linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time. (for iSeries, we calibrate the timebase
  21 * against the Titan chip's clock.)
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35#include <linux/errno.h>
  36#include <linux/export.h>
  37#include <linux/sched.h>
  38#include <linux/kernel.h>
  39#include <linux/param.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/interrupt.h>
  43#include <linux/timex.h>
  44#include <linux/kernel_stat.h>
  45#include <linux/time.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
  60#include <asm/processor.h>
  61#include <asm/nvram.h>
  62#include <asm/cache.h>
  63#include <asm/machdep.h>
  64#include <asm/uaccess.h>
  65#include <asm/time.h>
  66#include <asm/prom.h>
  67#include <asm/irq.h>
  68#include <asm/div64.h>
  69#include <asm/smp.h>
  70#include <asm/vdso_datapage.h>
  71#include <asm/firmware.h>
  72#include <asm/cputime.h>
  73#ifdef CONFIG_PPC_ISERIES
  74#include <asm/iseries/it_lp_queue.h>
  75#include <asm/iseries/hv_call_xm.h>
  76#endif
  77
  78/* powerpc clocksource/clockevent code */
  79
  80#include <linux/clockchips.h>
  81#include <linux/clocksource.h>
  82
  83static cycle_t rtc_read(struct clocksource *);
  84static struct clocksource clocksource_rtc = {
  85        .name         = "rtc",
  86        .rating       = 400,
  87        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  88        .mask         = CLOCKSOURCE_MASK(64),
  89        .shift        = 22,
  90        .mult         = 0,      /* To be filled in */
  91        .read         = rtc_read,
  92};
  93
  94static cycle_t timebase_read(struct clocksource *);
  95static struct clocksource clocksource_timebase = {
  96        .name         = "timebase",
  97        .rating       = 400,
  98        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  99        .mask         = CLOCKSOURCE_MASK(64),
 100        .shift        = 22,
 101        .mult         = 0,      /* To be filled in */
 102        .read         = timebase_read,
 103};
 104
 105#define DECREMENTER_MAX 0x7fffffff
 106
 107static int decrementer_set_next_event(unsigned long evt,
 108                                      struct clock_event_device *dev);
 109static void decrementer_set_mode(enum clock_event_mode mode,
 110                                 struct clock_event_device *dev);
 111
 112static struct clock_event_device decrementer_clockevent = {
 113       .name           = "decrementer",
 114       .rating         = 200,
 115       .shift          = 0,     /* To be filled in */
 116       .mult           = 0,     /* To be filled in */
 117       .irq            = 0,
 118       .set_next_event = decrementer_set_next_event,
 119       .set_mode       = decrementer_set_mode,
 120       .features       = CLOCK_EVT_FEAT_ONESHOT,
 121};
 122
 123struct decrementer_clock {
 124        struct clock_event_device event;
 125        u64 next_tb;
 126};
 127
 128static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
 129
 130#ifdef CONFIG_PPC_ISERIES
 131static unsigned long __initdata iSeries_recal_titan;
 132static signed long __initdata iSeries_recal_tb;
 133
 134/* Forward declaration is only needed for iSereis compiles */
 135static void __init clocksource_init(void);
 136#endif
 137
 138#define XSEC_PER_SEC (1024*1024)
 139
 140#ifdef CONFIG_PPC64
 141#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 142#else
 143/* compute ((xsec << 12) * max) >> 32 */
 144#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 145#endif
 146
 147unsigned long tb_ticks_per_jiffy;
 148unsigned long tb_ticks_per_usec = 100; /* sane default */
 149EXPORT_SYMBOL(tb_ticks_per_usec);
 150unsigned long tb_ticks_per_sec;
 151EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 152
 153DEFINE_SPINLOCK(rtc_lock);
 154EXPORT_SYMBOL_GPL(rtc_lock);
 155
 156static u64 tb_to_ns_scale __read_mostly;
 157static unsigned tb_to_ns_shift __read_mostly;
 158static u64 boot_tb __read_mostly;
 159
 160extern struct timezone sys_tz;
 161static long timezone_offset;
 162
 163unsigned long ppc_proc_freq;
 164EXPORT_SYMBOL_GPL(ppc_proc_freq);
 165unsigned long ppc_tb_freq;
 166EXPORT_SYMBOL_GPL(ppc_tb_freq);
 167
 168#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 169/*
 170 * Factors for converting from cputime_t (timebase ticks) to
 171 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 172 * These are all stored as 0.64 fixed-point binary fractions.
 173 */
 174u64 __cputime_jiffies_factor;
 175EXPORT_SYMBOL(__cputime_jiffies_factor);
 176u64 __cputime_msec_factor;
 177EXPORT_SYMBOL(__cputime_msec_factor);
 178u64 __cputime_sec_factor;
 179EXPORT_SYMBOL(__cputime_sec_factor);
 180u64 __cputime_clockt_factor;
 181EXPORT_SYMBOL(__cputime_clockt_factor);
 182DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 183DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 184
 185cputime_t cputime_one_jiffy;
 186
 187void (*dtl_consumer)(struct dtl_entry *, u64);
 188
 189static void calc_cputime_factors(void)
 190{
 191        struct div_result res;
 192
 193        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 194        __cputime_jiffies_factor = res.result_low;
 195        div128_by_32(1000, 0, tb_ticks_per_sec, &res);
 196        __cputime_msec_factor = res.result_low;
 197        div128_by_32(1, 0, tb_ticks_per_sec, &res);
 198        __cputime_sec_factor = res.result_low;
 199        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 200        __cputime_clockt_factor = res.result_low;
 201}
 202
 203/*
 204 * Read the SPURR on systems that have it, otherwise the PURR,
 205 * or if that doesn't exist return the timebase value passed in.
 206 */
 207static u64 read_spurr(u64 tb)
 208{
 209        if (cpu_has_feature(CPU_FTR_SPURR))
 210                return mfspr(SPRN_SPURR);
 211        if (cpu_has_feature(CPU_FTR_PURR))
 212                return mfspr(SPRN_PURR);
 213        return tb;
 214}
 215
 216#ifdef CONFIG_PPC_SPLPAR
 217
 218/*
 219 * Scan the dispatch trace log and count up the stolen time.
 220 * Should be called with interrupts disabled.
 221 */
 222static u64 scan_dispatch_log(u64 stop_tb)
 223{
 224        u64 i = local_paca->dtl_ridx;
 225        struct dtl_entry *dtl = local_paca->dtl_curr;
 226        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 227        struct lppaca *vpa = local_paca->lppaca_ptr;
 228        u64 tb_delta;
 229        u64 stolen = 0;
 230        u64 dtb;
 231
 232        if (!dtl)
 233                return 0;
 234
 235        if (i == vpa->dtl_idx)
 236                return 0;
 237        while (i < vpa->dtl_idx) {
 238                if (dtl_consumer)
 239                        dtl_consumer(dtl, i);
 240                dtb = dtl->timebase;
 241                tb_delta = dtl->enqueue_to_dispatch_time +
 242                        dtl->ready_to_enqueue_time;
 243                barrier();
 244                if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
 245                        /* buffer has overflowed */
 246                        i = vpa->dtl_idx - N_DISPATCH_LOG;
 247                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 248                        continue;
 249                }
 250                if (dtb > stop_tb)
 251                        break;
 252                stolen += tb_delta;
 253                ++i;
 254                ++dtl;
 255                if (dtl == dtl_end)
 256                        dtl = local_paca->dispatch_log;
 257        }
 258        local_paca->dtl_ridx = i;
 259        local_paca->dtl_curr = dtl;
 260        return stolen;
 261}
 262
 263/*
 264 * Accumulate stolen time by scanning the dispatch trace log.
 265 * Called on entry from user mode.
 266 */
 267void accumulate_stolen_time(void)
 268{
 269        u64 sst, ust;
 270
 271        u8 save_soft_enabled = local_paca->soft_enabled;
 272        u8 save_hard_enabled = local_paca->hard_enabled;
 273
 274        /* We are called early in the exception entry, before
 275         * soft/hard_enabled are sync'ed to the expected state
 276         * for the exception. We are hard disabled but the PACA
 277         * needs to reflect that so various debug stuff doesn't
 278         * complain
 279         */
 280        local_paca->soft_enabled = 0;
 281        local_paca->hard_enabled = 0;
 282
 283        sst = scan_dispatch_log(local_paca->starttime_user);
 284        ust = scan_dispatch_log(local_paca->starttime);
 285        local_paca->system_time -= sst;
 286        local_paca->user_time -= ust;
 287        local_paca->stolen_time += ust + sst;
 288
 289        local_paca->soft_enabled = save_soft_enabled;
 290        local_paca->hard_enabled = save_hard_enabled;
 291}
 292
 293static inline u64 calculate_stolen_time(u64 stop_tb)
 294{
 295        u64 stolen = 0;
 296
 297        if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
 298                stolen = scan_dispatch_log(stop_tb);
 299                get_paca()->system_time -= stolen;
 300        }
 301
 302        stolen += get_paca()->stolen_time;
 303        get_paca()->stolen_time = 0;
 304        return stolen;
 305}
 306
 307#else /* CONFIG_PPC_SPLPAR */
 308static inline u64 calculate_stolen_time(u64 stop_tb)
 309{
 310        return 0;
 311}
 312
 313#endif /* CONFIG_PPC_SPLPAR */
 314
 315/*
 316 * Account time for a transition between system, hard irq
 317 * or soft irq state.
 318 */
 319void account_system_vtime(struct task_struct *tsk)
 320{
 321        u64 now, nowscaled, delta, deltascaled;
 322        unsigned long flags;
 323        u64 stolen, udelta, sys_scaled, user_scaled;
 324
 325        local_irq_save(flags);
 326        now = mftb();
 327        nowscaled = read_spurr(now);
 328        get_paca()->system_time += now - get_paca()->starttime;
 329        get_paca()->starttime = now;
 330        deltascaled = nowscaled - get_paca()->startspurr;
 331        get_paca()->startspurr = nowscaled;
 332
 333        stolen = calculate_stolen_time(now);
 334
 335        delta = get_paca()->system_time;
 336        get_paca()->system_time = 0;
 337        udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 338        get_paca()->utime_sspurr = get_paca()->user_time;
 339
 340        /*
 341         * Because we don't read the SPURR on every kernel entry/exit,
 342         * deltascaled includes both user and system SPURR ticks.
 343         * Apportion these ticks to system SPURR ticks and user
 344         * SPURR ticks in the same ratio as the system time (delta)
 345         * and user time (udelta) values obtained from the timebase
 346         * over the same interval.  The system ticks get accounted here;
 347         * the user ticks get saved up in paca->user_time_scaled to be
 348         * used by account_process_tick.
 349         */
 350        sys_scaled = delta;
 351        user_scaled = udelta;
 352        if (deltascaled != delta + udelta) {
 353                if (udelta) {
 354                        sys_scaled = deltascaled * delta / (delta + udelta);
 355                        user_scaled = deltascaled - sys_scaled;
 356                } else {
 357                        sys_scaled = deltascaled;
 358                }
 359        }
 360        get_paca()->user_time_scaled += user_scaled;
 361
 362        if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
 363                account_system_time(tsk, 0, delta, sys_scaled);
 364                if (stolen)
 365                        account_steal_time(stolen);
 366        } else {
 367                account_idle_time(delta + stolen);
 368        }
 369        local_irq_restore(flags);
 370}
 371EXPORT_SYMBOL_GPL(account_system_vtime);
 372
 373/*
 374 * Transfer the user and system times accumulated in the paca
 375 * by the exception entry and exit code to the generic process
 376 * user and system time records.
 377 * Must be called with interrupts disabled.
 378 * Assumes that account_system_vtime() has been called recently
 379 * (i.e. since the last entry from usermode) so that
 380 * get_paca()->user_time_scaled is up to date.
 381 */
 382void account_process_tick(struct task_struct *tsk, int user_tick)
 383{
 384        cputime_t utime, utimescaled;
 385
 386        utime = get_paca()->user_time;
 387        utimescaled = get_paca()->user_time_scaled;
 388        get_paca()->user_time = 0;
 389        get_paca()->user_time_scaled = 0;
 390        get_paca()->utime_sspurr = 0;
 391        account_user_time(tsk, utime, utimescaled);
 392}
 393
 394#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
 395#define calc_cputime_factors()
 396#endif
 397
 398void __delay(unsigned long loops)
 399{
 400        unsigned long start;
 401        int diff;
 402
 403        if (__USE_RTC()) {
 404                start = get_rtcl();
 405                do {
 406                        /* the RTCL register wraps at 1000000000 */
 407                        diff = get_rtcl() - start;
 408                        if (diff < 0)
 409                                diff += 1000000000;
 410                } while (diff < loops);
 411        } else {
 412                start = get_tbl();
 413                while (get_tbl() - start < loops)
 414                        HMT_low();
 415                HMT_medium();
 416        }
 417}
 418EXPORT_SYMBOL(__delay);
 419
 420void udelay(unsigned long usecs)
 421{
 422        __delay(tb_ticks_per_usec * usecs);
 423}
 424EXPORT_SYMBOL(udelay);
 425
 426#ifdef CONFIG_SMP
 427unsigned long profile_pc(struct pt_regs *regs)
 428{
 429        unsigned long pc = instruction_pointer(regs);
 430
 431        if (in_lock_functions(pc))
 432                return regs->link;
 433
 434        return pc;
 435}
 436EXPORT_SYMBOL(profile_pc);
 437#endif
 438
 439#ifdef CONFIG_PPC_ISERIES
 440
 441/* 
 442 * This function recalibrates the timebase based on the 49-bit time-of-day
 443 * value in the Titan chip.  The Titan is much more accurate than the value
 444 * returned by the service processor for the timebase frequency.  
 445 */
 446
 447static int __init iSeries_tb_recal(void)
 448{
 449        unsigned long titan, tb;
 450
 451        /* Make sure we only run on iSeries */
 452        if (!firmware_has_feature(FW_FEATURE_ISERIES))
 453                return -ENODEV;
 454
 455        tb = get_tb();
 456        titan = HvCallXm_loadTod();
 457        if ( iSeries_recal_titan ) {
 458                unsigned long tb_ticks = tb - iSeries_recal_tb;
 459                unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
 460                unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
 461                unsigned long new_tb_ticks_per_jiffy =
 462                        DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
 463                long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
 464                char sign = '+';                
 465                /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
 466                new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
 467
 468                if ( tick_diff < 0 ) {
 469                        tick_diff = -tick_diff;
 470                        sign = '-';
 471                }
 472                if ( tick_diff ) {
 473                        if ( tick_diff < tb_ticks_per_jiffy/25 ) {
 474                                printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
 475                                                new_tb_ticks_per_jiffy, sign, tick_diff );
 476                                tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
 477                                tb_ticks_per_sec   = new_tb_ticks_per_sec;
 478                                calc_cputime_factors();
 479                                vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 480                                setup_cputime_one_jiffy();
 481                        }
 482                        else {
 483                                printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
 484                                        "                   new tb_ticks_per_jiffy = %lu\n"
 485                                        "                   old tb_ticks_per_jiffy = %lu\n",
 486                                        new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
 487                        }
 488                }
 489        }
 490        iSeries_recal_titan = titan;
 491        iSeries_recal_tb = tb;
 492
 493        /* Called here as now we know accurate values for the timebase */
 494        clocksource_init();
 495        return 0;
 496}
 497late_initcall(iSeries_tb_recal);
 498
 499/* Called from platform early init */
 500void __init iSeries_time_init_early(void)
 501{
 502        iSeries_recal_tb = get_tb();
 503        iSeries_recal_titan = HvCallXm_loadTod();
 504}
 505#endif /* CONFIG_PPC_ISERIES */
 506
 507#ifdef CONFIG_IRQ_WORK
 508
 509/*
 510 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 511 */
 512#ifdef CONFIG_PPC64
 513static inline unsigned long test_irq_work_pending(void)
 514{
 515        unsigned long x;
 516
 517        asm volatile("lbz %0,%1(13)"
 518                : "=r" (x)
 519                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 520        return x;
 521}
 522
 523static inline void set_irq_work_pending_flag(void)
 524{
 525        asm volatile("stb %0,%1(13)" : :
 526                "r" (1),
 527                "i" (offsetof(struct paca_struct, irq_work_pending)));
 528}
 529
 530static inline void clear_irq_work_pending(void)
 531{
 532        asm volatile("stb %0,%1(13)" : :
 533                "r" (0),
 534                "i" (offsetof(struct paca_struct, irq_work_pending)));
 535}
 536
 537#else /* 32-bit */
 538
 539DEFINE_PER_CPU(u8, irq_work_pending);
 540
 541#define set_irq_work_pending_flag()     __get_cpu_var(irq_work_pending) = 1
 542#define test_irq_work_pending()         __get_cpu_var(irq_work_pending)
 543#define clear_irq_work_pending()        __get_cpu_var(irq_work_pending) = 0
 544
 545#endif /* 32 vs 64 bit */
 546
 547void arch_irq_work_raise(void)
 548{
 549        preempt_disable();
 550        set_irq_work_pending_flag();
 551        set_dec(1);
 552        preempt_enable();
 553}
 554
 555#else  /* CONFIG_IRQ_WORK */
 556
 557#define test_irq_work_pending() 0
 558#define clear_irq_work_pending()
 559
 560#endif /* CONFIG_IRQ_WORK */
 561
 562/*
 563 * For iSeries shared processors, we have to let the hypervisor
 564 * set the hardware decrementer.  We set a virtual decrementer
 565 * in the lppaca and call the hypervisor if the virtual
 566 * decrementer is less than the current value in the hardware
 567 * decrementer. (almost always the new decrementer value will
 568 * be greater than the current hardware decementer so the hypervisor
 569 * call will not be needed)
 570 */
 571
 572/*
 573 * timer_interrupt - gets called when the decrementer overflows,
 574 * with interrupts disabled.
 575 */
 576void timer_interrupt(struct pt_regs * regs)
 577{
 578        struct pt_regs *old_regs;
 579        struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
 580        struct clock_event_device *evt = &decrementer->event;
 581        u64 now;
 582
 583        /* Ensure a positive value is written to the decrementer, or else
 584         * some CPUs will continue to take decrementer exceptions.
 585         */
 586        set_dec(DECREMENTER_MAX);
 587
 588        /* Some implementations of hotplug will get timer interrupts while
 589         * offline, just ignore these
 590         */
 591        if (!cpu_online(smp_processor_id()))
 592                return;
 593
 594        trace_timer_interrupt_entry(regs);
 595
 596        __get_cpu_var(irq_stat).timer_irqs++;
 597
 598#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
 599        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 600                do_IRQ(regs);
 601#endif
 602
 603        old_regs = set_irq_regs(regs);
 604        irq_enter();
 605
 606        if (test_irq_work_pending()) {
 607                clear_irq_work_pending();
 608                irq_work_run();
 609        }
 610
 611#ifdef CONFIG_PPC_ISERIES
 612        if (firmware_has_feature(FW_FEATURE_ISERIES))
 613                get_lppaca()->int_dword.fields.decr_int = 0;
 614#endif
 615
 616        now = get_tb_or_rtc();
 617        if (now >= decrementer->next_tb) {
 618                decrementer->next_tb = ~(u64)0;
 619                if (evt->event_handler)
 620                        evt->event_handler(evt);
 621        } else {
 622                now = decrementer->next_tb - now;
 623                if (now <= DECREMENTER_MAX)
 624                        set_dec((int)now);
 625        }
 626
 627#ifdef CONFIG_PPC_ISERIES
 628        if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
 629                process_hvlpevents();
 630#endif
 631
 632#ifdef CONFIG_PPC64
 633        /* collect purr register values often, for accurate calculations */
 634        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 635                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 636                cu->current_tb = mfspr(SPRN_PURR);
 637        }
 638#endif
 639
 640        irq_exit();
 641        set_irq_regs(old_regs);
 642
 643        trace_timer_interrupt_exit(regs);
 644}
 645
 646#ifdef CONFIG_SUSPEND
 647static void generic_suspend_disable_irqs(void)
 648{
 649        /* Disable the decrementer, so that it doesn't interfere
 650         * with suspending.
 651         */
 652
 653        set_dec(0x7fffffff);
 654        local_irq_disable();
 655        set_dec(0x7fffffff);
 656}
 657
 658static void generic_suspend_enable_irqs(void)
 659{
 660        local_irq_enable();
 661}
 662
 663/* Overrides the weak version in kernel/power/main.c */
 664void arch_suspend_disable_irqs(void)
 665{
 666        if (ppc_md.suspend_disable_irqs)
 667                ppc_md.suspend_disable_irqs();
 668        generic_suspend_disable_irqs();
 669}
 670
 671/* Overrides the weak version in kernel/power/main.c */
 672void arch_suspend_enable_irqs(void)
 673{
 674        generic_suspend_enable_irqs();
 675        if (ppc_md.suspend_enable_irqs)
 676                ppc_md.suspend_enable_irqs();
 677}
 678#endif
 679
 680/*
 681 * Scheduler clock - returns current time in nanosec units.
 682 *
 683 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 684 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 685 * are 64-bit unsigned numbers.
 686 */
 687unsigned long long sched_clock(void)
 688{
 689        if (__USE_RTC())
 690                return get_rtc();
 691        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 692}
 693
 694static int __init get_freq(char *name, int cells, unsigned long *val)
 695{
 696        struct device_node *cpu;
 697        const unsigned int *fp;
 698        int found = 0;
 699
 700        /* The cpu node should have timebase and clock frequency properties */
 701        cpu = of_find_node_by_type(NULL, "cpu");
 702
 703        if (cpu) {
 704                fp = of_get_property(cpu, name, NULL);
 705                if (fp) {
 706                        found = 1;
 707                        *val = of_read_ulong(fp, cells);
 708                }
 709
 710                of_node_put(cpu);
 711        }
 712
 713        return found;
 714}
 715
 716/* should become __cpuinit when secondary_cpu_time_init also is */
 717void start_cpu_decrementer(void)
 718{
 719#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 720        /* Clear any pending timer interrupts */
 721        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 722
 723        /* Enable decrementer interrupt */
 724        mtspr(SPRN_TCR, TCR_DIE);
 725#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 726}
 727
 728void __init generic_calibrate_decr(void)
 729{
 730        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 731
 732        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 733            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 734
 735                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 736                                "(not found)\n");
 737        }
 738
 739        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 740
 741        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 742            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 743
 744                printk(KERN_ERR "WARNING: Estimating processor frequency "
 745                                "(not found)\n");
 746        }
 747}
 748
 749int update_persistent_clock(struct timespec now)
 750{
 751        struct rtc_time tm;
 752
 753        if (!ppc_md.set_rtc_time)
 754                return 0;
 755
 756        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 757        tm.tm_year -= 1900;
 758        tm.tm_mon -= 1;
 759
 760        return ppc_md.set_rtc_time(&tm);
 761}
 762
 763static void __read_persistent_clock(struct timespec *ts)
 764{
 765        struct rtc_time tm;
 766        static int first = 1;
 767
 768        ts->tv_nsec = 0;
 769        /* XXX this is a litle fragile but will work okay in the short term */
 770        if (first) {
 771                first = 0;
 772                if (ppc_md.time_init)
 773                        timezone_offset = ppc_md.time_init();
 774
 775                /* get_boot_time() isn't guaranteed to be safe to call late */
 776                if (ppc_md.get_boot_time) {
 777                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 778                        return;
 779                }
 780        }
 781        if (!ppc_md.get_rtc_time) {
 782                ts->tv_sec = 0;
 783                return;
 784        }
 785        ppc_md.get_rtc_time(&tm);
 786
 787        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 788                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 789}
 790
 791void read_persistent_clock(struct timespec *ts)
 792{
 793        __read_persistent_clock(ts);
 794
 795        /* Sanitize it in case real time clock is set below EPOCH */
 796        if (ts->tv_sec < 0) {
 797                ts->tv_sec = 0;
 798                ts->tv_nsec = 0;
 799        }
 800                
 801}
 802
 803/* clocksource code */
 804static cycle_t rtc_read(struct clocksource *cs)
 805{
 806        return (cycle_t)get_rtc();
 807}
 808
 809static cycle_t timebase_read(struct clocksource *cs)
 810{
 811        return (cycle_t)get_tb();
 812}
 813
 814void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 815                        struct clocksource *clock, u32 mult)
 816{
 817        u64 new_tb_to_xs, new_stamp_xsec;
 818        u32 frac_sec;
 819
 820        if (clock != &clocksource_timebase)
 821                return;
 822
 823        /* Make userspace gettimeofday spin until we're done. */
 824        ++vdso_data->tb_update_count;
 825        smp_mb();
 826
 827        /* XXX this assumes clock->shift == 22 */
 828        /* 4611686018 ~= 2^(20+64-22) / 1e9 */
 829        new_tb_to_xs = (u64) mult * 4611686018ULL;
 830        new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 831        do_div(new_stamp_xsec, 1000000000);
 832        new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 833
 834        BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 835        /* this is tv_nsec / 1e9 as a 0.32 fraction */
 836        frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 837
 838        /*
 839         * tb_update_count is used to allow the userspace gettimeofday code
 840         * to assure itself that it sees a consistent view of the tb_to_xs and
 841         * stamp_xsec variables.  It reads the tb_update_count, then reads
 842         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 843         * the two values of tb_update_count match and are even then the
 844         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 845         * loops back and reads them again until this criteria is met.
 846         * We expect the caller to have done the first increment of
 847         * vdso_data->tb_update_count already.
 848         */
 849        vdso_data->tb_orig_stamp = clock->cycle_last;
 850        vdso_data->stamp_xsec = new_stamp_xsec;
 851        vdso_data->tb_to_xs = new_tb_to_xs;
 852        vdso_data->wtom_clock_sec = wtm->tv_sec;
 853        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 854        vdso_data->stamp_xtime = *wall_time;
 855        vdso_data->stamp_sec_fraction = frac_sec;
 856        smp_wmb();
 857        ++(vdso_data->tb_update_count);
 858}
 859
 860void update_vsyscall_tz(void)
 861{
 862        /* Make userspace gettimeofday spin until we're done. */
 863        ++vdso_data->tb_update_count;
 864        smp_mb();
 865        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 866        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 867        smp_mb();
 868        ++vdso_data->tb_update_count;
 869}
 870
 871static void __init clocksource_init(void)
 872{
 873        struct clocksource *clock;
 874
 875        if (__USE_RTC())
 876                clock = &clocksource_rtc;
 877        else
 878                clock = &clocksource_timebase;
 879
 880        clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
 881
 882        if (clocksource_register(clock)) {
 883                printk(KERN_ERR "clocksource: %s is already registered\n",
 884                       clock->name);
 885                return;
 886        }
 887
 888        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 889               clock->name, clock->mult, clock->shift);
 890}
 891
 892static int decrementer_set_next_event(unsigned long evt,
 893                                      struct clock_event_device *dev)
 894{
 895        __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
 896        set_dec(evt);
 897        return 0;
 898}
 899
 900static void decrementer_set_mode(enum clock_event_mode mode,
 901                                 struct clock_event_device *dev)
 902{
 903        if (mode != CLOCK_EVT_MODE_ONESHOT)
 904                decrementer_set_next_event(DECREMENTER_MAX, dev);
 905}
 906
 907static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
 908                                int shift)
 909{
 910        uint64_t tmp = ((uint64_t)ticks) << shift;
 911
 912        do_div(tmp, nsec);
 913        return tmp;
 914}
 915
 916static void __init setup_clockevent_multiplier(unsigned long hz)
 917{
 918        u64 mult, shift = 32;
 919
 920        while (1) {
 921                mult = div_sc64(hz, NSEC_PER_SEC, shift);
 922                if (mult && (mult >> 32UL) == 0UL)
 923                        break;
 924
 925                shift--;
 926        }
 927
 928        decrementer_clockevent.shift = shift;
 929        decrementer_clockevent.mult = mult;
 930}
 931
 932static void register_decrementer_clockevent(int cpu)
 933{
 934        struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
 935
 936        *dec = decrementer_clockevent;
 937        dec->cpumask = cpumask_of(cpu);
 938
 939        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 940                    dec->name, dec->mult, dec->shift, cpu);
 941
 942        clockevents_register_device(dec);
 943}
 944
 945static void __init init_decrementer_clockevent(void)
 946{
 947        int cpu = smp_processor_id();
 948
 949        setup_clockevent_multiplier(ppc_tb_freq);
 950        decrementer_clockevent.max_delta_ns =
 951                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 952        decrementer_clockevent.min_delta_ns =
 953                clockevent_delta2ns(2, &decrementer_clockevent);
 954
 955        register_decrementer_clockevent(cpu);
 956}
 957
 958void secondary_cpu_time_init(void)
 959{
 960        /* Start the decrementer on CPUs that have manual control
 961         * such as BookE
 962         */
 963        start_cpu_decrementer();
 964
 965        /* FIME: Should make unrelatred change to move snapshot_timebase
 966         * call here ! */
 967        register_decrementer_clockevent(smp_processor_id());
 968}
 969
 970/* This function is only called on the boot processor */
 971void __init time_init(void)
 972{
 973        struct div_result res;
 974        u64 scale;
 975        unsigned shift;
 976
 977        if (__USE_RTC()) {
 978                /* 601 processor: dec counts down by 128 every 128ns */
 979                ppc_tb_freq = 1000000000;
 980        } else {
 981                /* Normal PowerPC with timebase register */
 982                ppc_md.calibrate_decr();
 983                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 984                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 985                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 986                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 987        }
 988
 989        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 990        tb_ticks_per_sec = ppc_tb_freq;
 991        tb_ticks_per_usec = ppc_tb_freq / 1000000;
 992        calc_cputime_factors();
 993        setup_cputime_one_jiffy();
 994
 995        /*
 996         * Compute scale factor for sched_clock.
 997         * The calibrate_decr() function has set tb_ticks_per_sec,
 998         * which is the timebase frequency.
 999         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1000         * the 128-bit result as a 64.64 fixed-point number.
1001         * We then shift that number right until it is less than 1.0,
1002         * giving us the scale factor and shift count to use in
1003         * sched_clock().
1004         */
1005        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1006        scale = res.result_low;
1007        for (shift = 0; res.result_high != 0; ++shift) {
1008                scale = (scale >> 1) | (res.result_high << 63);
1009                res.result_high >>= 1;
1010        }
1011        tb_to_ns_scale = scale;
1012        tb_to_ns_shift = shift;
1013        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1014        boot_tb = get_tb_or_rtc();
1015
1016        /* If platform provided a timezone (pmac), we correct the time */
1017        if (timezone_offset) {
1018                sys_tz.tz_minuteswest = -timezone_offset / 60;
1019                sys_tz.tz_dsttime = 0;
1020        }
1021
1022        vdso_data->tb_update_count = 0;
1023        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1024
1025        /* Start the decrementer on CPUs that have manual control
1026         * such as BookE
1027         */
1028        start_cpu_decrementer();
1029
1030        /* Register the clocksource, if we're not running on iSeries */
1031        if (!firmware_has_feature(FW_FEATURE_ISERIES))
1032                clocksource_init();
1033
1034        init_decrementer_clockevent();
1035}
1036
1037
1038#define FEBRUARY        2
1039#define STARTOFTIME     1970
1040#define SECDAY          86400L
1041#define SECYR           (SECDAY * 365)
1042#define leapyear(year)          ((year) % 4 == 0 && \
1043                                 ((year) % 100 != 0 || (year) % 400 == 0))
1044#define days_in_year(a)         (leapyear(a) ? 366 : 365)
1045#define days_in_month(a)        (month_days[(a) - 1])
1046
1047static int month_days[12] = {
1048        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1049};
1050
1051/*
1052 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1053 */
1054void GregorianDay(struct rtc_time * tm)
1055{
1056        int leapsToDate;
1057        int lastYear;
1058        int day;
1059        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1060
1061        lastYear = tm->tm_year - 1;
1062
1063        /*
1064         * Number of leap corrections to apply up to end of last year
1065         */
1066        leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1067
1068        /*
1069         * This year is a leap year if it is divisible by 4 except when it is
1070         * divisible by 100 unless it is divisible by 400
1071         *
1072         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1073         */
1074        day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1075
1076        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1077                   tm->tm_mday;
1078
1079        tm->tm_wday = day % 7;
1080}
1081
1082void to_tm(int tim, struct rtc_time * tm)
1083{
1084        register int    i;
1085        register long   hms, day;
1086
1087        day = tim / SECDAY;
1088        hms = tim % SECDAY;
1089
1090        /* Hours, minutes, seconds are easy */
1091        tm->tm_hour = hms / 3600;
1092        tm->tm_min = (hms % 3600) / 60;
1093        tm->tm_sec = (hms % 3600) % 60;
1094
1095        /* Number of years in days */
1096        for (i = STARTOFTIME; day >= days_in_year(i); i++)
1097                day -= days_in_year(i);
1098        tm->tm_year = i;
1099
1100        /* Number of months in days left */
1101        if (leapyear(tm->tm_year))
1102                days_in_month(FEBRUARY) = 29;
1103        for (i = 1; day >= days_in_month(i); i++)
1104                day -= days_in_month(i);
1105        days_in_month(FEBRUARY) = 28;
1106        tm->tm_mon = i;
1107
1108        /* Days are what is left over (+1) from all that. */
1109        tm->tm_mday = day + 1;
1110
1111        /*
1112         * Determine the day of week
1113         */
1114        GregorianDay(tm);
1115}
1116
1117/*
1118 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1119 * result.
1120 */
1121void div128_by_32(u64 dividend_high, u64 dividend_low,
1122                  unsigned divisor, struct div_result *dr)
1123{
1124        unsigned long a, b, c, d;
1125        unsigned long w, x, y, z;
1126        u64 ra, rb, rc;
1127
1128        a = dividend_high >> 32;
1129        b = dividend_high & 0xffffffff;
1130        c = dividend_low >> 32;
1131        d = dividend_low & 0xffffffff;
1132
1133        w = a / divisor;
1134        ra = ((u64)(a - (w * divisor)) << 32) + b;
1135
1136        rb = ((u64) do_div(ra, divisor) << 32) + c;
1137        x = ra;
1138
1139        rc = ((u64) do_div(rb, divisor) << 32) + d;
1140        y = rb;
1141
1142        do_div(rc, divisor);
1143        z = rc;
1144
1145        dr->result_high = ((u64)w << 32) + x;
1146        dr->result_low  = ((u64)y << 32) + z;
1147
1148}
1149
1150/* We don't need to calibrate delay, we use the CPU timebase for that */
1151void calibrate_delay(void)
1152{
1153        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1154         * as the number of __delay(1) in a jiffy, so make it so
1155         */
1156        loops_per_jiffy = tb_ticks_per_jiffy;
1157}
1158
1159static int __init rtc_init(void)
1160{
1161        struct platform_device *pdev;
1162
1163        if (!ppc_md.get_rtc_time)
1164                return -ENODEV;
1165
1166        pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1167        if (IS_ERR(pdev))
1168                return PTR_ERR(pdev);
1169
1170        return 0;
1171}
1172
1173module_init(rtc_init);
1174