linux/arch/x86/include/asm/i387.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1994 Linus Torvalds
   3 *
   4 * Pentium III FXSR, SSE support
   5 * General FPU state handling cleanups
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 * x86-64 work by Andi Kleen 2002
   8 */
   9
  10#ifndef _ASM_X86_I387_H
  11#define _ASM_X86_I387_H
  12
  13#ifndef __ASSEMBLY__
  14
  15#include <linux/sched.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/regset.h>
  18#include <linux/hardirq.h>
  19#include <linux/slab.h>
  20#include <asm/asm.h>
  21#include <asm/cpufeature.h>
  22#include <asm/processor.h>
  23#include <asm/sigcontext.h>
  24#include <asm/user.h>
  25#include <asm/uaccess.h>
  26#include <asm/xsave.h>
  27
  28extern unsigned int sig_xstate_size;
  29extern void fpu_init(void);
  30extern void mxcsr_feature_mask_init(void);
  31extern int init_fpu(struct task_struct *child);
  32extern asmlinkage void math_state_restore(void);
  33extern void __math_state_restore(void);
  34extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
  35
  36extern user_regset_active_fn fpregs_active, xfpregs_active;
  37extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
  38                                xstateregs_get;
  39extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
  40                                 xstateregs_set;
  41
  42/*
  43 * xstateregs_active == fpregs_active. Please refer to the comment
  44 * at the definition of fpregs_active.
  45 */
  46#define xstateregs_active       fpregs_active
  47
  48extern struct _fpx_sw_bytes fx_sw_reserved;
  49#ifdef CONFIG_IA32_EMULATION
  50extern unsigned int sig_xstate_ia32_size;
  51extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
  52struct _fpstate_ia32;
  53struct _xstate_ia32;
  54extern int save_i387_xstate_ia32(void __user *buf);
  55extern int restore_i387_xstate_ia32(void __user *buf);
  56#endif
  57
  58#ifdef CONFIG_MATH_EMULATION
  59extern void finit_soft_fpu(struct i387_soft_struct *soft);
  60#else
  61static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
  62#endif
  63
  64#define X87_FSW_ES (1 << 7)     /* Exception Summary */
  65
  66static __always_inline __pure bool use_xsaveopt(void)
  67{
  68        return static_cpu_has(X86_FEATURE_XSAVEOPT);
  69}
  70
  71static __always_inline __pure bool use_xsave(void)
  72{
  73        return static_cpu_has(X86_FEATURE_XSAVE);
  74}
  75
  76static __always_inline __pure bool use_fxsr(void)
  77{
  78        return static_cpu_has(X86_FEATURE_FXSR);
  79}
  80
  81extern void __sanitize_i387_state(struct task_struct *);
  82
  83static inline void sanitize_i387_state(struct task_struct *tsk)
  84{
  85        if (!use_xsaveopt())
  86                return;
  87        __sanitize_i387_state(tsk);
  88}
  89
  90#ifdef CONFIG_X86_64
  91static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
  92{
  93        int err;
  94
  95        /* See comment in fxsave() below. */
  96#ifdef CONFIG_AS_FXSAVEQ
  97        asm volatile("1:  fxrstorq %[fx]\n\t"
  98                     "2:\n"
  99                     ".section .fixup,\"ax\"\n"
 100                     "3:  movl $-1,%[err]\n"
 101                     "    jmp  2b\n"
 102                     ".previous\n"
 103                     _ASM_EXTABLE(1b, 3b)
 104                     : [err] "=r" (err)
 105                     : [fx] "m" (*fx), "0" (0));
 106#else
 107        asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
 108                     "2:\n"
 109                     ".section .fixup,\"ax\"\n"
 110                     "3:  movl $-1,%[err]\n"
 111                     "    jmp  2b\n"
 112                     ".previous\n"
 113                     _ASM_EXTABLE(1b, 3b)
 114                     : [err] "=r" (err)
 115                     : [fx] "R" (fx), "m" (*fx), "0" (0));
 116#endif
 117        return err;
 118}
 119
 120static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
 121{
 122        int err;
 123
 124        /*
 125         * Clear the bytes not touched by the fxsave and reserved
 126         * for the SW usage.
 127         */
 128        err = __clear_user(&fx->sw_reserved,
 129                           sizeof(struct _fpx_sw_bytes));
 130        if (unlikely(err))
 131                return -EFAULT;
 132
 133        /* See comment in fxsave() below. */
 134#ifdef CONFIG_AS_FXSAVEQ
 135        asm volatile("1:  fxsaveq %[fx]\n\t"
 136                     "2:\n"
 137                     ".section .fixup,\"ax\"\n"
 138                     "3:  movl $-1,%[err]\n"
 139                     "    jmp  2b\n"
 140                     ".previous\n"
 141                     _ASM_EXTABLE(1b, 3b)
 142                     : [err] "=r" (err), [fx] "=m" (*fx)
 143                     : "0" (0));
 144#else
 145        asm volatile("1:  rex64/fxsave (%[fx])\n\t"
 146                     "2:\n"
 147                     ".section .fixup,\"ax\"\n"
 148                     "3:  movl $-1,%[err]\n"
 149                     "    jmp  2b\n"
 150                     ".previous\n"
 151                     _ASM_EXTABLE(1b, 3b)
 152                     : [err] "=r" (err), "=m" (*fx)
 153                     : [fx] "R" (fx), "0" (0));
 154#endif
 155        if (unlikely(err) &&
 156            __clear_user(fx, sizeof(struct i387_fxsave_struct)))
 157                err = -EFAULT;
 158        /* No need to clear here because the caller clears USED_MATH */
 159        return err;
 160}
 161
 162static inline void fpu_fxsave(struct fpu *fpu)
 163{
 164        /* Using "rex64; fxsave %0" is broken because, if the memory operand
 165           uses any extended registers for addressing, a second REX prefix
 166           will be generated (to the assembler, rex64 followed by semicolon
 167           is a separate instruction), and hence the 64-bitness is lost. */
 168
 169#ifdef CONFIG_AS_FXSAVEQ
 170        /* Using "fxsaveq %0" would be the ideal choice, but is only supported
 171           starting with gas 2.16. */
 172        __asm__ __volatile__("fxsaveq %0"
 173                             : "=m" (fpu->state->fxsave));
 174#else
 175        /* Using, as a workaround, the properly prefixed form below isn't
 176           accepted by any binutils version so far released, complaining that
 177           the same type of prefix is used twice if an extended register is
 178           needed for addressing (fix submitted to mainline 2005-11-21).
 179        asm volatile("rex64/fxsave %0"
 180                     : "=m" (fpu->state->fxsave));
 181           This, however, we can work around by forcing the compiler to select
 182           an addressing mode that doesn't require extended registers. */
 183        asm volatile("rex64/fxsave (%[fx])"
 184                     : "=m" (fpu->state->fxsave)
 185                     : [fx] "R" (&fpu->state->fxsave));
 186#endif
 187}
 188
 189#else  /* CONFIG_X86_32 */
 190
 191/* perform fxrstor iff the processor has extended states, otherwise frstor */
 192static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
 193{
 194        /*
 195         * The "nop" is needed to make the instructions the same
 196         * length.
 197         */
 198        alternative_input(
 199                "nop ; frstor %1",
 200                "fxrstor %1",
 201                X86_FEATURE_FXSR,
 202                "m" (*fx));
 203
 204        return 0;
 205}
 206
 207static inline void fpu_fxsave(struct fpu *fpu)
 208{
 209        asm volatile("fxsave %[fx]"
 210                     : [fx] "=m" (fpu->state->fxsave));
 211}
 212
 213#endif  /* CONFIG_X86_64 */
 214
 215/* We need a safe address that is cheap to find and that is already
 216   in L1 during context switch. The best choices are unfortunately
 217   different for UP and SMP */
 218#ifdef CONFIG_SMP
 219#define safe_address (__per_cpu_offset[0])
 220#else
 221#define safe_address (kstat_cpu(0).cpustat.user)
 222#endif
 223
 224/*
 225 * These must be called with preempt disabled
 226 */
 227static inline void fpu_save_init(struct fpu *fpu)
 228{
 229        if (use_xsave()) {
 230                fpu_xsave(fpu);
 231
 232                /*
 233                 * xsave header may indicate the init state of the FP.
 234                 */
 235                if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
 236                        return;
 237        } else if (use_fxsr()) {
 238                fpu_fxsave(fpu);
 239        } else {
 240                asm volatile("fnsave %[fx]; fwait"
 241                             : [fx] "=m" (fpu->state->fsave));
 242                return;
 243        }
 244
 245        if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES))
 246                asm volatile("fnclex");
 247
 248        /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
 249           is pending.  Clear the x87 state here by setting it to fixed
 250           values. safe_address is a random variable that should be in L1 */
 251        alternative_input(
 252                ASM_NOP8 ASM_NOP2,
 253                "emms\n\t"              /* clear stack tags */
 254                "fildl %P[addr]",       /* set F?P to defined value */
 255                X86_FEATURE_FXSAVE_LEAK,
 256                [addr] "m" (safe_address));
 257}
 258
 259static inline void __save_init_fpu(struct task_struct *tsk)
 260{
 261        fpu_save_init(&tsk->thread.fpu);
 262        task_thread_info(tsk)->status &= ~TS_USEDFPU;
 263}
 264
 265static inline int fpu_fxrstor_checking(struct fpu *fpu)
 266{
 267        return fxrstor_checking(&fpu->state->fxsave);
 268}
 269
 270static inline int fpu_restore_checking(struct fpu *fpu)
 271{
 272        if (use_xsave())
 273                return fpu_xrstor_checking(fpu);
 274        else
 275                return fpu_fxrstor_checking(fpu);
 276}
 277
 278static inline int restore_fpu_checking(struct task_struct *tsk)
 279{
 280        return fpu_restore_checking(&tsk->thread.fpu);
 281}
 282
 283/*
 284 * Signal frame handlers...
 285 */
 286extern int save_i387_xstate(void __user *buf);
 287extern int restore_i387_xstate(void __user *buf);
 288
 289static inline void __unlazy_fpu(struct task_struct *tsk)
 290{
 291        if (task_thread_info(tsk)->status & TS_USEDFPU) {
 292                __save_init_fpu(tsk);
 293                stts();
 294        } else
 295                tsk->fpu_counter = 0;
 296}
 297
 298static inline void __clear_fpu(struct task_struct *tsk)
 299{
 300        if (task_thread_info(tsk)->status & TS_USEDFPU) {
 301                /* Ignore delayed exceptions from user space */
 302                asm volatile("1: fwait\n"
 303                             "2:\n"
 304                             _ASM_EXTABLE(1b, 2b));
 305                task_thread_info(tsk)->status &= ~TS_USEDFPU;
 306                stts();
 307        }
 308}
 309
 310static inline void kernel_fpu_begin(void)
 311{
 312        struct thread_info *me = current_thread_info();
 313        preempt_disable();
 314        if (me->status & TS_USEDFPU)
 315                __save_init_fpu(me->task);
 316        else
 317                clts();
 318}
 319
 320static inline void kernel_fpu_end(void)
 321{
 322        stts();
 323        preempt_enable();
 324}
 325
 326static inline bool irq_fpu_usable(void)
 327{
 328        struct pt_regs *regs;
 329
 330        return !in_interrupt() || !(regs = get_irq_regs()) || \
 331                user_mode(regs) || (read_cr0() & X86_CR0_TS);
 332}
 333
 334/*
 335 * Some instructions like VIA's padlock instructions generate a spurious
 336 * DNA fault but don't modify SSE registers. And these instructions
 337 * get used from interrupt context as well. To prevent these kernel instructions
 338 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
 339 * should use them only in the context of irq_ts_save/restore()
 340 */
 341static inline int irq_ts_save(void)
 342{
 343        /*
 344         * If in process context and not atomic, we can take a spurious DNA fault.
 345         * Otherwise, doing clts() in process context requires disabling preemption
 346         * or some heavy lifting like kernel_fpu_begin()
 347         */
 348        if (!in_atomic())
 349                return 0;
 350
 351        if (read_cr0() & X86_CR0_TS) {
 352                clts();
 353                return 1;
 354        }
 355
 356        return 0;
 357}
 358
 359static inline void irq_ts_restore(int TS_state)
 360{
 361        if (TS_state)
 362                stts();
 363}
 364
 365/*
 366 * These disable preemption on their own and are safe
 367 */
 368static inline void save_init_fpu(struct task_struct *tsk)
 369{
 370        preempt_disable();
 371        __save_init_fpu(tsk);
 372        stts();
 373        preempt_enable();
 374}
 375
 376static inline void unlazy_fpu(struct task_struct *tsk)
 377{
 378        preempt_disable();
 379        __unlazy_fpu(tsk);
 380        preempt_enable();
 381}
 382
 383static inline void clear_fpu(struct task_struct *tsk)
 384{
 385        preempt_disable();
 386        __clear_fpu(tsk);
 387        preempt_enable();
 388}
 389
 390/*
 391 * i387 state interaction
 392 */
 393static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
 394{
 395        if (cpu_has_fxsr) {
 396                return tsk->thread.fpu.state->fxsave.cwd;
 397        } else {
 398                return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
 399        }
 400}
 401
 402static inline unsigned short get_fpu_swd(struct task_struct *tsk)
 403{
 404        if (cpu_has_fxsr) {
 405                return tsk->thread.fpu.state->fxsave.swd;
 406        } else {
 407                return (unsigned short)tsk->thread.fpu.state->fsave.swd;
 408        }
 409}
 410
 411static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
 412{
 413        if (cpu_has_xmm) {
 414                return tsk->thread.fpu.state->fxsave.mxcsr;
 415        } else {
 416                return MXCSR_DEFAULT;
 417        }
 418}
 419
 420static bool fpu_allocated(struct fpu *fpu)
 421{
 422        return fpu->state != NULL;
 423}
 424
 425static inline int fpu_alloc(struct fpu *fpu)
 426{
 427        if (fpu_allocated(fpu))
 428                return 0;
 429        fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
 430        if (!fpu->state)
 431                return -ENOMEM;
 432        WARN_ON((unsigned long)fpu->state & 15);
 433        return 0;
 434}
 435
 436static inline void fpu_free(struct fpu *fpu)
 437{
 438        if (fpu->state) {
 439                kmem_cache_free(task_xstate_cachep, fpu->state);
 440                fpu->state = NULL;
 441        }
 442}
 443
 444static inline void fpu_copy(struct fpu *dst, struct fpu *src)
 445{
 446        memcpy(dst->state, src->state, xstate_size);
 447}
 448
 449extern void fpu_finit(struct fpu *fpu);
 450
 451#endif /* __ASSEMBLY__ */
 452
 453#endif /* _ASM_X86_I387_H */
 454