711                 prev_comm, prev_pid, next_comm, next_pid, delta);
 712
 713        prev = register_pid(sched, prev_pid, prev_comm);
 714        next = register_pid(sched, next_pid, next_comm);
 715
 716        sched->cpu_last_switched[cpu] = timestamp;
 717
 718        add_sched_event_run(sched, prev, timestamp, delta);
 719        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 720
 721        return 0;
 722}
 723
 724static int replay_fork_event(struct perf_sched *sched,
 725                             union perf_event *event,
 726                             struct machine *machine)
 727{
 728        struct thread *child, *parent;
 729
 730        child = machine__findnew_thread(machine, event->fork.pid,
 731                                        event->fork.tid);
 732        parent = machine__findnew_thread(machine, event->fork.ppid,
 733                                         event->fork.ptid);
 734
 735        if (child == NULL || parent == NULL) {
 736                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 737                                 child, parent);
 738                return 0;
 739        }
 740
 741        if (verbose) {
 742                printf("fork event\n");
 743                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 744                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 745        }
 746
 747        register_pid(sched, parent->tid, thread__comm_str(parent));
 748        register_pid(sched, child->tid, thread__comm_str(child));
 749        return 0;
 750}
 751
 752struct sort_dimension {
 753        const char              *name;
 754        sort_fn_t               cmp;
 755        struct list_head        list;
 756};
 757
 758static int
 759thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 760{
 761        struct sort_dimension *sort;
 762        int ret = 0;
 763
 764        BUG_ON(list_empty(list));
 765
 766        list_for_each_entry(sort, list, list) {
 767                ret = sort->cmp(l, r);
 768                if (ret)
 769                        return ret;
 770        }
 771
 772        return ret;
 773}
 774
 775static struct work_atoms *
 776thread_atoms_search(struct rb_root *root, struct thread *thread,
 777                         struct list_head *sort_list)
 778{
 779        struct rb_node *node = root->rb_node;
 780        struct work_atoms key = { .thread = thread };
 781
 782        while (node) {
 783                struct work_atoms *atoms;
 784                int cmp;
 785
 786                atoms = container_of(node, struct work_atoms, node);
 787
 788                cmp = thread_lat_cmp(sort_list, &key, atoms);
 789                if (cmp > 0)
 790                        node = node->rb_left;
 791                else if (cmp < 0)
 792                        node = node->rb_right;
 793                else {
 794                        BUG_ON(thread != atoms->thread);
 795                        return atoms;
 796                }
 797        }
 798        return NULL;
 799}
 800
 801static void
 802__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 803                         struct list_head *sort_list)
 804{
 805        struct rb_node **new = &(root->rb_node), *parent = NULL;
 806
 807        while (*new) {
 808                struct work_atoms *this;
 809                int cmp;
 810
 811                this = container_of(*new, struct work_atoms, node);
 812                parent = *new;
 813
 814                cmp = thread_lat_cmp(sort_list, data, this);
 815
 816                if (cmp > 0)
 817                        new = &((*new)->rb_left);
 818                else
 819                        new = &((*new)->rb_right);
 820        }
 821
 822        rb_link_node(&data->node, parent, new);
 823        rb_insert_color(&data->node, root);
 824}
 825
 826static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 827{
 828        struct work_atoms *atoms = zalloc(sizeof(*atoms));
 829        if (!atoms) {
 830                pr_err("No memory at %s\n", __func__);
 831                return -1;
 832        }
 833
 834        atoms->thread = thread;
 835        INIT_LIST_HEAD(&atoms->work_list);
 836        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 837        return 0;
 838}
 839
 840static char sched_out_state(u64 prev_state)
 841{
 842        const char *str = TASK_STATE_TO_CHAR_STR;
 843
 844        return str[prev_state];
 845}
 846
 847static int
 848add_sched_out_event(struct work_atoms *atoms,
 849                    char run_state,
 850                    u64 timestamp)
 851{
 852        struct work_atom *atom = zalloc(sizeof(*atom));
 853        if (!atom) {
 854                pr_err("Non memory at %s", __func__);
 855                return -1;
 856        }
 857
 858        atom->sched_out_time = timestamp;
 859
 860        if (run_state == 'R') {
 861                atom->state = THREAD_WAIT_CPU;
 862                atom->wake_up_time = atom->sched_out_time;
 863        }
 864
 865        list_add_tail(&atom->list, &atoms->work_list);
 866        return 0;
 867}
 868
 869static void
 870add_runtime_event(struct work_atoms *atoms, u64 delta,
 871                  u64 timestamp __maybe_unused)
 872{
 873        struct work_atom *atom;
 874
 875        BUG_ON(list_empty(&atoms->work_list));
 876
 877        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 878
 879        atom->runtime += delta;
 880        atoms->total_runtime += delta;
 881}
 882
 883static void
 884add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 885{
 886        struct work_atom *atom;
 887        u64 delta;
 888
 889        if (list_empty(&atoms->work_list))
 890                return;
 891
 892        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 893
 894        if (atom->state != THREAD_WAIT_CPU)
 895                return;
 896
 897        if (timestamp < atom->wake_up_time) {
 898                atom->state = THREAD_IGNORE;
 899                return;
 900        }
 901
 902        atom->state = THREAD_SCHED_IN;
 903        atom->sched_in_time = timestamp;
 904
 905        delta = atom->sched_in_time - atom->wake_up_time;
 906        atoms->total_lat += delta;
 907        if (delta > atoms->max_lat) {
 908                atoms->max_lat = delta;
 909                atoms->max_lat_at = timestamp;
 910        }
 911        atoms->nb_atoms++;
 912}
 913
 914static int latency_switch_event(struct perf_sched *sched,
 915                                struct perf_evsel *evsel,
 916                                struct perf_sample *sample,
 917                                struct machine *machine)
 918{
 919        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 920                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 921        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 922        struct work_atoms *out_events, *in_events;
 923        struct thread *sched_out, *sched_in;
 924        u64 timestamp0, timestamp = sample->time;
 925        int cpu = sample->cpu;
 926        s64 delta;
 927
 928        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 929
 930        timestamp0 = sched->cpu_last_switched[cpu];
 931        sched->cpu_last_switched[cpu] = timestamp;
 932        if (timestamp0)
 933                delta = timestamp - timestamp0;
 934        else
 935                delta = 0;
 936
 937        if (delta < 0) {
 938                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 939                return -1;
 940        }
 941
 942        sched_out = machine__findnew_thread(machine, -1, prev_pid);
 943        sched_in = machine__findnew_thread(machine, -1, next_pid);
 944
 945        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 946        if (!out_events) {
 947                if (thread_atoms_insert(sched, sched_out))
 948                        return -1;
 949                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 950                if (!out_events) {
 951                        pr_err("out-event: Internal tree error");
 952                        return -1;
 953                }
 954        }
 955        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 956                return -1;
 957
 958        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 959        if (!in_events) {
 960                if (thread_atoms_insert(sched, sched_in))
 961                        return -1;
 962                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 963                if (!in_events) {
 964                        pr_err("in-event: Internal tree error");
 965                        return -1;
 966                }
 967                /*
 968                 * Take came in we have not heard about yet,
 969                 * add in an initial atom in runnable state:
 970                 */
 971                if (add_sched_out_event(in_events, 'R', timestamp))
 972                        return -1;
 973        }
 974        add_sched_in_event(in_events, timestamp);
 975
 976        return 0;
 977}
 978
 979static int latency_runtime_event(struct perf_sched *sched,
 980                                 struct perf_evsel *evsel,
 981                                 struct perf_sample *sample,
 982                                 struct machine *machine)
 983{
 984        const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
 985        const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
 986        struct thread *thread = machine__findnew_thread(machine, -1, pid);
 987        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 988        u64 timestamp = sample->time;
 989        int cpu = sample->cpu;
 990
 991        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 992        if (!atoms) {
 993                if (thread_atoms_insert(sched, thread))
 994                        return -1;
 995                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 996                if (!atoms) {
 997                        pr_err("in-event: Internal tree error");
 998                        return -1;
 999                }
1000                if (add_sched_out_event(atoms, 'R', timestamp))
1001                        return -1;
1002        }
1003
1004        add_runtime_event(atoms, runtime, timestamp);
1005        return 0;
1006}
1007
1008static int latency_wakeup_event(struct perf_sched *sched,
1009                                struct perf_evsel *evsel,
1010                                struct perf_sample *sample,
1011                                struct machine *machine)
1012{
1013        const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1014        struct work_atoms *atoms;
1015        struct work_atom *atom;
1016        struct thread *wakee;
1017        u64 timestamp = sample->time;
1018
1019        wakee = machine__findnew_thread(machine, -1, pid);
1020        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021        if (!atoms) {
1022                if (thread_atoms_insert(sched, wakee))
1023                        return -1;
1024                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1025                if (!atoms) {
1026                        pr_err("wakeup-event: Internal tree error");
1027                        return -1;
1028                }
1029                if (add_sched_out_event(atoms, 'S', timestamp))
1030                        return -1;
1031        }
1032
1033        BUG_ON(list_empty(&atoms->work_list));
1034
1035        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1036
1037        /*
1038         * As we do not guarantee the wakeup event happens when
1039         * task is out of run queue, also may happen when task is
1040         * on run queue and wakeup only change ->state to TASK_RUNNING,
1041         * then we should not set the ->wake_up_time when wake up a
1042         * task which is on run queue.
1043         *
1044         * You WILL be missing events if you've recorded only
1045         * one CPU, or are only looking at only one, so don't
1046         * skip in this case.
1047         */
1048        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1049                return 0;
1050
1051        sched->nr_timestamps++;
1052        if (atom->sched_out_time > timestamp) {
1053                sched->nr_unordered_timestamps++;
1054                return 0;
1055        }
1056
1057        atom->state = THREAD_WAIT_CPU;
1058        atom->wake_up_time = timestamp;
1059        return 0;
1060}
1061
1062static int latency_migrate_task_event(struct perf_sched *sched,
1063                                      struct perf_evsel *evsel,
1064                                      struct perf_sample *sample,
1065                                      struct machine *machine)
1066{
1067        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1068        u64 timestamp = sample->time;
1069        struct work_atoms *atoms;
1070        struct work_atom *atom;
1071        struct thread *migrant;
1072
1073        /*
1074         * Only need to worry about migration when profiling one CPU.
1075         */
1076        if (sched->profile_cpu == -1)
1077                return 0;
1078
1079        migrant = machine__findnew_thread(machine, -1, pid);
1080        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1081        if (!atoms) {
1082                if (thread_atoms_insert(sched, migrant))
1083                        return -1;
1084                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1085                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1086                if (!atoms) {
1087                        pr_err("migration-event: Internal tree error");
1088                        return -1;
1089                }
1090                if (add_sched_out_event(atoms, 'R', timestamp))
1091                        return -1;
1092        }
1093
1094        BUG_ON(list_empty(&atoms->work_list));
1095
1096        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1097        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1098
1099        sched->nr_timestamps++;
1100
1101        if (atom->sched_out_time > timestamp)
1102                sched->nr_unordered_timestamps++;
1103
1104        return 0;
1105}
1106
1107static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1108{
1109        int i;
1110        int ret;
1111        u64 avg;
1112
1113        if (!work_list->nb_atoms)
1114                return;
1115        /*
1116         * Ignore idle threads:
1117         */
1118        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1119                return;
1120
1121        sched->all_runtime += work_list->total_runtime;
1122        sched->all_count   += work_list->nb_atoms;
1123
1124        ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1125
1126        for (i = 0; i < 24 - ret; i++)
1127                printf(" ");
1128
1129        avg = work_list->total_lat / work_list->nb_atoms;
1130
1131        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1132              (double)work_list->total_runtime / 1e6,
1133                 work_list->nb_atoms, (double)avg / 1e6,
1134                 (double)work_list->max_lat / 1e6,
1135                 (double)work_list->max_lat_at / 1e9);
1136}
1137
1138static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1139{
1140        if (l->thread->tid < r->thread->tid)
1141                return -1;
1142        if (l->thread->tid > r->thread->tid)
1143                return 1;
1144
1145        return 0;
1146}
1147
1148static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1149{
1150        u64 avgl, avgr;
1151
1152        if (!l->nb_atoms)
1153                return -1;
1154
1155        if (!r->nb_atoms)
1156                return 1;
1157
1158        avgl = l->total_lat / l->nb_atoms;
1159        avgr = r->total_lat / r->nb_atoms;
1160
1161        if (avgl < avgr)
1162                return -1;
1163        if (avgl > avgr)
1164                return 1;
1165
1166        return 0;
1167}
1168
1169static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1170{
1171        if (l->max_lat < r->max_lat)
1172                return -1;
1173        if (l->max_lat > r->max_lat)
1174                return 1;
1175
1176        return 0;
1177}
1178
1179static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1180{
1181        if (l->nb_atoms < r->nb_atoms)
1182                return -1;
1183        if (l->nb_atoms > r->nb_atoms)
1184                return 1;
1185
1186        return 0;
1187}
1188
1189static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1190{
1191        if (l->total_runtime < r->total_runtime)
1192                return -1;
1193        if (l->total_runtime > r->total_runtime)
1194                return 1;
1195
1196        return 0;
1197}
1198
1199static int sort_dimension__add(const char *tok, struct list_head *list)
1200{
1201        size_t i;
1202        static struct sort_dimension avg_sort_dimension = {
1203                .name = "avg",
1204                .cmp  = avg_cmp,
1205        };
1206        static struct sort_dimension max_sort_dimension = {
1207                .name = "max",
1208                .cmp  = max_cmp,
1209        };
1210        static struct sort_dimension pid_sort_dimension = {
1211                .name = "pid",
1212                .cmp  = pid_cmp,
1213        };
1214        static struct sort_dimension runtime_sort_dimension = {
1215                .name = "runtime",
1216                .cmp  = runtime_cmp,
1217        };
1218        static struct sort_dimension switch_sort_dimension = {
1219                .name = "switch",
1220                .cmp  = switch_cmp,
1221        };
1222        struct sort_dimension *available_sorts[] = {
1223                &pid_sort_dimension,
1224                &avg_sort_dimension,
1225                &max_sort_dimension,
1226                &switch_sort_dimension,
1227                &runtime_sort_dimension,
1228        };
1229
1230        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1231                if (!strcmp(available_sorts[i]->name, tok)) {
1232                        list_add_tail(&available_sorts[i]->list, list);
1233
1234                        return 0;
1235                }
1236        }
1237
1238        return -1;
1239}
1240
1241static void perf_sched__sort_lat(struct perf_sched *sched)
1242{
1243        struct rb_node *node;
1244
1245        for (;;) {
1246                struct work_atoms *data;
1247                node = rb_first(&sched->atom_root);
1248                if (!node)
1249                        break;
1250
1251                rb_erase(node, &sched->atom_root);
1252                data = rb_entry(node, struct work_atoms, node);
1253                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1254        }
1255}
1256
1257static int process_sched_wakeup_event(struct perf_tool *tool,
1258                                      struct perf_evsel *evsel,
1259                                      struct perf_sample *sample,
1260                                      struct machine *machine)
1261{
1262        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1263
1264        if (sched->tp_handler->wakeup_event)
1265                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1266
1267        return 0;
1268}
1269
1270static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1271                            struct perf_sample *sample, struct machine *machine)
1272{
1273        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1274        struct thread *sched_in;
1275        int new_shortname;
1276        u64 timestamp0, timestamp = sample->time;
1277        s64 delta;
1278        int cpu, this_cpu = sample->cpu;
1279
1280        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1281
1282        if (this_cpu > sched->max_cpu)
1283                sched->max_cpu = this_cpu;
1284
1285        timestamp0 = sched->cpu_last_switched[this_cpu];
1286        sched->cpu_last_switched[this_cpu] = timestamp;
1287        if (timestamp0)
1288                delta = timestamp - timestamp0;
1289        else
1290                delta = 0;
1291
1292        if (delta < 0) {
1293                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1294                return -1;
1295        }
1296
1297        sched_in = machine__findnew_thread(machine, -1, next_pid);
1298
1299        sched->curr_thread[this_cpu] = sched_in;
1300
1301        printf("  ");
1302
1303        new_shortname = 0;
1304        if (!sched_in->shortname[0]) {
1305                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1306                        /*
1307                         * Don't allocate a letter-number for swapper:0
1308                         * as a shortname. Instead, we use '.' for it.
1309                         */
1310                        sched_in->shortname[0] = '.';
1311                        sched_in->shortname[1] = ' ';
1312                } else {
1313                        sched_in->shortname[0] = sched->next_shortname1;
1314                        sched_in->shortname[1] = sched->next_shortname2;
1315
1316                        if (sched->next_shortname1 < 'Z') {
1317                                sched->next_shortname1++;
1318                        } else {
1319                                sched->next_shortname1 = 'A';
1320                                if (sched->next_shortname2 < '9')
1321                                        sched->next_shortname2++;
1322                                else
1323                                        sched->next_shortname2 = '0';
1324                        }
1325                }
1326                new_shortname = 1;
1327        }
1328
1329        for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1330                if (cpu != this_cpu)
1331                        printf(" ");
1332                else
1333                        printf("*");
1334
1335                if (sched->curr_thread[cpu])
1336                        printf("%2s ", sched->curr_thread[cpu]->shortname);
1337                else
1338                        printf("   ");
1339        }
1340
1341        printf("  %12.6f secs ", (double)timestamp/1e9);
1342        if (new_shortname) {
1343                printf("%s => %s:%d\n",
1344                       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1345        } else {
1346                printf("\n");
1347        }
1348
1349        return 0;
1350}
1351
1352static int process_sched_switch_event(struct perf_tool *tool,
1353                                      struct perf_evsel *evsel,
1354                                      struct perf_sample *sample,
1355                                      struct machine *machine)
1356{
1357        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1358        int this_cpu = sample->cpu, err = 0;
1359        u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1360            next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1361
1362        if (sched->curr_pid[this_cpu] != (u32)-1) {
1363                /*
1364                 * Are we trying to switch away a PID that is
1365                 * not current?
1366                 */
1367                if (sched->curr_pid[this_cpu] != prev_pid)
1368                        sched->nr_context_switch_bugs++;
1369        }
1370
1371        if (sched->tp_handler->switch_event)
1372                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1373
1374        sched->curr_pid[this_cpu] = next_pid;
1375        return err;
1376}
1377
1378static int process_sched_runtime_event(struct perf_tool *tool,
1379                                       struct perf_evsel *evsel,
1380                                       struct perf_sample *sample,
1381                                       struct machine *machine)
1382{
1383        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1384
1385        if (sched->tp_handler->runtime_event)
1386                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1387
1388        return 0;
1389}
1390
1391static int perf_sched__process_fork_event(struct perf_tool *tool,
1392                                          union perf_event *event,
1393                                          struct perf_sample *sample,
1394                                          struct machine *machine)
1395{
1396        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1397
1398        /* run the fork event through the perf machineruy */
1399        perf_event__process_fork(tool, event, sample, machine);
1400
1401        /* and then run additional processing needed for this command */
1402        if (sched->tp_handler->fork_event)
1403                return sched->tp_handler->fork_event(sched, event, machine);
1404
1405        return 0;
1406}
1407
1408static int process_sched_migrate_task_event(struct perf_tool *tool,
1409                                            struct perf_evsel *evsel,
1410                                            struct perf_sample *sample,
1411                                            struct machine *machine)
1412{
1413        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1414
1415        if (sched->tp_handler->migrate_task_event)
1416                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1417
1418        return 0;
1419}
1420
1421typedef int (*tracepoint_handler)(struct perf_tool *tool,
1422                                  struct perf_evsel *evsel,
1423                                  struct perf_sample *sample,
1424                                  struct machine *machine);
1425
1426static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1427                                                 union perf_event *event __maybe_unused,
1428                                                 struct perf_sample *sample,
1429                                                 struct perf_evsel *evsel,
1430                                                 struct machine *machine)
1431{
1432        int err = 0;
1433
1434        if (evsel->handler != NULL) {
1435                tracepoint_handler f = evsel->handler;
1436                err = f(tool, evsel, sample, machine);
1437        }
1438
1439        return err;
1440}
1441
1442static int perf_sched__read_events(struct perf_sched *sched,
1443                                   struct perf_session **psession)
1444{
1445        const struct perf_evsel_str_handler handlers[] = {
1446                { "sched:sched_switch",       process_sched_switch_event, },
1447                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1448                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1449                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1450                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1451        };
1452        struct perf_session *session;
1453        struct perf_data_file file = {
1454                .path = input_name,
1455                .mode = PERF_DATA_MODE_READ,
1456        };
1457
1458        session = perf_session__new(&file, false, &sched->tool);
1459        if (session == NULL) {
1460                pr_debug("No Memory for session\n");
1461                return -1;
1462        }
1463
1464        symbol__init(&session->header.env);
1465
1466        if (perf_session__set_tracepoints_handlers(session, handlers))
1467                goto out_delete;
1468
1469        if (perf_session__has_traces(session, "record -R")) {
1470                int err = perf_session__process_events(session, &sched->tool);
1471                if (err) {
1472                        pr_err("Failed to process events, error %d", err);
1473                        goto out_delete;
1474                }
1475
1476                sched->nr_events      = session->stats.nr_events[0];
1477                sched->nr_lost_events = session->stats.total_lost;
1478                sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1479        }
1480
1481        if (psession)
1482                *psession = session;
1483        else
1484                perf_session__delete(session);
1485
1486        return 0;
1487
1488out_delete:
1489        perf_session__delete(session);
1490        return -1;
1491}
1492
1493static void print_bad_events(struct perf_sched *sched)
1494{
1495        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1496                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1497                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1498                        sched->nr_unordered_timestamps, sched->nr_timestamps);
1499        }
1500        if (sched->nr_lost_events && sched->nr_events) {
1501                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1502                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1503                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1504        }
1505        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1506                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1507                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1508                        sched->nr_context_switch_bugs, sched->nr_timestamps);
1509                if (sched->nr_lost_events)
1510                        printf(" (due to lost events?)");
1511                printf("\n");
1512        }
1513}
1514
1515static int perf_sched__lat(struct perf_sched *sched)
1516{
1517        struct rb_node *next;
1518        struct perf_session *session;
1519
1520        setup_pager();
1521
1522        /* save session -- references to threads are held in work_list */
1523        if (perf_sched__read_events(sched, &session))
1524                return -1;
1525
1526        perf_sched__sort_lat(sched);
1527
1528        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1529        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1530        printf(" -----------------------------------------------------------------------------------------------------------------\n");
1531
1532        next = rb_first(&sched->sorted_atom_root);
1533
1534        while (next) {
1535                struct work_atoms *work_list;
1536
1537                work_list = rb_entry(next, struct work_atoms, node);
1538                output_lat_thread(sched, work_list);
1539                next = rb_next(next);
1540        }
1541
1542        printf(" -----------------------------------------------------------------------------------------------------------------\n");
1543        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1544                (double)sched->all_runtime / 1e6, sched->all_count);
1545
1546        printf(" ---------------------------------------------------\n");
1547
1548        print_bad_events(sched);
1549        printf("\n");
1550
1551        perf_session__delete(session);
1552        return 0;
1553}
1554
1555static int perf_sched__map(struct perf_sched *sched)
1556{
1557        sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1558
1559        setup_pager();
1560        if (perf_sched__read_events(sched, NULL))
1561                return -1;
1562        print_bad_events(sched);
1563        return 0;
1564}
1565
1566static int perf_sched__replay(struct perf_sched *sched)
1567{
1568        unsigned long i;
1569
1570        calibrate_run_measurement_overhead(sched);
1571        calibrate_sleep_measurement_overhead(sched);
1572
1573        test_calibrations(sched);
1574
1575        if (perf_sched__read_events(sched, NULL))
1576                return -1;
1577
1578        printf("nr_run_events:        %ld\n", sched->nr_run_events);
1579        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1580        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1581
1582        if (sched->targetless_wakeups)
1583                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1584        if (sched->multitarget_wakeups)
1585                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1586        if (sched->nr_run_events_optimized)
1587                printf("run atoms optimized: %ld\n",
1588                        sched->nr_run_events_optimized);
1589
1590        print_task_traces(sched);
1591        add_cross_task_wakeups(sched);
1592
1593        create_tasks(sched);
1594        printf("------------------------------------------------------------\n");
1595        for (i = 0; i < sched->replay_repeat; i++)
1596                run_one_test(sched);
1597
1598        return 0;
1599}
1600
1601static void setup_sorting(struct perf_sched *sched, const struct option *options,
1602                          const char * const usage_msg[])
1603{
1604        char *tmp, *tok, *str = strdup(sched->sort_order);
1605
1606        for (tok = strtok_r(str, ", ", &tmp);
1607                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
1608                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1609                        error("Unknown --sort key: `%s'", tok);
1610                        usage_with_options(usage_msg, options);
1611                }
1612        }
1613
1614        free(str);
1615
1616        sort_dimension__add("pid", &sched->cmp_pid);
1617}
1618
1619static int __cmd_record(int argc, const char **argv)
1620{
1621        unsigned int rec_argc, i, j;
1622        const char **rec_argv;
1623        const char * const record_args[] = {
1624                "record",
1625                "-a",
1626                "-R",
1627                "-m", "1024",
1628                "-c", "1",
1629                "-e", "sched:sched_switch",
1630                "-e", "sched:sched_stat_wait",
1631                "-e", "sched:sched_stat_sleep",
1632                "-e", "sched:sched_stat_iowait",
1633                "-e", "sched:sched_stat_runtime",
1634                "-e", "sched:sched_process_fork",
1635                "-e", "sched:sched_wakeup",
1636                "-e", "sched:sched_wakeup_new",
1637                "-e", "sched:sched_migrate_task",
1638        };
1639
1640        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1641        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1642
1643        if (rec_argv == NULL)
1644                return -ENOMEM;
1645
1646        for (i = 0; i < ARRAY_SIZE(record_args); i++)
1647                rec_argv[i] = strdup(record_args[i]);
1648
1649        for (j = 1; j < (unsigned int)argc; j++, i++)
1650                rec_argv[i] = argv[j];
1651
1652        BUG_ON(i != rec_argc);
1653
1654        return cmd_record(i, rec_argv, NULL);
1655}
1656
1657int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1658{
1659        const char default_sort_order[] = "avg, max, switch, runtime";
1660        struct perf_sched sched = {
1661                .tool = {
1662                        .sample          = perf_sched__process_tracepoint_sample,
1663                        .comm            = perf_event__process_comm,
1664                        .lost            = perf_event__process_lost,
1665                        .fork            = perf_sched__process_fork_event,
1666                        .ordered_events = true,
1667                },
1668                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1669                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1670                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1671                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1672                .sort_order           = default_sort_order,
1673                .replay_repeat        = 10,
1674                .profile_cpu          = -1,
1675                .next_shortname1      = 'A',
1676                .next_shortname2      = '0',
1677        };
1678        const struct option latency_options[] = {
1679        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1680                   "sort by key(s): runtime, switch, avg, max"),
1681        OPT_INCR('v', "verbose", &verbose,
1682                    "be more verbose (show symbol address, etc)"),
1683        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1684                    "CPU to profile on"),
1685        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1686                    "dump raw trace in ASCII"),
1687        OPT_END()
1688        };
1689        const struct option replay_options[] = {
1690        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1691                     "repeat the workload replay N times (-1: infinite)"),
1692        OPT_INCR('v', "verbose", &verbose,
1693                    "be more verbose (show symbol address, etc)"),
1694        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1695                    "dump raw trace in ASCII"),
1696        OPT_END()
1697        };
1698        const struct option sched_options[] = {
1699        OPT_STRING('i', "input", &input_name, "file",
1700                    "input file name"),
1701        OPT_INCR('v', "verbose", &verbose,
1702                    "be more verbose (show symbol address, etc)"),
1703        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1704                    "dump raw trace in ASCII"),
1705        OPT_END()
1706        };
1707        const char * const latency_usage[] = {
1708                "perf sched latency [<options>]",
1709                NULL
1710        };
1711        const char * const replay_usage[] = {
1712                "perf sched replay [<options>]",
1713                NULL
1714        };
1715        const char *const sched_subcommands[] = { "record", "latency", "map",
1716                                                  "replay", "script", NULL };
1717        const char *sched_usage[] = {
1718                NULL,
1719                NULL
1720        };
1721        struct trace_sched_handler lat_ops  = {
1722                .wakeup_event       = latency_wakeup_event,
1723                .switch_event       = latency_switch_event,
1724                .runtime_event      = latency_runtime_event,
1725                .migrate_task_event = latency_migrate_task_event,
1726        };
1727        struct trace_sched_handler map_ops  = {
1728                .switch_event       = map_switch_event,
1729        };
1730        struct trace_sched_handler replay_ops  = {
1731                .wakeup_event       = replay_wakeup_event,
1732                .switch_event       = replay_switch_event,
1733                .fork_event         = replay_fork_event,
1734        };
1735        unsigned int i;
1736
1737        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1738                sched.curr_pid[i] = -1;
1739
1740        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1741                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1742        if (!argc)
1743                usage_with_options(sched_usage, sched_options);
1744
1745        /*
1746         * Aliased to 'perf script' for now:
1747         */
1748        if (!strcmp(argv[0], "script"))
1749                return cmd_script(argc, argv, prefix);
1750
1751        if (!strncmp(argv[0], "rec", 3)) {
1752                return __cmd_record(argc, argv);
1753        } else if (!strncmp(argv[0], "lat", 3)) {
1754                sched.tp_handler = &lat_ops;
1755                if (argc > 1) {
1756                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757                        if (argc)
1758                                usage_with_options(latency_usage, latency_options);
1759                }
1760                setup_sorting(&sched, latency_options, latency_usage);
1761                return perf_sched__lat(&sched);
1762        } else if (!strcmp(argv[0], "map")) {
1763                sched.tp_handler = &map_ops;
1764                setup_sorting(&sched, latency_options, latency_usage);
1765                return perf_sched__map(&sched);
1766        } else if (!strncmp(argv[0], "rep", 3)) {
1767                sched.tp_handler = &replay_ops;
1768                if (argc) {
1769                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770                        if (argc)
1771                                usage_with_options(replay_usage, replay_options);
1772                }
1773                return perf_sched__replay(&sched);
1774        } else {
1775                usage_with_options(sched_usage, sched_options);
1776        }
1777
1778        return 0;
1779}
1780