linux/arch/x86/kernel/irqinit.c
<<
>>
Prefs
   1#include <linux/linkage.h>
   2#include <linux/errno.h>
   3#include <linux/signal.h>
   4#include <linux/sched.h>
   5#include <linux/ioport.h>
   6#include <linux/interrupt.h>
   7#include <linux/timex.h>
   8#include <linux/random.h>
   9#include <linux/kprobes.h>
  10#include <linux/init.h>
  11#include <linux/kernel_stat.h>
  12#include <linux/sysdev.h>
  13#include <linux/bitops.h>
  14#include <linux/acpi.h>
  15#include <linux/io.h>
  16#include <linux/delay.h>
  17
  18#include <linux/atomic.h>
  19#include <asm/system.h>
  20#include <asm/timer.h>
  21#include <asm/hw_irq.h>
  22#include <asm/pgtable.h>
  23#include <asm/desc.h>
  24#include <asm/apic.h>
  25#include <asm/setup.h>
  26#include <asm/i8259.h>
  27#include <asm/traps.h>
  28#include <asm/prom.h>
  29
  30/*
  31 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
  32 * (these are usually mapped to vectors 0x30-0x3f)
  33 */
  34
  35/*
  36 * The IO-APIC gives us many more interrupt sources. Most of these
  37 * are unused but an SMP system is supposed to have enough memory ...
  38 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
  39 * across the spectrum, so we really want to be prepared to get all
  40 * of these. Plus, more powerful systems might have more than 64
  41 * IO-APIC registers.
  42 *
  43 * (these are usually mapped into the 0x30-0xff vector range)
  44 */
  45
  46#ifdef CONFIG_X86_32
  47/*
  48 * Note that on a 486, we don't want to do a SIGFPE on an irq13
  49 * as the irq is unreliable, and exception 16 works correctly
  50 * (ie as explained in the intel literature). On a 386, you
  51 * can't use exception 16 due to bad IBM design, so we have to
  52 * rely on the less exact irq13.
  53 *
  54 * Careful.. Not only is IRQ13 unreliable, but it is also
  55 * leads to races. IBM designers who came up with it should
  56 * be shot.
  57 */
  58
  59static irqreturn_t math_error_irq(int cpl, void *dev_id)
  60{
  61        outb(0, 0xF0);
  62        if (ignore_fpu_irq || !boot_cpu_data.hard_math)
  63                return IRQ_NONE;
  64        math_error(get_irq_regs(), 0, 16);
  65        return IRQ_HANDLED;
  66}
  67
  68/*
  69 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
  70 * so allow interrupt sharing.
  71 */
  72static struct irqaction fpu_irq = {
  73        .handler = math_error_irq,
  74        .name = "fpu",
  75        .flags = IRQF_NO_THREAD,
  76};
  77#endif
  78
  79/*
  80 * IRQ2 is cascade interrupt to second interrupt controller
  81 */
  82static struct irqaction irq2 = {
  83        .handler = no_action,
  84        .name = "cascade",
  85        .flags = IRQF_NO_THREAD,
  86};
  87
  88DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
  89        [0 ... NR_VECTORS - 1] = -1,
  90};
  91
  92int vector_used_by_percpu_irq(unsigned int vector)
  93{
  94        int cpu;
  95
  96        for_each_online_cpu(cpu) {
  97                if (per_cpu(vector_irq, cpu)[vector] != -1)
  98                        return 1;
  99        }
 100
 101        return 0;
 102}
 103
 104void __init init_ISA_irqs(void)
 105{
 106        struct irq_chip *chip = legacy_pic->chip;
 107        const char *name = chip->name;
 108        int i;
 109
 110#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
 111        init_bsp_APIC();
 112#endif
 113        legacy_pic->init(0);
 114
 115        for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
 116                irq_set_chip_and_handler_name(i, chip, handle_level_irq, name);
 117}
 118
 119void __init init_IRQ(void)
 120{
 121        int i;
 122
 123        /*
 124         * We probably need a better place for this, but it works for
 125         * now ...
 126         */
 127        x86_add_irq_domains();
 128
 129        /*
 130         * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
 131         * If these IRQ's are handled by legacy interrupt-controllers like PIC,
 132         * then this configuration will likely be static after the boot. If
 133         * these IRQ's are handled by more mordern controllers like IO-APIC,
 134         * then this vector space can be freed and re-used dynamically as the
 135         * irq's migrate etc.
 136         */
 137        for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
 138                per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
 139
 140        x86_init.irqs.intr_init();
 141}
 142
 143/*
 144 * Setup the vector to irq mappings.
 145 */
 146void setup_vector_irq(int cpu)
 147{
 148#ifndef CONFIG_X86_IO_APIC
 149        int irq;
 150
 151        /*
 152         * On most of the platforms, legacy PIC delivers the interrupts on the
 153         * boot cpu. But there are certain platforms where PIC interrupts are
 154         * delivered to multiple cpu's. If the legacy IRQ is handled by the
 155         * legacy PIC, for the new cpu that is coming online, setup the static
 156         * legacy vector to irq mapping:
 157         */
 158        for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
 159                per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
 160#endif
 161
 162        __setup_vector_irq(cpu);
 163}
 164
 165static void __init smp_intr_init(void)
 166{
 167#ifdef CONFIG_SMP
 168#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
 169        /*
 170         * The reschedule interrupt is a CPU-to-CPU reschedule-helper
 171         * IPI, driven by wakeup.
 172         */
 173        alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
 174
 175        /* IPIs for invalidation */
 176#define ALLOC_INVTLB_VEC(NR) \
 177        alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+NR, \
 178                invalidate_interrupt##NR)
 179
 180        switch (NUM_INVALIDATE_TLB_VECTORS) {
 181        default:
 182                ALLOC_INVTLB_VEC(31);
 183        case 31:
 184                ALLOC_INVTLB_VEC(30);
 185        case 30:
 186                ALLOC_INVTLB_VEC(29);
 187        case 29:
 188                ALLOC_INVTLB_VEC(28);
 189        case 28:
 190                ALLOC_INVTLB_VEC(27);
 191        case 27:
 192                ALLOC_INVTLB_VEC(26);
 193        case 26:
 194                ALLOC_INVTLB_VEC(25);
 195        case 25:
 196                ALLOC_INVTLB_VEC(24);
 197        case 24:
 198                ALLOC_INVTLB_VEC(23);
 199        case 23:
 200                ALLOC_INVTLB_VEC(22);
 201        case 22:
 202                ALLOC_INVTLB_VEC(21);
 203        case 21:
 204                ALLOC_INVTLB_VEC(20);
 205        case 20:
 206                ALLOC_INVTLB_VEC(19);
 207        case 19:
 208                ALLOC_INVTLB_VEC(18);
 209        case 18:
 210                ALLOC_INVTLB_VEC(17);
 211        case 17:
 212                ALLOC_INVTLB_VEC(16);
 213        case 16:
 214                ALLOC_INVTLB_VEC(15);
 215        case 15:
 216                ALLOC_INVTLB_VEC(14);
 217        case 14:
 218                ALLOC_INVTLB_VEC(13);
 219        case 13:
 220                ALLOC_INVTLB_VEC(12);
 221        case 12:
 222                ALLOC_INVTLB_VEC(11);
 223        case 11:
 224                ALLOC_INVTLB_VEC(10);
 225        case 10:
 226                ALLOC_INVTLB_VEC(9);
 227        case 9:
 228                ALLOC_INVTLB_VEC(8);
 229        case 8:
 230                ALLOC_INVTLB_VEC(7);
 231        case 7:
 232                ALLOC_INVTLB_VEC(6);
 233        case 6:
 234                ALLOC_INVTLB_VEC(5);
 235        case 5:
 236                ALLOC_INVTLB_VEC(4);
 237        case 4:
 238                ALLOC_INVTLB_VEC(3);
 239        case 3:
 240                ALLOC_INVTLB_VEC(2);
 241        case 2:
 242                ALLOC_INVTLB_VEC(1);
 243        case 1:
 244                ALLOC_INVTLB_VEC(0);
 245                break;
 246        }
 247
 248        /* IPI for generic function call */
 249        alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
 250
 251        /* IPI for generic single function call */
 252        alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
 253                        call_function_single_interrupt);
 254
 255        /* Low priority IPI to cleanup after moving an irq */
 256        set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
 257        set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
 258
 259        /* IPI used for rebooting/stopping */
 260        alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
 261#endif
 262#endif /* CONFIG_SMP */
 263}
 264
 265static void __init apic_intr_init(void)
 266{
 267        smp_intr_init();
 268
 269#ifdef CONFIG_X86_THERMAL_VECTOR
 270        alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
 271#endif
 272#ifdef CONFIG_X86_MCE_THRESHOLD
 273        alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
 274#endif
 275
 276#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
 277        /* self generated IPI for local APIC timer */
 278        alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
 279
 280        /* IPI for X86 platform specific use */
 281        alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
 282
 283        /* IPI vectors for APIC spurious and error interrupts */
 284        alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
 285        alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
 286
 287        /* IRQ work interrupts: */
 288# ifdef CONFIG_IRQ_WORK
 289        alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
 290# endif
 291
 292#endif
 293}
 294
 295void __init native_init_IRQ(void)
 296{
 297        int i;
 298
 299        /* Execute any quirks before the call gates are initialised: */
 300        x86_init.irqs.pre_vector_init();
 301
 302        apic_intr_init();
 303
 304        /*
 305         * Cover the whole vector space, no vector can escape
 306         * us. (some of these will be overridden and become
 307         * 'special' SMP interrupts)
 308         */
 309        for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
 310                /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
 311                if (!test_bit(i, used_vectors))
 312                        set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
 313        }
 314
 315        if (!acpi_ioapic && !of_ioapic)
 316                setup_irq(2, &irq2);
 317
 318#ifdef CONFIG_X86_32
 319        /*
 320         * External FPU? Set up irq13 if so, for
 321         * original braindamaged IBM FERR coupling.
 322         */
 323        if (boot_cpu_data.hard_math && !cpu_has_fpu)
 324                setup_irq(FPU_IRQ, &fpu_irq);
 325
 326        irq_ctx_init(smp_processor_id());
 327#endif
 328}
 329