linux/arch/ia64/mm/contig.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1998-2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *      Stephane Eranian <eranian@hpl.hp.com>
   9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10 * Copyright (C) 1999 VA Linux Systems
  11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13 *
  14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15 * memory.
  16 */
  17#include <linux/bootmem.h>
  18#include <linux/efi.h>
  19#include <linux/mm.h>
  20#include <linux/nmi.h>
  21#include <linux/swap.h>
  22
  23#include <asm/meminit.h>
  24#include <asm/pgalloc.h>
  25#include <asm/pgtable.h>
  26#include <asm/sections.h>
  27#include <asm/mca.h>
  28
  29#ifdef CONFIG_VIRTUAL_MEM_MAP
  30static unsigned long max_gap;
  31#endif
  32
  33/**
  34 * show_mem - give short summary of memory stats
  35 *
  36 * Shows a simple page count of reserved and used pages in the system.
  37 * For discontig machines, it does this on a per-pgdat basis.
  38 */
  39void show_mem(unsigned int filter)
  40{
  41        int i, total_reserved = 0;
  42        int total_shared = 0, total_cached = 0;
  43        unsigned long total_present = 0;
  44        pg_data_t *pgdat;
  45
  46        printk(KERN_INFO "Mem-info:\n");
  47        show_free_areas(filter);
  48        printk(KERN_INFO "Node memory in pages:\n");
  49        for_each_online_pgdat(pgdat) {
  50                unsigned long present;
  51                unsigned long flags;
  52                int shared = 0, cached = 0, reserved = 0;
  53                int nid = pgdat->node_id;
  54
  55                if (skip_free_areas_node(filter, nid))
  56                        continue;
  57                pgdat_resize_lock(pgdat, &flags);
  58                present = pgdat->node_present_pages;
  59                for(i = 0; i < pgdat->node_spanned_pages; i++) {
  60                        struct page *page;
  61                        if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  62                                touch_nmi_watchdog();
  63                        if (pfn_valid(pgdat->node_start_pfn + i))
  64                                page = pfn_to_page(pgdat->node_start_pfn + i);
  65                        else {
  66#ifdef CONFIG_VIRTUAL_MEM_MAP
  67                                if (max_gap < LARGE_GAP)
  68                                        continue;
  69#endif
  70                                i = vmemmap_find_next_valid_pfn(nid, i) - 1;
  71                                continue;
  72                        }
  73                        if (PageReserved(page))
  74                                reserved++;
  75                        else if (PageSwapCache(page))
  76                                cached++;
  77                        else if (page_count(page))
  78                                shared += page_count(page)-1;
  79                }
  80                pgdat_resize_unlock(pgdat, &flags);
  81                total_present += present;
  82                total_reserved += reserved;
  83                total_cached += cached;
  84                total_shared += shared;
  85                printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
  86                       "shrd: %10d, swpd: %10d\n", nid,
  87                       present, reserved, shared, cached);
  88        }
  89        printk(KERN_INFO "%ld pages of RAM\n", total_present);
  90        printk(KERN_INFO "%d reserved pages\n", total_reserved);
  91        printk(KERN_INFO "%d pages shared\n", total_shared);
  92        printk(KERN_INFO "%d pages swap cached\n", total_cached);
  93        printk(KERN_INFO "Total of %ld pages in page table cache\n",
  94               quicklist_total_size());
  95        printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  96}
  97
  98
  99/* physical address where the bootmem map is located */
 100unsigned long bootmap_start;
 101
 102/**
 103 * find_bootmap_location - callback to find a memory area for the bootmap
 104 * @start: start of region
 105 * @end: end of region
 106 * @arg: unused callback data
 107 *
 108 * Find a place to put the bootmap and return its starting address in
 109 * bootmap_start.  This address must be page-aligned.
 110 */
 111static int __init
 112find_bootmap_location (u64 start, u64 end, void *arg)
 113{
 114        u64 needed = *(unsigned long *)arg;
 115        u64 range_start, range_end, free_start;
 116        int i;
 117
 118#if IGNORE_PFN0
 119        if (start == PAGE_OFFSET) {
 120                start += PAGE_SIZE;
 121                if (start >= end)
 122                        return 0;
 123        }
 124#endif
 125
 126        free_start = PAGE_OFFSET;
 127
 128        for (i = 0; i < num_rsvd_regions; i++) {
 129                range_start = max(start, free_start);
 130                range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
 131
 132                free_start = PAGE_ALIGN(rsvd_region[i].end);
 133
 134                if (range_end <= range_start)
 135                        continue; /* skip over empty range */
 136
 137                if (range_end - range_start >= needed) {
 138                        bootmap_start = __pa(range_start);
 139                        return -1;      /* done */
 140                }
 141
 142                /* nothing more available in this segment */
 143                if (range_end == end)
 144                        return 0;
 145        }
 146        return 0;
 147}
 148
 149#ifdef CONFIG_SMP
 150static void *cpu_data;
 151/**
 152 * per_cpu_init - setup per-cpu variables
 153 *
 154 * Allocate and setup per-cpu data areas.
 155 */
 156void * __cpuinit
 157per_cpu_init (void)
 158{
 159        static bool first_time = true;
 160        void *cpu0_data = __cpu0_per_cpu;
 161        unsigned int cpu;
 162
 163        if (!first_time)
 164                goto skip;
 165        first_time = false;
 166
 167        /*
 168         * get_free_pages() cannot be used before cpu_init() done.
 169         * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
 170         * to avoid that AP calls get_zeroed_page().
 171         */
 172        for_each_possible_cpu(cpu) {
 173                void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
 174
 175                memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
 176                __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
 177                per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
 178
 179                /*
 180                 * percpu area for cpu0 is moved from the __init area
 181                 * which is setup by head.S and used till this point.
 182                 * Update ar.k3.  This move is ensures that percpu
 183                 * area for cpu0 is on the correct node and its
 184                 * virtual address isn't insanely far from other
 185                 * percpu areas which is important for congruent
 186                 * percpu allocator.
 187                 */
 188                if (cpu == 0)
 189                        ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
 190                                    (unsigned long)__per_cpu_start);
 191
 192                cpu_data += PERCPU_PAGE_SIZE;
 193        }
 194skip:
 195        return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
 196}
 197
 198static inline void
 199alloc_per_cpu_data(void)
 200{
 201        cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
 202                                   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 203}
 204
 205/**
 206 * setup_per_cpu_areas - setup percpu areas
 207 *
 208 * Arch code has already allocated and initialized percpu areas.  All
 209 * this function has to do is to teach the determined layout to the
 210 * dynamic percpu allocator, which happens to be more complex than
 211 * creating whole new ones using helpers.
 212 */
 213void __init
 214setup_per_cpu_areas(void)
 215{
 216        struct pcpu_alloc_info *ai;
 217        struct pcpu_group_info *gi;
 218        unsigned int cpu;
 219        ssize_t static_size, reserved_size, dyn_size;
 220        int rc;
 221
 222        ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
 223        if (!ai)
 224                panic("failed to allocate pcpu_alloc_info");
 225        gi = &ai->groups[0];
 226
 227        /* units are assigned consecutively to possible cpus */
 228        for_each_possible_cpu(cpu)
 229                gi->cpu_map[gi->nr_units++] = cpu;
 230
 231        /* set parameters */
 232        static_size = __per_cpu_end - __per_cpu_start;
 233        reserved_size = PERCPU_MODULE_RESERVE;
 234        dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
 235        if (dyn_size < 0)
 236                panic("percpu area overflow static=%zd reserved=%zd\n",
 237                      static_size, reserved_size);
 238
 239        ai->static_size         = static_size;
 240        ai->reserved_size       = reserved_size;
 241        ai->dyn_size            = dyn_size;
 242        ai->unit_size           = PERCPU_PAGE_SIZE;
 243        ai->atom_size           = PAGE_SIZE;
 244        ai->alloc_size          = PERCPU_PAGE_SIZE;
 245
 246        rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
 247        if (rc)
 248                panic("failed to setup percpu area (err=%d)", rc);
 249
 250        pcpu_free_alloc_info(ai);
 251}
 252#else
 253#define alloc_per_cpu_data() do { } while (0)
 254#endif /* CONFIG_SMP */
 255
 256/**
 257 * find_memory - setup memory map
 258 *
 259 * Walk the EFI memory map and find usable memory for the system, taking
 260 * into account reserved areas.
 261 */
 262void __init
 263find_memory (void)
 264{
 265        unsigned long bootmap_size;
 266
 267        reserve_memory();
 268
 269        /* first find highest page frame number */
 270        min_low_pfn = ~0UL;
 271        max_low_pfn = 0;
 272        efi_memmap_walk(find_max_min_low_pfn, NULL);
 273        max_pfn = max_low_pfn;
 274        /* how many bytes to cover all the pages */
 275        bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
 276
 277        /* look for a location to hold the bootmap */
 278        bootmap_start = ~0UL;
 279        efi_memmap_walk(find_bootmap_location, &bootmap_size);
 280        if (bootmap_start == ~0UL)
 281                panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
 282
 283        bootmap_size = init_bootmem_node(NODE_DATA(0),
 284                        (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
 285
 286        /* Free all available memory, then mark bootmem-map as being in use. */
 287        efi_memmap_walk(filter_rsvd_memory, free_bootmem);
 288        reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
 289
 290        find_initrd();
 291
 292        alloc_per_cpu_data();
 293}
 294
 295static int count_pages(u64 start, u64 end, void *arg)
 296{
 297        unsigned long *count = arg;
 298
 299        *count += (end - start) >> PAGE_SHIFT;
 300        return 0;
 301}
 302
 303/*
 304 * Set up the page tables.
 305 */
 306
 307void __init
 308paging_init (void)
 309{
 310        unsigned long max_dma;
 311        unsigned long max_zone_pfns[MAX_NR_ZONES];
 312
 313        num_physpages = 0;
 314        efi_memmap_walk(count_pages, &num_physpages);
 315
 316        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 317#ifdef CONFIG_ZONE_DMA
 318        max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 319        max_zone_pfns[ZONE_DMA] = max_dma;
 320#endif
 321        max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
 322
 323#ifdef CONFIG_VIRTUAL_MEM_MAP
 324        efi_memmap_walk(filter_memory, register_active_ranges);
 325        efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
 326        if (max_gap < LARGE_GAP) {
 327                vmem_map = (struct page *) 0;
 328                free_area_init_nodes(max_zone_pfns);
 329        } else {
 330                unsigned long map_size;
 331
 332                /* allocate virtual_mem_map */
 333
 334                map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
 335                        sizeof(struct page));
 336                VMALLOC_END -= map_size;
 337                vmem_map = (struct page *) VMALLOC_END;
 338                efi_memmap_walk(create_mem_map_page_table, NULL);
 339
 340                /*
 341                 * alloc_node_mem_map makes an adjustment for mem_map
 342                 * which isn't compatible with vmem_map.
 343                 */
 344                NODE_DATA(0)->node_mem_map = vmem_map +
 345                        find_min_pfn_with_active_regions();
 346                free_area_init_nodes(max_zone_pfns);
 347
 348                printk("Virtual mem_map starts at 0x%p\n", mem_map);
 349        }
 350#else /* !CONFIG_VIRTUAL_MEM_MAP */
 351        add_active_range(0, 0, max_low_pfn);
 352        free_area_init_nodes(max_zone_pfns);
 353#endif /* !CONFIG_VIRTUAL_MEM_MAP */
 354        zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
 355}
 356