linux/arch/sparc/kernel/ioport.c
<<
>>
Prefs
   1/*
   2 * ioport.c:  Simple io mapping allocator.
   3 *
   4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
   6 *
   7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
   8 *
   9 * 2000/01/29
  10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 
  11 *      things are ok.
  12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
  13 *      pointer into the big page mapping
  14 * <rth> zait: so what?
  15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
  16 * <zaitcev> Hmm
  17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
  18 *      So far so good.
  19 * <zaitcev> Now, driver calls pci_free_consistent(with result of
  20 *      remap_it_my_way()).
  21 * <zaitcev> How do you find the address to pass to free_pages()?
  22 * <rth> zait: walk the page tables?  It's only two or three level after all.
  23 * <rth> zait: you have to walk them anyway to remove the mapping.
  24 * <zaitcev> Hmm
  25 * <zaitcev> Sounds reasonable
  26 */
  27
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/kernel.h>
  31#include <linux/errno.h>
  32#include <linux/types.h>
  33#include <linux/ioport.h>
  34#include <linux/mm.h>
  35#include <linux/slab.h>
  36#include <linux/pci.h>          /* struct pci_dev */
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/scatterlist.h>
  40#include <linux/of_device.h>
  41
  42#include <asm/io.h>
  43#include <asm/vaddrs.h>
  44#include <asm/oplib.h>
  45#include <asm/prom.h>
  46#include <asm/page.h>
  47#include <asm/pgalloc.h>
  48#include <asm/dma.h>
  49#include <asm/iommu.h>
  50#include <asm/io-unit.h>
  51#include <asm/leon.h>
  52
  53/* This function must make sure that caches and memory are coherent after DMA
  54 * On LEON systems without cache snooping it flushes the entire D-CACHE.
  55 */
  56#ifndef CONFIG_SPARC_LEON
  57static inline void dma_make_coherent(unsigned long pa, unsigned long len)
  58{
  59}
  60#else
  61static inline void dma_make_coherent(unsigned long pa, unsigned long len)
  62{
  63        if (!sparc_leon3_snooping_enabled())
  64                leon_flush_dcache_all();
  65}
  66#endif
  67
  68static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
  69static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
  70    unsigned long size, char *name);
  71static void _sparc_free_io(struct resource *res);
  72
  73static void register_proc_sparc_ioport(void);
  74
  75/* This points to the next to use virtual memory for DVMA mappings */
  76static struct resource _sparc_dvma = {
  77        .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
  78};
  79/* This points to the start of I/O mappings, cluable from outside. */
  80/*ext*/ struct resource sparc_iomap = {
  81        .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
  82};
  83
  84/*
  85 * Our mini-allocator...
  86 * Boy this is gross! We need it because we must map I/O for
  87 * timers and interrupt controller before the kmalloc is available.
  88 */
  89
  90#define XNMLN  15
  91#define XNRES  10       /* SS-10 uses 8 */
  92
  93struct xresource {
  94        struct resource xres;   /* Must be first */
  95        int xflag;              /* 1 == used */
  96        char xname[XNMLN+1];
  97};
  98
  99static struct xresource xresv[XNRES];
 100
 101static struct xresource *xres_alloc(void) {
 102        struct xresource *xrp;
 103        int n;
 104
 105        xrp = xresv;
 106        for (n = 0; n < XNRES; n++) {
 107                if (xrp->xflag == 0) {
 108                        xrp->xflag = 1;
 109                        return xrp;
 110                }
 111                xrp++;
 112        }
 113        return NULL;
 114}
 115
 116static void xres_free(struct xresource *xrp) {
 117        xrp->xflag = 0;
 118}
 119
 120/*
 121 * These are typically used in PCI drivers
 122 * which are trying to be cross-platform.
 123 *
 124 * Bus type is always zero on IIep.
 125 */
 126void __iomem *ioremap(unsigned long offset, unsigned long size)
 127{
 128        char name[14];
 129
 130        sprintf(name, "phys_%08x", (u32)offset);
 131        return _sparc_alloc_io(0, offset, size, name);
 132}
 133EXPORT_SYMBOL(ioremap);
 134
 135/*
 136 * Comlimentary to ioremap().
 137 */
 138void iounmap(volatile void __iomem *virtual)
 139{
 140        unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
 141        struct resource *res;
 142
 143        /*
 144         * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
 145         * This probably warrants some sort of hashing.
 146        */
 147        if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
 148                printk("free_io/iounmap: cannot free %lx\n", vaddr);
 149                return;
 150        }
 151        _sparc_free_io(res);
 152
 153        if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
 154                xres_free((struct xresource *)res);
 155        } else {
 156                kfree(res);
 157        }
 158}
 159EXPORT_SYMBOL(iounmap);
 160
 161void __iomem *of_ioremap(struct resource *res, unsigned long offset,
 162                         unsigned long size, char *name)
 163{
 164        return _sparc_alloc_io(res->flags & 0xF,
 165                               res->start + offset,
 166                               size, name);
 167}
 168EXPORT_SYMBOL(of_ioremap);
 169
 170void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
 171{
 172        iounmap(base);
 173}
 174EXPORT_SYMBOL(of_iounmap);
 175
 176/*
 177 * Meat of mapping
 178 */
 179static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
 180    unsigned long size, char *name)
 181{
 182        static int printed_full;
 183        struct xresource *xres;
 184        struct resource *res;
 185        char *tack;
 186        int tlen;
 187        void __iomem *va;       /* P3 diag */
 188
 189        if (name == NULL) name = "???";
 190
 191        if ((xres = xres_alloc()) != 0) {
 192                tack = xres->xname;
 193                res = &xres->xres;
 194        } else {
 195                if (!printed_full) {
 196                        printk("ioremap: done with statics, switching to malloc\n");
 197                        printed_full = 1;
 198                }
 199                tlen = strlen(name);
 200                tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
 201                if (tack == NULL) return NULL;
 202                memset(tack, 0, sizeof(struct resource));
 203                res = (struct resource *) tack;
 204                tack += sizeof (struct resource);
 205        }
 206
 207        strlcpy(tack, name, XNMLN+1);
 208        res->name = tack;
 209
 210        va = _sparc_ioremap(res, busno, phys, size);
 211        /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
 212        return va;
 213}
 214
 215/*
 216 */
 217static void __iomem *
 218_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
 219{
 220        unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
 221
 222        if (allocate_resource(&sparc_iomap, res,
 223            (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
 224            sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
 225                /* Usually we cannot see printks in this case. */
 226                prom_printf("alloc_io_res(%s): cannot occupy\n",
 227                    (res->name != NULL)? res->name: "???");
 228                prom_halt();
 229        }
 230
 231        pa &= PAGE_MASK;
 232        sparc_mapiorange(bus, pa, res->start, resource_size(res));
 233
 234        return (void __iomem *)(unsigned long)(res->start + offset);
 235}
 236
 237/*
 238 * Comlimentary to _sparc_ioremap().
 239 */
 240static void _sparc_free_io(struct resource *res)
 241{
 242        unsigned long plen;
 243
 244        plen = resource_size(res);
 245        BUG_ON((plen & (PAGE_SIZE-1)) != 0);
 246        sparc_unmapiorange(res->start, plen);
 247        release_resource(res);
 248}
 249
 250#ifdef CONFIG_SBUS
 251
 252void sbus_set_sbus64(struct device *dev, int x)
 253{
 254        printk("sbus_set_sbus64: unsupported\n");
 255}
 256EXPORT_SYMBOL(sbus_set_sbus64);
 257
 258/*
 259 * Allocate a chunk of memory suitable for DMA.
 260 * Typically devices use them for control blocks.
 261 * CPU may access them without any explicit flushing.
 262 */
 263static void *sbus_alloc_coherent(struct device *dev, size_t len,
 264                                 dma_addr_t *dma_addrp, gfp_t gfp)
 265{
 266        struct platform_device *op = to_platform_device(dev);
 267        unsigned long len_total = PAGE_ALIGN(len);
 268        unsigned long va;
 269        struct resource *res;
 270        int order;
 271
 272        /* XXX why are some lengths signed, others unsigned? */
 273        if (len <= 0) {
 274                return NULL;
 275        }
 276        /* XXX So what is maxphys for us and how do drivers know it? */
 277        if (len > 256*1024) {                   /* __get_free_pages() limit */
 278                return NULL;
 279        }
 280
 281        order = get_order(len_total);
 282        if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
 283                goto err_nopages;
 284
 285        if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
 286                goto err_nomem;
 287
 288        if (allocate_resource(&_sparc_dvma, res, len_total,
 289            _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
 290                printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
 291                goto err_nova;
 292        }
 293
 294        // XXX The mmu_map_dma_area does this for us below, see comments.
 295        // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
 296        /*
 297         * XXX That's where sdev would be used. Currently we load
 298         * all iommu tables with the same translations.
 299         */
 300        if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
 301                goto err_noiommu;
 302
 303        res->name = op->dev.of_node->name;
 304
 305        return (void *)(unsigned long)res->start;
 306
 307err_noiommu:
 308        release_resource(res);
 309err_nova:
 310        kfree(res);
 311err_nomem:
 312        free_pages(va, order);
 313err_nopages:
 314        return NULL;
 315}
 316
 317static void sbus_free_coherent(struct device *dev, size_t n, void *p,
 318                               dma_addr_t ba)
 319{
 320        struct resource *res;
 321        struct page *pgv;
 322
 323        if ((res = lookup_resource(&_sparc_dvma,
 324            (unsigned long)p)) == NULL) {
 325                printk("sbus_free_consistent: cannot free %p\n", p);
 326                return;
 327        }
 328
 329        if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
 330                printk("sbus_free_consistent: unaligned va %p\n", p);
 331                return;
 332        }
 333
 334        n = PAGE_ALIGN(n);
 335        if (resource_size(res) != n) {
 336                printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
 337                    (long)resource_size(res), n);
 338                return;
 339        }
 340
 341        release_resource(res);
 342        kfree(res);
 343
 344        pgv = virt_to_page(p);
 345        mmu_unmap_dma_area(dev, ba, n);
 346
 347        __free_pages(pgv, get_order(n));
 348}
 349
 350/*
 351 * Map a chunk of memory so that devices can see it.
 352 * CPU view of this memory may be inconsistent with
 353 * a device view and explicit flushing is necessary.
 354 */
 355static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
 356                                unsigned long offset, size_t len,
 357                                enum dma_data_direction dir,
 358                                struct dma_attrs *attrs)
 359{
 360        void *va = page_address(page) + offset;
 361
 362        /* XXX why are some lengths signed, others unsigned? */
 363        if (len <= 0) {
 364                return 0;
 365        }
 366        /* XXX So what is maxphys for us and how do drivers know it? */
 367        if (len > 256*1024) {                   /* __get_free_pages() limit */
 368                return 0;
 369        }
 370        return mmu_get_scsi_one(dev, va, len);
 371}
 372
 373static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
 374                            enum dma_data_direction dir, struct dma_attrs *attrs)
 375{
 376        mmu_release_scsi_one(dev, ba, n);
 377}
 378
 379static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
 380                       enum dma_data_direction dir, struct dma_attrs *attrs)
 381{
 382        mmu_get_scsi_sgl(dev, sg, n);
 383
 384        /*
 385         * XXX sparc64 can return a partial length here. sun4c should do this
 386         * but it currently panics if it can't fulfill the request - Anton
 387         */
 388        return n;
 389}
 390
 391static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
 392                          enum dma_data_direction dir, struct dma_attrs *attrs)
 393{
 394        mmu_release_scsi_sgl(dev, sg, n);
 395}
 396
 397static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 398                                 int n, enum dma_data_direction dir)
 399{
 400        BUG();
 401}
 402
 403static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 404                                    int n, enum dma_data_direction dir)
 405{
 406        BUG();
 407}
 408
 409struct dma_map_ops sbus_dma_ops = {
 410        .alloc_coherent         = sbus_alloc_coherent,
 411        .free_coherent          = sbus_free_coherent,
 412        .map_page               = sbus_map_page,
 413        .unmap_page             = sbus_unmap_page,
 414        .map_sg                 = sbus_map_sg,
 415        .unmap_sg               = sbus_unmap_sg,
 416        .sync_sg_for_cpu        = sbus_sync_sg_for_cpu,
 417        .sync_sg_for_device     = sbus_sync_sg_for_device,
 418};
 419
 420static int __init sparc_register_ioport(void)
 421{
 422        register_proc_sparc_ioport();
 423
 424        return 0;
 425}
 426
 427arch_initcall(sparc_register_ioport);
 428
 429#endif /* CONFIG_SBUS */
 430
 431
 432/* LEON reuses PCI DMA ops */
 433#if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
 434
 435/* Allocate and map kernel buffer using consistent mode DMA for a device.
 436 * hwdev should be valid struct pci_dev pointer for PCI devices.
 437 */
 438static void *pci32_alloc_coherent(struct device *dev, size_t len,
 439                                  dma_addr_t *pba, gfp_t gfp)
 440{
 441        unsigned long len_total = PAGE_ALIGN(len);
 442        void *va;
 443        struct resource *res;
 444        int order;
 445
 446        if (len == 0) {
 447                return NULL;
 448        }
 449        if (len > 256*1024) {                   /* __get_free_pages() limit */
 450                return NULL;
 451        }
 452
 453        order = get_order(len_total);
 454        va = (void *) __get_free_pages(GFP_KERNEL, order);
 455        if (va == NULL) {
 456                printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
 457                goto err_nopages;
 458        }
 459
 460        if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
 461                printk("pci_alloc_consistent: no core\n");
 462                goto err_nomem;
 463        }
 464
 465        if (allocate_resource(&_sparc_dvma, res, len_total,
 466            _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
 467                printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
 468                goto err_nova;
 469        }
 470        sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
 471
 472        *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
 473        return (void *) res->start;
 474
 475err_nova:
 476        kfree(res);
 477err_nomem:
 478        free_pages((unsigned long)va, order);
 479err_nopages:
 480        return NULL;
 481}
 482
 483/* Free and unmap a consistent DMA buffer.
 484 * cpu_addr is what was returned from pci_alloc_consistent,
 485 * size must be the same as what as passed into pci_alloc_consistent,
 486 * and likewise dma_addr must be the same as what *dma_addrp was set to.
 487 *
 488 * References to the memory and mappings associated with cpu_addr/dma_addr
 489 * past this call are illegal.
 490 */
 491static void pci32_free_coherent(struct device *dev, size_t n, void *p,
 492                                dma_addr_t ba)
 493{
 494        struct resource *res;
 495
 496        if ((res = lookup_resource(&_sparc_dvma,
 497            (unsigned long)p)) == NULL) {
 498                printk("pci_free_consistent: cannot free %p\n", p);
 499                return;
 500        }
 501
 502        if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
 503                printk("pci_free_consistent: unaligned va %p\n", p);
 504                return;
 505        }
 506
 507        n = PAGE_ALIGN(n);
 508        if (resource_size(res) != n) {
 509                printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
 510                    (long)resource_size(res), (long)n);
 511                return;
 512        }
 513
 514        dma_make_coherent(ba, n);
 515        sparc_unmapiorange((unsigned long)p, n);
 516
 517        release_resource(res);
 518        kfree(res);
 519        free_pages((unsigned long)phys_to_virt(ba), get_order(n));
 520}
 521
 522/*
 523 * Same as pci_map_single, but with pages.
 524 */
 525static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
 526                                 unsigned long offset, size_t size,
 527                                 enum dma_data_direction dir,
 528                                 struct dma_attrs *attrs)
 529{
 530        /* IIep is write-through, not flushing. */
 531        return page_to_phys(page) + offset;
 532}
 533
 534static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
 535                             enum dma_data_direction dir, struct dma_attrs *attrs)
 536{
 537        if (dir != PCI_DMA_TODEVICE)
 538                dma_make_coherent(ba, PAGE_ALIGN(size));
 539}
 540
 541/* Map a set of buffers described by scatterlist in streaming
 542 * mode for DMA.  This is the scather-gather version of the
 543 * above pci_map_single interface.  Here the scatter gather list
 544 * elements are each tagged with the appropriate dma address
 545 * and length.  They are obtained via sg_dma_{address,length}(SG).
 546 *
 547 * NOTE: An implementation may be able to use a smaller number of
 548 *       DMA address/length pairs than there are SG table elements.
 549 *       (for example via virtual mapping capabilities)
 550 *       The routine returns the number of addr/length pairs actually
 551 *       used, at most nents.
 552 *
 553 * Device ownership issues as mentioned above for pci_map_single are
 554 * the same here.
 555 */
 556static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
 557                        int nents, enum dma_data_direction dir,
 558                        struct dma_attrs *attrs)
 559{
 560        struct scatterlist *sg;
 561        int n;
 562
 563        /* IIep is write-through, not flushing. */
 564        for_each_sg(sgl, sg, nents, n) {
 565                sg->dma_address = sg_phys(sg);
 566                sg->dma_length = sg->length;
 567        }
 568        return nents;
 569}
 570
 571/* Unmap a set of streaming mode DMA translations.
 572 * Again, cpu read rules concerning calls here are the same as for
 573 * pci_unmap_single() above.
 574 */
 575static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
 576                           int nents, enum dma_data_direction dir,
 577                           struct dma_attrs *attrs)
 578{
 579        struct scatterlist *sg;
 580        int n;
 581
 582        if (dir != PCI_DMA_TODEVICE) {
 583                for_each_sg(sgl, sg, nents, n) {
 584                        dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
 585                }
 586        }
 587}
 588
 589/* Make physical memory consistent for a single
 590 * streaming mode DMA translation before or after a transfer.
 591 *
 592 * If you perform a pci_map_single() but wish to interrogate the
 593 * buffer using the cpu, yet do not wish to teardown the PCI dma
 594 * mapping, you must call this function before doing so.  At the
 595 * next point you give the PCI dma address back to the card, you
 596 * must first perform a pci_dma_sync_for_device, and then the
 597 * device again owns the buffer.
 598 */
 599static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
 600                                      size_t size, enum dma_data_direction dir)
 601{
 602        if (dir != PCI_DMA_TODEVICE) {
 603                dma_make_coherent(ba, PAGE_ALIGN(size));
 604        }
 605}
 606
 607static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
 608                                         size_t size, enum dma_data_direction dir)
 609{
 610        if (dir != PCI_DMA_TODEVICE) {
 611                dma_make_coherent(ba, PAGE_ALIGN(size));
 612        }
 613}
 614
 615/* Make physical memory consistent for a set of streaming
 616 * mode DMA translations after a transfer.
 617 *
 618 * The same as pci_dma_sync_single_* but for a scatter-gather list,
 619 * same rules and usage.
 620 */
 621static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
 622                                  int nents, enum dma_data_direction dir)
 623{
 624        struct scatterlist *sg;
 625        int n;
 626
 627        if (dir != PCI_DMA_TODEVICE) {
 628                for_each_sg(sgl, sg, nents, n) {
 629                        dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
 630                }
 631        }
 632}
 633
 634static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
 635                                     int nents, enum dma_data_direction dir)
 636{
 637        struct scatterlist *sg;
 638        int n;
 639
 640        if (dir != PCI_DMA_TODEVICE) {
 641                for_each_sg(sgl, sg, nents, n) {
 642                        dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
 643                }
 644        }
 645}
 646
 647struct dma_map_ops pci32_dma_ops = {
 648        .alloc_coherent         = pci32_alloc_coherent,
 649        .free_coherent          = pci32_free_coherent,
 650        .map_page               = pci32_map_page,
 651        .unmap_page             = pci32_unmap_page,
 652        .map_sg                 = pci32_map_sg,
 653        .unmap_sg               = pci32_unmap_sg,
 654        .sync_single_for_cpu    = pci32_sync_single_for_cpu,
 655        .sync_single_for_device = pci32_sync_single_for_device,
 656        .sync_sg_for_cpu        = pci32_sync_sg_for_cpu,
 657        .sync_sg_for_device     = pci32_sync_sg_for_device,
 658};
 659EXPORT_SYMBOL(pci32_dma_ops);
 660
 661#endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
 662
 663#ifdef CONFIG_SPARC_LEON
 664struct dma_map_ops *dma_ops = &pci32_dma_ops;
 665#elif defined(CONFIG_SBUS)
 666struct dma_map_ops *dma_ops = &sbus_dma_ops;
 667#endif
 668
 669EXPORT_SYMBOL(dma_ops);
 670
 671
 672/*
 673 * Return whether the given PCI device DMA address mask can be
 674 * supported properly.  For example, if your device can only drive the
 675 * low 24-bits during PCI bus mastering, then you would pass
 676 * 0x00ffffff as the mask to this function.
 677 */
 678int dma_supported(struct device *dev, u64 mask)
 679{
 680#ifdef CONFIG_PCI
 681        if (dev->bus == &pci_bus_type)
 682                return 1;
 683#endif
 684        return 0;
 685}
 686EXPORT_SYMBOL(dma_supported);
 687
 688#ifdef CONFIG_PROC_FS
 689
 690static int sparc_io_proc_show(struct seq_file *m, void *v)
 691{
 692        struct resource *root = m->private, *r;
 693        const char *nm;
 694
 695        for (r = root->child; r != NULL; r = r->sibling) {
 696                if ((nm = r->name) == 0) nm = "???";
 697                seq_printf(m, "%016llx-%016llx: %s\n",
 698                                (unsigned long long)r->start,
 699                                (unsigned long long)r->end, nm);
 700        }
 701
 702        return 0;
 703}
 704
 705static int sparc_io_proc_open(struct inode *inode, struct file *file)
 706{
 707        return single_open(file, sparc_io_proc_show, PDE(inode)->data);
 708}
 709
 710static const struct file_operations sparc_io_proc_fops = {
 711        .owner          = THIS_MODULE,
 712        .open           = sparc_io_proc_open,
 713        .read           = seq_read,
 714        .llseek         = seq_lseek,
 715        .release        = single_release,
 716};
 717#endif /* CONFIG_PROC_FS */
 718
 719static void register_proc_sparc_ioport(void)
 720{
 721#ifdef CONFIG_PROC_FS
 722        proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
 723        proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
 724#endif
 725}
 726