linux/arch/blackfin/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Blackfin architecture-dependent process handling
   3 *
   4 * Copyright 2004-2009 Analog Devices Inc.
   5 *
   6 * Licensed under the GPL-2 or later
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/unistd.h>
  11#include <linux/user.h>
  12#include <linux/uaccess.h>
  13#include <linux/slab.h>
  14#include <linux/sched.h>
  15#include <linux/tick.h>
  16#include <linux/fs.h>
  17#include <linux/err.h>
  18
  19#include <asm/blackfin.h>
  20#include <asm/fixed_code.h>
  21#include <asm/mem_map.h>
  22
  23asmlinkage void ret_from_fork(void);
  24
  25/* Points to the SDRAM backup memory for the stack that is currently in
  26 * L1 scratchpad memory.
  27 */
  28void *current_l1_stack_save;
  29
  30/* The number of tasks currently using a L1 stack area.  The SRAM is
  31 * allocated/deallocated whenever this changes from/to zero.
  32 */
  33int nr_l1stack_tasks;
  34
  35/* Start and length of the area in L1 scratchpad memory which we've allocated
  36 * for process stacks.
  37 */
  38void *l1_stack_base;
  39unsigned long l1_stack_len;
  40
  41/*
  42 * Powermanagement idle function, if any..
  43 */
  44void (*pm_idle)(void) = NULL;
  45EXPORT_SYMBOL(pm_idle);
  46
  47void (*pm_power_off)(void) = NULL;
  48EXPORT_SYMBOL(pm_power_off);
  49
  50/*
  51 * The idle loop on BFIN
  52 */
  53#ifdef CONFIG_IDLE_L1
  54static void default_idle(void)__attribute__((l1_text));
  55void cpu_idle(void)__attribute__((l1_text));
  56#endif
  57
  58/*
  59 * This is our default idle handler.  We need to disable
  60 * interrupts here to ensure we don't miss a wakeup call.
  61 */
  62static void default_idle(void)
  63{
  64#ifdef CONFIG_IPIPE
  65        ipipe_suspend_domain();
  66#endif
  67        hard_local_irq_disable();
  68        if (!need_resched())
  69                idle_with_irq_disabled();
  70
  71        hard_local_irq_enable();
  72}
  73
  74/*
  75 * The idle thread.  We try to conserve power, while trying to keep
  76 * overall latency low.  The architecture specific idle is passed
  77 * a value to indicate the level of "idleness" of the system.
  78 */
  79void cpu_idle(void)
  80{
  81        /* endless idle loop with no priority at all */
  82        while (1) {
  83                void (*idle)(void) = pm_idle;
  84
  85#ifdef CONFIG_HOTPLUG_CPU
  86                if (cpu_is_offline(smp_processor_id()))
  87                        cpu_die();
  88#endif
  89                if (!idle)
  90                        idle = default_idle;
  91                tick_nohz_stop_sched_tick(1);
  92                while (!need_resched())
  93                        idle();
  94                tick_nohz_restart_sched_tick();
  95                preempt_enable_no_resched();
  96                schedule();
  97                preempt_disable();
  98        }
  99}
 100
 101/*
 102 * This gets run with P1 containing the
 103 * function to call, and R1 containing
 104 * the "args".  Note P0 is clobbered on the way here.
 105 */
 106void kernel_thread_helper(void);
 107__asm__(".section .text\n"
 108        ".align 4\n"
 109        "_kernel_thread_helper:\n\t"
 110        "\tsp += -12;\n\t"
 111        "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
 112
 113/*
 114 * Create a kernel thread.
 115 */
 116pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
 117{
 118        struct pt_regs regs;
 119
 120        memset(&regs, 0, sizeof(regs));
 121
 122        regs.r1 = (unsigned long)arg;
 123        regs.p1 = (unsigned long)fn;
 124        regs.pc = (unsigned long)kernel_thread_helper;
 125        regs.orig_p0 = -1;
 126        /* Set bit 2 to tell ret_from_fork we should be returning to kernel
 127           mode.  */
 128        regs.ipend = 0x8002;
 129        __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
 130        return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
 131                       NULL);
 132}
 133EXPORT_SYMBOL(kernel_thread);
 134
 135/*
 136 * Do necessary setup to start up a newly executed thread.
 137 *
 138 * pass the data segment into user programs if it exists,
 139 * it can't hurt anything as far as I can tell
 140 */
 141void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 142{
 143        regs->pc = new_ip;
 144        if (current->mm)
 145                regs->p5 = current->mm->start_data;
 146#ifndef CONFIG_SMP
 147        task_thread_info(current)->l1_task_info.stack_start =
 148                (void *)current->mm->context.stack_start;
 149        task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
 150        memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
 151               sizeof(*L1_SCRATCH_TASK_INFO));
 152#endif
 153        wrusp(new_sp);
 154}
 155EXPORT_SYMBOL_GPL(start_thread);
 156
 157void flush_thread(void)
 158{
 159}
 160
 161asmlinkage int bfin_vfork(struct pt_regs *regs)
 162{
 163        return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
 164                       NULL);
 165}
 166
 167asmlinkage int bfin_clone(struct pt_regs *regs)
 168{
 169        unsigned long clone_flags;
 170        unsigned long newsp;
 171
 172#ifdef __ARCH_SYNC_CORE_DCACHE
 173        if (current->rt.nr_cpus_allowed == num_possible_cpus())
 174                set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
 175#endif
 176
 177        /* syscall2 puts clone_flags in r0 and usp in r1 */
 178        clone_flags = regs->r0;
 179        newsp = regs->r1;
 180        if (!newsp)
 181                newsp = rdusp();
 182        else
 183                newsp -= 12;
 184        return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
 185}
 186
 187int
 188copy_thread(unsigned long clone_flags,
 189            unsigned long usp, unsigned long topstk,
 190            struct task_struct *p, struct pt_regs *regs)
 191{
 192        struct pt_regs *childregs;
 193
 194        childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
 195        *childregs = *regs;
 196        childregs->r0 = 0;
 197
 198        p->thread.usp = usp;
 199        p->thread.ksp = (unsigned long)childregs;
 200        p->thread.pc = (unsigned long)ret_from_fork;
 201
 202        return 0;
 203}
 204
 205/*
 206 * sys_execve() executes a new program.
 207 */
 208asmlinkage int sys_execve(const char __user *name,
 209                          const char __user *const __user *argv,
 210                          const char __user *const __user *envp)
 211{
 212        int error;
 213        char *filename;
 214        struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
 215
 216        filename = getname(name);
 217        error = PTR_ERR(filename);
 218        if (IS_ERR(filename))
 219                return error;
 220        error = do_execve(filename, argv, envp, regs);
 221        putname(filename);
 222        return error;
 223}
 224
 225unsigned long get_wchan(struct task_struct *p)
 226{
 227        unsigned long fp, pc;
 228        unsigned long stack_page;
 229        int count = 0;
 230        if (!p || p == current || p->state == TASK_RUNNING)
 231                return 0;
 232
 233        stack_page = (unsigned long)p;
 234        fp = p->thread.usp;
 235        do {
 236                if (fp < stack_page + sizeof(struct thread_info) ||
 237                    fp >= 8184 + stack_page)
 238                        return 0;
 239                pc = ((unsigned long *)fp)[1];
 240                if (!in_sched_functions(pc))
 241                        return pc;
 242                fp = *(unsigned long *)fp;
 243        }
 244        while (count++ < 16);
 245        return 0;
 246}
 247
 248void finish_atomic_sections (struct pt_regs *regs)
 249{
 250        int __user *up0 = (int __user *)regs->p0;
 251
 252        switch (regs->pc) {
 253        default:
 254                /* not in middle of an atomic step, so resume like normal */
 255                return;
 256
 257        case ATOMIC_XCHG32 + 2:
 258                put_user(regs->r1, up0);
 259                break;
 260
 261        case ATOMIC_CAS32 + 2:
 262        case ATOMIC_CAS32 + 4:
 263                if (regs->r0 == regs->r1)
 264        case ATOMIC_CAS32 + 6:
 265                        put_user(regs->r2, up0);
 266                break;
 267
 268        case ATOMIC_ADD32 + 2:
 269                regs->r0 = regs->r1 + regs->r0;
 270                /* fall through */
 271        case ATOMIC_ADD32 + 4:
 272                put_user(regs->r0, up0);
 273                break;
 274
 275        case ATOMIC_SUB32 + 2:
 276                regs->r0 = regs->r1 - regs->r0;
 277                /* fall through */
 278        case ATOMIC_SUB32 + 4:
 279                put_user(regs->r0, up0);
 280                break;
 281
 282        case ATOMIC_IOR32 + 2:
 283                regs->r0 = regs->r1 | regs->r0;
 284                /* fall through */
 285        case ATOMIC_IOR32 + 4:
 286                put_user(regs->r0, up0);
 287                break;
 288
 289        case ATOMIC_AND32 + 2:
 290                regs->r0 = regs->r1 & regs->r0;
 291                /* fall through */
 292        case ATOMIC_AND32 + 4:
 293                put_user(regs->r0, up0);
 294                break;
 295
 296        case ATOMIC_XOR32 + 2:
 297                regs->r0 = regs->r1 ^ regs->r0;
 298                /* fall through */
 299        case ATOMIC_XOR32 + 4:
 300                put_user(regs->r0, up0);
 301                break;
 302        }
 303
 304        /*
 305         * We've finished the atomic section, and the only thing left for
 306         * userspace is to do a RTS, so we might as well handle that too
 307         * since we need to update the PC anyways.
 308         */
 309        regs->pc = regs->rets;
 310}
 311
 312static inline
 313int in_mem(unsigned long addr, unsigned long size,
 314           unsigned long start, unsigned long end)
 315{
 316        return addr >= start && addr + size <= end;
 317}
 318static inline
 319int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
 320                     unsigned long const_addr, unsigned long const_size)
 321{
 322        return const_size &&
 323               in_mem(addr, size, const_addr + off, const_addr + const_size);
 324}
 325static inline
 326int in_mem_const(unsigned long addr, unsigned long size,
 327                 unsigned long const_addr, unsigned long const_size)
 328{
 329        return in_mem_const_off(addr, size, 0, const_addr, const_size);
 330}
 331#define ASYNC_ENABLED(bnum, bctlnum) \
 332({ \
 333        (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
 334        bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
 335        1; \
 336})
 337/*
 338 * We can't read EBIU banks that aren't enabled or we end up hanging
 339 * on the access to the async space.  Make sure we validate accesses
 340 * that cross async banks too.
 341 *      0 - found, but unusable
 342 *      1 - found & usable
 343 *      2 - not found
 344 */
 345static
 346int in_async(unsigned long addr, unsigned long size)
 347{
 348        if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
 349                if (!ASYNC_ENABLED(0, 0))
 350                        return 0;
 351                if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
 352                        return 1;
 353                size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
 354                addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
 355        }
 356        if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
 357                if (!ASYNC_ENABLED(1, 0))
 358                        return 0;
 359                if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
 360                        return 1;
 361                size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
 362                addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
 363        }
 364        if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
 365                if (!ASYNC_ENABLED(2, 1))
 366                        return 0;
 367                if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
 368                        return 1;
 369                size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
 370                addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
 371        }
 372        if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
 373                if (ASYNC_ENABLED(3, 1))
 374                        return 0;
 375                if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
 376                        return 1;
 377                return 0;
 378        }
 379
 380        /* not within async bounds */
 381        return 2;
 382}
 383
 384int bfin_mem_access_type(unsigned long addr, unsigned long size)
 385{
 386        int cpu = raw_smp_processor_id();
 387
 388        /* Check that things do not wrap around */
 389        if (addr > ULONG_MAX - size)
 390                return -EFAULT;
 391
 392        if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
 393                return BFIN_MEM_ACCESS_CORE;
 394
 395        if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
 396                return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
 397        if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
 398                return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
 399        if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
 400                return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 401        if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
 402                return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 403#ifdef COREB_L1_CODE_START
 404        if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
 405                return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
 406        if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
 407                return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
 408        if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
 409                return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 410        if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
 411                return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 412#endif
 413        if (in_mem_const(addr, size, L2_START, L2_LENGTH))
 414                return BFIN_MEM_ACCESS_CORE;
 415
 416        if (addr >= SYSMMR_BASE)
 417                return BFIN_MEM_ACCESS_CORE_ONLY;
 418
 419        switch (in_async(addr, size)) {
 420        case 0: return -EFAULT;
 421        case 1: return BFIN_MEM_ACCESS_CORE;
 422        case 2: /* fall through */;
 423        }
 424
 425        if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
 426                return BFIN_MEM_ACCESS_CORE;
 427        if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
 428                return BFIN_MEM_ACCESS_DMA;
 429
 430        return -EFAULT;
 431}
 432
 433#if defined(CONFIG_ACCESS_CHECK)
 434#ifdef CONFIG_ACCESS_OK_L1
 435__attribute__((l1_text))
 436#endif
 437/* Return 1 if access to memory range is OK, 0 otherwise */
 438int _access_ok(unsigned long addr, unsigned long size)
 439{
 440        int aret;
 441
 442        if (size == 0)
 443                return 1;
 444        /* Check that things do not wrap around */
 445        if (addr > ULONG_MAX - size)
 446                return 0;
 447        if (segment_eq(get_fs(), KERNEL_DS))
 448                return 1;
 449#ifdef CONFIG_MTD_UCLINUX
 450        if (1)
 451#else
 452        if (0)
 453#endif
 454        {
 455                if (in_mem(addr, size, memory_start, memory_end))
 456                        return 1;
 457                if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
 458                        return 1;
 459# ifndef CONFIG_ROMFS_ON_MTD
 460                if (0)
 461# endif
 462                        /* For XIP, allow user space to use pointers within the ROMFS.  */
 463                        if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
 464                                return 1;
 465        } else {
 466                if (in_mem(addr, size, memory_start, physical_mem_end))
 467                        return 1;
 468        }
 469
 470        if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
 471                return 1;
 472
 473        if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
 474                return 1;
 475        if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
 476                return 1;
 477        if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
 478                return 1;
 479        if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
 480                return 1;
 481#ifdef COREB_L1_CODE_START
 482        if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
 483                return 1;
 484        if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
 485                return 1;
 486        if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
 487                return 1;
 488        if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
 489                return 1;
 490#endif
 491
 492#ifndef CONFIG_EXCEPTION_L1_SCRATCH
 493        if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
 494                return 1;
 495#endif
 496
 497        aret = in_async(addr, size);
 498        if (aret < 2)
 499                return aret;
 500
 501        if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
 502                return 1;
 503
 504        if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
 505                return 1;
 506        if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
 507                return 1;
 508
 509        return 0;
 510}
 511EXPORT_SYMBOL(_access_ok);
 512#endif /* CONFIG_ACCESS_CHECK */
 513