1/* 2 * linux/arch/unicore32/include/asm/cacheflush.h 3 * 4 * Code specific to PKUnity SoC and UniCore ISA 5 * 6 * Copyright (C) 2001-2010 GUAN Xue-tao 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12#ifndef __UNICORE_CACHEFLUSH_H__ 13#define __UNICORE_CACHEFLUSH_H__ 14 15#include <linux/mm.h> 16 17#include <asm/shmparam.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * This flag is used to indicate that the page pointed to by a pte is clean 23 * and does not require cleaning before returning it to the user. 24 */ 25#define PG_dcache_clean PG_arch_1 26 27/* 28 * MM Cache Management 29 * =================== 30 * 31 * The arch/unicore32/mm/cache.S files implement these methods. 32 * 33 * Start addresses are inclusive and end addresses are exclusive; 34 * start addresses should be rounded down, end addresses up. 35 * 36 * See Documentation/cachetlb.txt for more information. 37 * Please note that the implementation of these, and the required 38 * effects are cache-type (VIVT/VIPT/PIPT) specific. 39 * 40 * flush_icache_all() 41 * 42 * Unconditionally clean and invalidate the entire icache. 43 * Currently only needed for cache-v6.S and cache-v7.S, see 44 * __flush_icache_all for the generic implementation. 45 * 46 * flush_kern_all() 47 * 48 * Unconditionally clean and invalidate the entire cache. 49 * 50 * flush_user_all() 51 * 52 * Clean and invalidate all user space cache entries 53 * before a change of page tables. 54 * 55 * flush_user_range(start, end, flags) 56 * 57 * Clean and invalidate a range of cache entries in the 58 * specified address space before a change of page tables. 59 * - start - user start address (inclusive, page aligned) 60 * - end - user end address (exclusive, page aligned) 61 * - flags - vma->vm_flags field 62 * 63 * coherent_kern_range(start, end) 64 * 65 * Ensure coherency between the Icache and the Dcache in the 66 * region described by start, end. If you have non-snooping 67 * Harvard caches, you need to implement this function. 68 * - start - virtual start address 69 * - end - virtual end address 70 * 71 * coherent_user_range(start, end) 72 * 73 * Ensure coherency between the Icache and the Dcache in the 74 * region described by start, end. If you have non-snooping 75 * Harvard caches, you need to implement this function. 76 * - start - virtual start address 77 * - end - virtual end address 78 * 79 * flush_kern_dcache_area(kaddr, size) 80 * 81 * Ensure that the data held in page is written back. 82 * - kaddr - page address 83 * - size - region size 84 * 85 * DMA Cache Coherency 86 * =================== 87 * 88 * dma_flush_range(start, end) 89 * 90 * Clean and invalidate the specified virtual address range. 91 * - start - virtual start address 92 * - end - virtual end address 93 */ 94 95extern void __cpuc_flush_icache_all(void); 96extern void __cpuc_flush_kern_all(void); 97extern void __cpuc_flush_user_all(void); 98extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 99extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 100extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 101extern void __cpuc_flush_dcache_area(void *, size_t); 102extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size); 103 104/* 105 * These are private to the dma-mapping API. Do not use directly. 106 * Their sole purpose is to ensure that data held in the cache 107 * is visible to DMA, or data written by DMA to system memory is 108 * visible to the CPU. 109 */ 110extern void __cpuc_dma_clean_range(unsigned long, unsigned long); 111extern void __cpuc_dma_flush_range(unsigned long, unsigned long); 112 113/* 114 * Copy user data from/to a page which is mapped into a different 115 * processes address space. Really, we want to allow our "user 116 * space" model to handle this. 117 */ 118extern void copy_to_user_page(struct vm_area_struct *, struct page *, 119 unsigned long, void *, const void *, unsigned long); 120#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 121 do { \ 122 memcpy(dst, src, len); \ 123 } while (0) 124 125/* 126 * Convert calls to our calling convention. 127 */ 128/* Invalidate I-cache */ 129static inline void __flush_icache_all(void) 130{ 131 asm("movc p0.c5, %0, #20;\n" 132 "nop; nop; nop; nop; nop; nop; nop; nop\n" 133 : 134 : "r" (0)); 135} 136 137#define flush_cache_all() __cpuc_flush_kern_all() 138 139extern void flush_cache_mm(struct mm_struct *mm); 140extern void flush_cache_range(struct vm_area_struct *vma, 141 unsigned long start, unsigned long end); 142extern void flush_cache_page(struct vm_area_struct *vma, 143 unsigned long user_addr, unsigned long pfn); 144 145#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 146 147/* 148 * flush_cache_user_range is used when we want to ensure that the 149 * Harvard caches are synchronised for the user space address range. 150 * This is used for the UniCore private sys_cacheflush system call. 151 */ 152#define flush_cache_user_range(vma, start, end) \ 153 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 154 155/* 156 * Perform necessary cache operations to ensure that data previously 157 * stored within this range of addresses can be executed by the CPU. 158 */ 159#define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e) 160 161/* 162 * Perform necessary cache operations to ensure that the TLB will 163 * see data written in the specified area. 164 */ 165#define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size) 166 167/* 168 * flush_dcache_page is used when the kernel has written to the page 169 * cache page at virtual address page->virtual. 170 * 171 * If this page isn't mapped (ie, page_mapping == NULL), or it might 172 * have userspace mappings, then we _must_ always clean + invalidate 173 * the dcache entries associated with the kernel mapping. 174 * 175 * Otherwise we can defer the operation, and clean the cache when we are 176 * about to change to user space. This is the same method as used on SPARC64. 177 * See update_mmu_cache for the user space part. 178 */ 179#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 180extern void flush_dcache_page(struct page *); 181 182#define flush_dcache_mmap_lock(mapping) \ 183 spin_lock_irq(&(mapping)->tree_lock) 184#define flush_dcache_mmap_unlock(mapping) \ 185 spin_unlock_irq(&(mapping)->tree_lock) 186 187#define flush_icache_user_range(vma, page, addr, len) \ 188 flush_dcache_page(page) 189 190/* 191 * We don't appear to need to do anything here. In fact, if we did, we'd 192 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 193 */ 194#define flush_icache_page(vma, page) do { } while (0) 195 196/* 197 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 198 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 199 * caches, since the direct-mappings of these pages may contain cached 200 * data, we need to do a full cache flush to ensure that writebacks 201 * don't corrupt data placed into these pages via the new mappings. 202 */ 203static inline void flush_cache_vmap(unsigned long start, unsigned long end) 204{ 205} 206 207static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 208{ 209} 210 211#endif 212