linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45
  46#include <asm/errno.h>
  47#include <asm/intrinsics.h>
  48#include <asm/page.h>
  49#include <asm/perfmon.h>
  50#include <asm/processor.h>
  51#include <asm/signal.h>
  52#include <asm/system.h>
  53#include <asm/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  61#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  62#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION  (~0UL)
  66
  67#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS            32
  74#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 *      bit0   : register implemented
  80 *      bit1   : end marker
  81 *      bit2-3 : reserved
  82 *      bit4   : pmc has pmc.pm
  83 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 *      bit6-7 : register type
  85 *      bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  88#define PFM_REG_IMPL            0x1 /* register implemented */
  89#define PFM_REG_END             0x2 /* end marker */
  90#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)         (h)->ctx_task
 122
 123#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR     0       /* requesting code range restriction */
 135#define PFM_DATA_RR     1       /* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x) (1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 *      - we need to protect against CPU concurrency (spin_lock)
 147 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 *      in SMP: local_irq_disable + spin_lock
 153 *      in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 *      in UP : removed automatically
 157 *      in SMP: protect against context accesses from other CPU. interrupts
 158 *              are not masked. This is useful for the PMU interrupt handler
 159 *              because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162        do {  \
 163                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164                spin_lock_irqsave(&(c)->ctx_lock, f); \
 165                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166        } while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169        do { \
 170                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172        } while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175        do {  \
 176                spin_lock_irqsave(&(c)->ctx_lock, f); \
 177        } while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181        do { \
 182                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183        } while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187        do {  \
 188                spin_lock(&(c)->ctx_lock); \
 189        } while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192        do { \
 193                spin_unlock(&(c)->ctx_lock); \
 194        } while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t)       do {} while(0)
 205#define GET_ACTIVATION(t)       do {} while(0)
 206#define INC_ACTIVATION(t)       do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231        do { \
 232                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233        } while (0)
 234
 235#define DPRINT_ovfl(a) \
 236        do { \
 237                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238        } while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247        unsigned long   val;            /* virtual 64bit counter value */
 248        unsigned long   lval;           /* last reset value */
 249        unsigned long   long_reset;     /* reset value on sampling overflow */
 250        unsigned long   short_reset;    /* reset value on overflow */
 251        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253        unsigned long   seed;           /* seed for random-number generator */
 254        unsigned long   mask;           /* mask for random-number generator */
 255        unsigned int    flags;          /* notify/do not notify */
 256        unsigned long   eventid;        /* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 264        unsigned int system:1;          /* do system wide monitoring */
 265        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 266        unsigned int is_sampling:1;     /* true if using a custom format */
 267        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 268        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 269        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 270        unsigned int no_msg:1;          /* no message sent on overflow */
 271        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 272        unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 276#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285        spinlock_t              ctx_lock;               /* context protection */
 286
 287        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 288        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 289
 290        struct task_struct      *ctx_task;              /* task to which context is attached */
 291
 292        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 293
 294        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 295
 296        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 297        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 298        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 299
 300        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 301        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 302        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 303
 304        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 305
 306        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 307        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 308        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 309        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 310
 311        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 314        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 315
 316        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 317
 318        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 319        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 320        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 321
 322        int                     ctx_fd;                 /* file descriptor used my this context */
 323        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 324
 325        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 326        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 327        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 328        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 329
 330        wait_queue_head_t       ctx_msgq_wait;
 331        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 332        int                     ctx_msgq_head;
 333        int                     ctx_msgq_tail;
 334        struct fasync_struct    *ctx_async_queue;
 335
 336        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)    do {} while(0)
 352#define GET_LAST_CPU(ctx)       do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block            ctx_flags.block
 357#define ctx_fl_system           ctx_flags.system
 358#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling      ctx_flags.is_sampling
 360#define ctx_fl_excl_idle        ctx_flags.excl_idle
 361#define ctx_fl_going_zombie     ctx_flags.going_zombie
 362#define ctx_fl_trap_reason      ctx_flags.trap_reason
 363#define ctx_fl_no_msg           ctx_flags.no_msg
 364#define ctx_fl_can_restart      ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374        spinlock_t              pfs_lock;                  /* lock the structure */
 375
 376        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 377        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 378        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 379        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 380        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390        unsigned int            type;
 391        int                     pm_pos;
 392        unsigned long           default_value;  /* power-on default value */
 393        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 394        pfm_reg_check_t         read_check;
 395        pfm_reg_check_t         write_check;
 396        unsigned long           dep_pmd[4];
 397        unsigned long           dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 *      - 0 means recognized PMU
 410 *      - anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 *      - cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416        unsigned long  ovfl_val;        /* overflow value for counters */
 417
 418        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 419        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 420
 421        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 422        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 423        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 424        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 425
 426        char          *pmu_name;        /* PMU family name */
 427        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 428        unsigned int  flags;            /* pmu specific flags */
 429        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 430        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 431        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 432        int           (*probe)(void);   /* customized probe routine */
 433        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444        unsigned long ibr_mask:56;
 445        unsigned long ibr_plm:4;
 446        unsigned long ibr_ig:3;
 447        unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451        unsigned long dbr_mask:56;
 452        unsigned long dbr_plm:4;
 453        unsigned long dbr_ig:2;
 454        unsigned long dbr_w:1;
 455        unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459        unsigned long  val;
 460        ibr_mask_reg_t ibr;
 461        dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470        char            *cmd_name;
 471        int             cmd_flags;
 472        unsigned int    cmd_narg;
 473        size_t          cmd_argsize;
 474        int             (*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 479#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 480#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 490
 491typedef struct {
 492        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 493        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 498        unsigned long pfm_smpl_handler_calls;
 499        unsigned long pfm_smpl_handler_cycles;
 500        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t              pfm_stats[NR_CPUS];
 507static pfm_session_t            pfm_sessions;   /* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry    *perfmon_dir;
 513static pfm_uuid_t               pfm_null_uuid = {0,};
 514
 515static spinlock_t               pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t             *pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static ctl_table pfm_ctl_table[]={
 525        {
 526                .procname       = "debug",
 527                .data           = &pfm_sysctl.debug,
 528                .maxlen         = sizeof(int),
 529                .mode           = 0666,
 530                .proc_handler   = proc_dointvec,
 531        },
 532        {
 533                .procname       = "debug_ovfl",
 534                .data           = &pfm_sysctl.debug_ovfl,
 535                .maxlen         = sizeof(int),
 536                .mode           = 0666,
 537                .proc_handler   = proc_dointvec,
 538        },
 539        {
 540                .procname       = "fastctxsw",
 541                .data           = &pfm_sysctl.fastctxsw,
 542                .maxlen         = sizeof(int),
 543                .mode           = 0600,
 544                .proc_handler   = proc_dointvec,
 545        },
 546        {
 547                .procname       = "expert_mode",
 548                .data           = &pfm_sysctl.expert_mode,
 549                .maxlen         = sizeof(int),
 550                .mode           = 0600,
 551                .proc_handler   = proc_dointvec,
 552        },
 553        {}
 554};
 555static ctl_table pfm_sysctl_dir[] = {
 556        {
 557                .procname       = "perfmon",
 558                .mode           = 0555,
 559                .child          = pfm_ctl_table,
 560        },
 561        {}
 562};
 563static ctl_table pfm_sysctl_root[] = {
 564        {
 565                .procname       = "kernel",
 566                .mode           = 0555,
 567                .child          = pfm_sysctl_dir,
 568        },
 569        {}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581        if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587        SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592        ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598        spin_lock(&(x)->ctx_lock);
 599        return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605        spin_unlock(&(x)->ctx_lock);
 606}
 607
 608static inline unsigned int
 609pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
 610{
 611        return do_munmap(mm, addr, len);
 612}
 613
 614static inline unsigned long 
 615pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
 616{
 617        return get_unmapped_area(file, addr, len, pgoff, flags);
 618}
 619
 620/* forward declaration */
 621static const struct dentry_operations pfmfs_dentry_operations;
 622
 623static struct dentry *
 624pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 625{
 626        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 627                        PFMFS_MAGIC);
 628}
 629
 630static struct file_system_type pfm_fs_type = {
 631        .name     = "pfmfs",
 632        .mount    = pfmfs_mount,
 633        .kill_sb  = kill_anon_super,
 634};
 635
 636DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 637DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 638DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 639DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 640EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 641
 642
 643/* forward declaration */
 644static const struct file_operations pfm_file_ops;
 645
 646/*
 647 * forward declarations
 648 */
 649#ifndef CONFIG_SMP
 650static void pfm_lazy_save_regs (struct task_struct *ta);
 651#endif
 652
 653void dump_pmu_state(const char *);
 654static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 655
 656#include "perfmon_itanium.h"
 657#include "perfmon_mckinley.h"
 658#include "perfmon_montecito.h"
 659#include "perfmon_generic.h"
 660
 661static pmu_config_t *pmu_confs[]={
 662        &pmu_conf_mont,
 663        &pmu_conf_mck,
 664        &pmu_conf_ita,
 665        &pmu_conf_gen, /* must be last */
 666        NULL
 667};
 668
 669
 670static int pfm_end_notify_user(pfm_context_t *ctx);
 671
 672static inline void
 673pfm_clear_psr_pp(void)
 674{
 675        ia64_rsm(IA64_PSR_PP);
 676        ia64_srlz_i();
 677}
 678
 679static inline void
 680pfm_set_psr_pp(void)
 681{
 682        ia64_ssm(IA64_PSR_PP);
 683        ia64_srlz_i();
 684}
 685
 686static inline void
 687pfm_clear_psr_up(void)
 688{
 689        ia64_rsm(IA64_PSR_UP);
 690        ia64_srlz_i();
 691}
 692
 693static inline void
 694pfm_set_psr_up(void)
 695{
 696        ia64_ssm(IA64_PSR_UP);
 697        ia64_srlz_i();
 698}
 699
 700static inline unsigned long
 701pfm_get_psr(void)
 702{
 703        unsigned long tmp;
 704        tmp = ia64_getreg(_IA64_REG_PSR);
 705        ia64_srlz_i();
 706        return tmp;
 707}
 708
 709static inline void
 710pfm_set_psr_l(unsigned long val)
 711{
 712        ia64_setreg(_IA64_REG_PSR_L, val);
 713        ia64_srlz_i();
 714}
 715
 716static inline void
 717pfm_freeze_pmu(void)
 718{
 719        ia64_set_pmc(0,1UL);
 720        ia64_srlz_d();
 721}
 722
 723static inline void
 724pfm_unfreeze_pmu(void)
 725{
 726        ia64_set_pmc(0,0UL);
 727        ia64_srlz_d();
 728}
 729
 730static inline void
 731pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 732{
 733        int i;
 734
 735        for (i=0; i < nibrs; i++) {
 736                ia64_set_ibr(i, ibrs[i]);
 737                ia64_dv_serialize_instruction();
 738        }
 739        ia64_srlz_i();
 740}
 741
 742static inline void
 743pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 744{
 745        int i;
 746
 747        for (i=0; i < ndbrs; i++) {
 748                ia64_set_dbr(i, dbrs[i]);
 749                ia64_dv_serialize_data();
 750        }
 751        ia64_srlz_d();
 752}
 753
 754/*
 755 * PMD[i] must be a counter. no check is made
 756 */
 757static inline unsigned long
 758pfm_read_soft_counter(pfm_context_t *ctx, int i)
 759{
 760        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 761}
 762
 763/*
 764 * PMD[i] must be a counter. no check is made
 765 */
 766static inline void
 767pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 768{
 769        unsigned long ovfl_val = pmu_conf->ovfl_val;
 770
 771        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 772        /*
 773         * writing to unimplemented part is ignore, so we do not need to
 774         * mask off top part
 775         */
 776        ia64_set_pmd(i, val & ovfl_val);
 777}
 778
 779static pfm_msg_t *
 780pfm_get_new_msg(pfm_context_t *ctx)
 781{
 782        int idx, next;
 783
 784        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 785
 786        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 787        if (next == ctx->ctx_msgq_head) return NULL;
 788
 789        idx =   ctx->ctx_msgq_tail;
 790        ctx->ctx_msgq_tail = next;
 791
 792        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 793
 794        return ctx->ctx_msgq+idx;
 795}
 796
 797static pfm_msg_t *
 798pfm_get_next_msg(pfm_context_t *ctx)
 799{
 800        pfm_msg_t *msg;
 801
 802        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 803
 804        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 805
 806        /*
 807         * get oldest message
 808         */
 809        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 810
 811        /*
 812         * and move forward
 813         */
 814        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 815
 816        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 817
 818        return msg;
 819}
 820
 821static void
 822pfm_reset_msgq(pfm_context_t *ctx)
 823{
 824        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 825        DPRINT(("ctx=%p msgq reset\n", ctx));
 826}
 827
 828static void *
 829pfm_rvmalloc(unsigned long size)
 830{
 831        void *mem;
 832        unsigned long addr;
 833
 834        size = PAGE_ALIGN(size);
 835        mem  = vzalloc(size);
 836        if (mem) {
 837                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 838                addr = (unsigned long)mem;
 839                while (size > 0) {
 840                        pfm_reserve_page(addr);
 841                        addr+=PAGE_SIZE;
 842                        size-=PAGE_SIZE;
 843                }
 844        }
 845        return mem;
 846}
 847
 848static void
 849pfm_rvfree(void *mem, unsigned long size)
 850{
 851        unsigned long addr;
 852
 853        if (mem) {
 854                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 855                addr = (unsigned long) mem;
 856                while ((long) size > 0) {
 857                        pfm_unreserve_page(addr);
 858                        addr+=PAGE_SIZE;
 859                        size-=PAGE_SIZE;
 860                }
 861                vfree(mem);
 862        }
 863        return;
 864}
 865
 866static pfm_context_t *
 867pfm_context_alloc(int ctx_flags)
 868{
 869        pfm_context_t *ctx;
 870
 871        /* 
 872         * allocate context descriptor 
 873         * must be able to free with interrupts disabled
 874         */
 875        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 876        if (ctx) {
 877                DPRINT(("alloc ctx @%p\n", ctx));
 878
 879                /*
 880                 * init context protection lock
 881                 */
 882                spin_lock_init(&ctx->ctx_lock);
 883
 884                /*
 885                 * context is unloaded
 886                 */
 887                ctx->ctx_state = PFM_CTX_UNLOADED;
 888
 889                /*
 890                 * initialization of context's flags
 891                 */
 892                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 893                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 894                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 895                /*
 896                 * will move to set properties
 897                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 898                 */
 899
 900                /*
 901                 * init restart semaphore to locked
 902                 */
 903                init_completion(&ctx->ctx_restart_done);
 904
 905                /*
 906                 * activation is used in SMP only
 907                 */
 908                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 909                SET_LAST_CPU(ctx, -1);
 910
 911                /*
 912                 * initialize notification message queue
 913                 */
 914                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 915                init_waitqueue_head(&ctx->ctx_msgq_wait);
 916                init_waitqueue_head(&ctx->ctx_zombieq);
 917
 918        }
 919        return ctx;
 920}
 921
 922static void
 923pfm_context_free(pfm_context_t *ctx)
 924{
 925        if (ctx) {
 926                DPRINT(("free ctx @%p\n", ctx));
 927                kfree(ctx);
 928        }
 929}
 930
 931static void
 932pfm_mask_monitoring(struct task_struct *task)
 933{
 934        pfm_context_t *ctx = PFM_GET_CTX(task);
 935        unsigned long mask, val, ovfl_mask;
 936        int i;
 937
 938        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 939
 940        ovfl_mask = pmu_conf->ovfl_val;
 941        /*
 942         * monitoring can only be masked as a result of a valid
 943         * counter overflow. In UP, it means that the PMU still
 944         * has an owner. Note that the owner can be different
 945         * from the current task. However the PMU state belongs
 946         * to the owner.
 947         * In SMP, a valid overflow only happens when task is
 948         * current. Therefore if we come here, we know that
 949         * the PMU state belongs to the current task, therefore
 950         * we can access the live registers.
 951         *
 952         * So in both cases, the live register contains the owner's
 953         * state. We can ONLY touch the PMU registers and NOT the PSR.
 954         *
 955         * As a consequence to this call, the ctx->th_pmds[] array
 956         * contains stale information which must be ignored
 957         * when context is reloaded AND monitoring is active (see
 958         * pfm_restart).
 959         */
 960        mask = ctx->ctx_used_pmds[0];
 961        for (i = 0; mask; i++, mask>>=1) {
 962                /* skip non used pmds */
 963                if ((mask & 0x1) == 0) continue;
 964                val = ia64_get_pmd(i);
 965
 966                if (PMD_IS_COUNTING(i)) {
 967                        /*
 968                         * we rebuild the full 64 bit value of the counter
 969                         */
 970                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 971                } else {
 972                        ctx->ctx_pmds[i].val = val;
 973                }
 974                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 975                        i,
 976                        ctx->ctx_pmds[i].val,
 977                        val & ovfl_mask));
 978        }
 979        /*
 980         * mask monitoring by setting the privilege level to 0
 981         * we cannot use psr.pp/psr.up for this, it is controlled by
 982         * the user
 983         *
 984         * if task is current, modify actual registers, otherwise modify
 985         * thread save state, i.e., what will be restored in pfm_load_regs()
 986         */
 987        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 988        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 989                if ((mask & 0x1) == 0UL) continue;
 990                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 991                ctx->th_pmcs[i] &= ~0xfUL;
 992                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 993        }
 994        /*
 995         * make all of this visible
 996         */
 997        ia64_srlz_d();
 998}
 999
1000/*
1001 * must always be done with task == current
1002 *
1003 * context must be in MASKED state when calling
1004 */
1005static void
1006pfm_restore_monitoring(struct task_struct *task)
1007{
1008        pfm_context_t *ctx = PFM_GET_CTX(task);
1009        unsigned long mask, ovfl_mask;
1010        unsigned long psr, val;
1011        int i, is_system;
1012
1013        is_system = ctx->ctx_fl_system;
1014        ovfl_mask = pmu_conf->ovfl_val;
1015
1016        if (task != current) {
1017                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1018                return;
1019        }
1020        if (ctx->ctx_state != PFM_CTX_MASKED) {
1021                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1022                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1023                return;
1024        }
1025        psr = pfm_get_psr();
1026        /*
1027         * monitoring is masked via the PMC.
1028         * As we restore their value, we do not want each counter to
1029         * restart right away. We stop monitoring using the PSR,
1030         * restore the PMC (and PMD) and then re-establish the psr
1031         * as it was. Note that there can be no pending overflow at
1032         * this point, because monitoring was MASKED.
1033         *
1034         * system-wide session are pinned and self-monitoring
1035         */
1036        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1037                /* disable dcr pp */
1038                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1039                pfm_clear_psr_pp();
1040        } else {
1041                pfm_clear_psr_up();
1042        }
1043        /*
1044         * first, we restore the PMD
1045         */
1046        mask = ctx->ctx_used_pmds[0];
1047        for (i = 0; mask; i++, mask>>=1) {
1048                /* skip non used pmds */
1049                if ((mask & 0x1) == 0) continue;
1050
1051                if (PMD_IS_COUNTING(i)) {
1052                        /*
1053                         * we split the 64bit value according to
1054                         * counter width
1055                         */
1056                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1057                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1058                } else {
1059                        val = ctx->ctx_pmds[i].val;
1060                }
1061                ia64_set_pmd(i, val);
1062
1063                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1064                        i,
1065                        ctx->ctx_pmds[i].val,
1066                        val));
1067        }
1068        /*
1069         * restore the PMCs
1070         */
1071        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1072        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1073                if ((mask & 0x1) == 0UL) continue;
1074                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1075                ia64_set_pmc(i, ctx->th_pmcs[i]);
1076                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1077                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1078        }
1079        ia64_srlz_d();
1080
1081        /*
1082         * must restore DBR/IBR because could be modified while masked
1083         * XXX: need to optimize 
1084         */
1085        if (ctx->ctx_fl_using_dbreg) {
1086                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1087                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1088        }
1089
1090        /*
1091         * now restore PSR
1092         */
1093        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1094                /* enable dcr pp */
1095                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1096                ia64_srlz_i();
1097        }
1098        pfm_set_psr_l(psr);
1099}
1100
1101static inline void
1102pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1103{
1104        int i;
1105
1106        ia64_srlz_d();
1107
1108        for (i=0; mask; i++, mask>>=1) {
1109                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1110        }
1111}
1112
1113/*
1114 * reload from thread state (used for ctxw only)
1115 */
1116static inline void
1117pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1118{
1119        int i;
1120        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1121
1122        for (i=0; mask; i++, mask>>=1) {
1123                if ((mask & 0x1) == 0) continue;
1124                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1125                ia64_set_pmd(i, val);
1126        }
1127        ia64_srlz_d();
1128}
1129
1130/*
1131 * propagate PMD from context to thread-state
1132 */
1133static inline void
1134pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1135{
1136        unsigned long ovfl_val = pmu_conf->ovfl_val;
1137        unsigned long mask = ctx->ctx_all_pmds[0];
1138        unsigned long val;
1139        int i;
1140
1141        DPRINT(("mask=0x%lx\n", mask));
1142
1143        for (i=0; mask; i++, mask>>=1) {
1144
1145                val = ctx->ctx_pmds[i].val;
1146
1147                /*
1148                 * We break up the 64 bit value into 2 pieces
1149                 * the lower bits go to the machine state in the
1150                 * thread (will be reloaded on ctxsw in).
1151                 * The upper part stays in the soft-counter.
1152                 */
1153                if (PMD_IS_COUNTING(i)) {
1154                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1155                         val &= ovfl_val;
1156                }
1157                ctx->th_pmds[i] = val;
1158
1159                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1160                        i,
1161                        ctx->th_pmds[i],
1162                        ctx->ctx_pmds[i].val));
1163        }
1164}
1165
1166/*
1167 * propagate PMC from context to thread-state
1168 */
1169static inline void
1170pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1171{
1172        unsigned long mask = ctx->ctx_all_pmcs[0];
1173        int i;
1174
1175        DPRINT(("mask=0x%lx\n", mask));
1176
1177        for (i=0; mask; i++, mask>>=1) {
1178                /* masking 0 with ovfl_val yields 0 */
1179                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1180                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1181        }
1182}
1183
1184
1185
1186static inline void
1187pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1188{
1189        int i;
1190
1191        for (i=0; mask; i++, mask>>=1) {
1192                if ((mask & 0x1) == 0) continue;
1193                ia64_set_pmc(i, pmcs[i]);
1194        }
1195        ia64_srlz_d();
1196}
1197
1198static inline int
1199pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1200{
1201        return memcmp(a, b, sizeof(pfm_uuid_t));
1202}
1203
1204static inline int
1205pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1206{
1207        int ret = 0;
1208        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1209        return ret;
1210}
1211
1212static inline int
1213pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1214{
1215        int ret = 0;
1216        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1217        return ret;
1218}
1219
1220
1221static inline int
1222pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1223                     int cpu, void *arg)
1224{
1225        int ret = 0;
1226        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1227        return ret;
1228}
1229
1230static inline int
1231pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1232                     int cpu, void *arg)
1233{
1234        int ret = 0;
1235        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1236        return ret;
1237}
1238
1239static inline int
1240pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1241{
1242        int ret = 0;
1243        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1244        return ret;
1245}
1246
1247static inline int
1248pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1249{
1250        int ret = 0;
1251        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1252        return ret;
1253}
1254
1255static pfm_buffer_fmt_t *
1256__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1257{
1258        struct list_head * pos;
1259        pfm_buffer_fmt_t * entry;
1260
1261        list_for_each(pos, &pfm_buffer_fmt_list) {
1262                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1263                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1264                        return entry;
1265        }
1266        return NULL;
1267}
1268 
1269/*
1270 * find a buffer format based on its uuid
1271 */
1272static pfm_buffer_fmt_t *
1273pfm_find_buffer_fmt(pfm_uuid_t uuid)
1274{
1275        pfm_buffer_fmt_t * fmt;
1276        spin_lock(&pfm_buffer_fmt_lock);
1277        fmt = __pfm_find_buffer_fmt(uuid);
1278        spin_unlock(&pfm_buffer_fmt_lock);
1279        return fmt;
1280}
1281 
1282int
1283pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1284{
1285        int ret = 0;
1286
1287        /* some sanity checks */
1288        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1289
1290        /* we need at least a handler */
1291        if (fmt->fmt_handler == NULL) return -EINVAL;
1292
1293        /*
1294         * XXX: need check validity of fmt_arg_size
1295         */
1296
1297        spin_lock(&pfm_buffer_fmt_lock);
1298
1299        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1300                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1301                ret = -EBUSY;
1302                goto out;
1303        } 
1304        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1305        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1306
1307out:
1308        spin_unlock(&pfm_buffer_fmt_lock);
1309        return ret;
1310}
1311EXPORT_SYMBOL(pfm_register_buffer_fmt);
1312
1313int
1314pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1315{
1316        pfm_buffer_fmt_t *fmt;
1317        int ret = 0;
1318
1319        spin_lock(&pfm_buffer_fmt_lock);
1320
1321        fmt = __pfm_find_buffer_fmt(uuid);
1322        if (!fmt) {
1323                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1324                ret = -EINVAL;
1325                goto out;
1326        }
1327        list_del_init(&fmt->fmt_list);
1328        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1329
1330out:
1331        spin_unlock(&pfm_buffer_fmt_lock);
1332        return ret;
1333
1334}
1335EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1336
1337extern void update_pal_halt_status(int);
1338
1339static int
1340pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1341{
1342        unsigned long flags;
1343        /*
1344         * validity checks on cpu_mask have been done upstream
1345         */
1346        LOCK_PFS(flags);
1347
1348        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1349                pfm_sessions.pfs_sys_sessions,
1350                pfm_sessions.pfs_task_sessions,
1351                pfm_sessions.pfs_sys_use_dbregs,
1352                is_syswide,
1353                cpu));
1354
1355        if (is_syswide) {
1356                /*
1357                 * cannot mix system wide and per-task sessions
1358                 */
1359                if (pfm_sessions.pfs_task_sessions > 0UL) {
1360                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1361                                pfm_sessions.pfs_task_sessions));
1362                        goto abort;
1363                }
1364
1365                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1366
1367                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1368
1369                pfm_sessions.pfs_sys_session[cpu] = task;
1370
1371                pfm_sessions.pfs_sys_sessions++ ;
1372
1373        } else {
1374                if (pfm_sessions.pfs_sys_sessions) goto abort;
1375                pfm_sessions.pfs_task_sessions++;
1376        }
1377
1378        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1379                pfm_sessions.pfs_sys_sessions,
1380                pfm_sessions.pfs_task_sessions,
1381                pfm_sessions.pfs_sys_use_dbregs,
1382                is_syswide,
1383                cpu));
1384
1385        /*
1386         * disable default_idle() to go to PAL_HALT
1387         */
1388        update_pal_halt_status(0);
1389
1390        UNLOCK_PFS(flags);
1391
1392        return 0;
1393
1394error_conflict:
1395        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1396                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1397                cpu));
1398abort:
1399        UNLOCK_PFS(flags);
1400
1401        return -EBUSY;
1402
1403}
1404
1405static int
1406pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1407{
1408        unsigned long flags;
1409        /*
1410         * validity checks on cpu_mask have been done upstream
1411         */
1412        LOCK_PFS(flags);
1413
1414        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1415                pfm_sessions.pfs_sys_sessions,
1416                pfm_sessions.pfs_task_sessions,
1417                pfm_sessions.pfs_sys_use_dbregs,
1418                is_syswide,
1419                cpu));
1420
1421
1422        if (is_syswide) {
1423                pfm_sessions.pfs_sys_session[cpu] = NULL;
1424                /*
1425                 * would not work with perfmon+more than one bit in cpu_mask
1426                 */
1427                if (ctx && ctx->ctx_fl_using_dbreg) {
1428                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1429                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1430                        } else {
1431                                pfm_sessions.pfs_sys_use_dbregs--;
1432                        }
1433                }
1434                pfm_sessions.pfs_sys_sessions--;
1435        } else {
1436                pfm_sessions.pfs_task_sessions--;
1437        }
1438        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1439                pfm_sessions.pfs_sys_sessions,
1440                pfm_sessions.pfs_task_sessions,
1441                pfm_sessions.pfs_sys_use_dbregs,
1442                is_syswide,
1443                cpu));
1444
1445        /*
1446         * if possible, enable default_idle() to go into PAL_HALT
1447         */
1448        if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1449                update_pal_halt_status(1);
1450
1451        UNLOCK_PFS(flags);
1452
1453        return 0;
1454}
1455
1456/*
1457 * removes virtual mapping of the sampling buffer.
1458 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1459 * a PROTECT_CTX() section.
1460 */
1461static int
1462pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1463{
1464        int r;
1465
1466        /* sanity checks */
1467        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1468                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1469                return -EINVAL;
1470        }
1471
1472        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1473
1474        /*
1475         * does the actual unmapping
1476         */
1477        down_write(&task->mm->mmap_sem);
1478
1479        DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1480
1481        r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1482
1483        up_write(&task->mm->mmap_sem);
1484        if (r !=0) {
1485                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1486        }
1487
1488        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1489
1490        return 0;
1491}
1492
1493/*
1494 * free actual physical storage used by sampling buffer
1495 */
1496#if 0
1497static int
1498pfm_free_smpl_buffer(pfm_context_t *ctx)
1499{
1500        pfm_buffer_fmt_t *fmt;
1501
1502        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1503
1504        /*
1505         * we won't use the buffer format anymore
1506         */
1507        fmt = ctx->ctx_buf_fmt;
1508
1509        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1510                ctx->ctx_smpl_hdr,
1511                ctx->ctx_smpl_size,
1512                ctx->ctx_smpl_vaddr));
1513
1514        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1515
1516        /*
1517         * free the buffer
1518         */
1519        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1520
1521        ctx->ctx_smpl_hdr  = NULL;
1522        ctx->ctx_smpl_size = 0UL;
1523
1524        return 0;
1525
1526invalid_free:
1527        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1528        return -EINVAL;
1529}
1530#endif
1531
1532static inline void
1533pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1534{
1535        if (fmt == NULL) return;
1536
1537        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1538
1539}
1540
1541/*
1542 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1543 * no real gain from having the whole whorehouse mounted. So we don't need
1544 * any operations on the root directory. However, we need a non-trivial
1545 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1546 */
1547static struct vfsmount *pfmfs_mnt __read_mostly;
1548
1549static int __init
1550init_pfm_fs(void)
1551{
1552        int err = register_filesystem(&pfm_fs_type);
1553        if (!err) {
1554                pfmfs_mnt = kern_mount(&pfm_fs_type);
1555                err = PTR_ERR(pfmfs_mnt);
1556                if (IS_ERR(pfmfs_mnt))
1557                        unregister_filesystem(&pfm_fs_type);
1558                else
1559                        err = 0;
1560        }
1561        return err;
1562}
1563
1564static ssize_t
1565pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1566{
1567        pfm_context_t *ctx;
1568        pfm_msg_t *msg;
1569        ssize_t ret;
1570        unsigned long flags;
1571        DECLARE_WAITQUEUE(wait, current);
1572        if (PFM_IS_FILE(filp) == 0) {
1573                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1574                return -EINVAL;
1575        }
1576
1577        ctx = filp->private_data;
1578        if (ctx == NULL) {
1579                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1580                return -EINVAL;
1581        }
1582
1583        /*
1584         * check even when there is no message
1585         */
1586        if (size < sizeof(pfm_msg_t)) {
1587                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1588                return -EINVAL;
1589        }
1590
1591        PROTECT_CTX(ctx, flags);
1592
1593        /*
1594         * put ourselves on the wait queue
1595         */
1596        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1597
1598
1599        for(;;) {
1600                /*
1601                 * check wait queue
1602                 */
1603
1604                set_current_state(TASK_INTERRUPTIBLE);
1605
1606                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1607
1608                ret = 0;
1609                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1610
1611                UNPROTECT_CTX(ctx, flags);
1612
1613                /*
1614                 * check non-blocking read
1615                 */
1616                ret = -EAGAIN;
1617                if(filp->f_flags & O_NONBLOCK) break;
1618
1619                /*
1620                 * check pending signals
1621                 */
1622                if(signal_pending(current)) {
1623                        ret = -EINTR;
1624                        break;
1625                }
1626                /*
1627                 * no message, so wait
1628                 */
1629                schedule();
1630
1631                PROTECT_CTX(ctx, flags);
1632        }
1633        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1634        set_current_state(TASK_RUNNING);
1635        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1636
1637        if (ret < 0) goto abort;
1638
1639        ret = -EINVAL;
1640        msg = pfm_get_next_msg(ctx);
1641        if (msg == NULL) {
1642                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1643                goto abort_locked;
1644        }
1645
1646        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1647
1648        ret = -EFAULT;
1649        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1650
1651abort_locked:
1652        UNPROTECT_CTX(ctx, flags);
1653abort:
1654        return ret;
1655}
1656
1657static ssize_t
1658pfm_write(struct file *file, const char __user *ubuf,
1659                          size_t size, loff_t *ppos)
1660{
1661        DPRINT(("pfm_write called\n"));
1662        return -EINVAL;
1663}
1664
1665static unsigned int
1666pfm_poll(struct file *filp, poll_table * wait)
1667{
1668        pfm_context_t *ctx;
1669        unsigned long flags;
1670        unsigned int mask = 0;
1671
1672        if (PFM_IS_FILE(filp) == 0) {
1673                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1674                return 0;
1675        }
1676
1677        ctx = filp->private_data;
1678        if (ctx == NULL) {
1679                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1680                return 0;
1681        }
1682
1683
1684        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1685
1686        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1687
1688        PROTECT_CTX(ctx, flags);
1689
1690        if (PFM_CTXQ_EMPTY(ctx) == 0)
1691                mask =  POLLIN | POLLRDNORM;
1692
1693        UNPROTECT_CTX(ctx, flags);
1694
1695        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1696
1697        return mask;
1698}
1699
1700static long
1701pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1702{
1703        DPRINT(("pfm_ioctl called\n"));
1704        return -EINVAL;
1705}
1706
1707/*
1708 * interrupt cannot be masked when coming here
1709 */
1710static inline int
1711pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1712{
1713        int ret;
1714
1715        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1716
1717        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1718                task_pid_nr(current),
1719                fd,
1720                on,
1721                ctx->ctx_async_queue, ret));
1722
1723        return ret;
1724}
1725
1726static int
1727pfm_fasync(int fd, struct file *filp, int on)
1728{
1729        pfm_context_t *ctx;
1730        int ret;
1731
1732        if (PFM_IS_FILE(filp) == 0) {
1733                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1734                return -EBADF;
1735        }
1736
1737        ctx = filp->private_data;
1738        if (ctx == NULL) {
1739                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1740                return -EBADF;
1741        }
1742        /*
1743         * we cannot mask interrupts during this call because this may
1744         * may go to sleep if memory is not readily avalaible.
1745         *
1746         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1747         * done in caller. Serialization of this function is ensured by caller.
1748         */
1749        ret = pfm_do_fasync(fd, filp, ctx, on);
1750
1751
1752        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1753                fd,
1754                on,
1755                ctx->ctx_async_queue, ret));
1756
1757        return ret;
1758}
1759
1760#ifdef CONFIG_SMP
1761/*
1762 * this function is exclusively called from pfm_close().
1763 * The context is not protected at that time, nor are interrupts
1764 * on the remote CPU. That's necessary to avoid deadlocks.
1765 */
1766static void
1767pfm_syswide_force_stop(void *info)
1768{
1769        pfm_context_t   *ctx = (pfm_context_t *)info;
1770        struct pt_regs *regs = task_pt_regs(current);
1771        struct task_struct *owner;
1772        unsigned long flags;
1773        int ret;
1774
1775        if (ctx->ctx_cpu != smp_processor_id()) {
1776                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1777                        ctx->ctx_cpu,
1778                        smp_processor_id());
1779                return;
1780        }
1781        owner = GET_PMU_OWNER();
1782        if (owner != ctx->ctx_task) {
1783                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1784                        smp_processor_id(),
1785                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1786                return;
1787        }
1788        if (GET_PMU_CTX() != ctx) {
1789                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1790                        smp_processor_id(),
1791                        GET_PMU_CTX(), ctx);
1792                return;
1793        }
1794
1795        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1796        /*
1797         * the context is already protected in pfm_close(), we simply
1798         * need to mask interrupts to avoid a PMU interrupt race on
1799         * this CPU
1800         */
1801        local_irq_save(flags);
1802
1803        ret = pfm_context_unload(ctx, NULL, 0, regs);
1804        if (ret) {
1805                DPRINT(("context_unload returned %d\n", ret));
1806        }
1807
1808        /*
1809         * unmask interrupts, PMU interrupts are now spurious here
1810         */
1811        local_irq_restore(flags);
1812}
1813
1814static void
1815pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1816{
1817        int ret;
1818
1819        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1820        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1821        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1822}
1823#endif /* CONFIG_SMP */
1824
1825/*
1826 * called for each close(). Partially free resources.
1827 * When caller is self-monitoring, the context is unloaded.
1828 */
1829static int
1830pfm_flush(struct file *filp, fl_owner_t id)
1831{
1832        pfm_context_t *ctx;
1833        struct task_struct *task;
1834        struct pt_regs *regs;
1835        unsigned long flags;
1836        unsigned long smpl_buf_size = 0UL;
1837        void *smpl_buf_vaddr = NULL;
1838        int state, is_system;
1839
1840        if (PFM_IS_FILE(filp) == 0) {
1841                DPRINT(("bad magic for\n"));
1842                return -EBADF;
1843        }
1844
1845        ctx = filp->private_data;
1846        if (ctx == NULL) {
1847                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1848                return -EBADF;
1849        }
1850
1851        /*
1852         * remove our file from the async queue, if we use this mode.
1853         * This can be done without the context being protected. We come
1854         * here when the context has become unreachable by other tasks.
1855         *
1856         * We may still have active monitoring at this point and we may
1857         * end up in pfm_overflow_handler(). However, fasync_helper()
1858         * operates with interrupts disabled and it cleans up the
1859         * queue. If the PMU handler is called prior to entering
1860         * fasync_helper() then it will send a signal. If it is
1861         * invoked after, it will find an empty queue and no
1862         * signal will be sent. In both case, we are safe
1863         */
1864        PROTECT_CTX(ctx, flags);
1865
1866        state     = ctx->ctx_state;
1867        is_system = ctx->ctx_fl_system;
1868
1869        task = PFM_CTX_TASK(ctx);
1870        regs = task_pt_regs(task);
1871
1872        DPRINT(("ctx_state=%d is_current=%d\n",
1873                state,
1874                task == current ? 1 : 0));
1875
1876        /*
1877         * if state == UNLOADED, then task is NULL
1878         */
1879
1880        /*
1881         * we must stop and unload because we are losing access to the context.
1882         */
1883        if (task == current) {
1884#ifdef CONFIG_SMP
1885                /*
1886                 * the task IS the owner but it migrated to another CPU: that's bad
1887                 * but we must handle this cleanly. Unfortunately, the kernel does
1888                 * not provide a mechanism to block migration (while the context is loaded).
1889                 *
1890                 * We need to release the resource on the ORIGINAL cpu.
1891                 */
1892                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1893
1894                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1895                        /*
1896                         * keep context protected but unmask interrupt for IPI
1897                         */
1898                        local_irq_restore(flags);
1899
1900                        pfm_syswide_cleanup_other_cpu(ctx);
1901
1902                        /*
1903                         * restore interrupt masking
1904                         */
1905                        local_irq_save(flags);
1906
1907                        /*
1908                         * context is unloaded at this point
1909                         */
1910                } else
1911#endif /* CONFIG_SMP */
1912                {
1913
1914                        DPRINT(("forcing unload\n"));
1915                        /*
1916                        * stop and unload, returning with state UNLOADED
1917                        * and session unreserved.
1918                        */
1919                        pfm_context_unload(ctx, NULL, 0, regs);
1920
1921                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1922                }
1923        }
1924
1925        /*
1926         * remove virtual mapping, if any, for the calling task.
1927         * cannot reset ctx field until last user is calling close().
1928         *
1929         * ctx_smpl_vaddr must never be cleared because it is needed
1930         * by every task with access to the context
1931         *
1932         * When called from do_exit(), the mm context is gone already, therefore
1933         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1934         * do anything here
1935         */
1936        if (ctx->ctx_smpl_vaddr && current->mm) {
1937                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1938                smpl_buf_size  = ctx->ctx_smpl_size;
1939        }
1940
1941        UNPROTECT_CTX(ctx, flags);
1942
1943        /*
1944         * if there was a mapping, then we systematically remove it
1945         * at this point. Cannot be done inside critical section
1946         * because some VM function reenables interrupts.
1947         *
1948         */
1949        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1950
1951        return 0;
1952}
1953/*
1954 * called either on explicit close() or from exit_files(). 
1955 * Only the LAST user of the file gets to this point, i.e., it is
1956 * called only ONCE.
1957 *
1958 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1959 * (fput()),i.e, last task to access the file. Nobody else can access the 
1960 * file at this point.
1961 *
1962 * When called from exit_files(), the VMA has been freed because exit_mm()
1963 * is executed before exit_files().
1964 *
1965 * When called from exit_files(), the current task is not yet ZOMBIE but we
1966 * flush the PMU state to the context. 
1967 */
1968static int
1969pfm_close(struct inode *inode, struct file *filp)
1970{
1971        pfm_context_t *ctx;
1972        struct task_struct *task;
1973        struct pt_regs *regs;
1974        DECLARE_WAITQUEUE(wait, current);
1975        unsigned long flags;
1976        unsigned long smpl_buf_size = 0UL;
1977        void *smpl_buf_addr = NULL;
1978        int free_possible = 1;
1979        int state, is_system;
1980
1981        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1982
1983        if (PFM_IS_FILE(filp) == 0) {
1984                DPRINT(("bad magic\n"));
1985                return -EBADF;
1986        }
1987        
1988        ctx = filp->private_data;
1989        if (ctx == NULL) {
1990                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1991                return -EBADF;
1992        }
1993
1994        PROTECT_CTX(ctx, flags);
1995
1996        state     = ctx->ctx_state;
1997        is_system = ctx->ctx_fl_system;
1998
1999        task = PFM_CTX_TASK(ctx);
2000        regs = task_pt_regs(task);
2001
2002        DPRINT(("ctx_state=%d is_current=%d\n", 
2003                state,
2004                task == current ? 1 : 0));
2005
2006        /*
2007         * if task == current, then pfm_flush() unloaded the context
2008         */
2009        if (state == PFM_CTX_UNLOADED) goto doit;
2010
2011        /*
2012         * context is loaded/masked and task != current, we need to
2013         * either force an unload or go zombie
2014         */
2015
2016        /*
2017         * The task is currently blocked or will block after an overflow.
2018         * we must force it to wakeup to get out of the
2019         * MASKED state and transition to the unloaded state by itself.
2020         *
2021         * This situation is only possible for per-task mode
2022         */
2023        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2024
2025                /*
2026                 * set a "partial" zombie state to be checked
2027                 * upon return from down() in pfm_handle_work().
2028                 *
2029                 * We cannot use the ZOMBIE state, because it is checked
2030                 * by pfm_load_regs() which is called upon wakeup from down().
2031                 * In such case, it would free the context and then we would
2032                 * return to pfm_handle_work() which would access the
2033                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2034                 * but visible to pfm_handle_work().
2035                 *
2036                 * For some window of time, we have a zombie context with
2037                 * ctx_state = MASKED  and not ZOMBIE
2038                 */
2039                ctx->ctx_fl_going_zombie = 1;
2040
2041                /*
2042                 * force task to wake up from MASKED state
2043                 */
2044                complete(&ctx->ctx_restart_done);
2045
2046                DPRINT(("waking up ctx_state=%d\n", state));
2047
2048                /*
2049                 * put ourself to sleep waiting for the other
2050                 * task to report completion
2051                 *
2052                 * the context is protected by mutex, therefore there
2053                 * is no risk of being notified of completion before
2054                 * begin actually on the waitq.
2055                 */
2056                set_current_state(TASK_INTERRUPTIBLE);
2057                add_wait_queue(&ctx->ctx_zombieq, &wait);
2058
2059                UNPROTECT_CTX(ctx, flags);
2060
2061                /*
2062                 * XXX: check for signals :
2063                 *      - ok for explicit close
2064                 *      - not ok when coming from exit_files()
2065                 */
2066                schedule();
2067
2068
2069                PROTECT_CTX(ctx, flags);
2070
2071
2072                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2073                set_current_state(TASK_RUNNING);
2074
2075                /*
2076                 * context is unloaded at this point
2077                 */
2078                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2079        }
2080        else if (task != current) {
2081#ifdef CONFIG_SMP
2082                /*
2083                 * switch context to zombie state
2084                 */
2085                ctx->ctx_state = PFM_CTX_ZOMBIE;
2086
2087                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2088                /*
2089                 * cannot free the context on the spot. deferred until
2090                 * the task notices the ZOMBIE state
2091                 */
2092                free_possible = 0;
2093#else
2094                pfm_context_unload(ctx, NULL, 0, regs);
2095#endif
2096        }
2097
2098doit:
2099        /* reload state, may have changed during  opening of critical section */
2100        state = ctx->ctx_state;
2101
2102        /*
2103         * the context is still attached to a task (possibly current)
2104         * we cannot destroy it right now
2105         */
2106
2107        /*
2108         * we must free the sampling buffer right here because
2109         * we cannot rely on it being cleaned up later by the
2110         * monitored task. It is not possible to free vmalloc'ed
2111         * memory in pfm_load_regs(). Instead, we remove the buffer
2112         * now. should there be subsequent PMU overflow originally
2113         * meant for sampling, the will be converted to spurious
2114         * and that's fine because the monitoring tools is gone anyway.
2115         */
2116        if (ctx->ctx_smpl_hdr) {
2117                smpl_buf_addr = ctx->ctx_smpl_hdr;
2118                smpl_buf_size = ctx->ctx_smpl_size;
2119                /* no more sampling */
2120                ctx->ctx_smpl_hdr = NULL;
2121                ctx->ctx_fl_is_sampling = 0;
2122        }
2123
2124        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2125                state,
2126                free_possible,
2127                smpl_buf_addr,
2128                smpl_buf_size));
2129
2130        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2131
2132        /*
2133         * UNLOADED that the session has already been unreserved.
2134         */
2135        if (state == PFM_CTX_ZOMBIE) {
2136                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2137        }
2138
2139        /*
2140         * disconnect file descriptor from context must be done
2141         * before we unlock.
2142         */
2143        filp->private_data = NULL;
2144
2145        /*
2146         * if we free on the spot, the context is now completely unreachable
2147         * from the callers side. The monitored task side is also cut, so we
2148         * can freely cut.
2149         *
2150         * If we have a deferred free, only the caller side is disconnected.
2151         */
2152        UNPROTECT_CTX(ctx, flags);
2153
2154        /*
2155         * All memory free operations (especially for vmalloc'ed memory)
2156         * MUST be done with interrupts ENABLED.
2157         */
2158        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2159
2160        /*
2161         * return the memory used by the context
2162         */
2163        if (free_possible) pfm_context_free(ctx);
2164
2165        return 0;
2166}
2167
2168static int
2169pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2170{
2171        DPRINT(("pfm_no_open called\n"));
2172        return -ENXIO;
2173}
2174
2175
2176
2177static const struct file_operations pfm_file_ops = {
2178        .llseek         = no_llseek,
2179        .read           = pfm_read,
2180        .write          = pfm_write,
2181        .poll           = pfm_poll,
2182        .unlocked_ioctl = pfm_ioctl,
2183        .open           = pfm_no_open,  /* special open code to disallow open via /proc */
2184        .fasync         = pfm_fasync,
2185        .release        = pfm_close,
2186        .flush          = pfm_flush
2187};
2188
2189static int
2190pfmfs_delete_dentry(const struct dentry *dentry)
2191{
2192        return 1;
2193}
2194
2195static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2196{
2197        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2198                             dentry->d_inode->i_ino);
2199}
2200
2201static const struct dentry_operations pfmfs_dentry_operations = {
2202        .d_delete = pfmfs_delete_dentry,
2203        .d_dname = pfmfs_dname,
2204};
2205
2206
2207static struct file *
2208pfm_alloc_file(pfm_context_t *ctx)
2209{
2210        struct file *file;
2211        struct inode *inode;
2212        struct path path;
2213        struct qstr this = { .name = "" };
2214
2215        /*
2216         * allocate a new inode
2217         */
2218        inode = new_inode(pfmfs_mnt->mnt_sb);
2219        if (!inode)
2220                return ERR_PTR(-ENOMEM);
2221
2222        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2223
2224        inode->i_mode = S_IFCHR|S_IRUGO;
2225        inode->i_uid  = current_fsuid();
2226        inode->i_gid  = current_fsgid();
2227
2228        /*
2229         * allocate a new dcache entry
2230         */
2231        path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2232        if (!path.dentry) {
2233                iput(inode);
2234                return ERR_PTR(-ENOMEM);
2235        }
2236        path.mnt = mntget(pfmfs_mnt);
2237
2238        d_add(path.dentry, inode);
2239
2240        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2241        if (!file) {
2242                path_put(&path);
2243                return ERR_PTR(-ENFILE);
2244        }
2245
2246        file->f_flags = O_RDONLY;
2247        file->private_data = ctx;
2248
2249        return file;
2250}
2251
2252static int
2253pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2254{
2255        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2256
2257        while (size > 0) {
2258                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2259
2260
2261                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2262                        return -ENOMEM;
2263
2264                addr  += PAGE_SIZE;
2265                buf   += PAGE_SIZE;
2266                size  -= PAGE_SIZE;
2267        }
2268        return 0;
2269}
2270
2271/*
2272 * allocate a sampling buffer and remaps it into the user address space of the task
2273 */
2274static int
2275pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2276{
2277        struct mm_struct *mm = task->mm;
2278        struct vm_area_struct *vma = NULL;
2279        unsigned long size;
2280        void *smpl_buf;
2281
2282
2283        /*
2284         * the fixed header + requested size and align to page boundary
2285         */
2286        size = PAGE_ALIGN(rsize);
2287
2288        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2289
2290        /*
2291         * check requested size to avoid Denial-of-service attacks
2292         * XXX: may have to refine this test
2293         * Check against address space limit.
2294         *
2295         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2296         *      return -ENOMEM;
2297         */
2298        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2299                return -ENOMEM;
2300
2301        /*
2302         * We do the easy to undo allocations first.
2303         *
2304         * pfm_rvmalloc(), clears the buffer, so there is no leak
2305         */
2306        smpl_buf = pfm_rvmalloc(size);
2307        if (smpl_buf == NULL) {
2308                DPRINT(("Can't allocate sampling buffer\n"));
2309                return -ENOMEM;
2310        }
2311
2312        DPRINT(("smpl_buf @%p\n", smpl_buf));
2313
2314        /* allocate vma */
2315        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2316        if (!vma) {
2317                DPRINT(("Cannot allocate vma\n"));
2318                goto error_kmem;
2319        }
2320        INIT_LIST_HEAD(&vma->anon_vma_chain);
2321
2322        /*
2323         * partially initialize the vma for the sampling buffer
2324         */
2325        vma->vm_mm           = mm;
2326        vma->vm_file         = filp;
2327        vma->vm_flags        = VM_READ| VM_MAYREAD |VM_RESERVED;
2328        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2329
2330        /*
2331         * Now we have everything we need and we can initialize
2332         * and connect all the data structures
2333         */
2334
2335        ctx->ctx_smpl_hdr   = smpl_buf;
2336        ctx->ctx_smpl_size  = size; /* aligned size */
2337
2338        /*
2339         * Let's do the difficult operations next.
2340         *
2341         * now we atomically find some area in the address space and
2342         * remap the buffer in it.
2343         */
2344        down_write(&task->mm->mmap_sem);
2345
2346        /* find some free area in address space, must have mmap sem held */
2347        vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2348        if (vma->vm_start == 0UL) {
2349                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2350                up_write(&task->mm->mmap_sem);
2351                goto error;
2352        }
2353        vma->vm_end = vma->vm_start + size;
2354        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2355
2356        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2357
2358        /* can only be applied to current task, need to have the mm semaphore held when called */
2359        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2360                DPRINT(("Can't remap buffer\n"));
2361                up_write(&task->mm->mmap_sem);
2362                goto error;
2363        }
2364
2365        get_file(filp);
2366
2367        /*
2368         * now insert the vma in the vm list for the process, must be
2369         * done with mmap lock held
2370         */
2371        insert_vm_struct(mm, vma);
2372
2373        mm->total_vm  += size >> PAGE_SHIFT;
2374        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2375                                                        vma_pages(vma));
2376        up_write(&task->mm->mmap_sem);
2377
2378        /*
2379         * keep track of user level virtual address
2380         */
2381        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2382        *(unsigned long *)user_vaddr = vma->vm_start;
2383
2384        return 0;
2385
2386error:
2387        kmem_cache_free(vm_area_cachep, vma);
2388error_kmem:
2389        pfm_rvfree(smpl_buf, size);
2390
2391        return -ENOMEM;
2392}
2393
2394/*
2395 * XXX: do something better here
2396 */
2397static int
2398pfm_bad_permissions(struct task_struct *task)
2399{
2400        const struct cred *tcred;
2401        uid_t uid = current_uid();
2402        gid_t gid = current_gid();
2403        int ret;
2404
2405        rcu_read_lock();
2406        tcred = __task_cred(task);
2407
2408        /* inspired by ptrace_attach() */
2409        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2410                uid,
2411                gid,
2412                tcred->euid,
2413                tcred->suid,
2414                tcred->uid,
2415                tcred->egid,
2416                tcred->sgid));
2417
2418        ret = ((uid != tcred->euid)
2419               || (uid != tcred->suid)
2420               || (uid != tcred->uid)
2421               || (gid != tcred->egid)
2422               || (gid != tcred->sgid)
2423               || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2424
2425        rcu_read_unlock();
2426        return ret;
2427}
2428
2429static int
2430pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2431{
2432        int ctx_flags;
2433
2434        /* valid signal */
2435
2436        ctx_flags = pfx->ctx_flags;
2437
2438        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2439
2440                /*
2441                 * cannot block in this mode
2442                 */
2443                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2444                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2445                        return -EINVAL;
2446                }
2447        } else {
2448        }
2449        /* probably more to add here */
2450
2451        return 0;
2452}
2453
2454static int
2455pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2456                     unsigned int cpu, pfarg_context_t *arg)
2457{
2458        pfm_buffer_fmt_t *fmt = NULL;
2459        unsigned long size = 0UL;
2460        void *uaddr = NULL;
2461        void *fmt_arg = NULL;
2462        int ret = 0;
2463#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2464
2465        /* invoke and lock buffer format, if found */
2466        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2467        if (fmt == NULL) {
2468                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2469                return -EINVAL;
2470        }
2471
2472        /*
2473         * buffer argument MUST be contiguous to pfarg_context_t
2474         */
2475        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2476
2477        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2478
2479        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2480
2481        if (ret) goto error;
2482
2483        /* link buffer format and context */
2484        ctx->ctx_buf_fmt = fmt;
2485        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2486
2487        /*
2488         * check if buffer format wants to use perfmon buffer allocation/mapping service
2489         */
2490        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2491        if (ret) goto error;
2492
2493        if (size) {
2494                /*
2495                 * buffer is always remapped into the caller's address space
2496                 */
2497                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2498                if (ret) goto error;
2499
2500                /* keep track of user address of buffer */
2501                arg->ctx_smpl_vaddr = uaddr;
2502        }
2503        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2504
2505error:
2506        return ret;
2507}
2508
2509static void
2510pfm_reset_pmu_state(pfm_context_t *ctx)
2511{
2512        int i;
2513
2514        /*
2515         * install reset values for PMC.
2516         */
2517        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2518                if (PMC_IS_IMPL(i) == 0) continue;
2519                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2520                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2521        }
2522        /*
2523         * PMD registers are set to 0UL when the context in memset()
2524         */
2525
2526        /*
2527         * On context switched restore, we must restore ALL pmc and ALL pmd even
2528         * when they are not actively used by the task. In UP, the incoming process
2529         * may otherwise pick up left over PMC, PMD state from the previous process.
2530         * As opposed to PMD, stale PMC can cause harm to the incoming
2531         * process because they may change what is being measured.
2532         * Therefore, we must systematically reinstall the entire
2533         * PMC state. In SMP, the same thing is possible on the
2534         * same CPU but also on between 2 CPUs.
2535         *
2536         * The problem with PMD is information leaking especially
2537         * to user level when psr.sp=0
2538         *
2539         * There is unfortunately no easy way to avoid this problem
2540         * on either UP or SMP. This definitively slows down the
2541         * pfm_load_regs() function.
2542         */
2543
2544         /*
2545          * bitmask of all PMCs accessible to this context
2546          *
2547          * PMC0 is treated differently.
2548          */
2549        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2550
2551        /*
2552         * bitmask of all PMDs that are accessible to this context
2553         */
2554        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2555
2556        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2557
2558        /*
2559         * useful in case of re-enable after disable
2560         */
2561        ctx->ctx_used_ibrs[0] = 0UL;
2562        ctx->ctx_used_dbrs[0] = 0UL;
2563}
2564
2565static int
2566pfm_ctx_getsize(void *arg, size_t *sz)
2567{
2568        pfarg_context_t *req = (pfarg_context_t *)arg;
2569        pfm_buffer_fmt_t *fmt;
2570
2571        *sz = 0;
2572
2573        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2574
2575        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2576        if (fmt == NULL) {
2577                DPRINT(("cannot find buffer format\n"));
2578                return -EINVAL;
2579        }
2580        /* get just enough to copy in user parameters */
2581        *sz = fmt->fmt_arg_size;
2582        DPRINT(("arg_size=%lu\n", *sz));
2583
2584        return 0;
2585}
2586
2587
2588
2589/*
2590 * cannot attach if :
2591 *      - kernel task
2592 *      - task not owned by caller
2593 *      - task incompatible with context mode
2594 */
2595static int
2596pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2597{
2598        /*
2599         * no kernel task or task not owner by caller
2600         */
2601        if (task->mm == NULL) {
2602                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2603                return -EPERM;
2604        }
2605        if (pfm_bad_permissions(task)) {
2606                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2607                return -EPERM;
2608        }
2609        /*
2610         * cannot block in self-monitoring mode
2611         */
2612        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2613                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2614                return -EINVAL;
2615        }
2616
2617        if (task->exit_state == EXIT_ZOMBIE) {
2618                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2619                return -EBUSY;
2620        }
2621
2622        /*
2623         * always ok for self
2624         */
2625        if (task == current) return 0;
2626
2627        if (!task_is_stopped_or_traced(task)) {
2628                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2629                return -EBUSY;
2630        }
2631        /*
2632         * make sure the task is off any CPU
2633         */
2634        wait_task_inactive(task, 0);
2635
2636        /* more to come... */
2637
2638        return 0;
2639}
2640
2641static int
2642pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2643{
2644        struct task_struct *p = current;
2645        int ret;
2646
2647        /* XXX: need to add more checks here */
2648        if (pid < 2) return -EPERM;
2649
2650        if (pid != task_pid_vnr(current)) {
2651
2652                read_lock(&tasklist_lock);
2653
2654                p = find_task_by_vpid(pid);
2655
2656                /* make sure task cannot go away while we operate on it */
2657                if (p) get_task_struct(p);
2658
2659                read_unlock(&tasklist_lock);
2660
2661                if (p == NULL) return -ESRCH;
2662        }
2663
2664        ret = pfm_task_incompatible(ctx, p);
2665        if (ret == 0) {
2666                *task = p;
2667        } else if (p != current) {
2668                pfm_put_task(p);
2669        }
2670        return ret;
2671}
2672
2673
2674
2675static int
2676pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2677{
2678        pfarg_context_t *req = (pfarg_context_t *)arg;
2679        struct file *filp;
2680        struct path path;
2681        int ctx_flags;
2682        int fd;
2683        int ret;
2684
2685        /* let's check the arguments first */
2686        ret = pfarg_is_sane(current, req);
2687        if (ret < 0)
2688                return ret;
2689
2690        ctx_flags = req->ctx_flags;
2691
2692        ret = -ENOMEM;
2693
2694        fd = get_unused_fd();
2695        if (fd < 0)
2696                return fd;
2697
2698        ctx = pfm_context_alloc(ctx_flags);
2699        if (!ctx)
2700                goto error;
2701
2702        filp = pfm_alloc_file(ctx);
2703        if (IS_ERR(filp)) {
2704                ret = PTR_ERR(filp);
2705                goto error_file;
2706        }
2707
2708        req->ctx_fd = ctx->ctx_fd = fd;
2709
2710        /*
2711         * does the user want to sample?
2712         */
2713        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2714                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2715                if (ret)
2716                        goto buffer_error;
2717        }
2718
2719        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2720                ctx,
2721                ctx_flags,
2722                ctx->ctx_fl_system,
2723                ctx->ctx_fl_block,
2724                ctx->ctx_fl_excl_idle,
2725                ctx->ctx_fl_no_msg,
2726                ctx->ctx_fd));
2727
2728        /*
2729         * initialize soft PMU state
2730         */
2731        pfm_reset_pmu_state(ctx);
2732
2733        fd_install(fd, filp);
2734
2735        return 0;
2736
2737buffer_error:
2738        path = filp->f_path;
2739        put_filp(filp);
2740        path_put(&path);
2741
2742        if (ctx->ctx_buf_fmt) {
2743                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2744        }
2745error_file:
2746        pfm_context_free(ctx);
2747
2748error:
2749        put_unused_fd(fd);
2750        return ret;
2751}
2752
2753static inline unsigned long
2754pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2755{
2756        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2757        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2758        extern unsigned long carta_random32 (unsigned long seed);
2759
2760        if (reg->flags & PFM_REGFL_RANDOM) {
2761                new_seed = carta_random32(old_seed);
2762                val -= (old_seed & mask);       /* counter values are negative numbers! */
2763                if ((mask >> 32) != 0)
2764                        /* construct a full 64-bit random value: */
2765                        new_seed |= carta_random32(old_seed >> 32) << 32;
2766                reg->seed = new_seed;
2767        }
2768        reg->lval = val;
2769        return val;
2770}
2771
2772static void
2773pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2774{
2775        unsigned long mask = ovfl_regs[0];
2776        unsigned long reset_others = 0UL;
2777        unsigned long val;
2778        int i;
2779
2780        /*
2781         * now restore reset value on sampling overflowed counters
2782         */
2783        mask >>= PMU_FIRST_COUNTER;
2784        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2785
2786                if ((mask & 0x1UL) == 0UL) continue;
2787
2788                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2789                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2790
2791                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2792        }
2793
2794        /*
2795         * Now take care of resetting the other registers
2796         */
2797        for(i = 0; reset_others; i++, reset_others >>= 1) {
2798
2799                if ((reset_others & 0x1) == 0) continue;
2800
2801                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2802
2803                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2804                          is_long_reset ? "long" : "short", i, val));
2805        }
2806}
2807
2808static void
2809pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2810{
2811        unsigned long mask = ovfl_regs[0];
2812        unsigned long reset_others = 0UL;
2813        unsigned long val;
2814        int i;
2815
2816        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2817
2818        if (ctx->ctx_state == PFM_CTX_MASKED) {
2819                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2820                return;
2821        }
2822
2823        /*
2824         * now restore reset value on sampling overflowed counters
2825         */
2826        mask >>= PMU_FIRST_COUNTER;
2827        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2828
2829                if ((mask & 0x1UL) == 0UL) continue;
2830
2831                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2832                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2833
2834                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2835
2836                pfm_write_soft_counter(ctx, i, val);
2837        }
2838
2839        /*
2840         * Now take care of resetting the other registers
2841         */
2842        for(i = 0; reset_others; i++, reset_others >>= 1) {
2843
2844                if ((reset_others & 0x1) == 0) continue;
2845
2846                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2847
2848                if (PMD_IS_COUNTING(i)) {
2849                        pfm_write_soft_counter(ctx, i, val);
2850                } else {
2851                        ia64_set_pmd(i, val);
2852                }
2853                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2854                          is_long_reset ? "long" : "short", i, val));
2855        }
2856        ia64_srlz_d();
2857}
2858
2859static int
2860pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2861{
2862        struct task_struct *task;
2863        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2864        unsigned long value, pmc_pm;
2865        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2866        unsigned int cnum, reg_flags, flags, pmc_type;
2867        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2868        int is_monitor, is_counting, state;
2869        int ret = -EINVAL;
2870        pfm_reg_check_t wr_func;
2871#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2872
2873        state     = ctx->ctx_state;
2874        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2875        is_system = ctx->ctx_fl_system;
2876        task      = ctx->ctx_task;
2877        impl_pmds = pmu_conf->impl_pmds[0];
2878
2879        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2880
2881        if (is_loaded) {
2882                /*
2883                 * In system wide and when the context is loaded, access can only happen
2884                 * when the caller is running on the CPU being monitored by the session.
2885                 * It does not have to be the owner (ctx_task) of the context per se.
2886                 */
2887                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2888                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2889                        return -EBUSY;
2890                }
2891                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2892        }
2893        expert_mode = pfm_sysctl.expert_mode; 
2894
2895        for (i = 0; i < count; i++, req++) {
2896
2897                cnum       = req->reg_num;
2898                reg_flags  = req->reg_flags;
2899                value      = req->reg_value;
2900                smpl_pmds  = req->reg_smpl_pmds[0];
2901                reset_pmds = req->reg_reset_pmds[0];
2902                flags      = 0;
2903
2904
2905                if (cnum >= PMU_MAX_PMCS) {
2906                        DPRINT(("pmc%u is invalid\n", cnum));
2907                        goto error;
2908                }
2909
2910                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2911                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2912                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2913                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2914
2915                /*
2916                 * we reject all non implemented PMC as well
2917                 * as attempts to modify PMC[0-3] which are used
2918                 * as status registers by the PMU
2919                 */
2920                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2921                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2922                        goto error;
2923                }
2924                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2925                /*
2926                 * If the PMC is a monitor, then if the value is not the default:
2927                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2928                 *      - per-task           : PMCx.pm=0 (user monitor)
2929                 */
2930                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2931                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2932                                cnum,
2933                                pmc_pm,
2934                                is_system));
2935                        goto error;
2936                }
2937
2938                if (is_counting) {
2939                        /*
2940                         * enforce generation of overflow interrupt. Necessary on all
2941                         * CPUs.
2942                         */
2943                        value |= 1 << PMU_PMC_OI;
2944
2945                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2946                                flags |= PFM_REGFL_OVFL_NOTIFY;
2947                        }
2948
2949                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2950
2951                        /* verify validity of smpl_pmds */
2952                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2953                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2954                                goto error;
2955                        }
2956
2957                        /* verify validity of reset_pmds */
2958                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2959                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2960                                goto error;
2961                        }
2962                } else {
2963                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2964                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2965                                goto error;
2966                        }
2967                        /* eventid on non-counting monitors are ignored */
2968                }
2969
2970                /*
2971                 * execute write checker, if any
2972                 */
2973                if (likely(expert_mode == 0 && wr_func)) {
2974                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2975                        if (ret) goto error;
2976                        ret = -EINVAL;
2977                }
2978
2979                /*
2980                 * no error on this register
2981                 */
2982                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2983
2984                /*
2985                 * Now we commit the changes to the software state
2986                 */
2987
2988                /*
2989                 * update overflow information
2990                 */
2991                if (is_counting) {
2992                        /*
2993                         * full flag update each time a register is programmed
2994                         */
2995                        ctx->ctx_pmds[cnum].flags = flags;
2996
2997                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2998                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2999                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
3000
3001                        /*
3002                         * Mark all PMDS to be accessed as used.
3003                         *
3004                         * We do not keep track of PMC because we have to
3005                         * systematically restore ALL of them.
3006                         *
3007                         * We do not update the used_monitors mask, because
3008                         * if we have not programmed them, then will be in
3009                         * a quiescent state, therefore we will not need to
3010                         * mask/restore then when context is MASKED.
3011                         */
3012                        CTX_USED_PMD(ctx, reset_pmds);
3013                        CTX_USED_PMD(ctx, smpl_pmds);
3014                        /*
3015                         * make sure we do not try to reset on
3016                         * restart because we have established new values
3017                         */
3018                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3019                }
3020                /*
3021                 * Needed in case the user does not initialize the equivalent
3022                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3023                 * possible leak here.
3024                 */
3025                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3026
3027                /*
3028                 * keep track of the monitor PMC that we are using.
3029                 * we save the value of the pmc in ctx_pmcs[] and if
3030                 * the monitoring is not stopped for the context we also
3031                 * place it in the saved state area so that it will be
3032                 * picked up later by the context switch code.
3033                 *
3034                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3035                 *
3036                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3037                 * monitoring needs to be stopped.
3038                 */
3039                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3040
3041                /*
3042                 * update context state
3043                 */
3044                ctx->ctx_pmcs[cnum] = value;
3045
3046                if (is_loaded) {
3047                        /*
3048                         * write thread state
3049                         */
3050                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3051
3052                        /*
3053                         * write hardware register if we can
3054                         */
3055                        if (can_access_pmu) {
3056                                ia64_set_pmc(cnum, value);
3057                        }
3058#ifdef CONFIG_SMP
3059                        else {
3060                                /*
3061                                 * per-task SMP only here
3062                                 *
3063                                 * we are guaranteed that the task is not running on the other CPU,
3064                                 * we indicate that this PMD will need to be reloaded if the task
3065                                 * is rescheduled on the CPU it ran last on.
3066                                 */
3067                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3068                        }
3069#endif
3070                }
3071
3072                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3073                          cnum,
3074                          value,
3075                          is_loaded,
3076                          can_access_pmu,
3077                          flags,
3078                          ctx->ctx_all_pmcs[0],
3079                          ctx->ctx_used_pmds[0],
3080                          ctx->ctx_pmds[cnum].eventid,
3081                          smpl_pmds,
3082                          reset_pmds,
3083                          ctx->ctx_reload_pmcs[0],
3084                          ctx->ctx_used_monitors[0],
3085                          ctx->ctx_ovfl_regs[0]));
3086        }
3087
3088        /*
3089         * make sure the changes are visible
3090         */
3091        if (can_access_pmu) ia64_srlz_d();
3092
3093        return 0;
3094error:
3095        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3096        return ret;
3097}
3098
3099static int
3100pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3101{
3102        struct task_struct *task;
3103        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3104        unsigned long value, hw_value, ovfl_mask;
3105        unsigned int cnum;
3106        int i, can_access_pmu = 0, state;
3107        int is_counting, is_loaded, is_system, expert_mode;
3108        int ret = -EINVAL;
3109        pfm_reg_check_t wr_func;
3110
3111
3112        state     = ctx->ctx_state;
3113        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3114        is_system = ctx->ctx_fl_system;
3115        ovfl_mask = pmu_conf->ovfl_val;
3116        task      = ctx->ctx_task;
3117
3118        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3119
3120        /*
3121         * on both UP and SMP, we can only write to the PMC when the task is
3122         * the owner of the local PMU.
3123         */
3124        if (likely(is_loaded)) {
3125                /*
3126                 * In system wide and when the context is loaded, access can only happen
3127                 * when the caller is running on the CPU being monitored by the session.
3128                 * It does not have to be the owner (ctx_task) of the context per se.
3129                 */
3130                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3131                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3132                        return -EBUSY;
3133                }
3134                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3135        }
3136        expert_mode = pfm_sysctl.expert_mode; 
3137
3138        for (i = 0; i < count; i++, req++) {
3139
3140                cnum  = req->reg_num;
3141                value = req->reg_value;
3142
3143                if (!PMD_IS_IMPL(cnum)) {
3144                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3145                        goto abort_mission;
3146                }
3147                is_counting = PMD_IS_COUNTING(cnum);
3148                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3149
3150                /*
3151                 * execute write checker, if any
3152                 */
3153                if (unlikely(expert_mode == 0 && wr_func)) {
3154                        unsigned long v = value;
3155
3156                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3157                        if (ret) goto abort_mission;
3158
3159                        value = v;
3160                        ret   = -EINVAL;
3161                }
3162
3163                /*
3164                 * no error on this register
3165                 */
3166                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3167
3168                /*
3169                 * now commit changes to software state
3170                 */
3171                hw_value = value;
3172
3173                /*
3174                 * update virtualized (64bits) counter
3175                 */
3176                if (is_counting) {
3177                        /*
3178                         * write context state
3179                         */
3180                        ctx->ctx_pmds[cnum].lval = value;
3181
3182                        /*
3183                         * when context is load we use the split value
3184                         */
3185                        if (is_loaded) {
3186                                hw_value = value &  ovfl_mask;
3187                                value    = value & ~ovfl_mask;
3188                        }
3189                }
3190                /*
3191                 * update reset values (not just for counters)
3192                 */
3193                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3194                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3195
3196                /*
3197                 * update randomization parameters (not just for counters)
3198                 */
3199                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3200                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3201
3202                /*
3203                 * update context value
3204                 */
3205                ctx->ctx_pmds[cnum].val  = value;
3206
3207                /*
3208                 * Keep track of what we use
3209                 *
3210                 * We do not keep track of PMC because we have to
3211                 * systematically restore ALL of them.
3212                 */
3213                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3214
3215                /*
3216                 * mark this PMD register used as well
3217                 */
3218                CTX_USED_PMD(ctx, RDEP(cnum));
3219
3220                /*
3221                 * make sure we do not try to reset on
3222                 * restart because we have established new values
3223                 */
3224                if (is_counting && state == PFM_CTX_MASKED) {
3225                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3226                }
3227
3228                if (is_loaded) {
3229                        /*
3230                         * write thread state
3231                         */
3232                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3233
3234                        /*
3235                         * write hardware register if we can
3236                         */
3237                        if (can_access_pmu) {
3238                                ia64_set_pmd(cnum, hw_value);
3239                        } else {
3240#ifdef CONFIG_SMP
3241                                /*
3242                                 * we are guaranteed that the task is not running on the other CPU,
3243                                 * we indicate that this PMD will need to be reloaded if the task
3244                                 * is rescheduled on the CPU it ran last on.
3245                                 */
3246                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3247#endif
3248                        }
3249                }
3250
3251                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3252                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3253                        cnum,
3254                        value,
3255                        is_loaded,
3256                        can_access_pmu,
3257                        hw_value,
3258                        ctx->ctx_pmds[cnum].val,
3259                        ctx->ctx_pmds[cnum].short_reset,
3260                        ctx->ctx_pmds[cnum].long_reset,
3261                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3262                        ctx->ctx_pmds[cnum].seed,
3263                        ctx->ctx_pmds[cnum].mask,
3264                        ctx->ctx_used_pmds[0],
3265                        ctx->ctx_pmds[cnum].reset_pmds[0],
3266                        ctx->ctx_reload_pmds[0],
3267                        ctx->ctx_all_pmds[0],
3268                        ctx->ctx_ovfl_regs[0]));
3269        }
3270
3271        /*
3272         * make changes visible
3273         */
3274        if (can_access_pmu) ia64_srlz_d();
3275
3276        return 0;
3277
3278abort_mission:
3279        /*
3280         * for now, we have only one possibility for error
3281         */
3282        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3283        return ret;
3284}
3285
3286/*
3287 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3288 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3289 * interrupt is delivered during the call, it will be kept pending until we leave, making
3290 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3291 * guaranteed to return consistent data to the user, it may simply be old. It is not
3292 * trivial to treat the overflow while inside the call because you may end up in
3293 * some module sampling buffer code causing deadlocks.
3294 */
3295static int
3296pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3297{
3298        struct task_struct *task;
3299        unsigned long val = 0UL, lval, ovfl_mask, sval;
3300        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3301        unsigned int cnum, reg_flags = 0;
3302        int i, can_access_pmu = 0, state;
3303        int is_loaded, is_system, is_counting, expert_mode;
3304        int ret = -EINVAL;
3305        pfm_reg_check_t rd_func;
3306
3307        /*
3308         * access is possible when loaded only for
3309         * self-monitoring tasks or in UP mode
3310         */
3311
3312        state     = ctx->ctx_state;
3313        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3314        is_system = ctx->ctx_fl_system;
3315        ovfl_mask = pmu_conf->ovfl_val;
3316        task      = ctx->ctx_task;
3317
3318        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3319
3320        if (likely(is_loaded)) {
3321                /*
3322                 * In system wide and when the context is loaded, access can only happen
3323                 * when the caller is running on the CPU being monitored by the session.
3324                 * It does not have to be the owner (ctx_task) of the context per se.
3325                 */
3326                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3327                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3328                        return -EBUSY;
3329                }
3330                /*
3331                 * this can be true when not self-monitoring only in UP
3332                 */
3333                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3334
3335                if (can_access_pmu) ia64_srlz_d();
3336        }
3337        expert_mode = pfm_sysctl.expert_mode; 
3338
3339        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3340                is_loaded,
3341                can_access_pmu,
3342                state));
3343
3344        /*
3345         * on both UP and SMP, we can only read the PMD from the hardware register when
3346         * the task is the owner of the local PMU.
3347         */
3348
3349        for (i = 0; i < count; i++, req++) {
3350
3351                cnum        = req->reg_num;
3352                reg_flags   = req->reg_flags;
3353
3354                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3355                /*
3356                 * we can only read the register that we use. That includes
3357                 * the one we explicitly initialize AND the one we want included
3358                 * in the sampling buffer (smpl_regs).
3359                 *
3360                 * Having this restriction allows optimization in the ctxsw routine
3361                 * without compromising security (leaks)
3362                 */
3363                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3364
3365                sval        = ctx->ctx_pmds[cnum].val;
3366                lval        = ctx->ctx_pmds[cnum].lval;
3367                is_counting = PMD_IS_COUNTING(cnum);
3368
3369                /*
3370                 * If the task is not the current one, then we check if the
3371                 * PMU state is still in the local live register due to lazy ctxsw.
3372                 * If true, then we read directly from the registers.
3373                 */
3374                if (can_access_pmu){
3375                        val = ia64_get_pmd(cnum);
3376                } else {
3377                        /*
3378                         * context has been saved
3379                         * if context is zombie, then task does not exist anymore.
3380                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3381                         */
3382                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3383                }
3384                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3385
3386                if (is_counting) {
3387                        /*
3388                         * XXX: need to check for overflow when loaded
3389                         */
3390                        val &= ovfl_mask;
3391                        val += sval;
3392                }
3393
3394                /*
3395                 * execute read checker, if any
3396                 */
3397                if (unlikely(expert_mode == 0 && rd_func)) {
3398                        unsigned long v = val;
3399                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3400                        if (ret) goto error;
3401                        val = v;
3402                        ret = -EINVAL;
3403                }
3404
3405                PFM_REG_RETFLAG_SET(reg_flags, 0);
3406
3407                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3408
3409                /*
3410                 * update register return value, abort all if problem during copy.
3411                 * we only modify the reg_flags field. no check mode is fine because
3412                 * access has been verified upfront in sys_perfmonctl().
3413                 */
3414                req->reg_value            = val;
3415                req->reg_flags            = reg_flags;
3416                req->reg_last_reset_val   = lval;
3417        }
3418
3419        return 0;
3420
3421error:
3422        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3423        return ret;
3424}
3425
3426int
3427pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3428{
3429        pfm_context_t *ctx;
3430
3431        if (req == NULL) return -EINVAL;
3432
3433        ctx = GET_PMU_CTX();
3434
3435        if (ctx == NULL) return -EINVAL;
3436
3437        /*
3438         * for now limit to current task, which is enough when calling
3439         * from overflow handler
3440         */
3441        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3442
3443        return pfm_write_pmcs(ctx, req, nreq, regs);
3444}
3445EXPORT_SYMBOL(pfm_mod_write_pmcs);
3446
3447int
3448pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3449{
3450        pfm_context_t *ctx;
3451
3452        if (req == NULL) return -EINVAL;
3453
3454        ctx = GET_PMU_CTX();
3455
3456        if (ctx == NULL) return -EINVAL;
3457
3458        /*
3459         * for now limit to current task, which is enough when calling
3460         * from overflow handler
3461         */
3462        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3463
3464        return pfm_read_pmds(ctx, req, nreq, regs);
3465}
3466EXPORT_SYMBOL(pfm_mod_read_pmds);
3467
3468/*
3469 * Only call this function when a process it trying to
3470 * write the debug registers (reading is always allowed)
3471 */
3472int
3473pfm_use_debug_registers(struct task_struct *task)
3474{
3475        pfm_context_t *ctx = task->thread.pfm_context;
3476        unsigned long flags;
3477        int ret = 0;
3478
3479        if (pmu_conf->use_rr_dbregs == 0) return 0;
3480
3481        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3482
3483        /*
3484         * do it only once
3485         */
3486        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3487
3488        /*
3489         * Even on SMP, we do not need to use an atomic here because
3490         * the only way in is via ptrace() and this is possible only when the
3491         * process is stopped. Even in the case where the ctxsw out is not totally
3492         * completed by the time we come here, there is no way the 'stopped' process
3493         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3494         * So this is always safe.
3495         */
3496        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3497
3498        LOCK_PFS(flags);
3499
3500        /*
3501         * We cannot allow setting breakpoints when system wide monitoring
3502         * sessions are using the debug registers.
3503         */
3504        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3505                ret = -1;
3506        else
3507                pfm_sessions.pfs_ptrace_use_dbregs++;
3508
3509        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3510                  pfm_sessions.pfs_ptrace_use_dbregs,
3511                  pfm_sessions.pfs_sys_use_dbregs,
3512                  task_pid_nr(task), ret));
3513
3514        UNLOCK_PFS(flags);
3515
3516        return ret;
3517}
3518
3519/*
3520 * This function is called for every task that exits with the
3521 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3522 * able to use the debug registers for debugging purposes via
3523 * ptrace(). Therefore we know it was not using them for
3524 * performance monitoring, so we only decrement the number
3525 * of "ptraced" debug register users to keep the count up to date
3526 */
3527int
3528pfm_release_debug_registers(struct task_struct *task)
3529{
3530        unsigned long flags;
3531        int ret;
3532
3533        if (pmu_conf->use_rr_dbregs == 0) return 0;
3534
3535        LOCK_PFS(flags);
3536        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3537                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3538                ret = -1;
3539        }  else {
3540                pfm_sessions.pfs_ptrace_use_dbregs--;
3541                ret = 0;
3542        }
3543        UNLOCK_PFS(flags);
3544
3545        return ret;
3546}
3547
3548static int
3549pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3550{
3551        struct task_struct *task;
3552        pfm_buffer_fmt_t *fmt;
3553        pfm_ovfl_ctrl_t rst_ctrl;
3554        int state, is_system;
3555        int ret = 0;
3556
3557        state     = ctx->ctx_state;
3558        fmt       = ctx->ctx_buf_fmt;
3559        is_system = ctx->ctx_fl_system;
3560        task      = PFM_CTX_TASK(ctx);
3561
3562        switch(state) {
3563                case PFM_CTX_MASKED:
3564                        break;
3565                case PFM_CTX_LOADED: 
3566                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3567                        /* fall through */
3568                case PFM_CTX_UNLOADED:
3569                case PFM_CTX_ZOMBIE:
3570                        DPRINT(("invalid state=%d\n", state));
3571                        return -EBUSY;
3572                default:
3573                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3574                        return -EINVAL;
3575        }
3576
3577        /*
3578         * In system wide and when the context is loaded, access can only happen
3579         * when the caller is running on the CPU being monitored by the session.
3580         * It does not have to be the owner (ctx_task) of the context per se.
3581         */
3582        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3583                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3584                return -EBUSY;
3585        }
3586
3587        /* sanity check */
3588        if (unlikely(task == NULL)) {
3589                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3590                return -EINVAL;
3591        }
3592
3593        if (task == current || is_system) {
3594
3595                fmt = ctx->ctx_buf_fmt;
3596
3597                DPRINT(("restarting self %d ovfl=0x%lx\n",
3598                        task_pid_nr(task),
3599                        ctx->ctx_ovfl_regs[0]));
3600
3601                if (CTX_HAS_SMPL(ctx)) {
3602
3603                        prefetch(ctx->ctx_smpl_hdr);
3604
3605                        rst_ctrl.bits.mask_monitoring = 0;
3606                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3607
3608                        if (state == PFM_CTX_LOADED)
3609                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3610                        else
3611                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3612                } else {
3613                        rst_ctrl.bits.mask_monitoring = 0;
3614                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3615                }
3616
3617                if (ret == 0) {
3618                        if (rst_ctrl.bits.reset_ovfl_pmds)
3619                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3620
3621                        if (rst_ctrl.bits.mask_monitoring == 0) {
3622                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3623
3624                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3625                        } else {
3626                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3627
3628                                // cannot use pfm_stop_monitoring(task, regs);
3629                        }
3630                }
3631                /*
3632                 * clear overflowed PMD mask to remove any stale information
3633                 */
3634                ctx->ctx_ovfl_regs[0] = 0UL;
3635
3636                /*
3637                 * back to LOADED state
3638                 */
3639                ctx->ctx_state = PFM_CTX_LOADED;
3640
3641                /*
3642                 * XXX: not really useful for self monitoring
3643                 */
3644                ctx->ctx_fl_can_restart = 0;
3645
3646                return 0;
3647        }
3648
3649        /* 
3650         * restart another task
3651         */
3652
3653        /*
3654         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3655         * one is seen by the task.
3656         */
3657        if (state == PFM_CTX_MASKED) {
3658                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3659                /*
3660                 * will prevent subsequent restart before this one is
3661                 * seen by other task
3662                 */
3663                ctx->ctx_fl_can_restart = 0;
3664        }
3665
3666        /*
3667         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3668         * the task is blocked or on its way to block. That's the normal
3669         * restart path. If the monitoring is not masked, then the task
3670         * can be actively monitoring and we cannot directly intervene.
3671         * Therefore we use the trap mechanism to catch the task and
3672         * force it to reset the buffer/reset PMDs.
3673         *
3674         * if non-blocking, then we ensure that the task will go into
3675         * pfm_handle_work() before returning to user mode.
3676         *
3677         * We cannot explicitly reset another task, it MUST always
3678         * be done by the task itself. This works for system wide because
3679         * the tool that is controlling the session is logically doing 
3680         * "self-monitoring".
3681         */
3682        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3683                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3684                complete(&ctx->ctx_restart_done);
3685        } else {
3686                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3687
3688                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3689
3690                PFM_SET_WORK_PENDING(task, 1);
3691
3692                set_notify_resume(task);
3693
3694                /*
3695                 * XXX: send reschedule if task runs on another CPU
3696                 */
3697        }
3698        return 0;
3699}
3700
3701static int
3702pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3703{
3704        unsigned int m = *(unsigned int *)arg;
3705
3706        pfm_sysctl.debug = m == 0 ? 0 : 1;
3707
3708        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3709
3710        if (m == 0) {
3711                memset(pfm_stats, 0, sizeof(pfm_stats));
3712                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3713        }
3714        return 0;
3715}
3716
3717/*
3718 * arg can be NULL and count can be zero for this function
3719 */
3720static int
3721pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3722{
3723        struct thread_struct *thread = NULL;
3724        struct task_struct *task;
3725        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3726        unsigned long flags;
3727        dbreg_t dbreg;
3728        unsigned int rnum;
3729        int first_time;
3730        int ret = 0, state;
3731        int i, can_access_pmu = 0;
3732        int is_system, is_loaded;
3733
3734        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3735
3736        state     = ctx->ctx_state;
3737        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3738        is_system = ctx->ctx_fl_system;
3739        task      = ctx->ctx_task;
3740
3741        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3742
3743        /*
3744         * on both UP and SMP, we can only write to the PMC when the task is
3745         * the owner of the local PMU.
3746         */
3747        if (is_loaded) {
3748                thread = &task->thread;
3749                /*
3750                 * In system wide and when the context is loaded, access can only happen
3751                 * when the caller is running on the CPU being monitored by the session.
3752                 * It does not have to be the owner (ctx_task) of the context per se.
3753                 */
3754                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3755                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3756                        return -EBUSY;
3757                }
3758                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3759        }
3760
3761        /*
3762         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3763         * ensuring that no real breakpoint can be installed via this call.
3764         *
3765         * IMPORTANT: regs can be NULL in this function
3766         */
3767
3768        first_time = ctx->ctx_fl_using_dbreg == 0;
3769
3770        /*
3771         * don't bother if we are loaded and task is being debugged
3772         */
3773        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3774                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3775                return -EBUSY;
3776        }
3777
3778        /*
3779         * check for debug registers in system wide mode
3780         *
3781         * If though a check is done in pfm_context_load(),
3782         * we must repeat it here, in case the registers are
3783         * written after the context is loaded
3784         */
3785        if (is_loaded) {
3786                LOCK_PFS(flags);
3787
3788                if (first_time && is_system) {
3789                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3790                                ret = -EBUSY;
3791                        else
3792                                pfm_sessions.pfs_sys_use_dbregs++;
3793                }
3794                UNLOCK_PFS(flags);
3795        }
3796
3797        if (ret != 0) return ret;
3798
3799        /*
3800         * mark ourself as user of the debug registers for
3801         * perfmon purposes.
3802         */
3803        ctx->ctx_fl_using_dbreg = 1;
3804
3805        /*
3806         * clear hardware registers to make sure we don't
3807         * pick up stale state.
3808         *
3809         * for a system wide session, we do not use
3810         * thread.dbr, thread.ibr because this process
3811         * never leaves the current CPU and the state
3812         * is shared by all processes running on it
3813         */
3814        if (first_time && can_access_pmu) {
3815                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3816                for (i=0; i < pmu_conf->num_ibrs; i++) {
3817                        ia64_set_ibr(i, 0UL);
3818                        ia64_dv_serialize_instruction();
3819                }
3820                ia64_srlz_i();
3821                for (i=0; i < pmu_conf->num_dbrs; i++) {
3822                        ia64_set_dbr(i, 0UL);
3823                        ia64_dv_serialize_data();
3824                }
3825                ia64_srlz_d();
3826        }
3827
3828        /*
3829         * Now install the values into the registers
3830         */
3831        for (i = 0; i < count; i++, req++) {
3832
3833                rnum      = req->dbreg_num;
3834                dbreg.val = req->dbreg_value;
3835
3836                ret = -EINVAL;
3837
3838                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3839                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3840                                  rnum, dbreg.val, mode, i, count));
3841
3842                        goto abort_mission;
3843                }
3844
3845                /*
3846                 * make sure we do not install enabled breakpoint
3847                 */
3848                if (rnum & 0x1) {
3849                        if (mode == PFM_CODE_RR)
3850                                dbreg.ibr.ibr_x = 0;
3851                        else
3852                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3853                }
3854
3855                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3856
3857                /*
3858                 * Debug registers, just like PMC, can only be modified
3859                 * by a kernel call. Moreover, perfmon() access to those
3860                 * registers are centralized in this routine. The hardware
3861                 * does not modify the value of these registers, therefore,
3862                 * if we save them as they are written, we can avoid having
3863                 * to save them on context switch out. This is made possible
3864                 * by the fact that when perfmon uses debug registers, ptrace()
3865                 * won't be able to modify them concurrently.
3866                 */
3867                if (mode == PFM_CODE_RR) {
3868                        CTX_USED_IBR(ctx, rnum);
3869
3870                        if (can_access_pmu) {
3871                                ia64_set_ibr(rnum, dbreg.val);
3872                                ia64_dv_serialize_instruction();
3873                        }
3874
3875                        ctx->ctx_ibrs[rnum] = dbreg.val;
3876
3877                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3878                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3879                } else {
3880                        CTX_USED_DBR(ctx, rnum);
3881
3882                        if (can_access_pmu) {
3883                                ia64_set_dbr(rnum, dbreg.val);
3884                                ia64_dv_serialize_data();
3885                        }
3886                        ctx->ctx_dbrs[rnum] = dbreg.val;
3887
3888                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3889                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3890                }
3891        }
3892
3893        return 0;
3894
3895abort_mission:
3896        /*
3897         * in case it was our first attempt, we undo the global modifications
3898         */
3899        if (first_time) {
3900                LOCK_PFS(flags);
3901                if (ctx->ctx_fl_system) {
3902                        pfm_sessions.pfs_sys_use_dbregs--;
3903                }
3904                UNLOCK_PFS(flags);
3905                ctx->ctx_fl_using_dbreg = 0;
3906        }
3907        /*
3908         * install error return flag
3909         */
3910        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3911
3912        return ret;
3913}
3914
3915static int
3916pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3917{
3918        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3919}
3920
3921static int
3922pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3923{
3924        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3925}
3926
3927int
3928pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3929{
3930        pfm_context_t *ctx;
3931
3932        if (req == NULL) return -EINVAL;
3933
3934        ctx = GET_PMU_CTX();
3935
3936        if (ctx == NULL) return -EINVAL;
3937
3938        /*
3939         * for now limit to current task, which is enough when calling
3940         * from overflow handler
3941         */
3942        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3943
3944        return pfm_write_ibrs(ctx, req, nreq, regs);
3945}
3946EXPORT_SYMBOL(pfm_mod_write_ibrs);
3947
3948int
3949pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3950{
3951        pfm_context_t *ctx;
3952
3953        if (req == NULL) return -EINVAL;
3954
3955        ctx = GET_PMU_CTX();
3956
3957        if (ctx == NULL) return -EINVAL;
3958
3959        /*
3960         * for now limit to current task, which is enough when calling
3961         * from overflow handler
3962         */
3963        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3964
3965        return pfm_write_dbrs(ctx, req, nreq, regs);
3966}
3967EXPORT_SYMBOL(pfm_mod_write_dbrs);
3968
3969
3970static int
3971pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3972{
3973        pfarg_features_t *req = (pfarg_features_t *)arg;
3974
3975        req->ft_version = PFM_VERSION;
3976        return 0;
3977}
3978
3979static int
3980pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3981{
3982        struct pt_regs *tregs;
3983        struct task_struct *task = PFM_CTX_TASK(ctx);
3984        int state, is_system;
3985
3986        state     = ctx->ctx_state;
3987        is_system = ctx->ctx_fl_system;
3988
3989        /*
3990         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3991         */
3992        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3993
3994        /*
3995         * In system wide and when the context is loaded, access can only happen
3996         * when the caller is running on the CPU being monitored by the session.
3997         * It does not have to be the owner (ctx_task) of the context per se.
3998         */
3999        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4000                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4001                return -EBUSY;
4002        }
4003        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4004                task_pid_nr(PFM_CTX_TASK(ctx)),
4005                state,
4006                is_system));
4007        /*
4008         * in system mode, we need to update the PMU directly
4009         * and the user level state of the caller, which may not
4010         * necessarily be the creator of the context.
4011         */
4012        if (is_system) {
4013                /*
4014                 * Update local PMU first
4015                 *
4016                 * disable dcr pp
4017                 */
4018                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4019                ia64_srlz_i();
4020
4021                /*
4022                 * update local cpuinfo
4023                 */
4024                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4025
4026                /*
4027                 * stop monitoring, does srlz.i
4028                 */
4029                pfm_clear_psr_pp();
4030
4031                /*
4032                 * stop monitoring in the caller
4033                 */
4034                ia64_psr(regs)->pp = 0;
4035
4036                return 0;
4037        }
4038        /*
4039         * per-task mode
4040         */
4041
4042        if (task == current) {
4043                /* stop monitoring  at kernel level */
4044                pfm_clear_psr_up();
4045
4046                /*
4047                 * stop monitoring at the user level
4048                 */
4049                ia64_psr(regs)->up = 0;
4050        } else {
4051                tregs = task_pt_regs(task);
4052
4053                /*
4054                 * stop monitoring at the user level
4055                 */
4056                ia64_psr(tregs)->up = 0;
4057
4058                /*
4059                 * monitoring disabled in kernel at next reschedule
4060                 */
4061                ctx->ctx_saved_psr_up = 0;
4062                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4063        }
4064        return 0;
4065}
4066
4067
4068static int
4069pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4070{
4071        struct pt_regs *tregs;
4072        int state, is_system;
4073
4074        state     = ctx->ctx_state;
4075        is_system = ctx->ctx_fl_system;
4076
4077        if (state != PFM_CTX_LOADED) return -EINVAL;
4078
4079        /*
4080         * In system wide and when the context is loaded, access can only happen
4081         * when the caller is running on the CPU being monitored by the session.
4082         * It does not have to be the owner (ctx_task) of the context per se.
4083         */
4084        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4085                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4086                return -EBUSY;
4087        }
4088
4089        /*
4090         * in system mode, we need to update the PMU directly
4091         * and the user level state of the caller, which may not
4092         * necessarily be the creator of the context.
4093         */
4094        if (is_system) {
4095
4096                /*
4097                 * set user level psr.pp for the caller
4098                 */
4099                ia64_psr(regs)->pp = 1;
4100
4101                /*
4102                 * now update the local PMU and cpuinfo
4103                 */
4104                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4105
4106                /*
4107                 * start monitoring at kernel level
4108                 */
4109                pfm_set_psr_pp();
4110
4111                /* enable dcr pp */
4112                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4113                ia64_srlz_i();
4114
4115                return 0;
4116        }
4117
4118        /*
4119         * per-process mode
4120         */
4121
4122        if (ctx->ctx_task == current) {
4123
4124                /* start monitoring at kernel level */
4125                pfm_set_psr_up();
4126
4127                /*
4128                 * activate monitoring at user level
4129                 */
4130                ia64_psr(regs)->up = 1;
4131
4132        } else {
4133                tregs = task_pt_regs(ctx->ctx_task);
4134
4135                /*
4136                 * start monitoring at the kernel level the next
4137                 * time the task is scheduled
4138                 */
4139                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4140
4141                /*
4142                 * activate monitoring at user level
4143                 */
4144                ia64_psr(tregs)->up = 1;
4145        }
4146        return 0;
4147}
4148
4149static int
4150pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4151{
4152        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4153        unsigned int cnum;
4154        int i;
4155        int ret = -EINVAL;
4156
4157        for (i = 0; i < count; i++, req++) {
4158
4159                cnum = req->reg_num;
4160
4161                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4162
4163                req->reg_value = PMC_DFL_VAL(cnum);
4164
4165                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4166
4167                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4168        }
4169        return 0;
4170
4171abort_mission:
4172        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4173        return ret;
4174}
4175
4176static int
4177pfm_check_task_exist(pfm_context_t *ctx)
4178{
4179        struct task_struct *g, *t;
4180        int ret = -ESRCH;
4181
4182        read_lock(&tasklist_lock);
4183
4184        do_each_thread (g, t) {
4185                if (t->thread.pfm_context == ctx) {
4186                        ret = 0;
4187                        goto out;
4188                }
4189        } while_each_thread (g, t);
4190out:
4191        read_unlock(&tasklist_lock);
4192
4193        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4194
4195        return ret;
4196}
4197
4198static int
4199pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4200{
4201        struct task_struct *task;
4202        struct thread_struct *thread;
4203        struct pfm_context_t *old;
4204        unsigned long flags;
4205#ifndef CONFIG_SMP
4206        struct task_struct *owner_task = NULL;
4207#endif
4208        pfarg_load_t *req = (pfarg_load_t *)arg;
4209        unsigned long *pmcs_source, *pmds_source;
4210        int the_cpu;
4211        int ret = 0;
4212        int state, is_system, set_dbregs = 0;
4213
4214        state     = ctx->ctx_state;
4215        is_system = ctx->ctx_fl_system;
4216        /*
4217         * can only load from unloaded or terminated state
4218         */
4219        if (state != PFM_CTX_UNLOADED) {
4220                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4221                        req->load_pid,
4222                        ctx->ctx_state));
4223                return -EBUSY;
4224        }
4225
4226        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4227
4228        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4229                DPRINT(("cannot use blocking mode on self\n"));
4230                return -EINVAL;
4231        }
4232
4233        ret = pfm_get_task(ctx, req->load_pid, &task);
4234        if (ret) {
4235                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4236                return ret;
4237        }
4238
4239        ret = -EINVAL;
4240
4241        /*
4242         * system wide is self monitoring only
4243         */
4244        if (is_system && task != current) {
4245                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4246                        req->load_pid));
4247                goto error;
4248        }
4249
4250        thread = &task->thread;
4251
4252        ret = 0;
4253        /*
4254         * cannot load a context which is using range restrictions,
4255         * into a task that is being debugged.
4256         */
4257        if (ctx->ctx_fl_using_dbreg) {
4258                if (thread->flags & IA64_THREAD_DBG_VALID) {
4259                        ret = -EBUSY;
4260                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4261                        goto error;
4262                }
4263                LOCK_PFS(flags);
4264
4265                if (is_system) {
4266                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4267                                DPRINT(("cannot load [%d] dbregs in use\n",
4268                                                        task_pid_nr(task)));
4269                                ret = -EBUSY;
4270                        } else {
4271                                pfm_sessions.pfs_sys_use_dbregs++;
4272                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4273                                set_dbregs = 1;
4274                        }
4275                }
4276
4277                UNLOCK_PFS(flags);
4278
4279                if (ret) goto error;
4280        }
4281
4282        /*
4283         * SMP system-wide monitoring implies self-monitoring.
4284         *
4285         * The programming model expects the task to
4286         * be pinned on a CPU throughout the session.
4287         * Here we take note of the current CPU at the
4288         * time the context is loaded. No call from
4289         * another CPU will be allowed.
4290         *
4291         * The pinning via shed_setaffinity()
4292         * must be done by the calling task prior
4293         * to this call.
4294         *
4295         * systemwide: keep track of CPU this session is supposed to run on
4296         */
4297        the_cpu = ctx->ctx_cpu = smp_processor_id();
4298
4299        ret = -EBUSY;
4300        /*
4301         * now reserve the session
4302         */
4303        ret = pfm_reserve_session(current, is_system, the_cpu);
4304        if (ret) goto error;
4305
4306        /*
4307         * task is necessarily stopped at this point.
4308         *
4309         * If the previous context was zombie, then it got removed in
4310         * pfm_save_regs(). Therefore we should not see it here.
4311         * If we see a context, then this is an active context
4312         *
4313         * XXX: needs to be atomic
4314         */
4315        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4316                thread->pfm_context, ctx));
4317
4318        ret = -EBUSY;
4319        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4320        if (old != NULL) {
4321                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4322                goto error_unres;
4323        }
4324
4325        pfm_reset_msgq(ctx);
4326
4327        ctx->ctx_state = PFM_CTX_LOADED;
4328
4329        /*
4330         * link context to task
4331         */
4332        ctx->ctx_task = task;
4333
4334        if (is_system) {
4335                /*
4336                 * we load as stopped
4337                 */
4338                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4339                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4340
4341                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4342        } else {
4343                thread->flags |= IA64_THREAD_PM_VALID;
4344        }
4345
4346        /*
4347         * propagate into thread-state
4348         */
4349        pfm_copy_pmds(task, ctx);
4350        pfm_copy_pmcs(task, ctx);
4351
4352        pmcs_source = ctx->th_pmcs;
4353        pmds_source = ctx->th_pmds;
4354
4355        /*
4356         * always the case for system-wide
4357         */
4358        if (task == current) {
4359
4360                if (is_system == 0) {
4361
4362                        /* allow user level control */
4363                        ia64_psr(regs)->sp = 0;
4364                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4365
4366                        SET_LAST_CPU(ctx, smp_processor_id());
4367                        INC_ACTIVATION();
4368                        SET_ACTIVATION(ctx);
4369#ifndef CONFIG_SMP
4370                        /*
4371                         * push the other task out, if any
4372                         */
4373                        owner_task = GET_PMU_OWNER();
4374                        if (owner_task) pfm_lazy_save_regs(owner_task);
4375#endif
4376                }
4377                /*
4378                 * load all PMD from ctx to PMU (as opposed to thread state)
4379                 * restore all PMC from ctx to PMU
4380                 */
4381                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4382                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4383
4384                ctx->ctx_reload_pmcs[0] = 0UL;
4385                ctx->ctx_reload_pmds[0] = 0UL;
4386
4387                /*
4388                 * guaranteed safe by earlier check against DBG_VALID
4389                 */
4390                if (ctx->ctx_fl_using_dbreg) {
4391                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4392                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4393                }
4394                /*
4395                 * set new ownership
4396                 */
4397                SET_PMU_OWNER(task, ctx);
4398
4399                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4400        } else {
4401                /*
4402                 * when not current, task MUST be stopped, so this is safe
4403                 */
4404                regs = task_pt_regs(task);
4405
4406                /* force a full reload */
4407                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4408                SET_LAST_CPU(ctx, -1);
4409
4410                /* initial saved psr (stopped) */
4411                ctx->ctx_saved_psr_up = 0UL;
4412                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4413        }
4414
4415        ret = 0;
4416
4417error_unres:
4418        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4419error:
4420        /*
4421         * we must undo the dbregs setting (for system-wide)
4422         */
4423        if (ret && set_dbregs) {
4424                LOCK_PFS(flags);
4425                pfm_sessions.pfs_sys_use_dbregs--;
4426                UNLOCK_PFS(flags);
4427        }
4428        /*
4429         * release task, there is now a link with the context
4430         */
4431        if (is_system == 0 && task != current) {
4432                pfm_put_task(task);
4433
4434                if (ret == 0) {
4435                        ret = pfm_check_task_exist(ctx);
4436                        if (ret) {
4437                                ctx->ctx_state = PFM_CTX_UNLOADED;
4438                                ctx->ctx_task  = NULL;
4439                        }
4440                }
4441        }
4442        return ret;
4443}
4444
4445/*
4446 * in this function, we do not need to increase the use count
4447 * for the task via get_task_struct(), because we hold the
4448 * context lock. If the task were to disappear while having
4449 * a context attached, it would go through pfm_exit_thread()
4450 * which also grabs the context lock  and would therefore be blocked
4451 * until we are here.
4452 */
4453static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4454
4455static int
4456pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4457{
4458        struct task_struct *task = PFM_CTX_TASK(ctx);
4459        struct pt_regs *tregs;
4460        int prev_state, is_system;
4461        int ret;
4462
4463        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4464
4465        prev_state = ctx->ctx_state;
4466        is_system  = ctx->ctx_fl_system;
4467
4468        /*
4469         * unload only when necessary
4470         */
4471        if (prev_state == PFM_CTX_UNLOADED) {
4472                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4473                return 0;
4474        }
4475
4476        /*
4477         * clear psr and dcr bits
4478         */
4479        ret = pfm_stop(ctx, NULL, 0, regs);
4480        if (ret) return ret;
4481
4482        ctx->ctx_state = PFM_CTX_UNLOADED;
4483
4484        /*
4485         * in system mode, we need to update the PMU directly
4486         * and the user level state of the caller, which may not
4487         * necessarily be the creator of the context.
4488         */
4489        if (is_system) {
4490
4491                /*
4492                 * Update cpuinfo
4493                 *
4494                 * local PMU is taken care of in pfm_stop()
4495                 */
4496                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4497                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4498
4499                /*
4500                 * save PMDs in context
4501                 * release ownership
4502                 */
4503                pfm_flush_pmds(current, ctx);
4504
4505                /*
4506                 * at this point we are done with the PMU
4507                 * so we can unreserve the resource.
4508                 */
4509                if (prev_state != PFM_CTX_ZOMBIE) 
4510                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4511
4512                /*
4513                 * disconnect context from task
4514                 */
4515                task->thread.pfm_context = NULL;
4516                /*
4517                 * disconnect task from context
4518                 */
4519                ctx->ctx_task = NULL;
4520
4521                /*
4522                 * There is nothing more to cleanup here.
4523                 */
4524                return 0;
4525        }
4526
4527        /*
4528         * per-task mode
4529         */
4530        tregs = task == current ? regs : task_pt_regs(task);
4531
4532        if (task == current) {
4533                /*
4534                 * cancel user level control
4535                 */
4536                ia64_psr(regs)->sp = 1;
4537
4538                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4539        }
4540        /*
4541         * save PMDs to context
4542         * release ownership
4543         */
4544        pfm_flush_pmds(task, ctx);
4545
4546        /*
4547         * at this point we are done with the PMU
4548         * so we can unreserve the resource.
4549         *
4550         * when state was ZOMBIE, we have already unreserved.
4551         */
4552        if (prev_state != PFM_CTX_ZOMBIE) 
4553                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4554
4555        /*
4556         * reset activation counter and psr
4557         */
4558        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4559        SET_LAST_CPU(ctx, -1);
4560
4561        /*
4562         * PMU state will not be restored
4563         */
4564        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4565
4566        /*
4567         * break links between context and task
4568         */
4569        task->thread.pfm_context  = NULL;
4570        ctx->ctx_task             = NULL;
4571
4572        PFM_SET_WORK_PENDING(task, 0);
4573
4574        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4575        ctx->ctx_fl_can_restart  = 0;
4576        ctx->ctx_fl_going_zombie = 0;
4577
4578        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4579
4580        return 0;
4581}
4582
4583
4584/*
4585 * called only from exit_thread(): task == current
4586 * we come here only if current has a context attached (loaded or masked)
4587 */
4588void
4589pfm_exit_thread(struct task_struct *task)
4590{
4591        pfm_context_t *ctx;
4592        unsigned long flags;
4593        struct pt_regs *regs = task_pt_regs(task);
4594        int ret, state;
4595        int free_ok = 0;
4596
4597        ctx = PFM_GET_CTX(task);
4598
4599        PROTECT_CTX(ctx, flags);
4600
4601        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4602
4603        state = ctx->ctx_state;
4604        switch(state) {
4605                case PFM_CTX_UNLOADED:
4606                        /*
4607                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4608                         * be in unloaded state
4609                         */
4610                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4611                        break;
4612                case PFM_CTX_LOADED:
4613                case PFM_CTX_MASKED:
4614                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4615                        if (ret) {
4616                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4617                        }
4618                        DPRINT(("ctx unloaded for current state was %d\n", state));
4619
4620                        pfm_end_notify_user(ctx);
4621                        break;
4622                case PFM_CTX_ZOMBIE:
4623                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4624                        if (ret) {
4625                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4626                        }
4627                        free_ok = 1;
4628                        break;
4629                default:
4630                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4631                        break;
4632        }
4633        UNPROTECT_CTX(ctx, flags);
4634
4635        { u64 psr = pfm_get_psr();
4636          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4637          BUG_ON(GET_PMU_OWNER());
4638          BUG_ON(ia64_psr(regs)->up);
4639          BUG_ON(ia64_psr(regs)->pp);
4640        }
4641
4642        /*
4643         * All memory free operations (especially for vmalloc'ed memory)
4644         * MUST be done with interrupts ENABLED.
4645         */
4646        if (free_ok) pfm_context_free(ctx);
4647}
4648
4649/*
4650 * functions MUST be listed in the increasing order of their index (see permfon.h)
4651 */
4652#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4653#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4654#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4655#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4656#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4657
4658static pfm_cmd_desc_t pfm_cmd_tab[]={
4659/* 0  */PFM_CMD_NONE,
4660/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4661/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4662/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4664/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4665/* 6  */PFM_CMD_NONE,
4666/* 7  */PFM_CMD_NONE,
4667/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4668/* 9  */PFM_CMD_NONE,
4669/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4670/* 11 */PFM_CMD_NONE,
4671/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4672/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4673/* 14 */PFM_CMD_NONE,
4674/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4675/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4676/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4677/* 18 */PFM_CMD_NONE,
4678/* 19 */PFM_CMD_NONE,
4679/* 20 */PFM_CMD_NONE,
4680/* 21 */PFM_CMD_NONE,
4681/* 22 */PFM_CMD_NONE,
4682/* 23 */PFM_CMD_NONE,
4683/* 24 */PFM_CMD_NONE,
4684/* 25 */PFM_CMD_NONE,
4685/* 26 */PFM_CMD_NONE,
4686/* 27 */PFM_CMD_NONE,
4687/* 28 */PFM_CMD_NONE,
4688/* 29 */PFM_CMD_NONE,
4689/* 30 */PFM_CMD_NONE,
4690/* 31 */PFM_CMD_NONE,
4691/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4692/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4693};
4694#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4695
4696static int
4697pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4698{
4699        struct task_struct *task;
4700        int state, old_state;
4701
4702recheck:
4703        state = ctx->ctx_state;
4704        task  = ctx->ctx_task;
4705
4706        if (task == NULL) {
4707                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4708                return 0;
4709        }
4710
4711        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4712                ctx->ctx_fd,
4713                state,
4714                task_pid_nr(task),
4715                task->state, PFM_CMD_STOPPED(cmd)));
4716
4717        /*
4718         * self-monitoring always ok.
4719         *
4720         * for system-wide the caller can either be the creator of the
4721         * context (to one to which the context is attached to) OR
4722         * a task running on the same CPU as the session.
4723         */
4724        if (task == current || ctx->ctx_fl_system) return 0;
4725
4726        /*
4727         * we are monitoring another thread
4728         */
4729        switch(state) {
4730                case PFM_CTX_UNLOADED:
4731                        /*
4732                         * if context is UNLOADED we are safe to go
4733                         */
4734                        return 0;
4735                case PFM_CTX_ZOMBIE:
4736                        /*
4737                         * no command can operate on a zombie context
4738                         */
4739                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4740                        return -EINVAL;
4741                case PFM_CTX_MASKED:
4742                        /*
4743                         * PMU state has been saved to software even though
4744                         * the thread may still be running.
4745                         */
4746                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4747        }
4748
4749        /*
4750         * context is LOADED or MASKED. Some commands may need to have 
4751         * the task stopped.
4752         *
4753         * We could lift this restriction for UP but it would mean that
4754         * the user has no guarantee the task would not run between
4755         * two successive calls to perfmonctl(). That's probably OK.
4756         * If this user wants to ensure the task does not run, then
4757         * the task must be stopped.
4758         */
4759        if (PFM_CMD_STOPPED(cmd)) {
4760                if (!task_is_stopped_or_traced(task)) {
4761                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4762                        return -EBUSY;
4763                }
4764                /*
4765                 * task is now stopped, wait for ctxsw out
4766                 *
4767                 * This is an interesting point in the code.
4768                 * We need to unprotect the context because
4769                 * the pfm_save_regs() routines needs to grab
4770                 * the same lock. There are danger in doing
4771                 * this because it leaves a window open for
4772                 * another task to get access to the context
4773                 * and possibly change its state. The one thing
4774                 * that is not possible is for the context to disappear
4775                 * because we are protected by the VFS layer, i.e.,
4776                 * get_fd()/put_fd().
4777                 */
4778                old_state = state;
4779
4780                UNPROTECT_CTX(ctx, flags);
4781
4782                wait_task_inactive(task, 0);
4783
4784                PROTECT_CTX(ctx, flags);
4785
4786                /*
4787                 * we must recheck to verify if state has changed
4788                 */
4789                if (ctx->ctx_state != old_state) {
4790                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4791                        goto recheck;
4792                }
4793        }
4794        return 0;
4795}
4796
4797/*
4798 * system-call entry point (must return long)
4799 */
4800asmlinkage long
4801sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4802{
4803        struct file *file = NULL;
4804        pfm_context_t *ctx = NULL;
4805        unsigned long flags = 0UL;
4806        void *args_k = NULL;
4807        long ret; /* will expand int return types */
4808        size_t base_sz, sz, xtra_sz = 0;
4809        int narg, completed_args = 0, call_made = 0, cmd_flags;
4810        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4811        int (*getsize)(void *arg, size_t *sz);
4812#define PFM_MAX_ARGSIZE 4096
4813
4814        /*
4815         * reject any call if perfmon was disabled at initialization
4816         */
4817        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4818
4819        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4820                DPRINT(("invalid cmd=%d\n", cmd));
4821                return -EINVAL;
4822        }
4823
4824        func      = pfm_cmd_tab[cmd].cmd_func;
4825        narg      = pfm_cmd_tab[cmd].cmd_narg;
4826        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4827        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4828        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4829
4830        if (unlikely(func == NULL)) {
4831                DPRINT(("invalid cmd=%d\n", cmd));
4832                return -EINVAL;
4833        }
4834
4835        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4836                PFM_CMD_NAME(cmd),
4837                cmd,
4838                narg,
4839                base_sz,
4840                count));
4841
4842        /*
4843         * check if number of arguments matches what the command expects
4844         */
4845        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4846                return -EINVAL;
4847
4848restart_args:
4849        sz = xtra_sz + base_sz*count;
4850        /*
4851         * limit abuse to min page size
4852         */
4853        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4854                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4855                return -E2BIG;
4856        }
4857
4858        /*
4859         * allocate default-sized argument buffer
4860         */
4861        if (likely(count && args_k == NULL)) {
4862                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4863                if (args_k == NULL) return -ENOMEM;
4864        }
4865
4866        ret = -EFAULT;
4867
4868        /*
4869         * copy arguments
4870         *
4871         * assume sz = 0 for command without parameters
4872         */
4873        if (sz && copy_from_user(args_k, arg, sz)) {
4874                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4875                goto error_args;
4876        }
4877
4878        /*
4879         * check if command supports extra parameters
4880         */
4881        if (completed_args == 0 && getsize) {
4882                /*
4883                 * get extra parameters size (based on main argument)
4884                 */
4885                ret = (*getsize)(args_k, &xtra_sz);
4886                if (ret) goto error_args;
4887
4888                completed_args = 1;
4889
4890                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4891
4892                /* retry if necessary */
4893                if (likely(xtra_sz)) goto restart_args;
4894        }
4895
4896        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4897
4898        ret = -EBADF;
4899
4900        file = fget(fd);
4901        if (unlikely(file == NULL)) {
4902                DPRINT(("invalid fd %d\n", fd));
4903                goto error_args;
4904        }
4905        if (unlikely(PFM_IS_FILE(file) == 0)) {
4906                DPRINT(("fd %d not related to perfmon\n", fd));
4907                goto error_args;
4908        }
4909
4910        ctx = file->private_data;
4911        if (unlikely(ctx == NULL)) {
4912                DPRINT(("no context for fd %d\n", fd));
4913                goto error_args;
4914        }
4915        prefetch(&ctx->ctx_state);
4916
4917        PROTECT_CTX(ctx, flags);
4918
4919        /*
4920         * check task is stopped
4921         */
4922        ret = pfm_check_task_state(ctx, cmd, flags);
4923        if (unlikely(ret)) goto abort_locked;
4924
4925skip_fd:
4926        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4927
4928        call_made = 1;
4929
4930abort_locked:
4931        if (likely(ctx)) {
4932                DPRINT(("context unlocked\n"));
4933                UNPROTECT_CTX(ctx, flags);
4934        }
4935
4936        /* copy argument back to user, if needed */
4937        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4938
4939error_args:
4940        if (file)
4941                fput(file);
4942
4943        kfree(args_k);
4944
4945        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4946
4947        return ret;
4948}
4949
4950static void
4951pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4952{
4953        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4954        pfm_ovfl_ctrl_t rst_ctrl;
4955        int state;
4956        int ret = 0;
4957
4958        state = ctx->ctx_state;
4959        /*
4960         * Unlock sampling buffer and reset index atomically
4961         * XXX: not really needed when blocking
4962         */
4963        if (CTX_HAS_SMPL(ctx)) {
4964
4965                rst_ctrl.bits.mask_monitoring = 0;
4966                rst_ctrl.bits.reset_ovfl_pmds = 0;
4967
4968                if (state == PFM_CTX_LOADED)
4969                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4970                else
4971                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972        } else {
4973                rst_ctrl.bits.mask_monitoring = 0;
4974                rst_ctrl.bits.reset_ovfl_pmds = 1;
4975        }
4976
4977        if (ret == 0) {
4978                if (rst_ctrl.bits.reset_ovfl_pmds) {
4979                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4980                }
4981                if (rst_ctrl.bits.mask_monitoring == 0) {
4982                        DPRINT(("resuming monitoring\n"));
4983                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4984                } else {
4985                        DPRINT(("stopping monitoring\n"));
4986                        //pfm_stop_monitoring(current, regs);
4987                }
4988                ctx->ctx_state = PFM_CTX_LOADED;
4989        }
4990}
4991
4992/*
4993 * context MUST BE LOCKED when calling
4994 * can only be called for current
4995 */
4996static void
4997pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4998{
4999        int ret;
5000
5001        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
5002
5003        ret = pfm_context_unload(ctx, NULL, 0, regs);
5004        if (ret) {
5005                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
5006        }
5007
5008        /*
5009         * and wakeup controlling task, indicating we are now disconnected
5010         */
5011        wake_up_interruptible(&ctx->ctx_zombieq);
5012
5013        /*
5014         * given that context is still locked, the controlling
5015         * task will only get access when we return from
5016         * pfm_handle_work().
5017         */
5018}
5019
5020static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5021
5022 /*
5023  * pfm_handle_work() can be called with interrupts enabled
5024  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5025  * call may sleep, therefore we must re-enable interrupts
5026  * to avoid deadlocks. It is safe to do so because this function
5027  * is called ONLY when returning to user level (pUStk=1), in which case
5028  * there is no risk of kernel stack overflow due to deep
5029  * interrupt nesting.
5030  */
5031void
5032pfm_handle_work(void)
5033{
5034        pfm_context_t *ctx;
5035        struct pt_regs *regs;
5036        unsigned long flags, dummy_flags;
5037        unsigned long ovfl_regs;
5038        unsigned int reason;
5039        int ret;
5040
5041        ctx = PFM_GET_CTX(current);
5042        if (ctx == NULL) {
5043                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5044                        task_pid_nr(current));
5045                return;
5046        }
5047
5048        PROTECT_CTX(ctx, flags);
5049
5050        PFM_SET_WORK_PENDING(current, 0);
5051
5052        regs = task_pt_regs(current);
5053
5054        /*
5055         * extract reason for being here and clear
5056         */
5057        reason = ctx->ctx_fl_trap_reason;
5058        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5059        ovfl_regs = ctx->ctx_ovfl_regs[0];
5060
5061        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5062
5063        /*
5064         * must be done before we check for simple-reset mode
5065         */
5066        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5067                goto do_zombie;
5068
5069        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5070        if (reason == PFM_TRAP_REASON_RESET)
5071                goto skip_blocking;
5072
5073        /*
5074         * restore interrupt mask to what it was on entry.
5075         * Could be enabled/diasbled.
5076         */
5077        UNPROTECT_CTX(ctx, flags);
5078
5079        /*
5080         * force interrupt enable because of down_interruptible()
5081         */
5082        local_irq_enable();
5083
5084        DPRINT(("before block sleeping\n"));
5085
5086        /*
5087         * may go through without blocking on SMP systems
5088         * if restart has been received already by the time we call down()
5089         */
5090        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5091
5092        DPRINT(("after block sleeping ret=%d\n", ret));
5093
5094        /*
5095         * lock context and mask interrupts again
5096         * We save flags into a dummy because we may have
5097         * altered interrupts mask compared to entry in this
5098         * function.
5099         */
5100        PROTECT_CTX(ctx, dummy_flags);
5101
5102        /*
5103         * we need to read the ovfl_regs only after wake-up
5104         * because we may have had pfm_write_pmds() in between
5105         * and that can changed PMD values and therefore 
5106         * ovfl_regs is reset for these new PMD values.
5107         */
5108        ovfl_regs = ctx->ctx_ovfl_regs[0];
5109
5110        if (ctx->ctx_fl_going_zombie) {
5111do_zombie:
5112                DPRINT(("context is zombie, bailing out\n"));
5113                pfm_context_force_terminate(ctx, regs);
5114                goto nothing_to_do;
5115        }
5116        /*
5117         * in case of interruption of down() we don't restart anything
5118         */
5119        if (ret < 0)
5120                goto nothing_to_do;
5121
5122skip_blocking:
5123        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5124        ctx->ctx_ovfl_regs[0] = 0UL;
5125
5126nothing_to_do:
5127        /*
5128         * restore flags as they were upon entry
5129         */
5130        UNPROTECT_CTX(ctx, flags);
5131}
5132
5133static int
5134pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5135{
5136        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5137                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5138                return 0;
5139        }
5140
5141        DPRINT(("waking up somebody\n"));
5142
5143        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5144
5145        /*
5146         * safe, we are not in intr handler, nor in ctxsw when
5147         * we come here
5148         */
5149        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5150
5151        return 0;
5152}
5153
5154static int
5155pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5156{
5157        pfm_msg_t *msg = NULL;
5158
5159        if (ctx->ctx_fl_no_msg == 0) {
5160                msg = pfm_get_new_msg(ctx);
5161                if (msg == NULL) {
5162                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5163                        return -1;
5164                }
5165
5166                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5167                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5168                msg->pfm_ovfl_msg.msg_active_set   = 0;
5169                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5170                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5171                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5172                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5173                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5174        }
5175
5176        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5177                msg,
5178                ctx->ctx_fl_no_msg,
5179                ctx->ctx_fd,
5180                ovfl_pmds));
5181
5182        return pfm_notify_user(ctx, msg);
5183}
5184
5185static int
5186pfm_end_notify_user(pfm_context_t *ctx)
5187{
5188        pfm_msg_t *msg;
5189
5190        msg = pfm_get_new_msg(ctx);
5191        if (msg == NULL) {
5192                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5193                return -1;
5194        }
5195        /* no leak */
5196        memset(msg, 0, sizeof(*msg));
5197
5198        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5199        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5200        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5201
5202        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5203                msg,
5204                ctx->ctx_fl_no_msg,
5205                ctx->ctx_fd));
5206
5207        return pfm_notify_user(ctx, msg);
5208}
5209
5210/*
5211 * main overflow processing routine.
5212 * it can be called from the interrupt path or explicitly during the context switch code
5213 */
5214static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5215                                unsigned long pmc0, struct pt_regs *regs)
5216{
5217        pfm_ovfl_arg_t *ovfl_arg;
5218        unsigned long mask;
5219        unsigned long old_val, ovfl_val, new_val;
5220        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5221        unsigned long tstamp;
5222        pfm_ovfl_ctrl_t ovfl_ctrl;
5223        unsigned int i, has_smpl;
5224        int must_notify = 0;
5225
5226        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5227
5228        /*
5229         * sanity test. Should never happen
5230         */
5231        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5232
5233        tstamp   = ia64_get_itc();
5234        mask     = pmc0 >> PMU_FIRST_COUNTER;
5235        ovfl_val = pmu_conf->ovfl_val;
5236        has_smpl = CTX_HAS_SMPL(ctx);
5237
5238        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5239                     "used_pmds=0x%lx\n",
5240                        pmc0,
5241                        task ? task_pid_nr(task): -1,
5242                        (regs ? regs->cr_iip : 0),
5243                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5244                        ctx->ctx_used_pmds[0]));
5245
5246
5247        /*
5248         * first we update the virtual counters
5249         * assume there was a prior ia64_srlz_d() issued
5250         */
5251        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5252
5253                /* skip pmd which did not overflow */
5254                if ((mask & 0x1) == 0) continue;
5255
5256                /*
5257                 * Note that the pmd is not necessarily 0 at this point as qualified events
5258                 * may have happened before the PMU was frozen. The residual count is not
5259                 * taken into consideration here but will be with any read of the pmd via
5260                 * pfm_read_pmds().
5261                 */
5262                old_val              = new_val = ctx->ctx_pmds[i].val;
5263                new_val             += 1 + ovfl_val;
5264                ctx->ctx_pmds[i].val = new_val;
5265
5266                /*
5267                 * check for overflow condition
5268                 */
5269                if (likely(old_val > new_val)) {
5270                        ovfl_pmds |= 1UL << i;
5271                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5272                }
5273
5274                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5275                        i,
5276                        new_val,
5277                        old_val,
5278                        ia64_get_pmd(i) & ovfl_val,
5279                        ovfl_pmds,
5280                        ovfl_notify));
5281        }
5282
5283        /*
5284         * there was no 64-bit overflow, nothing else to do
5285         */
5286        if (ovfl_pmds == 0UL) return;
5287
5288        /* 
5289         * reset all control bits
5290         */
5291        ovfl_ctrl.val = 0;
5292        reset_pmds    = 0UL;
5293
5294        /*
5295         * if a sampling format module exists, then we "cache" the overflow by 
5296         * calling the module's handler() routine.
5297         */
5298        if (has_smpl) {
5299                unsigned long start_cycles, end_cycles;
5300                unsigned long pmd_mask;
5301                int j, k, ret = 0;
5302                int this_cpu = smp_processor_id();
5303
5304                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5305                ovfl_arg = &ctx->ctx_ovfl_arg;
5306
5307                prefetch(ctx->ctx_smpl_hdr);
5308
5309                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5310
5311                        mask = 1UL << i;
5312
5313                        if ((pmd_mask & 0x1) == 0) continue;
5314
5315                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5316                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5317                        ovfl_arg->active_set    = 0;
5318                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5319                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5320
5321                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5322                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5323                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5324
5325                        /*
5326                         * copy values of pmds of interest. Sampling format may copy them
5327                         * into sampling buffer.
5328                         */
5329                        if (smpl_pmds) {
5330                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5331                                        if ((smpl_pmds & 0x1) == 0) continue;
5332                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5333                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5334                                }
5335                        }
5336
5337                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5338
5339                        start_cycles = ia64_get_itc();
5340
5341                        /*
5342                         * call custom buffer format record (handler) routine
5343                         */
5344                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5345
5346                        end_cycles = ia64_get_itc();
5347
5348                        /*
5349                         * For those controls, we take the union because they have
5350                         * an all or nothing behavior.
5351                         */
5352                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5353                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5354                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5355                        /*
5356                         * build the bitmask of pmds to reset now
5357                         */
5358                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5359
5360                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5361                }
5362                /*
5363                 * when the module cannot handle the rest of the overflows, we abort right here
5364                 */
5365                if (ret && pmd_mask) {
5366                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5367                                pmd_mask<<PMU_FIRST_COUNTER));
5368                }
5369                /*
5370                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5371                 */
5372                ovfl_pmds &= ~reset_pmds;
5373        } else {
5374                /*
5375                 * when no sampling module is used, then the default
5376                 * is to notify on overflow if requested by user
5377                 */
5378                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5379                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5380                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5381                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5382                /*
5383                 * if needed, we reset all overflowed pmds
5384                 */
5385                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5386        }
5387
5388        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5389
5390        /*
5391         * reset the requested PMD registers using the short reset values
5392         */
5393        if (reset_pmds) {
5394                unsigned long bm = reset_pmds;
5395                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5396        }
5397
5398        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5399                /*
5400                 * keep track of what to reset when unblocking
5401                 */
5402                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5403
5404                /*
5405                 * check for blocking context 
5406                 */
5407                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5408
5409                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5410
5411                        /*
5412                         * set the perfmon specific checking pending work for the task
5413                         */
5414                        PFM_SET_WORK_PENDING(task, 1);
5415
5416                        /*
5417                         * when coming from ctxsw, current still points to the
5418                         * previous task, therefore we must work with task and not current.
5419                         */
5420                        set_notify_resume(task);
5421                }
5422                /*
5423                 * defer until state is changed (shorten spin window). the context is locked
5424                 * anyway, so the signal receiver would come spin for nothing.
5425                 */
5426                must_notify = 1;
5427        }
5428
5429        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5430                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5431                        PFM_GET_WORK_PENDING(task),
5432                        ctx->ctx_fl_trap_reason,
5433                        ovfl_pmds,
5434                        ovfl_notify,
5435                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5436        /*
5437         * in case monitoring must be stopped, we toggle the psr bits
5438         */
5439        if (ovfl_ctrl.bits.mask_monitoring) {
5440                pfm_mask_monitoring(task);
5441                ctx->ctx_state = PFM_CTX_MASKED;
5442                ctx->ctx_fl_can_restart = 1;
5443        }
5444
5445        /*
5446         * send notification now
5447         */
5448        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5449
5450        return;
5451
5452sanity_check:
5453        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5454                        smp_processor_id(),
5455                        task ? task_pid_nr(task) : -1,
5456                        pmc0);
5457        return;
5458
5459stop_monitoring:
5460        /*
5461         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5462         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5463         * come here as zombie only if the task is the current task. In which case, we
5464         * can access the PMU  hardware directly.
5465         *
5466         * Note that zombies do have PM_VALID set. So here we do the minimal.
5467         *
5468         * In case the context was zombified it could not be reclaimed at the time
5469         * the monitoring program exited. At this point, the PMU reservation has been
5470         * returned, the sampiing buffer has been freed. We must convert this call
5471         * into a spurious interrupt. However, we must also avoid infinite overflows
5472         * by stopping monitoring for this task. We can only come here for a per-task
5473         * context. All we need to do is to stop monitoring using the psr bits which
5474         * are always task private. By re-enabling secure montioring, we ensure that
5475         * the monitored task will not be able to re-activate monitoring.
5476         * The task will eventually be context switched out, at which point the context
5477         * will be reclaimed (that includes releasing ownership of the PMU).
5478         *
5479         * So there might be a window of time where the number of per-task session is zero
5480         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5481         * context. This is safe because if a per-task session comes in, it will push this one
5482         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5483         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5484         * also push our zombie context out.
5485         *
5486         * Overall pretty hairy stuff....
5487         */
5488        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5489        pfm_clear_psr_up();
5490        ia64_psr(regs)->up = 0;
5491        ia64_psr(regs)->sp = 1;
5492        return;
5493}
5494
5495static int
5496pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5497{
5498        struct task_struct *task;
5499        pfm_context_t *ctx;
5500        unsigned long flags;
5501        u64 pmc0;
5502        int this_cpu = smp_processor_id();
5503        int retval = 0;
5504
5505        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5506
5507        /*
5508         * srlz.d done before arriving here
5509         */
5510        pmc0 = ia64_get_pmc(0);
5511
5512        task = GET_PMU_OWNER();
5513        ctx  = GET_PMU_CTX();
5514
5515        /*
5516         * if we have some pending bits set
5517         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5518         */
5519        if (PMC0_HAS_OVFL(pmc0) && task) {
5520                /*
5521                 * we assume that pmc0.fr is always set here
5522                 */
5523
5524                /* sanity check */
5525                if (!ctx) goto report_spurious1;
5526
5527                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5528                        goto report_spurious2;
5529
5530                PROTECT_CTX_NOPRINT(ctx, flags);
5531
5532                pfm_overflow_handler(task, ctx, pmc0, regs);
5533
5534                UNPROTECT_CTX_NOPRINT(ctx, flags);
5535
5536        } else {
5537                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5538                retval = -1;
5539        }
5540        /*
5541         * keep it unfrozen at all times
5542         */
5543        pfm_unfreeze_pmu();
5544
5545        return retval;
5546
5547report_spurious1:
5548        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5549                this_cpu, task_pid_nr(task));
5550        pfm_unfreeze_pmu();
5551        return -1;
5552report_spurious2:
5553        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5554                this_cpu, 
5555                task_pid_nr(task));
5556        pfm_unfreeze_pmu();
5557        return -1;
5558}
5559
5560static irqreturn_t
5561pfm_interrupt_handler(int irq, void *arg)
5562{
5563        unsigned long start_cycles, total_cycles;
5564        unsigned long min, max;
5565        int this_cpu;
5566        int ret;
5567        struct pt_regs *regs = get_irq_regs();
5568
5569        this_cpu = get_cpu();
5570        if (likely(!pfm_alt_intr_handler)) {
5571                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5572                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5573
5574                start_cycles = ia64_get_itc();
5575
5576                ret = pfm_do_interrupt_handler(arg, regs);
5577
5578                total_cycles = ia64_get_itc();
5579
5580                /*
5581                 * don't measure spurious interrupts
5582                 */
5583                if (likely(ret == 0)) {
5584                        total_cycles -= start_cycles;
5585
5586                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5587                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5588
5589                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5590                }
5591        }
5592        else {
5593                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5594        }
5595
5596        put_cpu();
5597        return IRQ_HANDLED;
5598}
5599
5600/*
5601 * /proc/perfmon interface, for debug only
5602 */
5603
5604#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5605
5606static void *
5607pfm_proc_start(struct seq_file *m, loff_t *pos)
5608{
5609        if (*pos == 0) {
5610                return PFM_PROC_SHOW_HEADER;
5611        }
5612
5613        while (*pos <= nr_cpu_ids) {
5614                if (cpu_online(*pos - 1)) {
5615                        return (void *)*pos;
5616                }
5617                ++*pos;
5618        }
5619        return NULL;
5620}
5621
5622static void *
5623pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5624{
5625        ++*pos;
5626        return pfm_proc_start(m, pos);
5627}
5628
5629static void
5630pfm_proc_stop(struct seq_file *m, void *v)
5631{
5632}
5633
5634static void
5635pfm_proc_show_header(struct seq_file *m)
5636{
5637        struct list_head * pos;
5638        pfm_buffer_fmt_t * entry;
5639        unsigned long flags;
5640
5641        seq_printf(m,
5642                "perfmon version           : %u.%u\n"
5643                "model                     : %s\n"
5644                "fastctxsw                 : %s\n"
5645                "expert mode               : %s\n"
5646                "ovfl_mask                 : 0x%lx\n"
5647                "PMU flags                 : 0x%x\n",
5648                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5649                pmu_conf->pmu_name,
5650                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5651                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5652                pmu_conf->ovfl_val,
5653                pmu_conf->flags);
5654
5655        LOCK_PFS(flags);
5656
5657        seq_printf(m,
5658                "proc_sessions             : %u\n"
5659                "sys_sessions              : %u\n"
5660                "sys_use_dbregs            : %u\n"
5661                "ptrace_use_dbregs         : %u\n",
5662                pfm_sessions.pfs_task_sessions,
5663                pfm_sessions.pfs_sys_sessions,
5664                pfm_sessions.pfs_sys_use_dbregs,
5665                pfm_sessions.pfs_ptrace_use_dbregs);
5666
5667        UNLOCK_PFS(flags);
5668
5669        spin_lock(&pfm_buffer_fmt_lock);
5670
5671        list_for_each(pos, &pfm_buffer_fmt_list) {
5672                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5673                seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5674                        entry->fmt_uuid[0],
5675                        entry->fmt_uuid[1],
5676                        entry->fmt_uuid[2],
5677                        entry->fmt_uuid[3],
5678                        entry->fmt_uuid[4],
5679                        entry->fmt_uuid[5],
5680                        entry->fmt_uuid[6],
5681                        entry->fmt_uuid[7],
5682                        entry->fmt_uuid[8],
5683                        entry->fmt_uuid[9],
5684                        entry->fmt_uuid[10],
5685                        entry->fmt_uuid[11],
5686                        entry->fmt_uuid[12],
5687                        entry->fmt_uuid[13],
5688                        entry->fmt_uuid[14],
5689                        entry->fmt_uuid[15],
5690                        entry->fmt_name);
5691        }
5692        spin_unlock(&pfm_buffer_fmt_lock);
5693
5694}
5695
5696static int
5697pfm_proc_show(struct seq_file *m, void *v)
5698{
5699        unsigned long psr;
5700        unsigned int i;
5701        int cpu;
5702
5703        if (v == PFM_PROC_SHOW_HEADER) {
5704                pfm_proc_show_header(m);
5705                return 0;
5706        }
5707
5708        /* show info for CPU (v - 1) */
5709
5710        cpu = (long)v - 1;
5711        seq_printf(m,
5712                "CPU%-2d overflow intrs      : %lu\n"
5713                "CPU%-2d overflow cycles     : %lu\n"
5714                "CPU%-2d overflow min        : %lu\n"
5715                "CPU%-2d overflow max        : %lu\n"
5716                "CPU%-2d smpl handler calls  : %lu\n"
5717                "CPU%-2d smpl handler cycles : %lu\n"
5718                "CPU%-2d spurious intrs      : %lu\n"
5719                "CPU%-2d replay   intrs      : %lu\n"
5720                "CPU%-2d syst_wide           : %d\n"
5721                "CPU%-2d dcr_pp              : %d\n"
5722                "CPU%-2d exclude idle        : %d\n"
5723                "CPU%-2d owner               : %d\n"
5724                "CPU%-2d context             : %p\n"
5725                "CPU%-2d activations         : %lu\n",
5726                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5727                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5728                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5729                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5730                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5731                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5732                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5733                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5734                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5735                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5736                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5737                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5738                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5739                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5740
5741        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5742
5743                psr = pfm_get_psr();
5744
5745                ia64_srlz_d();
5746
5747                seq_printf(m, 
5748                        "CPU%-2d psr                 : 0x%lx\n"
5749                        "CPU%-2d pmc0                : 0x%lx\n", 
5750                        cpu, psr,
5751                        cpu, ia64_get_pmc(0));
5752
5753                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5754                        if (PMC_IS_COUNTING(i) == 0) continue;
5755                        seq_printf(m, 
5756                                "CPU%-2d pmc%u                : 0x%lx\n"
5757                                "CPU%-2d pmd%u                : 0x%lx\n", 
5758                                cpu, i, ia64_get_pmc(i),
5759                                cpu, i, ia64_get_pmd(i));
5760                }
5761        }
5762        return 0;
5763}
5764
5765const struct seq_operations pfm_seq_ops = {
5766        .start =        pfm_proc_start,
5767        .next =         pfm_proc_next,
5768        .stop =         pfm_proc_stop,
5769        .show =         pfm_proc_show
5770};
5771
5772static int
5773pfm_proc_open(struct inode *inode, struct file *file)
5774{
5775        return seq_open(file, &pfm_seq_ops);
5776}
5777
5778
5779/*
5780 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5781 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5782 * is active or inactive based on mode. We must rely on the value in
5783 * local_cpu_data->pfm_syst_info
5784 */
5785void
5786pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5787{
5788        struct pt_regs *regs;
5789        unsigned long dcr;
5790        unsigned long dcr_pp;
5791
5792        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5793
5794        /*
5795         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5796         * on every CPU, so we can rely on the pid to identify the idle task.
5797         */
5798        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5799                regs = task_pt_regs(task);
5800                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5801                return;
5802        }
5803        /*
5804         * if monitoring has started
5805         */
5806        if (dcr_pp) {
5807                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5808                /*
5809                 * context switching in?
5810                 */
5811                if (is_ctxswin) {
5812                        /* mask monitoring for the idle task */
5813                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5814                        pfm_clear_psr_pp();
5815                        ia64_srlz_i();
5816                        return;
5817                }
5818                /*
5819                 * context switching out
5820                 * restore monitoring for next task
5821                 *
5822                 * Due to inlining this odd if-then-else construction generates
5823                 * better code.
5824                 */
5825                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5826                pfm_set_psr_pp();
5827                ia64_srlz_i();
5828        }
5829}
5830
5831#ifdef CONFIG_SMP
5832
5833static void
5834pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5835{
5836        struct task_struct *task = ctx->ctx_task;
5837
5838        ia64_psr(regs)->up = 0;
5839        ia64_psr(regs)->sp = 1;
5840
5841        if (GET_PMU_OWNER() == task) {
5842                DPRINT(("cleared ownership for [%d]\n",
5843                                        task_pid_nr(ctx->ctx_task)));
5844                SET_PMU_OWNER(NULL, NULL);
5845        }
5846
5847        /*
5848         * disconnect the task from the context and vice-versa
5849         */
5850        PFM_SET_WORK_PENDING(task, 0);
5851
5852        task->thread.pfm_context  = NULL;
5853        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5854
5855        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5856}
5857
5858
5859/*
5860 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5861 */
5862void
5863pfm_save_regs(struct task_struct *task)
5864{
5865        pfm_context_t *ctx;
5866        unsigned long flags;
5867        u64 psr;
5868
5869
5870        ctx = PFM_GET_CTX(task);
5871        if (ctx == NULL) return;
5872
5873        /*
5874         * we always come here with interrupts ALREADY disabled by
5875         * the scheduler. So we simply need to protect against concurrent
5876         * access, not CPU concurrency.
5877         */
5878        flags = pfm_protect_ctx_ctxsw(ctx);
5879
5880        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5881                struct pt_regs *regs = task_pt_regs(task);
5882
5883                pfm_clear_psr_up();
5884
5885                pfm_force_cleanup(ctx, regs);
5886
5887                BUG_ON(ctx->ctx_smpl_hdr);
5888
5889                pfm_unprotect_ctx_ctxsw(ctx, flags);
5890
5891                pfm_context_free(ctx);
5892                return;
5893        }
5894
5895        /*
5896         * save current PSR: needed because we modify it
5897         */
5898        ia64_srlz_d();
5899        psr = pfm_get_psr();
5900
5901        BUG_ON(psr & (IA64_PSR_I));
5902
5903        /*
5904         * stop monitoring:
5905         * This is the last instruction which may generate an overflow
5906         *
5907         * We do not need to set psr.sp because, it is irrelevant in kernel.
5908         * It will be restored from ipsr when going back to user level
5909         */
5910        pfm_clear_psr_up();
5911
5912        /*
5913         * keep a copy of psr.up (for reload)
5914         */
5915        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5916
5917        /*
5918         * release ownership of this PMU.
5919         * PM interrupts are masked, so nothing
5920         * can happen.
5921         */
5922        SET_PMU_OWNER(NULL, NULL);
5923
5924        /*
5925         * we systematically save the PMD as we have no
5926         * guarantee we will be schedule at that same
5927         * CPU again.
5928         */
5929        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5930
5931        /*
5932         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5933         * we will need it on the restore path to check
5934         * for pending overflow.
5935         */
5936        ctx->th_pmcs[0] = ia64_get_pmc(0);
5937
5938        /*
5939         * unfreeze PMU if had pending overflows
5940         */
5941        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5942
5943        /*
5944         * finally, allow context access.
5945         * interrupts will still be masked after this call.
5946         */
5947        pfm_unprotect_ctx_ctxsw(ctx, flags);
5948}
5949
5950#else /* !CONFIG_SMP */
5951void
5952pfm_save_regs(struct task_struct *task)
5953{
5954        pfm_context_t *ctx;
5955        u64 psr;
5956
5957        ctx = PFM_GET_CTX(task);
5958        if (ctx == NULL) return;
5959
5960        /*
5961         * save current PSR: needed because we modify it
5962         */
5963        psr = pfm_get_psr();
5964
5965        BUG_ON(psr & (IA64_PSR_I));
5966
5967        /*
5968         * stop monitoring:
5969         * This is the last instruction which may generate an overflow
5970         *
5971         * We do not need to set psr.sp because, it is irrelevant in kernel.
5972         * It will be restored from ipsr when going back to user level
5973         */
5974        pfm_clear_psr_up();
5975
5976        /*
5977         * keep a copy of psr.up (for reload)
5978         */
5979        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5980}
5981
5982static void
5983pfm_lazy_save_regs (struct task_struct *task)
5984{
5985        pfm_context_t *ctx;
5986        unsigned long flags;
5987
5988        { u64 psr  = pfm_get_psr();
5989          BUG_ON(psr & IA64_PSR_UP);
5990        }
5991
5992        ctx = PFM_GET_CTX(task);
5993
5994        /*
5995         * we need to mask PMU overflow here to
5996         * make sure that we maintain pmc0 until
5997         * we save it. overflow interrupts are
5998         * treated as spurious if there is no
5999         * owner.
6000         *
6001         * XXX: I don't think this is necessary
6002         */
6003        PROTECT_CTX(ctx,flags);
6004
6005        /*
6006         * release ownership of this PMU.
6007         * must be done before we save the registers.
6008         *
6009         * after this call any PMU interrupt is treated
6010         * as spurious.
6011         */
6012        SET_PMU_OWNER(NULL, NULL);
6013
6014        /*
6015         * save all the pmds we use
6016         */
6017        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6018
6019        /*
6020         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6021         * it is needed to check for pended overflow
6022         * on the restore path
6023         */
6024        ctx->th_pmcs[0] = ia64_get_pmc(0);
6025
6026        /*
6027         * unfreeze PMU if had pending overflows
6028         */
6029        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6030
6031        /*
6032         * now get can unmask PMU interrupts, they will
6033         * be treated as purely spurious and we will not
6034         * lose any information
6035         */
6036        UNPROTECT_CTX(ctx,flags);
6037}
6038#endif /* CONFIG_SMP */
6039
6040#ifdef CONFIG_SMP
6041/*
6042 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6043 */
6044void
6045pfm_load_regs (struct task_struct *task)
6046{
6047        pfm_context_t *ctx;
6048        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6049        unsigned long flags;
6050        u64 psr, psr_up;
6051        int need_irq_resend;
6052
6053        ctx = PFM_GET_CTX(task);
6054        if (unlikely(ctx == NULL)) return;
6055
6056        BUG_ON(GET_PMU_OWNER());
6057
6058        /*
6059         * possible on unload
6060         */
6061        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6062
6063        /*
6064         * we always come here with interrupts ALREADY disabled by
6065         * the scheduler. So we simply need to protect against concurrent
6066         * access, not CPU concurrency.
6067         */
6068        flags = pfm_protect_ctx_ctxsw(ctx);
6069        psr   = pfm_get_psr();
6070
6071        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6072
6073        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6074        BUG_ON(psr & IA64_PSR_I);
6075
6076        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6077                struct pt_regs *regs = task_pt_regs(task);
6078
6079                BUG_ON(ctx->ctx_smpl_hdr);
6080
6081                pfm_force_cleanup(ctx, regs);
6082
6083                pfm_unprotect_ctx_ctxsw(ctx, flags);
6084
6085                /*
6086                 * this one (kmalloc'ed) is fine with interrupts disabled
6087                 */
6088                pfm_context_free(ctx);
6089
6090                return;
6091        }
6092
6093        /*
6094         * we restore ALL the debug registers to avoid picking up
6095         * stale state.
6096         */
6097        if (ctx->ctx_fl_using_dbreg) {
6098                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6099                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6100        }
6101        /*
6102         * retrieve saved psr.up
6103         */
6104        psr_up = ctx->ctx_saved_psr_up;
6105
6106        /*
6107         * if we were the last user of the PMU on that CPU,
6108         * then nothing to do except restore psr
6109         */
6110        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6111
6112                /*
6113                 * retrieve partial reload masks (due to user modifications)
6114                 */
6115                pmc_mask = ctx->ctx_reload_pmcs[0];
6116                pmd_mask = ctx->ctx_reload_pmds[0];
6117
6118        } else {
6119                /*
6120                 * To avoid leaking information to the user level when psr.sp=0,
6121                 * we must reload ALL implemented pmds (even the ones we don't use).
6122                 * In the kernel we only allow PFM_READ_PMDS on registers which
6123                 * we initialized or requested (sampling) so there is no risk there.
6124                 */
6125                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6126
6127                /*
6128                 * ALL accessible PMCs are systematically reloaded, unused registers
6129                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6130                 * up stale configuration.
6131                 *
6132                 * PMC0 is never in the mask. It is always restored separately.
6133                 */
6134                pmc_mask = ctx->ctx_all_pmcs[0];
6135        }
6136        /*
6137         * when context is MASKED, we will restore PMC with plm=0
6138         * and PMD with stale information, but that's ok, nothing
6139         * will be captured.
6140         *
6141         * XXX: optimize here
6142         */
6143        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6144        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6145
6146        /*
6147         * check for pending overflow at the time the state
6148         * was saved.
6149         */
6150        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6151                /*
6152                 * reload pmc0 with the overflow information
6153                 * On McKinley PMU, this will trigger a PMU interrupt
6154                 */
6155                ia64_set_pmc(0, ctx->th_pmcs[0]);
6156                ia64_srlz_d();
6157                ctx->th_pmcs[0] = 0UL;
6158
6159                /*
6160                 * will replay the PMU interrupt
6161                 */
6162                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6163
6164                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6165        }
6166
6167        /*
6168         * we just did a reload, so we reset the partial reload fields
6169         */
6170        ctx->ctx_reload_pmcs[0] = 0UL;
6171        ctx->ctx_reload_pmds[0] = 0UL;
6172
6173        SET_LAST_CPU(ctx, smp_processor_id());
6174
6175        /*
6176         * dump activation value for this PMU
6177         */
6178        INC_ACTIVATION();
6179        /*
6180         * record current activation for this context
6181         */
6182        SET_ACTIVATION(ctx);
6183
6184        /*
6185         * establish new ownership. 
6186         */
6187        SET_PMU_OWNER(task, ctx);
6188
6189        /*
6190         * restore the psr.up bit. measurement
6191         * is active again.
6192         * no PMU interrupt can happen at this point
6193         * because we still have interrupts disabled.
6194         */
6195        if (likely(psr_up)) pfm_set_psr_up();
6196
6197        /*
6198         * allow concurrent access to context
6199         */
6200        pfm_unprotect_ctx_ctxsw(ctx, flags);
6201}
6202#else /*  !CONFIG_SMP */
6203/*
6204 * reload PMU state for UP kernels
6205 * in 2.5 we come here with interrupts disabled
6206 */
6207void
6208pfm_load_regs (struct task_struct *task)
6209{
6210        pfm_context_t *ctx;
6211        struct task_struct *owner;
6212        unsigned long pmd_mask, pmc_mask;
6213        u64 psr, psr_up;
6214        int need_irq_resend;
6215
6216        owner = GET_PMU_OWNER();
6217        ctx   = PFM_GET_CTX(task);
6218        psr   = pfm_get_psr();
6219
6220        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6221        BUG_ON(psr & IA64_PSR_I);
6222
6223        /*
6224         * we restore ALL the debug registers to avoid picking up
6225         * stale state.
6226         *
6227         * This must be done even when the task is still the owner
6228         * as the registers may have been modified via ptrace()
6229         * (not perfmon) by the previous task.
6230         */
6231        if (ctx->ctx_fl_using_dbreg) {
6232                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6233                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6234        }
6235
6236        /*
6237         * retrieved saved psr.up
6238         */
6239        psr_up = ctx->ctx_saved_psr_up;
6240        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6241
6242        /*
6243         * short path, our state is still there, just
6244         * need to restore psr and we go
6245         *
6246         * we do not touch either PMC nor PMD. the psr is not touched
6247         * by the overflow_handler. So we are safe w.r.t. to interrupt
6248         * concurrency even without interrupt masking.
6249         */
6250        if (likely(owner == task)) {
6251                if (likely(psr_up)) pfm_set_psr_up();
6252                return;
6253        }
6254
6255        /*
6256         * someone else is still using the PMU, first push it out and
6257         * then we'll be able to install our stuff !
6258         *
6259         * Upon return, there will be no owner for the current PMU
6260         */
6261        if (owner) pfm_lazy_save_regs(owner);
6262
6263        /*
6264         * To avoid leaking information to the user level when psr.sp=0,
6265         * we must reload ALL implemented pmds (even the ones we don't use).
6266         * In the kernel we only allow PFM_READ_PMDS on registers which
6267         * we initialized or requested (sampling) so there is no risk there.
6268         */
6269        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6270
6271        /*
6272         * ALL accessible PMCs are systematically reloaded, unused registers
6273         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6274         * up stale configuration.
6275         *
6276         * PMC0 is never in the mask. It is always restored separately
6277         */
6278        pmc_mask = ctx->ctx_all_pmcs[0];
6279
6280        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6281        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6282
6283        /*
6284         * check for pending overflow at the time the state
6285         * was saved.
6286         */
6287        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6288                /*
6289                 * reload pmc0 with the overflow information
6290                 * On McKinley PMU, this will trigger a PMU interrupt
6291                 */
6292                ia64_set_pmc(0, ctx->th_pmcs[0]);
6293                ia64_srlz_d();
6294
6295                ctx->th_pmcs[0] = 0UL;
6296
6297                /*
6298                 * will replay the PMU interrupt
6299                 */
6300                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6301
6302                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6303        }
6304
6305        /*
6306         * establish new ownership. 
6307         */
6308        SET_PMU_OWNER(task, ctx);
6309
6310        /*
6311         * restore the psr.up bit. measurement
6312         * is active again.
6313         * no PMU interrupt can happen at this point
6314         * because we still have interrupts disabled.
6315         */
6316        if (likely(psr_up)) pfm_set_psr_up();
6317}
6318#endif /* CONFIG_SMP */
6319
6320/*
6321 * this function assumes monitoring is stopped
6322 */
6323static void
6324pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6325{
6326        u64 pmc0;
6327        unsigned long mask2, val, pmd_val, ovfl_val;
6328        int i, can_access_pmu = 0;
6329        int is_self;
6330
6331        /*
6332         * is the caller the task being monitored (or which initiated the
6333         * session for system wide measurements)
6334         */
6335        is_self = ctx->ctx_task == task ? 1 : 0;
6336
6337        /*
6338         * can access PMU is task is the owner of the PMU state on the current CPU
6339         * or if we are running on the CPU bound to the context in system-wide mode
6340         * (that is not necessarily the task the context is attached to in this mode).
6341         * In system-wide we always have can_access_pmu true because a task running on an
6342         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6343         */
6344        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6345        if (can_access_pmu) {
6346                /*
6347                 * Mark the PMU as not owned
6348                 * This will cause the interrupt handler to do nothing in case an overflow
6349                 * interrupt was in-flight
6350                 * This also guarantees that pmc0 will contain the final state
6351                 * It virtually gives us full control on overflow processing from that point
6352                 * on.
6353                 */
6354                SET_PMU_OWNER(NULL, NULL);
6355                DPRINT(("releasing ownership\n"));
6356
6357                /*
6358                 * read current overflow status:
6359                 *
6360                 * we are guaranteed to read the final stable state
6361                 */
6362                ia64_srlz_d();
6363                pmc0 = ia64_get_pmc(0); /* slow */
6364
6365                /*
6366                 * reset freeze bit, overflow status information destroyed
6367                 */
6368                pfm_unfreeze_pmu();
6369        } else {
6370                pmc0 = ctx->th_pmcs[0];
6371                /*
6372                 * clear whatever overflow status bits there were
6373                 */
6374                ctx->th_pmcs[0] = 0;
6375        }
6376        ovfl_val = pmu_conf->ovfl_val;
6377        /*
6378         * we save all the used pmds
6379         * we take care of overflows for counting PMDs
6380         *
6381         * XXX: sampling situation is not taken into account here
6382         */
6383        mask2 = ctx->ctx_used_pmds[0];
6384
6385        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6386
6387        for (i = 0; mask2; i++, mask2>>=1) {
6388
6389                /* skip non used pmds */
6390                if ((mask2 & 0x1) == 0) continue;
6391
6392                /*
6393                 * can access PMU always true in system wide mode
6394                 */
6395                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6396
6397                if (PMD_IS_COUNTING(i)) {
6398                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6399                                task_pid_nr(task),
6400                                i,
6401                                ctx->ctx_pmds[i].val,
6402                                val & ovfl_val));
6403
6404                        /*
6405                         * we rebuild the full 64 bit value of the counter
6406                         */
6407                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6408
6409                        /*
6410                         * now everything is in ctx_pmds[] and we need
6411                         * to clear the saved context from save_regs() such that
6412                         * pfm_read_pmds() gets the correct value
6413                         */
6414                        pmd_val = 0UL;
6415
6416                        /*
6417                         * take care of overflow inline
6418                         */
6419                        if (pmc0 & (1UL << i)) {
6420                                val += 1 + ovfl_val;
6421                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6422                        }
6423                }
6424
6425                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6426
6427                if (is_self) ctx->th_pmds[i] = pmd_val;
6428
6429                ctx->ctx_pmds[i].val = val;
6430        }
6431}
6432
6433static struct irqaction perfmon_irqaction = {
6434        .handler = pfm_interrupt_handler,
6435        .flags   = IRQF_DISABLED,
6436        .name    = "perfmon"
6437};
6438
6439static void
6440pfm_alt_save_pmu_state(void *data)
6441{
6442        struct pt_regs *regs;
6443
6444        regs = task_pt_regs(current);
6445
6446        DPRINT(("called\n"));
6447
6448        /*
6449         * should not be necessary but
6450         * let's take not risk
6451         */
6452        pfm_clear_psr_up();
6453        pfm_clear_psr_pp();
6454        ia64_psr(regs)->pp = 0;
6455
6456        /*
6457         * This call is required
6458         * May cause a spurious interrupt on some processors
6459         */
6460        pfm_freeze_pmu();
6461
6462        ia64_srlz_d();
6463}
6464
6465void
6466pfm_alt_restore_pmu_state(void *data)
6467{
6468        struct pt_regs *regs;
6469
6470        regs = task_pt_regs(current);
6471
6472        DPRINT(("called\n"));
6473
6474        /*
6475         * put PMU back in state expected
6476         * by perfmon
6477         */
6478        pfm_clear_psr_up();
6479        pfm_clear_psr_pp();
6480        ia64_psr(regs)->pp = 0;
6481
6482        /*
6483         * perfmon runs with PMU unfrozen at all times
6484         */
6485        pfm_unfreeze_pmu();
6486
6487        ia64_srlz_d();
6488}
6489
6490int
6491pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6492{
6493        int ret, i;
6494        int reserve_cpu;
6495
6496        /* some sanity checks */
6497        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6498
6499        /* do the easy test first */
6500        if (pfm_alt_intr_handler) return -EBUSY;
6501
6502        /* one at a time in the install or remove, just fail the others */
6503        if (!spin_trylock(&pfm_alt_install_check)) {
6504                return -EBUSY;
6505        }
6506
6507        /* reserve our session */
6508        for_each_online_cpu(reserve_cpu) {
6509                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6510                if (ret) goto cleanup_reserve;
6511        }
6512
6513        /* save the current system wide pmu states */
6514        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6515        if (ret) {
6516                DPRINT(("on_each_cpu() failed: %d\n", ret));
6517                goto cleanup_reserve;
6518        }
6519
6520        /* officially change to the alternate interrupt handler */
6521        pfm_alt_intr_handler = hdl;
6522
6523        spin_unlock(&pfm_alt_install_check);
6524
6525        return 0;
6526
6527cleanup_reserve:
6528        for_each_online_cpu(i) {
6529                /* don't unreserve more than we reserved */
6530                if (i >= reserve_cpu) break;
6531
6532                pfm_unreserve_session(NULL, 1, i);
6533        }
6534
6535        spin_unlock(&pfm_alt_install_check);
6536
6537        return ret;
6538}
6539EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6540
6541int
6542pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6543{
6544        int i;
6545        int ret;
6546
6547        if (hdl == NULL) return -EINVAL;
6548
6549        /* cannot remove someone else's handler! */
6550        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6551
6552        /* one at a time in the install or remove, just fail the others */
6553        if (!spin_trylock(&pfm_alt_install_check)) {
6554                return -EBUSY;
6555        }
6556
6557        pfm_alt_intr_handler = NULL;
6558
6559        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6560        if (ret) {
6561                DPRINT(("on_each_cpu() failed: %d\n", ret));
6562        }
6563
6564        for_each_online_cpu(i) {
6565                pfm_unreserve_session(NULL, 1, i);
6566        }
6567
6568        spin_unlock(&pfm_alt_install_check);
6569
6570        return 0;
6571}
6572EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6573
6574/*
6575 * perfmon initialization routine, called from the initcall() table
6576 */
6577static int init_pfm_fs(void);
6578
6579static int __init
6580pfm_probe_pmu(void)
6581{
6582        pmu_config_t **p;
6583        int family;
6584
6585        family = local_cpu_data->family;
6586        p      = pmu_confs;
6587
6588        while(*p) {
6589                if ((*p)->probe) {
6590                        if ((*p)->probe() == 0) goto found;
6591                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6592                        goto found;
6593                }
6594                p++;
6595        }
6596        return -1;
6597found:
6598        pmu_conf = *p;
6599        return 0;
6600}
6601
6602static const struct file_operations pfm_proc_fops = {
6603        .open           = pfm_proc_open,
6604        .read           = seq_read,
6605        .llseek         = seq_lseek,
6606        .release        = seq_release,
6607};
6608
6609int __init
6610pfm_init(void)
6611{
6612        unsigned int n, n_counters, i;
6613
6614        printk("perfmon: version %u.%u IRQ %u\n",
6615                PFM_VERSION_MAJ,
6616                PFM_VERSION_MIN,
6617                IA64_PERFMON_VECTOR);
6618
6619        if (pfm_probe_pmu()) {
6620                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6621                                local_cpu_data->family);
6622                return -ENODEV;
6623        }
6624
6625        /*
6626         * compute the number of implemented PMD/PMC from the
6627         * description tables
6628         */
6629        n = 0;
6630        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6631                if (PMC_IS_IMPL(i) == 0) continue;
6632                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6633                n++;
6634        }
6635        pmu_conf->num_pmcs = n;
6636
6637        n = 0; n_counters = 0;
6638        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6639                if (PMD_IS_IMPL(i) == 0) continue;
6640                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6641                n++;
6642                if (PMD_IS_COUNTING(i)) n_counters++;
6643        }
6644        pmu_conf->num_pmds      = n;
6645        pmu_conf->num_counters  = n_counters;
6646
6647        /*
6648         * sanity checks on the number of debug registers
6649         */
6650        if (pmu_conf->use_rr_dbregs) {
6651                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6652                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6653                        pmu_conf = NULL;
6654                        return -1;
6655                }
6656                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6657                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6658                        pmu_conf = NULL;
6659                        return -1;
6660                }
6661        }
6662
6663        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6664               pmu_conf->pmu_name,
6665               pmu_conf->num_pmcs,
6666               pmu_conf->num_pmds,
6667               pmu_conf->num_counters,
6668               ffz(pmu_conf->ovfl_val));
6669
6670        /* sanity check */
6671        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6672                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6673                pmu_conf = NULL;
6674                return -1;
6675        }
6676
6677        /*
6678         * create /proc/perfmon (mostly for debugging purposes)
6679         */
6680        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6681        if (perfmon_dir == NULL) {
6682                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6683                pmu_conf = NULL;
6684                return -1;
6685        }
6686
6687        /*
6688         * create /proc/sys/kernel/perfmon (for debugging purposes)
6689         */
6690        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6691
6692        /*
6693         * initialize all our spinlocks
6694         */
6695        spin_lock_init(&pfm_sessions.pfs_lock);
6696        spin_lock_init(&pfm_buffer_fmt_lock);
6697
6698        init_pfm_fs();
6699
6700        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6701
6702        return 0;
6703}
6704
6705__initcall(pfm_init);
6706
6707/*
6708 * this function is called before pfm_init()
6709 */
6710void
6711pfm_init_percpu (void)
6712{
6713        static int first_time=1;
6714        /*
6715         * make sure no measurement is active
6716         * (may inherit programmed PMCs from EFI).
6717         */
6718        pfm_clear_psr_pp();
6719        pfm_clear_psr_up();
6720
6721        /*
6722         * we run with the PMU not frozen at all times
6723         */
6724        pfm_unfreeze_pmu();
6725
6726        if (first_time) {
6727                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6728                first_time=0;
6729        }
6730
6731        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6732        ia64_srlz_d();
6733}
6734
6735/*
6736 * used for debug purposes only
6737 */
6738void
6739dump_pmu_state(const char *from)
6740{
6741        struct task_struct *task;
6742        struct pt_regs *regs;
6743        pfm_context_t *ctx;
6744        unsigned long psr, dcr, info, flags;
6745        int i, this_cpu;
6746
6747        local_irq_save(flags);
6748
6749        this_cpu = smp_processor_id();
6750        regs     = task_pt_regs(current);
6751        info     = PFM_CPUINFO_GET();
6752        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6753
6754        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6755                local_irq_restore(flags);
6756                return;
6757        }
6758
6759        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6760                this_cpu, 
6761                from, 
6762                task_pid_nr(current),
6763                regs->cr_iip,
6764                current->comm);
6765
6766        task = GET_PMU_OWNER();
6767        ctx  = GET_PMU_CTX();
6768
6769        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6770
6771        psr = pfm_get_psr();
6772
6773        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6774                this_cpu,
6775                ia64_get_pmc(0),
6776                psr & IA64_PSR_PP ? 1 : 0,
6777                psr & IA64_PSR_UP ? 1 : 0,
6778                dcr & IA64_DCR_PP ? 1 : 0,
6779                info,
6780                ia64_psr(regs)->up,
6781                ia64_psr(regs)->pp);
6782
6783        ia64_psr(regs)->up = 0;
6784        ia64_psr(regs)->pp = 0;
6785
6786        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6787                if (PMC_IS_IMPL(i) == 0) continue;
6788                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6789        }
6790
6791        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6792                if (PMD_IS_IMPL(i) == 0) continue;
6793                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6794        }
6795
6796        if (ctx) {
6797                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6798                                this_cpu,
6799                                ctx->ctx_state,
6800                                ctx->ctx_smpl_vaddr,
6801                                ctx->ctx_smpl_hdr,
6802                                ctx->ctx_msgq_head,
6803                                ctx->ctx_msgq_tail,
6804                                ctx->ctx_saved_psr_up);
6805        }
6806        local_irq_restore(flags);
6807}
6808
6809/*
6810 * called from process.c:copy_thread(). task is new child.
6811 */
6812void
6813pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6814{
6815        struct thread_struct *thread;
6816
6817        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6818
6819        thread = &task->thread;
6820
6821        /*
6822         * cut links inherited from parent (current)
6823         */
6824        thread->pfm_context = NULL;
6825
6826        PFM_SET_WORK_PENDING(task, 0);
6827
6828        /*
6829         * the psr bits are already set properly in copy_threads()
6830         */
6831}
6832#else  /* !CONFIG_PERFMON */
6833asmlinkage long
6834sys_perfmonctl (int fd, int cmd, void *arg, int count)
6835{
6836        return -ENOSYS;
6837}
6838#endif /* CONFIG_PERFMON */
6839