linux/arch/x86/kernel/hpet.c
<<
>>
Prefs
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/sysdev.h>
   6#include <linux/delay.h>
   7#include <linux/errno.h>
   8#include <linux/i8253.h>
   9#include <linux/slab.h>
  10#include <linux/hpet.h>
  11#include <linux/init.h>
  12#include <linux/cpu.h>
  13#include <linux/pm.h>
  14#include <linux/io.h>
  15
  16#include <asm/fixmap.h>
  17#include <asm/hpet.h>
  18#include <asm/time.h>
  19
  20#define HPET_MASK                       CLOCKSOURCE_MASK(32)
  21
  22/* FSEC = 10^-15
  23   NSEC = 10^-9 */
  24#define FSEC_PER_NSEC                   1000000L
  25
  26#define HPET_DEV_USED_BIT               2
  27#define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
  28#define HPET_DEV_VALID                  0x8
  29#define HPET_DEV_FSB_CAP                0x1000
  30#define HPET_DEV_PERI_CAP               0x2000
  31
  32#define HPET_MIN_CYCLES                 128
  33#define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  34
  35#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
  36
  37/*
  38 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  39 */
  40unsigned long                           hpet_address;
  41u8                                      hpet_blockid; /* OS timer block num */
  42u8                                      hpet_msi_disable;
  43
  44#ifdef CONFIG_PCI_MSI
  45static unsigned long                    hpet_num_timers;
  46#endif
  47static void __iomem                     *hpet_virt_address;
  48
  49struct hpet_dev {
  50        struct clock_event_device       evt;
  51        unsigned int                    num;
  52        int                             cpu;
  53        unsigned int                    irq;
  54        unsigned int                    flags;
  55        char                            name[10];
  56};
  57
  58inline unsigned int hpet_readl(unsigned int a)
  59{
  60        return readl(hpet_virt_address + a);
  61}
  62
  63static inline void hpet_writel(unsigned int d, unsigned int a)
  64{
  65        writel(d, hpet_virt_address + a);
  66}
  67
  68#ifdef CONFIG_X86_64
  69#include <asm/pgtable.h>
  70#endif
  71
  72static inline void hpet_set_mapping(void)
  73{
  74        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  75#ifdef CONFIG_X86_64
  76        __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  77#endif
  78}
  79
  80static inline void hpet_clear_mapping(void)
  81{
  82        iounmap(hpet_virt_address);
  83        hpet_virt_address = NULL;
  84}
  85
  86/*
  87 * HPET command line enable / disable
  88 */
  89static int boot_hpet_disable;
  90int hpet_force_user;
  91static int hpet_verbose;
  92
  93static int __init hpet_setup(char *str)
  94{
  95        if (str) {
  96                if (!strncmp("disable", str, 7))
  97                        boot_hpet_disable = 1;
  98                if (!strncmp("force", str, 5))
  99                        hpet_force_user = 1;
 100                if (!strncmp("verbose", str, 7))
 101                        hpet_verbose = 1;
 102        }
 103        return 1;
 104}
 105__setup("hpet=", hpet_setup);
 106
 107static int __init disable_hpet(char *str)
 108{
 109        boot_hpet_disable = 1;
 110        return 1;
 111}
 112__setup("nohpet", disable_hpet);
 113
 114static inline int is_hpet_capable(void)
 115{
 116        return !boot_hpet_disable && hpet_address;
 117}
 118
 119/*
 120 * HPET timer interrupt enable / disable
 121 */
 122static int hpet_legacy_int_enabled;
 123
 124/**
 125 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 126 */
 127int is_hpet_enabled(void)
 128{
 129        return is_hpet_capable() && hpet_legacy_int_enabled;
 130}
 131EXPORT_SYMBOL_GPL(is_hpet_enabled);
 132
 133static void _hpet_print_config(const char *function, int line)
 134{
 135        u32 i, timers, l, h;
 136        printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 137        l = hpet_readl(HPET_ID);
 138        h = hpet_readl(HPET_PERIOD);
 139        timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 140        printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 141        l = hpet_readl(HPET_CFG);
 142        h = hpet_readl(HPET_STATUS);
 143        printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 144        l = hpet_readl(HPET_COUNTER);
 145        h = hpet_readl(HPET_COUNTER+4);
 146        printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 147
 148        for (i = 0; i < timers; i++) {
 149                l = hpet_readl(HPET_Tn_CFG(i));
 150                h = hpet_readl(HPET_Tn_CFG(i)+4);
 151                printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 152                       i, l, h);
 153                l = hpet_readl(HPET_Tn_CMP(i));
 154                h = hpet_readl(HPET_Tn_CMP(i)+4);
 155                printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 156                       i, l, h);
 157                l = hpet_readl(HPET_Tn_ROUTE(i));
 158                h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 159                printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 160                       i, l, h);
 161        }
 162}
 163
 164#define hpet_print_config()                                     \
 165do {                                                            \
 166        if (hpet_verbose)                                       \
 167                _hpet_print_config(__FUNCTION__, __LINE__);     \
 168} while (0)
 169
 170/*
 171 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 172 * timer 0 and timer 1 in case of RTC emulation.
 173 */
 174#ifdef CONFIG_HPET
 175
 176static void hpet_reserve_msi_timers(struct hpet_data *hd);
 177
 178static void hpet_reserve_platform_timers(unsigned int id)
 179{
 180        struct hpet __iomem *hpet = hpet_virt_address;
 181        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 182        unsigned int nrtimers, i;
 183        struct hpet_data hd;
 184
 185        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 186
 187        memset(&hd, 0, sizeof(hd));
 188        hd.hd_phys_address      = hpet_address;
 189        hd.hd_address           = hpet;
 190        hd.hd_nirqs             = nrtimers;
 191        hpet_reserve_timer(&hd, 0);
 192
 193#ifdef CONFIG_HPET_EMULATE_RTC
 194        hpet_reserve_timer(&hd, 1);
 195#endif
 196
 197        /*
 198         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 199         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 200         * don't bother configuring *any* comparator interrupts.
 201         */
 202        hd.hd_irq[0] = HPET_LEGACY_8254;
 203        hd.hd_irq[1] = HPET_LEGACY_RTC;
 204
 205        for (i = 2; i < nrtimers; timer++, i++) {
 206                hd.hd_irq[i] = (readl(&timer->hpet_config) &
 207                        Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 208        }
 209
 210        hpet_reserve_msi_timers(&hd);
 211
 212        hpet_alloc(&hd);
 213
 214}
 215#else
 216static void hpet_reserve_platform_timers(unsigned int id) { }
 217#endif
 218
 219/*
 220 * Common hpet info
 221 */
 222static unsigned long hpet_freq;
 223
 224static void hpet_legacy_set_mode(enum clock_event_mode mode,
 225                          struct clock_event_device *evt);
 226static int hpet_legacy_next_event(unsigned long delta,
 227                           struct clock_event_device *evt);
 228
 229/*
 230 * The hpet clock event device
 231 */
 232static struct clock_event_device hpet_clockevent = {
 233        .name           = "hpet",
 234        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 235        .set_mode       = hpet_legacy_set_mode,
 236        .set_next_event = hpet_legacy_next_event,
 237        .irq            = 0,
 238        .rating         = 50,
 239};
 240
 241static void hpet_stop_counter(void)
 242{
 243        unsigned long cfg = hpet_readl(HPET_CFG);
 244        cfg &= ~HPET_CFG_ENABLE;
 245        hpet_writel(cfg, HPET_CFG);
 246}
 247
 248static void hpet_reset_counter(void)
 249{
 250        hpet_writel(0, HPET_COUNTER);
 251        hpet_writel(0, HPET_COUNTER + 4);
 252}
 253
 254static void hpet_start_counter(void)
 255{
 256        unsigned int cfg = hpet_readl(HPET_CFG);
 257        cfg |= HPET_CFG_ENABLE;
 258        hpet_writel(cfg, HPET_CFG);
 259}
 260
 261static void hpet_restart_counter(void)
 262{
 263        hpet_stop_counter();
 264        hpet_reset_counter();
 265        hpet_start_counter();
 266}
 267
 268static void hpet_resume_device(void)
 269{
 270        force_hpet_resume();
 271}
 272
 273static void hpet_resume_counter(struct clocksource *cs)
 274{
 275        hpet_resume_device();
 276        hpet_restart_counter();
 277}
 278
 279static void hpet_enable_legacy_int(void)
 280{
 281        unsigned int cfg = hpet_readl(HPET_CFG);
 282
 283        cfg |= HPET_CFG_LEGACY;
 284        hpet_writel(cfg, HPET_CFG);
 285        hpet_legacy_int_enabled = 1;
 286}
 287
 288static void hpet_legacy_clockevent_register(void)
 289{
 290        /* Start HPET legacy interrupts */
 291        hpet_enable_legacy_int();
 292
 293        /*
 294         * Start hpet with the boot cpu mask and make it
 295         * global after the IO_APIC has been initialized.
 296         */
 297        hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 298        clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 299                                        HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 300        global_clock_event = &hpet_clockevent;
 301        printk(KERN_DEBUG "hpet clockevent registered\n");
 302}
 303
 304static int hpet_setup_msi_irq(unsigned int irq);
 305
 306static void hpet_set_mode(enum clock_event_mode mode,
 307                          struct clock_event_device *evt, int timer)
 308{
 309        unsigned int cfg, cmp, now;
 310        uint64_t delta;
 311
 312        switch (mode) {
 313        case CLOCK_EVT_MODE_PERIODIC:
 314                hpet_stop_counter();
 315                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 316                delta >>= evt->shift;
 317                now = hpet_readl(HPET_COUNTER);
 318                cmp = now + (unsigned int) delta;
 319                cfg = hpet_readl(HPET_Tn_CFG(timer));
 320                /* Make sure we use edge triggered interrupts */
 321                cfg &= ~HPET_TN_LEVEL;
 322                cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 323                       HPET_TN_SETVAL | HPET_TN_32BIT;
 324                hpet_writel(cfg, HPET_Tn_CFG(timer));
 325                hpet_writel(cmp, HPET_Tn_CMP(timer));
 326                udelay(1);
 327                /*
 328                 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 329                 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 330                 * bit is automatically cleared after the first write.
 331                 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 332                 * Publication # 24674)
 333                 */
 334                hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 335                hpet_start_counter();
 336                hpet_print_config();
 337                break;
 338
 339        case CLOCK_EVT_MODE_ONESHOT:
 340                cfg = hpet_readl(HPET_Tn_CFG(timer));
 341                cfg &= ~HPET_TN_PERIODIC;
 342                cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 343                hpet_writel(cfg, HPET_Tn_CFG(timer));
 344                break;
 345
 346        case CLOCK_EVT_MODE_UNUSED:
 347        case CLOCK_EVT_MODE_SHUTDOWN:
 348                cfg = hpet_readl(HPET_Tn_CFG(timer));
 349                cfg &= ~HPET_TN_ENABLE;
 350                hpet_writel(cfg, HPET_Tn_CFG(timer));
 351                break;
 352
 353        case CLOCK_EVT_MODE_RESUME:
 354                if (timer == 0) {
 355                        hpet_enable_legacy_int();
 356                } else {
 357                        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 358                        hpet_setup_msi_irq(hdev->irq);
 359                        disable_irq(hdev->irq);
 360                        irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 361                        enable_irq(hdev->irq);
 362                }
 363                hpet_print_config();
 364                break;
 365        }
 366}
 367
 368static int hpet_next_event(unsigned long delta,
 369                           struct clock_event_device *evt, int timer)
 370{
 371        u32 cnt;
 372        s32 res;
 373
 374        cnt = hpet_readl(HPET_COUNTER);
 375        cnt += (u32) delta;
 376        hpet_writel(cnt, HPET_Tn_CMP(timer));
 377
 378        /*
 379         * HPETs are a complete disaster. The compare register is
 380         * based on a equal comparison and neither provides a less
 381         * than or equal functionality (which would require to take
 382         * the wraparound into account) nor a simple count down event
 383         * mode. Further the write to the comparator register is
 384         * delayed internally up to two HPET clock cycles in certain
 385         * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 386         * longer delays. We worked around that by reading back the
 387         * compare register, but that required another workaround for
 388         * ICH9,10 chips where the first readout after write can
 389         * return the old stale value. We already had a minimum
 390         * programming delta of 5us enforced, but a NMI or SMI hitting
 391         * between the counter readout and the comparator write can
 392         * move us behind that point easily. Now instead of reading
 393         * the compare register back several times, we make the ETIME
 394         * decision based on the following: Return ETIME if the
 395         * counter value after the write is less than HPET_MIN_CYCLES
 396         * away from the event or if the counter is already ahead of
 397         * the event. The minimum programming delta for the generic
 398         * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 399         */
 400        res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 401
 402        return res < HPET_MIN_CYCLES ? -ETIME : 0;
 403}
 404
 405static void hpet_legacy_set_mode(enum clock_event_mode mode,
 406                        struct clock_event_device *evt)
 407{
 408        hpet_set_mode(mode, evt, 0);
 409}
 410
 411static int hpet_legacy_next_event(unsigned long delta,
 412                        struct clock_event_device *evt)
 413{
 414        return hpet_next_event(delta, evt, 0);
 415}
 416
 417/*
 418 * HPET MSI Support
 419 */
 420#ifdef CONFIG_PCI_MSI
 421
 422static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 423static struct hpet_dev  *hpet_devs;
 424
 425void hpet_msi_unmask(struct irq_data *data)
 426{
 427        struct hpet_dev *hdev = data->handler_data;
 428        unsigned int cfg;
 429
 430        /* unmask it */
 431        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 432        cfg |= HPET_TN_FSB;
 433        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 434}
 435
 436void hpet_msi_mask(struct irq_data *data)
 437{
 438        struct hpet_dev *hdev = data->handler_data;
 439        unsigned int cfg;
 440
 441        /* mask it */
 442        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 443        cfg &= ~HPET_TN_FSB;
 444        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 445}
 446
 447void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 448{
 449        hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 450        hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 451}
 452
 453void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 454{
 455        msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 456        msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 457        msg->address_hi = 0;
 458}
 459
 460static void hpet_msi_set_mode(enum clock_event_mode mode,
 461                                struct clock_event_device *evt)
 462{
 463        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 464        hpet_set_mode(mode, evt, hdev->num);
 465}
 466
 467static int hpet_msi_next_event(unsigned long delta,
 468                                struct clock_event_device *evt)
 469{
 470        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 471        return hpet_next_event(delta, evt, hdev->num);
 472}
 473
 474static int hpet_setup_msi_irq(unsigned int irq)
 475{
 476        if (arch_setup_hpet_msi(irq, hpet_blockid)) {
 477                destroy_irq(irq);
 478                return -EINVAL;
 479        }
 480        return 0;
 481}
 482
 483static int hpet_assign_irq(struct hpet_dev *dev)
 484{
 485        unsigned int irq;
 486
 487        irq = create_irq_nr(0, -1);
 488        if (!irq)
 489                return -EINVAL;
 490
 491        irq_set_handler_data(irq, dev);
 492
 493        if (hpet_setup_msi_irq(irq))
 494                return -EINVAL;
 495
 496        dev->irq = irq;
 497        return 0;
 498}
 499
 500static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 501{
 502        struct hpet_dev *dev = (struct hpet_dev *)data;
 503        struct clock_event_device *hevt = &dev->evt;
 504
 505        if (!hevt->event_handler) {
 506                printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 507                                dev->num);
 508                return IRQ_HANDLED;
 509        }
 510
 511        hevt->event_handler(hevt);
 512        return IRQ_HANDLED;
 513}
 514
 515static int hpet_setup_irq(struct hpet_dev *dev)
 516{
 517
 518        if (request_irq(dev->irq, hpet_interrupt_handler,
 519                        IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 520                        dev->name, dev))
 521                return -1;
 522
 523        disable_irq(dev->irq);
 524        irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 525        enable_irq(dev->irq);
 526
 527        printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 528                         dev->name, dev->irq);
 529
 530        return 0;
 531}
 532
 533/* This should be called in specific @cpu */
 534static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 535{
 536        struct clock_event_device *evt = &hdev->evt;
 537
 538        WARN_ON(cpu != smp_processor_id());
 539        if (!(hdev->flags & HPET_DEV_VALID))
 540                return;
 541
 542        if (hpet_setup_msi_irq(hdev->irq))
 543                return;
 544
 545        hdev->cpu = cpu;
 546        per_cpu(cpu_hpet_dev, cpu) = hdev;
 547        evt->name = hdev->name;
 548        hpet_setup_irq(hdev);
 549        evt->irq = hdev->irq;
 550
 551        evt->rating = 110;
 552        evt->features = CLOCK_EVT_FEAT_ONESHOT;
 553        if (hdev->flags & HPET_DEV_PERI_CAP)
 554                evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 555
 556        evt->set_mode = hpet_msi_set_mode;
 557        evt->set_next_event = hpet_msi_next_event;
 558        evt->cpumask = cpumask_of(hdev->cpu);
 559
 560        clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 561                                        0x7FFFFFFF);
 562}
 563
 564#ifdef CONFIG_HPET
 565/* Reserve at least one timer for userspace (/dev/hpet) */
 566#define RESERVE_TIMERS 1
 567#else
 568#define RESERVE_TIMERS 0
 569#endif
 570
 571static void hpet_msi_capability_lookup(unsigned int start_timer)
 572{
 573        unsigned int id;
 574        unsigned int num_timers;
 575        unsigned int num_timers_used = 0;
 576        int i;
 577
 578        if (hpet_msi_disable)
 579                return;
 580
 581        if (boot_cpu_has(X86_FEATURE_ARAT))
 582                return;
 583        id = hpet_readl(HPET_ID);
 584
 585        num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 586        num_timers++; /* Value read out starts from 0 */
 587        hpet_print_config();
 588
 589        hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 590        if (!hpet_devs)
 591                return;
 592
 593        hpet_num_timers = num_timers;
 594
 595        for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 596                struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 597                unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 598
 599                /* Only consider HPET timer with MSI support */
 600                if (!(cfg & HPET_TN_FSB_CAP))
 601                        continue;
 602
 603                hdev->flags = 0;
 604                if (cfg & HPET_TN_PERIODIC_CAP)
 605                        hdev->flags |= HPET_DEV_PERI_CAP;
 606                hdev->num = i;
 607
 608                sprintf(hdev->name, "hpet%d", i);
 609                if (hpet_assign_irq(hdev))
 610                        continue;
 611
 612                hdev->flags |= HPET_DEV_FSB_CAP;
 613                hdev->flags |= HPET_DEV_VALID;
 614                num_timers_used++;
 615                if (num_timers_used == num_possible_cpus())
 616                        break;
 617        }
 618
 619        printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 620                num_timers, num_timers_used);
 621}
 622
 623#ifdef CONFIG_HPET
 624static void hpet_reserve_msi_timers(struct hpet_data *hd)
 625{
 626        int i;
 627
 628        if (!hpet_devs)
 629                return;
 630
 631        for (i = 0; i < hpet_num_timers; i++) {
 632                struct hpet_dev *hdev = &hpet_devs[i];
 633
 634                if (!(hdev->flags & HPET_DEV_VALID))
 635                        continue;
 636
 637                hd->hd_irq[hdev->num] = hdev->irq;
 638                hpet_reserve_timer(hd, hdev->num);
 639        }
 640}
 641#endif
 642
 643static struct hpet_dev *hpet_get_unused_timer(void)
 644{
 645        int i;
 646
 647        if (!hpet_devs)
 648                return NULL;
 649
 650        for (i = 0; i < hpet_num_timers; i++) {
 651                struct hpet_dev *hdev = &hpet_devs[i];
 652
 653                if (!(hdev->flags & HPET_DEV_VALID))
 654                        continue;
 655                if (test_and_set_bit(HPET_DEV_USED_BIT,
 656                        (unsigned long *)&hdev->flags))
 657                        continue;
 658                return hdev;
 659        }
 660        return NULL;
 661}
 662
 663struct hpet_work_struct {
 664        struct delayed_work work;
 665        struct completion complete;
 666};
 667
 668static void hpet_work(struct work_struct *w)
 669{
 670        struct hpet_dev *hdev;
 671        int cpu = smp_processor_id();
 672        struct hpet_work_struct *hpet_work;
 673
 674        hpet_work = container_of(w, struct hpet_work_struct, work.work);
 675
 676        hdev = hpet_get_unused_timer();
 677        if (hdev)
 678                init_one_hpet_msi_clockevent(hdev, cpu);
 679
 680        complete(&hpet_work->complete);
 681}
 682
 683static int hpet_cpuhp_notify(struct notifier_block *n,
 684                unsigned long action, void *hcpu)
 685{
 686        unsigned long cpu = (unsigned long)hcpu;
 687        struct hpet_work_struct work;
 688        struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 689
 690        switch (action & 0xf) {
 691        case CPU_ONLINE:
 692                INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 693                init_completion(&work.complete);
 694                /* FIXME: add schedule_work_on() */
 695                schedule_delayed_work_on(cpu, &work.work, 0);
 696                wait_for_completion(&work.complete);
 697                destroy_timer_on_stack(&work.work.timer);
 698                break;
 699        case CPU_DEAD:
 700                if (hdev) {
 701                        free_irq(hdev->irq, hdev);
 702                        hdev->flags &= ~HPET_DEV_USED;
 703                        per_cpu(cpu_hpet_dev, cpu) = NULL;
 704                }
 705                break;
 706        }
 707        return NOTIFY_OK;
 708}
 709#else
 710
 711static int hpet_setup_msi_irq(unsigned int irq)
 712{
 713        return 0;
 714}
 715static void hpet_msi_capability_lookup(unsigned int start_timer)
 716{
 717        return;
 718}
 719
 720#ifdef CONFIG_HPET
 721static void hpet_reserve_msi_timers(struct hpet_data *hd)
 722{
 723        return;
 724}
 725#endif
 726
 727static int hpet_cpuhp_notify(struct notifier_block *n,
 728                unsigned long action, void *hcpu)
 729{
 730        return NOTIFY_OK;
 731}
 732
 733#endif
 734
 735/*
 736 * Clock source related code
 737 */
 738static cycle_t read_hpet(struct clocksource *cs)
 739{
 740        return (cycle_t)hpet_readl(HPET_COUNTER);
 741}
 742
 743static struct clocksource clocksource_hpet = {
 744        .name           = "hpet",
 745        .rating         = 250,
 746        .read           = read_hpet,
 747        .mask           = HPET_MASK,
 748        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 749        .resume         = hpet_resume_counter,
 750#ifdef CONFIG_X86_64
 751        .archdata       = { .vclock_mode = VCLOCK_HPET },
 752#endif
 753};
 754
 755static int hpet_clocksource_register(void)
 756{
 757        u64 start, now;
 758        cycle_t t1;
 759
 760        /* Start the counter */
 761        hpet_restart_counter();
 762
 763        /* Verify whether hpet counter works */
 764        t1 = hpet_readl(HPET_COUNTER);
 765        rdtscll(start);
 766
 767        /*
 768         * We don't know the TSC frequency yet, but waiting for
 769         * 200000 TSC cycles is safe:
 770         * 4 GHz == 50us
 771         * 1 GHz == 200us
 772         */
 773        do {
 774                rep_nop();
 775                rdtscll(now);
 776        } while ((now - start) < 200000UL);
 777
 778        if (t1 == hpet_readl(HPET_COUNTER)) {
 779                printk(KERN_WARNING
 780                       "HPET counter not counting. HPET disabled\n");
 781                return -ENODEV;
 782        }
 783
 784        clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 785        return 0;
 786}
 787
 788/**
 789 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 790 */
 791int __init hpet_enable(void)
 792{
 793        unsigned long hpet_period;
 794        unsigned int id;
 795        u64 freq;
 796        int i;
 797
 798        if (!is_hpet_capable())
 799                return 0;
 800
 801        hpet_set_mapping();
 802
 803        /*
 804         * Read the period and check for a sane value:
 805         */
 806        hpet_period = hpet_readl(HPET_PERIOD);
 807
 808        /*
 809         * AMD SB700 based systems with spread spectrum enabled use a
 810         * SMM based HPET emulation to provide proper frequency
 811         * setting. The SMM code is initialized with the first HPET
 812         * register access and takes some time to complete. During
 813         * this time the config register reads 0xffffffff. We check
 814         * for max. 1000 loops whether the config register reads a non
 815         * 0xffffffff value to make sure that HPET is up and running
 816         * before we go further. A counting loop is safe, as the HPET
 817         * access takes thousands of CPU cycles. On non SB700 based
 818         * machines this check is only done once and has no side
 819         * effects.
 820         */
 821        for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 822                if (i == 1000) {
 823                        printk(KERN_WARNING
 824                               "HPET config register value = 0xFFFFFFFF. "
 825                               "Disabling HPET\n");
 826                        goto out_nohpet;
 827                }
 828        }
 829
 830        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 831                goto out_nohpet;
 832
 833        /*
 834         * The period is a femto seconds value. Convert it to a
 835         * frequency.
 836         */
 837        freq = FSEC_PER_SEC;
 838        do_div(freq, hpet_period);
 839        hpet_freq = freq;
 840
 841        /*
 842         * Read the HPET ID register to retrieve the IRQ routing
 843         * information and the number of channels
 844         */
 845        id = hpet_readl(HPET_ID);
 846        hpet_print_config();
 847
 848#ifdef CONFIG_HPET_EMULATE_RTC
 849        /*
 850         * The legacy routing mode needs at least two channels, tick timer
 851         * and the rtc emulation channel.
 852         */
 853        if (!(id & HPET_ID_NUMBER))
 854                goto out_nohpet;
 855#endif
 856
 857        if (hpet_clocksource_register())
 858                goto out_nohpet;
 859
 860        if (id & HPET_ID_LEGSUP) {
 861                hpet_legacy_clockevent_register();
 862                return 1;
 863        }
 864        return 0;
 865
 866out_nohpet:
 867        hpet_clear_mapping();
 868        hpet_address = 0;
 869        return 0;
 870}
 871
 872/*
 873 * Needs to be late, as the reserve_timer code calls kalloc !
 874 *
 875 * Not a problem on i386 as hpet_enable is called from late_time_init,
 876 * but on x86_64 it is necessary !
 877 */
 878static __init int hpet_late_init(void)
 879{
 880        int cpu;
 881
 882        if (boot_hpet_disable)
 883                return -ENODEV;
 884
 885        if (!hpet_address) {
 886                if (!force_hpet_address)
 887                        return -ENODEV;
 888
 889                hpet_address = force_hpet_address;
 890                hpet_enable();
 891        }
 892
 893        if (!hpet_virt_address)
 894                return -ENODEV;
 895
 896        if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 897                hpet_msi_capability_lookup(2);
 898        else
 899                hpet_msi_capability_lookup(0);
 900
 901        hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 902        hpet_print_config();
 903
 904        if (hpet_msi_disable)
 905                return 0;
 906
 907        if (boot_cpu_has(X86_FEATURE_ARAT))
 908                return 0;
 909
 910        for_each_online_cpu(cpu) {
 911                hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 912        }
 913
 914        /* This notifier should be called after workqueue is ready */
 915        hotcpu_notifier(hpet_cpuhp_notify, -20);
 916
 917        return 0;
 918}
 919fs_initcall(hpet_late_init);
 920
 921void hpet_disable(void)
 922{
 923        if (is_hpet_capable() && hpet_virt_address) {
 924                unsigned int cfg = hpet_readl(HPET_CFG);
 925
 926                if (hpet_legacy_int_enabled) {
 927                        cfg &= ~HPET_CFG_LEGACY;
 928                        hpet_legacy_int_enabled = 0;
 929                }
 930                cfg &= ~HPET_CFG_ENABLE;
 931                hpet_writel(cfg, HPET_CFG);
 932        }
 933}
 934
 935#ifdef CONFIG_HPET_EMULATE_RTC
 936
 937/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 938 * is enabled, we support RTC interrupt functionality in software.
 939 * RTC has 3 kinds of interrupts:
 940 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 941 *    is updated
 942 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 943 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 944 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 945 * (1) and (2) above are implemented using polling at a frequency of
 946 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 947 * overhead. (DEFAULT_RTC_INT_FREQ)
 948 * For (3), we use interrupts at 64Hz or user specified periodic
 949 * frequency, whichever is higher.
 950 */
 951#include <linux/mc146818rtc.h>
 952#include <linux/rtc.h>
 953#include <asm/rtc.h>
 954
 955#define DEFAULT_RTC_INT_FREQ    64
 956#define DEFAULT_RTC_SHIFT       6
 957#define RTC_NUM_INTS            1
 958
 959static unsigned long hpet_rtc_flags;
 960static int hpet_prev_update_sec;
 961static struct rtc_time hpet_alarm_time;
 962static unsigned long hpet_pie_count;
 963static u32 hpet_t1_cmp;
 964static u32 hpet_default_delta;
 965static u32 hpet_pie_delta;
 966static unsigned long hpet_pie_limit;
 967
 968static rtc_irq_handler irq_handler;
 969
 970/*
 971 * Check that the hpet counter c1 is ahead of the c2
 972 */
 973static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 974{
 975        return (s32)(c2 - c1) < 0;
 976}
 977
 978/*
 979 * Registers a IRQ handler.
 980 */
 981int hpet_register_irq_handler(rtc_irq_handler handler)
 982{
 983        if (!is_hpet_enabled())
 984                return -ENODEV;
 985        if (irq_handler)
 986                return -EBUSY;
 987
 988        irq_handler = handler;
 989
 990        return 0;
 991}
 992EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
 993
 994/*
 995 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 996 * and does cleanup.
 997 */
 998void hpet_unregister_irq_handler(rtc_irq_handler handler)
 999{
1000        if (!is_hpet_enabled())
1001                return;
1002
1003        irq_handler = NULL;
1004        hpet_rtc_flags = 0;
1005}
1006EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1007
1008/*
1009 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1010 * is not supported by all HPET implementations for timer 1.
1011 *
1012 * hpet_rtc_timer_init() is called when the rtc is initialized.
1013 */
1014int hpet_rtc_timer_init(void)
1015{
1016        unsigned int cfg, cnt, delta;
1017        unsigned long flags;
1018
1019        if (!is_hpet_enabled())
1020                return 0;
1021
1022        if (!hpet_default_delta) {
1023                uint64_t clc;
1024
1025                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1026                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1027                hpet_default_delta = clc;
1028        }
1029
1030        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1031                delta = hpet_default_delta;
1032        else
1033                delta = hpet_pie_delta;
1034
1035        local_irq_save(flags);
1036
1037        cnt = delta + hpet_readl(HPET_COUNTER);
1038        hpet_writel(cnt, HPET_T1_CMP);
1039        hpet_t1_cmp = cnt;
1040
1041        cfg = hpet_readl(HPET_T1_CFG);
1042        cfg &= ~HPET_TN_PERIODIC;
1043        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1044        hpet_writel(cfg, HPET_T1_CFG);
1045
1046        local_irq_restore(flags);
1047
1048        return 1;
1049}
1050EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1051
1052static void hpet_disable_rtc_channel(void)
1053{
1054        unsigned long cfg;
1055        cfg = hpet_readl(HPET_T1_CFG);
1056        cfg &= ~HPET_TN_ENABLE;
1057        hpet_writel(cfg, HPET_T1_CFG);
1058}
1059
1060/*
1061 * The functions below are called from rtc driver.
1062 * Return 0 if HPET is not being used.
1063 * Otherwise do the necessary changes and return 1.
1064 */
1065int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1066{
1067        if (!is_hpet_enabled())
1068                return 0;
1069
1070        hpet_rtc_flags &= ~bit_mask;
1071        if (unlikely(!hpet_rtc_flags))
1072                hpet_disable_rtc_channel();
1073
1074        return 1;
1075}
1076EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1077
1078int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1079{
1080        unsigned long oldbits = hpet_rtc_flags;
1081
1082        if (!is_hpet_enabled())
1083                return 0;
1084
1085        hpet_rtc_flags |= bit_mask;
1086
1087        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1088                hpet_prev_update_sec = -1;
1089
1090        if (!oldbits)
1091                hpet_rtc_timer_init();
1092
1093        return 1;
1094}
1095EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1096
1097int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1098                        unsigned char sec)
1099{
1100        if (!is_hpet_enabled())
1101                return 0;
1102
1103        hpet_alarm_time.tm_hour = hrs;
1104        hpet_alarm_time.tm_min = min;
1105        hpet_alarm_time.tm_sec = sec;
1106
1107        return 1;
1108}
1109EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1110
1111int hpet_set_periodic_freq(unsigned long freq)
1112{
1113        uint64_t clc;
1114
1115        if (!is_hpet_enabled())
1116                return 0;
1117
1118        if (freq <= DEFAULT_RTC_INT_FREQ)
1119                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1120        else {
1121                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1122                do_div(clc, freq);
1123                clc >>= hpet_clockevent.shift;
1124                hpet_pie_delta = clc;
1125                hpet_pie_limit = 0;
1126        }
1127        return 1;
1128}
1129EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1130
1131int hpet_rtc_dropped_irq(void)
1132{
1133        return is_hpet_enabled();
1134}
1135EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1136
1137static void hpet_rtc_timer_reinit(void)
1138{
1139        unsigned int delta;
1140        int lost_ints = -1;
1141
1142        if (unlikely(!hpet_rtc_flags))
1143                hpet_disable_rtc_channel();
1144
1145        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1146                delta = hpet_default_delta;
1147        else
1148                delta = hpet_pie_delta;
1149
1150        /*
1151         * Increment the comparator value until we are ahead of the
1152         * current count.
1153         */
1154        do {
1155                hpet_t1_cmp += delta;
1156                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1157                lost_ints++;
1158        } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1159
1160        if (lost_ints) {
1161                if (hpet_rtc_flags & RTC_PIE)
1162                        hpet_pie_count += lost_ints;
1163                if (printk_ratelimit())
1164                        printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1165                                lost_ints);
1166        }
1167}
1168
1169irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1170{
1171        struct rtc_time curr_time;
1172        unsigned long rtc_int_flag = 0;
1173
1174        hpet_rtc_timer_reinit();
1175        memset(&curr_time, 0, sizeof(struct rtc_time));
1176
1177        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1178                get_rtc_time(&curr_time);
1179
1180        if (hpet_rtc_flags & RTC_UIE &&
1181            curr_time.tm_sec != hpet_prev_update_sec) {
1182                if (hpet_prev_update_sec >= 0)
1183                        rtc_int_flag = RTC_UF;
1184                hpet_prev_update_sec = curr_time.tm_sec;
1185        }
1186
1187        if (hpet_rtc_flags & RTC_PIE &&
1188            ++hpet_pie_count >= hpet_pie_limit) {
1189                rtc_int_flag |= RTC_PF;
1190                hpet_pie_count = 0;
1191        }
1192
1193        if (hpet_rtc_flags & RTC_AIE &&
1194            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1195            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1196            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1197                        rtc_int_flag |= RTC_AF;
1198
1199        if (rtc_int_flag) {
1200                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1201                if (irq_handler)
1202                        irq_handler(rtc_int_flag, dev_id);
1203        }
1204        return IRQ_HANDLED;
1205}
1206EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1207#endif
1208