linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   4 *
   5 * Authors:
   6 *    Paul Mackerras <paulus@au1.ibm.com>
   7 *    Alexander Graf <agraf@suse.de>
   8 *    Kevin Wolf <mail@kevin-wolf.de>
   9 *
  10 * Description: KVM functions specific to running on Book 3S
  11 * processors in hypervisor mode (specifically POWER7 and later).
  12 *
  13 * This file is derived from arch/powerpc/kvm/book3s.c,
  14 * by Alexander Graf <agraf@suse.de>.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License, version 2, as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include <linux/err.h>
  23#include <linux/slab.h>
  24#include <linux/preempt.h>
  25#include <linux/sched.h>
  26#include <linux/delay.h>
  27#include <linux/export.h>
  28#include <linux/fs.h>
  29#include <linux/anon_inodes.h>
  30#include <linux/cpumask.h>
  31#include <linux/spinlock.h>
  32#include <linux/page-flags.h>
  33
  34#include <asm/reg.h>
  35#include <asm/cputable.h>
  36#include <asm/cacheflush.h>
  37#include <asm/tlbflush.h>
  38#include <asm/uaccess.h>
  39#include <asm/io.h>
  40#include <asm/kvm_ppc.h>
  41#include <asm/kvm_book3s.h>
  42#include <asm/mmu_context.h>
  43#include <asm/lppaca.h>
  44#include <asm/processor.h>
  45#include <asm/cputhreads.h>
  46#include <asm/page.h>
  47#include <asm/hvcall.h>
  48#include <linux/gfp.h>
  49#include <linux/sched.h>
  50#include <linux/vmalloc.h>
  51#include <linux/highmem.h>
  52
  53/*
  54 * For now, limit memory to 64GB and require it to be large pages.
  55 * This value is chosen because it makes the ram_pginfo array be
  56 * 64kB in size, which is about as large as we want to be trying
  57 * to allocate with kmalloc.
  58 */
  59#define MAX_MEM_ORDER           36
  60
  61#define LARGE_PAGE_ORDER        24      /* 16MB pages */
  62
  63/* #define EXIT_DEBUG */
  64/* #define EXIT_DEBUG_SIMPLE */
  65/* #define EXIT_DEBUG_INT */
  66
  67static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  68
  69void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  70{
  71        local_paca->kvm_hstate.kvm_vcpu = vcpu;
  72        local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
  73}
  74
  75void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  76{
  77}
  78
  79void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  80{
  81        vcpu->arch.shregs.msr = msr;
  82        kvmppc_end_cede(vcpu);
  83}
  84
  85void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  86{
  87        vcpu->arch.pvr = pvr;
  88}
  89
  90void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  91{
  92        int r;
  93
  94        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  95        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
  96               vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  97        for (r = 0; r < 16; ++r)
  98                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
  99                       r, kvmppc_get_gpr(vcpu, r),
 100                       r+16, kvmppc_get_gpr(vcpu, r+16));
 101        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 102               vcpu->arch.ctr, vcpu->arch.lr);
 103        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 104               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 105        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 106               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 107        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 108               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 109        pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
 110               vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
 111        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 112        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 113               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 114        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 115        for (r = 0; r < vcpu->arch.slb_max; ++r)
 116                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 117                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 118        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 119               vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
 120               vcpu->arch.last_inst);
 121}
 122
 123struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 124{
 125        int r;
 126        struct kvm_vcpu *v, *ret = NULL;
 127
 128        mutex_lock(&kvm->lock);
 129        kvm_for_each_vcpu(r, v, kvm) {
 130                if (v->vcpu_id == id) {
 131                        ret = v;
 132                        break;
 133                }
 134        }
 135        mutex_unlock(&kvm->lock);
 136        return ret;
 137}
 138
 139static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 140{
 141        vpa->shared_proc = 1;
 142        vpa->yield_count = 1;
 143}
 144
 145static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 146                                       unsigned long flags,
 147                                       unsigned long vcpuid, unsigned long vpa)
 148{
 149        struct kvm *kvm = vcpu->kvm;
 150        unsigned long pg_index, ra, len;
 151        unsigned long pg_offset;
 152        void *va;
 153        struct kvm_vcpu *tvcpu;
 154
 155        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 156        if (!tvcpu)
 157                return H_PARAMETER;
 158
 159        flags >>= 63 - 18;
 160        flags &= 7;
 161        if (flags == 0 || flags == 4)
 162                return H_PARAMETER;
 163        if (flags < 4) {
 164                if (vpa & 0x7f)
 165                        return H_PARAMETER;
 166                /* registering new area; convert logical addr to real */
 167                pg_index = vpa >> kvm->arch.ram_porder;
 168                pg_offset = vpa & (kvm->arch.ram_psize - 1);
 169                if (pg_index >= kvm->arch.ram_npages)
 170                        return H_PARAMETER;
 171                if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
 172                        return H_PARAMETER;
 173                ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
 174                ra |= pg_offset;
 175                va = __va(ra);
 176                if (flags <= 1)
 177                        len = *(unsigned short *)(va + 4);
 178                else
 179                        len = *(unsigned int *)(va + 4);
 180                if (pg_offset + len > kvm->arch.ram_psize)
 181                        return H_PARAMETER;
 182                switch (flags) {
 183                case 1:         /* register VPA */
 184                        if (len < 640)
 185                                return H_PARAMETER;
 186                        tvcpu->arch.vpa = va;
 187                        init_vpa(vcpu, va);
 188                        break;
 189                case 2:         /* register DTL */
 190                        if (len < 48)
 191                                return H_PARAMETER;
 192                        if (!tvcpu->arch.vpa)
 193                                return H_RESOURCE;
 194                        len -= len % 48;
 195                        tvcpu->arch.dtl = va;
 196                        tvcpu->arch.dtl_end = va + len;
 197                        break;
 198                case 3:         /* register SLB shadow buffer */
 199                        if (len < 8)
 200                                return H_PARAMETER;
 201                        if (!tvcpu->arch.vpa)
 202                                return H_RESOURCE;
 203                        tvcpu->arch.slb_shadow = va;
 204                        len = (len - 16) / 16;
 205                        tvcpu->arch.slb_shadow = va;
 206                        break;
 207                }
 208        } else {
 209                switch (flags) {
 210                case 5:         /* unregister VPA */
 211                        if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
 212                                return H_RESOURCE;
 213                        tvcpu->arch.vpa = NULL;
 214                        break;
 215                case 6:         /* unregister DTL */
 216                        tvcpu->arch.dtl = NULL;
 217                        break;
 218                case 7:         /* unregister SLB shadow buffer */
 219                        tvcpu->arch.slb_shadow = NULL;
 220                        break;
 221                }
 222        }
 223        return H_SUCCESS;
 224}
 225
 226int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 227{
 228        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 229        unsigned long target, ret = H_SUCCESS;
 230        struct kvm_vcpu *tvcpu;
 231
 232        switch (req) {
 233        case H_CEDE:
 234                break;
 235        case H_PROD:
 236                target = kvmppc_get_gpr(vcpu, 4);
 237                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 238                if (!tvcpu) {
 239                        ret = H_PARAMETER;
 240                        break;
 241                }
 242                tvcpu->arch.prodded = 1;
 243                smp_mb();
 244                if (vcpu->arch.ceded) {
 245                        if (waitqueue_active(&vcpu->wq)) {
 246                                wake_up_interruptible(&vcpu->wq);
 247                                vcpu->stat.halt_wakeup++;
 248                        }
 249                }
 250                break;
 251        case H_CONFER:
 252                break;
 253        case H_REGISTER_VPA:
 254                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 255                                        kvmppc_get_gpr(vcpu, 5),
 256                                        kvmppc_get_gpr(vcpu, 6));
 257                break;
 258        default:
 259                return RESUME_HOST;
 260        }
 261        kvmppc_set_gpr(vcpu, 3, ret);
 262        vcpu->arch.hcall_needed = 0;
 263        return RESUME_GUEST;
 264}
 265
 266static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 267                              struct task_struct *tsk)
 268{
 269        int r = RESUME_HOST;
 270
 271        vcpu->stat.sum_exits++;
 272
 273        run->exit_reason = KVM_EXIT_UNKNOWN;
 274        run->ready_for_interrupt_injection = 1;
 275        switch (vcpu->arch.trap) {
 276        /* We're good on these - the host merely wanted to get our attention */
 277        case BOOK3S_INTERRUPT_HV_DECREMENTER:
 278                vcpu->stat.dec_exits++;
 279                r = RESUME_GUEST;
 280                break;
 281        case BOOK3S_INTERRUPT_EXTERNAL:
 282                vcpu->stat.ext_intr_exits++;
 283                r = RESUME_GUEST;
 284                break;
 285        case BOOK3S_INTERRUPT_PERFMON:
 286                r = RESUME_GUEST;
 287                break;
 288        case BOOK3S_INTERRUPT_PROGRAM:
 289        {
 290                ulong flags;
 291                /*
 292                 * Normally program interrupts are delivered directly
 293                 * to the guest by the hardware, but we can get here
 294                 * as a result of a hypervisor emulation interrupt
 295                 * (e40) getting turned into a 700 by BML RTAS.
 296                 */
 297                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
 298                kvmppc_core_queue_program(vcpu, flags);
 299                r = RESUME_GUEST;
 300                break;
 301        }
 302        case BOOK3S_INTERRUPT_SYSCALL:
 303        {
 304                /* hcall - punt to userspace */
 305                int i;
 306
 307                if (vcpu->arch.shregs.msr & MSR_PR) {
 308                        /* sc 1 from userspace - reflect to guest syscall */
 309                        kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
 310                        r = RESUME_GUEST;
 311                        break;
 312                }
 313                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
 314                for (i = 0; i < 9; ++i)
 315                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
 316                run->exit_reason = KVM_EXIT_PAPR_HCALL;
 317                vcpu->arch.hcall_needed = 1;
 318                r = RESUME_HOST;
 319                break;
 320        }
 321        /*
 322         * We get these next two if the guest does a bad real-mode access,
 323         * as we have enabled VRMA (virtualized real mode area) mode in the
 324         * LPCR.  We just generate an appropriate DSI/ISI to the guest.
 325         */
 326        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
 327                vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
 328                vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
 329                kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
 330                r = RESUME_GUEST;
 331                break;
 332        case BOOK3S_INTERRUPT_H_INST_STORAGE:
 333                kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
 334                                        0x08000000);
 335                r = RESUME_GUEST;
 336                break;
 337        /*
 338         * This occurs if the guest executes an illegal instruction.
 339         * We just generate a program interrupt to the guest, since
 340         * we don't emulate any guest instructions at this stage.
 341         */
 342        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
 343                kvmppc_core_queue_program(vcpu, 0x80000);
 344                r = RESUME_GUEST;
 345                break;
 346        default:
 347                kvmppc_dump_regs(vcpu);
 348                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
 349                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
 350                        vcpu->arch.shregs.msr);
 351                r = RESUME_HOST;
 352                BUG();
 353                break;
 354        }
 355
 356        return r;
 357}
 358
 359int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 360                                  struct kvm_sregs *sregs)
 361{
 362        int i;
 363
 364        sregs->pvr = vcpu->arch.pvr;
 365
 366        memset(sregs, 0, sizeof(struct kvm_sregs));
 367        for (i = 0; i < vcpu->arch.slb_max; i++) {
 368                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
 369                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
 370        }
 371
 372        return 0;
 373}
 374
 375int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 376                                  struct kvm_sregs *sregs)
 377{
 378        int i, j;
 379
 380        kvmppc_set_pvr(vcpu, sregs->pvr);
 381
 382        j = 0;
 383        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 384                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
 385                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
 386                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
 387                        ++j;
 388                }
 389        }
 390        vcpu->arch.slb_max = j;
 391
 392        return 0;
 393}
 394
 395int kvmppc_core_check_processor_compat(void)
 396{
 397        if (cpu_has_feature(CPU_FTR_HVMODE))
 398                return 0;
 399        return -EIO;
 400}
 401
 402struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 403{
 404        struct kvm_vcpu *vcpu;
 405        int err = -EINVAL;
 406        int core;
 407        struct kvmppc_vcore *vcore;
 408
 409        core = id / threads_per_core;
 410        if (core >= KVM_MAX_VCORES)
 411                goto out;
 412
 413        err = -ENOMEM;
 414        vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 415        if (!vcpu)
 416                goto out;
 417
 418        err = kvm_vcpu_init(vcpu, kvm, id);
 419        if (err)
 420                goto free_vcpu;
 421
 422        vcpu->arch.shared = &vcpu->arch.shregs;
 423        vcpu->arch.last_cpu = -1;
 424        vcpu->arch.mmcr[0] = MMCR0_FC;
 425        vcpu->arch.ctrl = CTRL_RUNLATCH;
 426        /* default to host PVR, since we can't spoof it */
 427        vcpu->arch.pvr = mfspr(SPRN_PVR);
 428        kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
 429
 430        kvmppc_mmu_book3s_hv_init(vcpu);
 431
 432        /*
 433         * We consider the vcpu stopped until we see the first run ioctl for it.
 434         */
 435        vcpu->arch.state = KVMPPC_VCPU_STOPPED;
 436
 437        init_waitqueue_head(&vcpu->arch.cpu_run);
 438
 439        mutex_lock(&kvm->lock);
 440        vcore = kvm->arch.vcores[core];
 441        if (!vcore) {
 442                vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
 443                if (vcore) {
 444                        INIT_LIST_HEAD(&vcore->runnable_threads);
 445                        spin_lock_init(&vcore->lock);
 446                        init_waitqueue_head(&vcore->wq);
 447                }
 448                kvm->arch.vcores[core] = vcore;
 449        }
 450        mutex_unlock(&kvm->lock);
 451
 452        if (!vcore)
 453                goto free_vcpu;
 454
 455        spin_lock(&vcore->lock);
 456        ++vcore->num_threads;
 457        spin_unlock(&vcore->lock);
 458        vcpu->arch.vcore = vcore;
 459
 460        vcpu->arch.cpu_type = KVM_CPU_3S_64;
 461        kvmppc_sanity_check(vcpu);
 462
 463        return vcpu;
 464
 465free_vcpu:
 466        kfree(vcpu);
 467out:
 468        return ERR_PTR(err);
 469}
 470
 471void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
 472{
 473        kvm_vcpu_uninit(vcpu);
 474        kfree(vcpu);
 475}
 476
 477static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
 478{
 479        unsigned long dec_nsec, now;
 480
 481        now = get_tb();
 482        if (now > vcpu->arch.dec_expires) {
 483                /* decrementer has already gone negative */
 484                kvmppc_core_queue_dec(vcpu);
 485                kvmppc_core_deliver_interrupts(vcpu);
 486                return;
 487        }
 488        dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
 489                   / tb_ticks_per_sec;
 490        hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
 491                      HRTIMER_MODE_REL);
 492        vcpu->arch.timer_running = 1;
 493}
 494
 495static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
 496{
 497        vcpu->arch.ceded = 0;
 498        if (vcpu->arch.timer_running) {
 499                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
 500                vcpu->arch.timer_running = 0;
 501        }
 502}
 503
 504extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
 505extern void xics_wake_cpu(int cpu);
 506
 507static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
 508                                   struct kvm_vcpu *vcpu)
 509{
 510        struct kvm_vcpu *v;
 511
 512        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
 513                return;
 514        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
 515        --vc->n_runnable;
 516        ++vc->n_busy;
 517        /* decrement the physical thread id of each following vcpu */
 518        v = vcpu;
 519        list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
 520                --v->arch.ptid;
 521        list_del(&vcpu->arch.run_list);
 522}
 523
 524static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
 525{
 526        int cpu;
 527        struct paca_struct *tpaca;
 528        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 529
 530        if (vcpu->arch.timer_running) {
 531                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
 532                vcpu->arch.timer_running = 0;
 533        }
 534        cpu = vc->pcpu + vcpu->arch.ptid;
 535        tpaca = &paca[cpu];
 536        tpaca->kvm_hstate.kvm_vcpu = vcpu;
 537        tpaca->kvm_hstate.kvm_vcore = vc;
 538        tpaca->kvm_hstate.napping = 0;
 539        vcpu->cpu = vc->pcpu;
 540        smp_wmb();
 541#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 542        if (vcpu->arch.ptid) {
 543                tpaca->cpu_start = 0x80;
 544                wmb();
 545                xics_wake_cpu(cpu);
 546                ++vc->n_woken;
 547        }
 548#endif
 549}
 550
 551static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
 552{
 553        int i;
 554
 555        HMT_low();
 556        i = 0;
 557        while (vc->nap_count < vc->n_woken) {
 558                if (++i >= 1000000) {
 559                        pr_err("kvmppc_wait_for_nap timeout %d %d\n",
 560                               vc->nap_count, vc->n_woken);
 561                        break;
 562                }
 563                cpu_relax();
 564        }
 565        HMT_medium();
 566}
 567
 568/*
 569 * Check that we are on thread 0 and that any other threads in
 570 * this core are off-line.
 571 */
 572static int on_primary_thread(void)
 573{
 574        int cpu = smp_processor_id();
 575        int thr = cpu_thread_in_core(cpu);
 576
 577        if (thr)
 578                return 0;
 579        while (++thr < threads_per_core)
 580                if (cpu_online(cpu + thr))
 581                        return 0;
 582        return 1;
 583}
 584
 585/*
 586 * Run a set of guest threads on a physical core.
 587 * Called with vc->lock held.
 588 */
 589static int kvmppc_run_core(struct kvmppc_vcore *vc)
 590{
 591        struct kvm_vcpu *vcpu, *vcpu0, *vnext;
 592        long ret;
 593        u64 now;
 594        int ptid;
 595
 596        /* don't start if any threads have a signal pending */
 597        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 598                if (signal_pending(vcpu->arch.run_task))
 599                        return 0;
 600
 601        /*
 602         * Make sure we are running on thread 0, and that
 603         * secondary threads are offline.
 604         * XXX we should also block attempts to bring any
 605         * secondary threads online.
 606         */
 607        if (threads_per_core > 1 && !on_primary_thread()) {
 608                list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 609                        vcpu->arch.ret = -EBUSY;
 610                goto out;
 611        }
 612
 613        /*
 614         * Assign physical thread IDs, first to non-ceded vcpus
 615         * and then to ceded ones.
 616         */
 617        ptid = 0;
 618        vcpu0 = NULL;
 619        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
 620                if (!vcpu->arch.ceded) {
 621                        if (!ptid)
 622                                vcpu0 = vcpu;
 623                        vcpu->arch.ptid = ptid++;
 624                }
 625        }
 626        if (!vcpu0)
 627                return 0;               /* nothing to run */
 628        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 629                if (vcpu->arch.ceded)
 630                        vcpu->arch.ptid = ptid++;
 631
 632        vc->n_woken = 0;
 633        vc->nap_count = 0;
 634        vc->entry_exit_count = 0;
 635        vc->vcore_state = VCORE_RUNNING;
 636        vc->in_guest = 0;
 637        vc->pcpu = smp_processor_id();
 638        vc->napping_threads = 0;
 639        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 640                kvmppc_start_thread(vcpu);
 641
 642        preempt_disable();
 643        spin_unlock(&vc->lock);
 644
 645        kvm_guest_enter();
 646        __kvmppc_vcore_entry(NULL, vcpu0);
 647
 648        spin_lock(&vc->lock);
 649        /* disable sending of IPIs on virtual external irqs */
 650        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 651                vcpu->cpu = -1;
 652        /* wait for secondary threads to finish writing their state to memory */
 653        if (vc->nap_count < vc->n_woken)
 654                kvmppc_wait_for_nap(vc);
 655        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
 656        vc->vcore_state = VCORE_EXITING;
 657        spin_unlock(&vc->lock);
 658
 659        /* make sure updates to secondary vcpu structs are visible now */
 660        smp_mb();
 661        kvm_guest_exit();
 662
 663        preempt_enable();
 664        kvm_resched(vcpu);
 665
 666        now = get_tb();
 667        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
 668                /* cancel pending dec exception if dec is positive */
 669                if (now < vcpu->arch.dec_expires &&
 670                    kvmppc_core_pending_dec(vcpu))
 671                        kvmppc_core_dequeue_dec(vcpu);
 672
 673                ret = RESUME_GUEST;
 674                if (vcpu->arch.trap)
 675                        ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
 676                                                 vcpu->arch.run_task);
 677
 678                vcpu->arch.ret = ret;
 679                vcpu->arch.trap = 0;
 680
 681                if (vcpu->arch.ceded) {
 682                        if (ret != RESUME_GUEST)
 683                                kvmppc_end_cede(vcpu);
 684                        else
 685                                kvmppc_set_timer(vcpu);
 686                }
 687        }
 688
 689        spin_lock(&vc->lock);
 690 out:
 691        vc->vcore_state = VCORE_INACTIVE;
 692        list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
 693                                 arch.run_list) {
 694                if (vcpu->arch.ret != RESUME_GUEST) {
 695                        kvmppc_remove_runnable(vc, vcpu);
 696                        wake_up(&vcpu->arch.cpu_run);
 697                }
 698        }
 699
 700        return 1;
 701}
 702
 703/*
 704 * Wait for some other vcpu thread to execute us, and
 705 * wake us up when we need to handle something in the host.
 706 */
 707static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
 708{
 709        DEFINE_WAIT(wait);
 710
 711        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
 712        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
 713                schedule();
 714        finish_wait(&vcpu->arch.cpu_run, &wait);
 715}
 716
 717/*
 718 * All the vcpus in this vcore are idle, so wait for a decrementer
 719 * or external interrupt to one of the vcpus.  vc->lock is held.
 720 */
 721static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
 722{
 723        DEFINE_WAIT(wait);
 724        struct kvm_vcpu *v;
 725        int all_idle = 1;
 726
 727        prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
 728        vc->vcore_state = VCORE_SLEEPING;
 729        spin_unlock(&vc->lock);
 730        list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
 731                if (!v->arch.ceded || v->arch.pending_exceptions) {
 732                        all_idle = 0;
 733                        break;
 734                }
 735        }
 736        if (all_idle)
 737                schedule();
 738        finish_wait(&vc->wq, &wait);
 739        spin_lock(&vc->lock);
 740        vc->vcore_state = VCORE_INACTIVE;
 741}
 742
 743static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
 744{
 745        int n_ceded;
 746        int prev_state;
 747        struct kvmppc_vcore *vc;
 748        struct kvm_vcpu *v, *vn;
 749
 750        kvm_run->exit_reason = 0;
 751        vcpu->arch.ret = RESUME_GUEST;
 752        vcpu->arch.trap = 0;
 753
 754        /*
 755         * Synchronize with other threads in this virtual core
 756         */
 757        vc = vcpu->arch.vcore;
 758        spin_lock(&vc->lock);
 759        vcpu->arch.ceded = 0;
 760        vcpu->arch.run_task = current;
 761        vcpu->arch.kvm_run = kvm_run;
 762        prev_state = vcpu->arch.state;
 763        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
 764        list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
 765        ++vc->n_runnable;
 766
 767        /*
 768         * This happens the first time this is called for a vcpu.
 769         * If the vcore is already running, we may be able to start
 770         * this thread straight away and have it join in.
 771         */
 772        if (prev_state == KVMPPC_VCPU_STOPPED) {
 773                if (vc->vcore_state == VCORE_RUNNING &&
 774                    VCORE_EXIT_COUNT(vc) == 0) {
 775                        vcpu->arch.ptid = vc->n_runnable - 1;
 776                        kvmppc_start_thread(vcpu);
 777                }
 778
 779        } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
 780                --vc->n_busy;
 781
 782        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
 783               !signal_pending(current)) {
 784                if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
 785                        spin_unlock(&vc->lock);
 786                        kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
 787                        spin_lock(&vc->lock);
 788                        continue;
 789                }
 790                n_ceded = 0;
 791                list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
 792                        n_ceded += v->arch.ceded;
 793                if (n_ceded == vc->n_runnable)
 794                        kvmppc_vcore_blocked(vc);
 795                else
 796                        kvmppc_run_core(vc);
 797
 798                list_for_each_entry_safe(v, vn, &vc->runnable_threads,
 799                                         arch.run_list) {
 800                        kvmppc_core_deliver_interrupts(v);
 801                        if (signal_pending(v->arch.run_task)) {
 802                                kvmppc_remove_runnable(vc, v);
 803                                v->stat.signal_exits++;
 804                                v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
 805                                v->arch.ret = -EINTR;
 806                                wake_up(&v->arch.cpu_run);
 807                        }
 808                }
 809        }
 810
 811        if (signal_pending(current)) {
 812                if (vc->vcore_state == VCORE_RUNNING ||
 813                    vc->vcore_state == VCORE_EXITING) {
 814                        spin_unlock(&vc->lock);
 815                        kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
 816                        spin_lock(&vc->lock);
 817                }
 818                if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
 819                        kvmppc_remove_runnable(vc, vcpu);
 820                        vcpu->stat.signal_exits++;
 821                        kvm_run->exit_reason = KVM_EXIT_INTR;
 822                        vcpu->arch.ret = -EINTR;
 823                }
 824        }
 825
 826        spin_unlock(&vc->lock);
 827        return vcpu->arch.ret;
 828}
 829
 830int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
 831{
 832        int r;
 833
 834        if (!vcpu->arch.sane) {
 835                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 836                return -EINVAL;
 837        }
 838
 839        /* No need to go into the guest when all we'll do is come back out */
 840        if (signal_pending(current)) {
 841                run->exit_reason = KVM_EXIT_INTR;
 842                return -EINTR;
 843        }
 844
 845        /* On PPC970, check that we have an RMA region */
 846        if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
 847                return -EPERM;
 848
 849        flush_fp_to_thread(current);
 850        flush_altivec_to_thread(current);
 851        flush_vsx_to_thread(current);
 852        vcpu->arch.wqp = &vcpu->arch.vcore->wq;
 853
 854        do {
 855                r = kvmppc_run_vcpu(run, vcpu);
 856
 857                if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
 858                    !(vcpu->arch.shregs.msr & MSR_PR)) {
 859                        r = kvmppc_pseries_do_hcall(vcpu);
 860                        kvmppc_core_deliver_interrupts(vcpu);
 861                }
 862        } while (r == RESUME_GUEST);
 863        return r;
 864}
 865
 866static long kvmppc_stt_npages(unsigned long window_size)
 867{
 868        return ALIGN((window_size >> SPAPR_TCE_SHIFT)
 869                     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
 870}
 871
 872static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
 873{
 874        struct kvm *kvm = stt->kvm;
 875        int i;
 876
 877        mutex_lock(&kvm->lock);
 878        list_del(&stt->list);
 879        for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
 880                __free_page(stt->pages[i]);
 881        kfree(stt);
 882        mutex_unlock(&kvm->lock);
 883
 884        kvm_put_kvm(kvm);
 885}
 886
 887static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 888{
 889        struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
 890        struct page *page;
 891
 892        if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
 893                return VM_FAULT_SIGBUS;
 894
 895        page = stt->pages[vmf->pgoff];
 896        get_page(page);
 897        vmf->page = page;
 898        return 0;
 899}
 900
 901static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
 902        .fault = kvm_spapr_tce_fault,
 903};
 904
 905static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
 906{
 907        vma->vm_ops = &kvm_spapr_tce_vm_ops;
 908        return 0;
 909}
 910
 911static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
 912{
 913        struct kvmppc_spapr_tce_table *stt = filp->private_data;
 914
 915        release_spapr_tce_table(stt);
 916        return 0;
 917}
 918
 919static struct file_operations kvm_spapr_tce_fops = {
 920        .mmap           = kvm_spapr_tce_mmap,
 921        .release        = kvm_spapr_tce_release,
 922};
 923
 924long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
 925                                   struct kvm_create_spapr_tce *args)
 926{
 927        struct kvmppc_spapr_tce_table *stt = NULL;
 928        long npages;
 929        int ret = -ENOMEM;
 930        int i;
 931
 932        /* Check this LIOBN hasn't been previously allocated */
 933        list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
 934                if (stt->liobn == args->liobn)
 935                        return -EBUSY;
 936        }
 937
 938        npages = kvmppc_stt_npages(args->window_size);
 939
 940        stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
 941                      GFP_KERNEL);
 942        if (!stt)
 943                goto fail;
 944
 945        stt->liobn = args->liobn;
 946        stt->window_size = args->window_size;
 947        stt->kvm = kvm;
 948
 949        for (i = 0; i < npages; i++) {
 950                stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
 951                if (!stt->pages[i])
 952                        goto fail;
 953        }
 954
 955        kvm_get_kvm(kvm);
 956
 957        mutex_lock(&kvm->lock);
 958        list_add(&stt->list, &kvm->arch.spapr_tce_tables);
 959
 960        mutex_unlock(&kvm->lock);
 961
 962        return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
 963                                stt, O_RDWR);
 964
 965fail:
 966        if (stt) {
 967                for (i = 0; i < npages; i++)
 968                        if (stt->pages[i])
 969                                __free_page(stt->pages[i]);
 970
 971                kfree(stt);
 972        }
 973        return ret;
 974}
 975
 976/* Work out RMLS (real mode limit selector) field value for a given RMA size.
 977   Assumes POWER7 or PPC970. */
 978static inline int lpcr_rmls(unsigned long rma_size)
 979{
 980        switch (rma_size) {
 981        case 32ul << 20:        /* 32 MB */
 982                if (cpu_has_feature(CPU_FTR_ARCH_206))
 983                        return 8;       /* only supported on POWER7 */
 984                return -1;
 985        case 64ul << 20:        /* 64 MB */
 986                return 3;
 987        case 128ul << 20:       /* 128 MB */
 988                return 7;
 989        case 256ul << 20:       /* 256 MB */
 990                return 4;
 991        case 1ul << 30:         /* 1 GB */
 992                return 2;
 993        case 16ul << 30:        /* 16 GB */
 994                return 1;
 995        case 256ul << 30:       /* 256 GB */
 996                return 0;
 997        default:
 998                return -1;
 999        }
1000}
1001
1002static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1003{
1004        struct kvmppc_rma_info *ri = vma->vm_file->private_data;
1005        struct page *page;
1006
1007        if (vmf->pgoff >= ri->npages)
1008                return VM_FAULT_SIGBUS;
1009
1010        page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1011        get_page(page);
1012        vmf->page = page;
1013        return 0;
1014}
1015
1016static const struct vm_operations_struct kvm_rma_vm_ops = {
1017        .fault = kvm_rma_fault,
1018};
1019
1020static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1021{
1022        vma->vm_flags |= VM_RESERVED;
1023        vma->vm_ops = &kvm_rma_vm_ops;
1024        return 0;
1025}
1026
1027static int kvm_rma_release(struct inode *inode, struct file *filp)
1028{
1029        struct kvmppc_rma_info *ri = filp->private_data;
1030
1031        kvm_release_rma(ri);
1032        return 0;
1033}
1034
1035static struct file_operations kvm_rma_fops = {
1036        .mmap           = kvm_rma_mmap,
1037        .release        = kvm_rma_release,
1038};
1039
1040long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1041{
1042        struct kvmppc_rma_info *ri;
1043        long fd;
1044
1045        ri = kvm_alloc_rma();
1046        if (!ri)
1047                return -ENOMEM;
1048
1049        fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1050        if (fd < 0)
1051                kvm_release_rma(ri);
1052
1053        ret->rma_size = ri->npages << PAGE_SHIFT;
1054        return fd;
1055}
1056
1057static struct page *hva_to_page(unsigned long addr)
1058{
1059        struct page *page[1];
1060        int npages;
1061
1062        might_sleep();
1063
1064        npages = get_user_pages_fast(addr, 1, 1, page);
1065
1066        if (unlikely(npages != 1))
1067                return 0;
1068
1069        return page[0];
1070}
1071
1072int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1073                                struct kvm_userspace_memory_region *mem)
1074{
1075        unsigned long psize, porder;
1076        unsigned long i, npages, totalpages;
1077        unsigned long pg_ix;
1078        struct kvmppc_pginfo *pginfo;
1079        unsigned long hva;
1080        struct kvmppc_rma_info *ri = NULL;
1081        struct page *page;
1082
1083        /* For now, only allow 16MB pages */
1084        porder = LARGE_PAGE_ORDER;
1085        psize = 1ul << porder;
1086        if ((mem->memory_size & (psize - 1)) ||
1087            (mem->guest_phys_addr & (psize - 1))) {
1088                pr_err("bad memory_size=%llx @ %llx\n",
1089                       mem->memory_size, mem->guest_phys_addr);
1090                return -EINVAL;
1091        }
1092
1093        npages = mem->memory_size >> porder;
1094        totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
1095
1096        /* More memory than we have space to track? */
1097        if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
1098                return -EINVAL;
1099
1100        /* Do we already have an RMA registered? */
1101        if (mem->guest_phys_addr == 0 && kvm->arch.rma)
1102                return -EINVAL;
1103
1104        if (totalpages > kvm->arch.ram_npages)
1105                kvm->arch.ram_npages = totalpages;
1106
1107        /* Is this one of our preallocated RMAs? */
1108        if (mem->guest_phys_addr == 0) {
1109                struct vm_area_struct *vma;
1110
1111                down_read(&current->mm->mmap_sem);
1112                vma = find_vma(current->mm, mem->userspace_addr);
1113                if (vma && vma->vm_file &&
1114                    vma->vm_file->f_op == &kvm_rma_fops &&
1115                    mem->userspace_addr == vma->vm_start)
1116                        ri = vma->vm_file->private_data;
1117                up_read(&current->mm->mmap_sem);
1118                if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
1119                        pr_err("CPU requires an RMO\n");
1120                        return -EINVAL;
1121                }
1122        }
1123
1124        if (ri) {
1125                unsigned long rma_size;
1126                unsigned long lpcr;
1127                long rmls;
1128
1129                rma_size = ri->npages << PAGE_SHIFT;
1130                if (rma_size > mem->memory_size)
1131                        rma_size = mem->memory_size;
1132                rmls = lpcr_rmls(rma_size);
1133                if (rmls < 0) {
1134                        pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
1135                        return -EINVAL;
1136                }
1137                atomic_inc(&ri->use_count);
1138                kvm->arch.rma = ri;
1139                kvm->arch.n_rma_pages = rma_size >> porder;
1140
1141                /* Update LPCR and RMOR */
1142                lpcr = kvm->arch.lpcr;
1143                if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1144                        /* PPC970; insert RMLS value (split field) in HID4 */
1145                        lpcr &= ~((1ul << HID4_RMLS0_SH) |
1146                                  (3ul << HID4_RMLS2_SH));
1147                        lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1148                                ((rmls & 3) << HID4_RMLS2_SH);
1149                        /* RMOR is also in HID4 */
1150                        lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1151                                << HID4_RMOR_SH;
1152                } else {
1153                        /* POWER7 */
1154                        lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1155                        lpcr |= rmls << LPCR_RMLS_SH;
1156                        kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1157                }
1158                kvm->arch.lpcr = lpcr;
1159                pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
1160                        ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1161        }
1162
1163        pg_ix = mem->guest_phys_addr >> porder;
1164        pginfo = kvm->arch.ram_pginfo + pg_ix;
1165        for (i = 0; i < npages; ++i, ++pg_ix) {
1166                if (ri && pg_ix < kvm->arch.n_rma_pages) {
1167                        pginfo[i].pfn = ri->base_pfn +
1168                                (pg_ix << (porder - PAGE_SHIFT));
1169                        continue;
1170                }
1171                hva = mem->userspace_addr + (i << porder);
1172                page = hva_to_page(hva);
1173                if (!page) {
1174                        pr_err("oops, no pfn for hva %lx\n", hva);
1175                        goto err;
1176                }
1177                /* Check it's a 16MB page */
1178                if (!PageHead(page) ||
1179                    compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
1180                        pr_err("page at %lx isn't 16MB (o=%d)\n",
1181                               hva, compound_order(page));
1182                        goto err;
1183                }
1184                pginfo[i].pfn = page_to_pfn(page);
1185        }
1186
1187        return 0;
1188
1189 err:
1190        return -EINVAL;
1191}
1192
1193void kvmppc_core_commit_memory_region(struct kvm *kvm,
1194                                struct kvm_userspace_memory_region *mem)
1195{
1196        if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
1197            !kvm->arch.rma)
1198                kvmppc_map_vrma(kvm, mem);
1199}
1200
1201int kvmppc_core_init_vm(struct kvm *kvm)
1202{
1203        long r;
1204        unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
1205        long err = -ENOMEM;
1206        unsigned long lpcr;
1207
1208        /* Allocate hashed page table */
1209        r = kvmppc_alloc_hpt(kvm);
1210        if (r)
1211                return r;
1212
1213        INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1214
1215        kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
1216                                       GFP_KERNEL);
1217        if (!kvm->arch.ram_pginfo) {
1218                pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
1219                       npages * sizeof(struct kvmppc_pginfo));
1220                goto out_free;
1221        }
1222
1223        kvm->arch.ram_npages = 0;
1224        kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
1225        kvm->arch.ram_porder = LARGE_PAGE_ORDER;
1226        kvm->arch.rma = NULL;
1227        kvm->arch.n_rma_pages = 0;
1228
1229        kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1230
1231        if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1232                /* PPC970; HID4 is effectively the LPCR */
1233                unsigned long lpid = kvm->arch.lpid;
1234                kvm->arch.host_lpid = 0;
1235                kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1236                lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1237                lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1238                        ((lpid & 0xf) << HID4_LPID5_SH);
1239        } else {
1240                /* POWER7; init LPCR for virtual RMA mode */
1241                kvm->arch.host_lpid = mfspr(SPRN_LPID);
1242                kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1243                lpcr &= LPCR_PECE | LPCR_LPES;
1244                lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1245                        LPCR_VPM0 | LPCR_VRMA_L;
1246        }
1247        kvm->arch.lpcr = lpcr;
1248
1249        return 0;
1250
1251 out_free:
1252        kvmppc_free_hpt(kvm);
1253        return err;
1254}
1255
1256void kvmppc_core_destroy_vm(struct kvm *kvm)
1257{
1258        struct kvmppc_pginfo *pginfo;
1259        unsigned long i;
1260
1261        if (kvm->arch.ram_pginfo) {
1262                pginfo = kvm->arch.ram_pginfo;
1263                kvm->arch.ram_pginfo = NULL;
1264                for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
1265                        if (pginfo[i].pfn)
1266                                put_page(pfn_to_page(pginfo[i].pfn));
1267                kfree(pginfo);
1268        }
1269        if (kvm->arch.rma) {
1270                kvm_release_rma(kvm->arch.rma);
1271                kvm->arch.rma = NULL;
1272        }
1273
1274        kvmppc_free_hpt(kvm);
1275        WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1276}
1277
1278/* These are stubs for now */
1279void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1280{
1281}
1282
1283/* We don't need to emulate any privileged instructions or dcbz */
1284int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285                           unsigned int inst, int *advance)
1286{
1287        return EMULATE_FAIL;
1288}
1289
1290int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1291{
1292        return EMULATE_FAIL;
1293}
1294
1295int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1296{
1297        return EMULATE_FAIL;
1298}
1299
1300static int kvmppc_book3s_hv_init(void)
1301{
1302        int r;
1303
1304        r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1305
1306        if (r)
1307                return r;
1308
1309        r = kvmppc_mmu_hv_init();
1310
1311        return r;
1312}
1313
1314static void kvmppc_book3s_hv_exit(void)
1315{
1316        kvm_exit();
1317}
1318
1319module_init(kvmppc_book3s_hv_init);
1320module_exit(kvmppc_book3s_hv_exit);
1321