linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/highmem.h>
  21#include <linux/slab.h>
  22
  23#include <asm/memory.h>
  24#include <asm/highmem.h>
  25#include <asm/cacheflush.h>
  26#include <asm/tlbflush.h>
  27#include <asm/sizes.h>
  28#include <asm/mach/arch.h>
  29
  30#include "mm.h"
  31
  32static u64 get_coherent_dma_mask(struct device *dev)
  33{
  34        u64 mask = (u64)arm_dma_limit;
  35
  36        if (dev) {
  37                mask = dev->coherent_dma_mask;
  38
  39                /*
  40                 * Sanity check the DMA mask - it must be non-zero, and
  41                 * must be able to be satisfied by a DMA allocation.
  42                 */
  43                if (mask == 0) {
  44                        dev_warn(dev, "coherent DMA mask is unset\n");
  45                        return 0;
  46                }
  47
  48                if ((~mask) & (u64)arm_dma_limit) {
  49                        dev_warn(dev, "coherent DMA mask %#llx is smaller "
  50                                 "than system GFP_DMA mask %#llx\n",
  51                                 mask, (u64)arm_dma_limit);
  52                        return 0;
  53                }
  54        }
  55
  56        return mask;
  57}
  58
  59/*
  60 * Allocate a DMA buffer for 'dev' of size 'size' using the
  61 * specified gfp mask.  Note that 'size' must be page aligned.
  62 */
  63static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  64{
  65        unsigned long order = get_order(size);
  66        struct page *page, *p, *e;
  67        void *ptr;
  68        u64 mask = get_coherent_dma_mask(dev);
  69
  70#ifdef CONFIG_DMA_API_DEBUG
  71        u64 limit = (mask + 1) & ~mask;
  72        if (limit && size >= limit) {
  73                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  74                        size, mask);
  75                return NULL;
  76        }
  77#endif
  78
  79        if (!mask)
  80                return NULL;
  81
  82        if (mask < 0xffffffffULL)
  83                gfp |= GFP_DMA;
  84
  85        page = alloc_pages(gfp, order);
  86        if (!page)
  87                return NULL;
  88
  89        /*
  90         * Now split the huge page and free the excess pages
  91         */
  92        split_page(page, order);
  93        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  94                __free_page(p);
  95
  96        /*
  97         * Ensure that the allocated pages are zeroed, and that any data
  98         * lurking in the kernel direct-mapped region is invalidated.
  99         */
 100        ptr = page_address(page);
 101        memset(ptr, 0, size);
 102        dmac_flush_range(ptr, ptr + size);
 103        outer_flush_range(__pa(ptr), __pa(ptr) + size);
 104
 105        return page;
 106}
 107
 108/*
 109 * Free a DMA buffer.  'size' must be page aligned.
 110 */
 111static void __dma_free_buffer(struct page *page, size_t size)
 112{
 113        struct page *e = page + (size >> PAGE_SHIFT);
 114
 115        while (page < e) {
 116                __free_page(page);
 117                page++;
 118        }
 119}
 120
 121#ifdef CONFIG_MMU
 122
 123#define CONSISTENT_OFFSET(x)    (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
 124#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
 125
 126/*
 127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
 128 */
 129static pte_t **consistent_pte;
 130
 131#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
 132
 133unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
 134
 135void __init init_consistent_dma_size(unsigned long size)
 136{
 137        unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
 138
 139        BUG_ON(consistent_pte); /* Check we're called before DMA region init */
 140        BUG_ON(base < VMALLOC_END);
 141
 142        /* Grow region to accommodate specified size  */
 143        if (base < consistent_base)
 144                consistent_base = base;
 145}
 146
 147#include "vmregion.h"
 148
 149static struct arm_vmregion_head consistent_head = {
 150        .vm_lock        = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
 151        .vm_list        = LIST_HEAD_INIT(consistent_head.vm_list),
 152        .vm_end         = CONSISTENT_END,
 153};
 154
 155#ifdef CONFIG_HUGETLB_PAGE
 156#error ARM Coherent DMA allocator does not (yet) support huge TLB
 157#endif
 158
 159/*
 160 * Initialise the consistent memory allocation.
 161 */
 162static int __init consistent_init(void)
 163{
 164        int ret = 0;
 165        pgd_t *pgd;
 166        pud_t *pud;
 167        pmd_t *pmd;
 168        pte_t *pte;
 169        int i = 0;
 170        unsigned long base = consistent_base;
 171        unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
 172
 173        consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
 174        if (!consistent_pte) {
 175                pr_err("%s: no memory\n", __func__);
 176                return -ENOMEM;
 177        }
 178
 179        pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
 180        consistent_head.vm_start = base;
 181
 182        do {
 183                pgd = pgd_offset(&init_mm, base);
 184
 185                pud = pud_alloc(&init_mm, pgd, base);
 186                if (!pud) {
 187                        printk(KERN_ERR "%s: no pud tables\n", __func__);
 188                        ret = -ENOMEM;
 189                        break;
 190                }
 191
 192                pmd = pmd_alloc(&init_mm, pud, base);
 193                if (!pmd) {
 194                        printk(KERN_ERR "%s: no pmd tables\n", __func__);
 195                        ret = -ENOMEM;
 196                        break;
 197                }
 198                WARN_ON(!pmd_none(*pmd));
 199
 200                pte = pte_alloc_kernel(pmd, base);
 201                if (!pte) {
 202                        printk(KERN_ERR "%s: no pte tables\n", __func__);
 203                        ret = -ENOMEM;
 204                        break;
 205                }
 206
 207                consistent_pte[i++] = pte;
 208                base += PMD_SIZE;
 209        } while (base < CONSISTENT_END);
 210
 211        return ret;
 212}
 213
 214core_initcall(consistent_init);
 215
 216static void *
 217__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
 218{
 219        struct arm_vmregion *c;
 220        size_t align;
 221        int bit;
 222
 223        if (!consistent_pte) {
 224                printk(KERN_ERR "%s: not initialised\n", __func__);
 225                dump_stack();
 226                return NULL;
 227        }
 228
 229        /*
 230         * Align the virtual region allocation - maximum alignment is
 231         * a section size, minimum is a page size.  This helps reduce
 232         * fragmentation of the DMA space, and also prevents allocations
 233         * smaller than a section from crossing a section boundary.
 234         */
 235        bit = fls(size - 1);
 236        if (bit > SECTION_SHIFT)
 237                bit = SECTION_SHIFT;
 238        align = 1 << bit;
 239
 240        /*
 241         * Allocate a virtual address in the consistent mapping region.
 242         */
 243        c = arm_vmregion_alloc(&consistent_head, align, size,
 244                            gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
 245        if (c) {
 246                pte_t *pte;
 247                int idx = CONSISTENT_PTE_INDEX(c->vm_start);
 248                u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 249
 250                pte = consistent_pte[idx] + off;
 251                c->vm_pages = page;
 252
 253                do {
 254                        BUG_ON(!pte_none(*pte));
 255
 256                        set_pte_ext(pte, mk_pte(page, prot), 0);
 257                        page++;
 258                        pte++;
 259                        off++;
 260                        if (off >= PTRS_PER_PTE) {
 261                                off = 0;
 262                                pte = consistent_pte[++idx];
 263                        }
 264                } while (size -= PAGE_SIZE);
 265
 266                dsb();
 267
 268                return (void *)c->vm_start;
 269        }
 270        return NULL;
 271}
 272
 273static void __dma_free_remap(void *cpu_addr, size_t size)
 274{
 275        struct arm_vmregion *c;
 276        unsigned long addr;
 277        pte_t *ptep;
 278        int idx;
 279        u32 off;
 280
 281        c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
 282        if (!c) {
 283                printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
 284                       __func__, cpu_addr);
 285                dump_stack();
 286                return;
 287        }
 288
 289        if ((c->vm_end - c->vm_start) != size) {
 290                printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
 291                       __func__, c->vm_end - c->vm_start, size);
 292                dump_stack();
 293                size = c->vm_end - c->vm_start;
 294        }
 295
 296        idx = CONSISTENT_PTE_INDEX(c->vm_start);
 297        off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 298        ptep = consistent_pte[idx] + off;
 299        addr = c->vm_start;
 300        do {
 301                pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
 302
 303                ptep++;
 304                addr += PAGE_SIZE;
 305                off++;
 306                if (off >= PTRS_PER_PTE) {
 307                        off = 0;
 308                        ptep = consistent_pte[++idx];
 309                }
 310
 311                if (pte_none(pte) || !pte_present(pte))
 312                        printk(KERN_CRIT "%s: bad page in kernel page table\n",
 313                               __func__);
 314        } while (size -= PAGE_SIZE);
 315
 316        flush_tlb_kernel_range(c->vm_start, c->vm_end);
 317
 318        arm_vmregion_free(&consistent_head, c);
 319}
 320
 321#else   /* !CONFIG_MMU */
 322
 323#define __dma_alloc_remap(page, size, gfp, prot)        page_address(page)
 324#define __dma_free_remap(addr, size)                    do { } while (0)
 325
 326#endif  /* CONFIG_MMU */
 327
 328static void *
 329__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
 330            pgprot_t prot)
 331{
 332        struct page *page;
 333        void *addr;
 334
 335        /*
 336         * Following is a work-around (a.k.a. hack) to prevent pages
 337         * with __GFP_COMP being passed to split_page() which cannot
 338         * handle them.  The real problem is that this flag probably
 339         * should be 0 on ARM as it is not supported on this
 340         * platform; see CONFIG_HUGETLBFS.
 341         */
 342        gfp &= ~(__GFP_COMP);
 343
 344        *handle = ~0;
 345        size = PAGE_ALIGN(size);
 346
 347        page = __dma_alloc_buffer(dev, size, gfp);
 348        if (!page)
 349                return NULL;
 350
 351        if (!arch_is_coherent())
 352                addr = __dma_alloc_remap(page, size, gfp, prot);
 353        else
 354                addr = page_address(page);
 355
 356        if (addr)
 357                *handle = pfn_to_dma(dev, page_to_pfn(page));
 358        else
 359                __dma_free_buffer(page, size);
 360
 361        return addr;
 362}
 363
 364/*
 365 * Allocate DMA-coherent memory space and return both the kernel remapped
 366 * virtual and bus address for that space.
 367 */
 368void *
 369dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
 370{
 371        void *memory;
 372
 373        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 374                return memory;
 375
 376        return __dma_alloc(dev, size, handle, gfp,
 377                           pgprot_dmacoherent(pgprot_kernel));
 378}
 379EXPORT_SYMBOL(dma_alloc_coherent);
 380
 381/*
 382 * Allocate a writecombining region, in much the same way as
 383 * dma_alloc_coherent above.
 384 */
 385void *
 386dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
 387{
 388        return __dma_alloc(dev, size, handle, gfp,
 389                           pgprot_writecombine(pgprot_kernel));
 390}
 391EXPORT_SYMBOL(dma_alloc_writecombine);
 392
 393static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
 394                    void *cpu_addr, dma_addr_t dma_addr, size_t size)
 395{
 396        int ret = -ENXIO;
 397#ifdef CONFIG_MMU
 398        unsigned long user_size, kern_size;
 399        struct arm_vmregion *c;
 400
 401        user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 402
 403        c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
 404        if (c) {
 405                unsigned long off = vma->vm_pgoff;
 406
 407                kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
 408
 409                if (off < kern_size &&
 410                    user_size <= (kern_size - off)) {
 411                        ret = remap_pfn_range(vma, vma->vm_start,
 412                                              page_to_pfn(c->vm_pages) + off,
 413                                              user_size << PAGE_SHIFT,
 414                                              vma->vm_page_prot);
 415                }
 416        }
 417#endif  /* CONFIG_MMU */
 418
 419        return ret;
 420}
 421
 422int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
 423                      void *cpu_addr, dma_addr_t dma_addr, size_t size)
 424{
 425        vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
 426        return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
 427}
 428EXPORT_SYMBOL(dma_mmap_coherent);
 429
 430int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
 431                          void *cpu_addr, dma_addr_t dma_addr, size_t size)
 432{
 433        vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 434        return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
 435}
 436EXPORT_SYMBOL(dma_mmap_writecombine);
 437
 438/*
 439 * free a page as defined by the above mapping.
 440 * Must not be called with IRQs disabled.
 441 */
 442void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
 443{
 444        WARN_ON(irqs_disabled());
 445
 446        if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 447                return;
 448
 449        size = PAGE_ALIGN(size);
 450
 451        if (!arch_is_coherent())
 452                __dma_free_remap(cpu_addr, size);
 453
 454        __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
 455}
 456EXPORT_SYMBOL(dma_free_coherent);
 457
 458/*
 459 * Make an area consistent for devices.
 460 * Note: Drivers should NOT use this function directly, as it will break
 461 * platforms with CONFIG_DMABOUNCE.
 462 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 463 */
 464void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
 465        enum dma_data_direction dir)
 466{
 467        unsigned long paddr;
 468
 469        BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 470
 471        dmac_map_area(kaddr, size, dir);
 472
 473        paddr = __pa(kaddr);
 474        if (dir == DMA_FROM_DEVICE) {
 475                outer_inv_range(paddr, paddr + size);
 476        } else {
 477                outer_clean_range(paddr, paddr + size);
 478        }
 479        /* FIXME: non-speculating: flush on bidirectional mappings? */
 480}
 481EXPORT_SYMBOL(___dma_single_cpu_to_dev);
 482
 483void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
 484        enum dma_data_direction dir)
 485{
 486        BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 487
 488        /* FIXME: non-speculating: not required */
 489        /* don't bother invalidating if DMA to device */
 490        if (dir != DMA_TO_DEVICE) {
 491                unsigned long paddr = __pa(kaddr);
 492                outer_inv_range(paddr, paddr + size);
 493        }
 494
 495        dmac_unmap_area(kaddr, size, dir);
 496}
 497EXPORT_SYMBOL(___dma_single_dev_to_cpu);
 498
 499static void dma_cache_maint_page(struct page *page, unsigned long offset,
 500        size_t size, enum dma_data_direction dir,
 501        void (*op)(const void *, size_t, int))
 502{
 503        /*
 504         * A single sg entry may refer to multiple physically contiguous
 505         * pages.  But we still need to process highmem pages individually.
 506         * If highmem is not configured then the bulk of this loop gets
 507         * optimized out.
 508         */
 509        size_t left = size;
 510        do {
 511                size_t len = left;
 512                void *vaddr;
 513
 514                if (PageHighMem(page)) {
 515                        if (len + offset > PAGE_SIZE) {
 516                                if (offset >= PAGE_SIZE) {
 517                                        page += offset / PAGE_SIZE;
 518                                        offset %= PAGE_SIZE;
 519                                }
 520                                len = PAGE_SIZE - offset;
 521                        }
 522                        vaddr = kmap_high_get(page);
 523                        if (vaddr) {
 524                                vaddr += offset;
 525                                op(vaddr, len, dir);
 526                                kunmap_high(page);
 527                        } else if (cache_is_vipt()) {
 528                                /* unmapped pages might still be cached */
 529                                vaddr = kmap_atomic(page);
 530                                op(vaddr + offset, len, dir);
 531                                kunmap_atomic(vaddr);
 532                        }
 533                } else {
 534                        vaddr = page_address(page) + offset;
 535                        op(vaddr, len, dir);
 536                }
 537                offset = 0;
 538                page++;
 539                left -= len;
 540        } while (left);
 541}
 542
 543void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
 544        size_t size, enum dma_data_direction dir)
 545{
 546        unsigned long paddr;
 547
 548        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 549
 550        paddr = page_to_phys(page) + off;
 551        if (dir == DMA_FROM_DEVICE) {
 552                outer_inv_range(paddr, paddr + size);
 553        } else {
 554                outer_clean_range(paddr, paddr + size);
 555        }
 556        /* FIXME: non-speculating: flush on bidirectional mappings? */
 557}
 558EXPORT_SYMBOL(___dma_page_cpu_to_dev);
 559
 560void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
 561        size_t size, enum dma_data_direction dir)
 562{
 563        unsigned long paddr = page_to_phys(page) + off;
 564
 565        /* FIXME: non-speculating: not required */
 566        /* don't bother invalidating if DMA to device */
 567        if (dir != DMA_TO_DEVICE)
 568                outer_inv_range(paddr, paddr + size);
 569
 570        dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 571
 572        /*
 573         * Mark the D-cache clean for this page to avoid extra flushing.
 574         */
 575        if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
 576                set_bit(PG_dcache_clean, &page->flags);
 577}
 578EXPORT_SYMBOL(___dma_page_dev_to_cpu);
 579
 580/**
 581 * dma_map_sg - map a set of SG buffers for streaming mode DMA
 582 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 583 * @sg: list of buffers
 584 * @nents: number of buffers to map
 585 * @dir: DMA transfer direction
 586 *
 587 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 588 * This is the scatter-gather version of the dma_map_single interface.
 589 * Here the scatter gather list elements are each tagged with the
 590 * appropriate dma address and length.  They are obtained via
 591 * sg_dma_{address,length}.
 592 *
 593 * Device ownership issues as mentioned for dma_map_single are the same
 594 * here.
 595 */
 596int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 597                enum dma_data_direction dir)
 598{
 599        struct scatterlist *s;
 600        int i, j;
 601
 602        BUG_ON(!valid_dma_direction(dir));
 603
 604        for_each_sg(sg, s, nents, i) {
 605                s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
 606                                                s->length, dir);
 607                if (dma_mapping_error(dev, s->dma_address))
 608                        goto bad_mapping;
 609        }
 610        debug_dma_map_sg(dev, sg, nents, nents, dir);
 611        return nents;
 612
 613 bad_mapping:
 614        for_each_sg(sg, s, i, j)
 615                __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
 616        return 0;
 617}
 618EXPORT_SYMBOL(dma_map_sg);
 619
 620/**
 621 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 622 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 623 * @sg: list of buffers
 624 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 625 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 626 *
 627 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 628 * rules concerning calls here are the same as for dma_unmap_single().
 629 */
 630void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 631                enum dma_data_direction dir)
 632{
 633        struct scatterlist *s;
 634        int i;
 635
 636        debug_dma_unmap_sg(dev, sg, nents, dir);
 637
 638        for_each_sg(sg, s, nents, i)
 639                __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
 640}
 641EXPORT_SYMBOL(dma_unmap_sg);
 642
 643/**
 644 * dma_sync_sg_for_cpu
 645 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 646 * @sg: list of buffers
 647 * @nents: number of buffers to map (returned from dma_map_sg)
 648 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 649 */
 650void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 651                        int nents, enum dma_data_direction dir)
 652{
 653        struct scatterlist *s;
 654        int i;
 655
 656        for_each_sg(sg, s, nents, i) {
 657                if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
 658                                            sg_dma_len(s), dir))
 659                        continue;
 660
 661                __dma_page_dev_to_cpu(sg_page(s), s->offset,
 662                                      s->length, dir);
 663        }
 664
 665        debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
 666}
 667EXPORT_SYMBOL(dma_sync_sg_for_cpu);
 668
 669/**
 670 * dma_sync_sg_for_device
 671 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 672 * @sg: list of buffers
 673 * @nents: number of buffers to map (returned from dma_map_sg)
 674 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 675 */
 676void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 677                        int nents, enum dma_data_direction dir)
 678{
 679        struct scatterlist *s;
 680        int i;
 681
 682        for_each_sg(sg, s, nents, i) {
 683                if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
 684                                        sg_dma_len(s), dir))
 685                        continue;
 686
 687                __dma_page_cpu_to_dev(sg_page(s), s->offset,
 688                                      s->length, dir);
 689        }
 690
 691        debug_dma_sync_sg_for_device(dev, sg, nents, dir);
 692}
 693EXPORT_SYMBOL(dma_sync_sg_for_device);
 694
 695/*
 696 * Return whether the given device DMA address mask can be supported
 697 * properly.  For example, if your device can only drive the low 24-bits
 698 * during bus mastering, then you would pass 0x00ffffff as the mask
 699 * to this function.
 700 */
 701int dma_supported(struct device *dev, u64 mask)
 702{
 703        if (mask < (u64)arm_dma_limit)
 704                return 0;
 705        return 1;
 706}
 707EXPORT_SYMBOL(dma_supported);
 708
 709int dma_set_mask(struct device *dev, u64 dma_mask)
 710{
 711        if (!dev->dma_mask || !dma_supported(dev, dma_mask))
 712                return -EIO;
 713
 714#ifndef CONFIG_DMABOUNCE
 715        *dev->dma_mask = dma_mask;
 716#endif
 717
 718        return 0;
 719}
 720EXPORT_SYMBOL(dma_set_mask);
 721
 722#define PREALLOC_DMA_DEBUG_ENTRIES      4096
 723
 724static int __init dma_debug_do_init(void)
 725{
 726        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 727        return 0;
 728}
 729fs_initcall(dma_debug_do_init);
 730