linux/arch/x86/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2004
  19 *
  20 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21 *              Probes initial implementation ( includes contributions from
  22 *              Rusty Russell).
  23 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24 *              interface to access function arguments.
  25 * 2004-Oct     Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  26 *              <prasanna@in.ibm.com> adapted for x86_64 from i386.
  27 * 2005-Mar     Roland McGrath <roland@redhat.com>
  28 *              Fixed to handle %rip-relative addressing mode correctly.
  29 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  30 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  31 *              <prasanna@in.ibm.com> added function-return probes.
  32 * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
  33 *              Added function return probes functionality
  34 * 2006-Feb     Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  35 *              kprobe-booster and kretprobe-booster for i386.
  36 * 2007-Dec     Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  37 *              and kretprobe-booster for x86-64
  38 * 2007-Dec     Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  39 *              <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  40 *              unified x86 kprobes code.
  41 */
  42
  43#include <linux/kprobes.h>
  44#include <linux/ptrace.h>
  45#include <linux/string.h>
  46#include <linux/slab.h>
  47#include <linux/hardirq.h>
  48#include <linux/preempt.h>
  49#include <linux/module.h>
  50#include <linux/kdebug.h>
  51#include <linux/kallsyms.h>
  52#include <linux/ftrace.h>
  53
  54#include <asm/cacheflush.h>
  55#include <asm/desc.h>
  56#include <asm/pgtable.h>
  57#include <asm/uaccess.h>
  58#include <asm/alternative.h>
  59#include <asm/insn.h>
  60#include <asm/debugreg.h>
  61
  62void jprobe_return_end(void);
  63
  64DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  65DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  66
  67#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
  68
  69#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  70        (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  71          (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  72          (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  73          (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  74         << (row % 32))
  75        /*
  76         * Undefined/reserved opcodes, conditional jump, Opcode Extension
  77         * Groups, and some special opcodes can not boost.
  78         * This is non-const and volatile to keep gcc from statically
  79         * optimizing it out, as variable_test_bit makes gcc think only
  80         * *(unsigned long*) is used. 
  81         */
  82static volatile u32 twobyte_is_boostable[256 / 32] = {
  83        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  84        /*      ----------------------------------------------          */
  85        W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  86        W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
  87        W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  88        W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  89        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  90        W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  91        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  92        W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  93        W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  94        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  95        W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  96        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  97        W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  98        W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  99        W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
 100        W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
 101        /*      -----------------------------------------------         */
 102        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 103};
 104#undef W
 105
 106struct kretprobe_blackpoint kretprobe_blacklist[] = {
 107        {"__switch_to", }, /* This function switches only current task, but
 108                              doesn't switch kernel stack.*/
 109        {NULL, NULL}    /* Terminator */
 110};
 111const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 112
 113static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
 114{
 115        struct __arch_relative_insn {
 116                u8 op;
 117                s32 raddr;
 118        } __attribute__((packed)) *insn;
 119
 120        insn = (struct __arch_relative_insn *)from;
 121        insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 122        insn->op = op;
 123}
 124
 125/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 126static void __kprobes synthesize_reljump(void *from, void *to)
 127{
 128        __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
 129}
 130
 131/*
 132 * Skip the prefixes of the instruction.
 133 */
 134static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
 135{
 136        insn_attr_t attr;
 137
 138        attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 139        while (inat_is_legacy_prefix(attr)) {
 140                insn++;
 141                attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 142        }
 143#ifdef CONFIG_X86_64
 144        if (inat_is_rex_prefix(attr))
 145                insn++;
 146#endif
 147        return insn;
 148}
 149
 150/*
 151 * Returns non-zero if opcode is boostable.
 152 * RIP relative instructions are adjusted at copying time in 64 bits mode
 153 */
 154static int __kprobes can_boost(kprobe_opcode_t *opcodes)
 155{
 156        kprobe_opcode_t opcode;
 157        kprobe_opcode_t *orig_opcodes = opcodes;
 158
 159        if (search_exception_tables((unsigned long)opcodes))
 160                return 0;       /* Page fault may occur on this address. */
 161
 162retry:
 163        if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 164                return 0;
 165        opcode = *(opcodes++);
 166
 167        /* 2nd-byte opcode */
 168        if (opcode == 0x0f) {
 169                if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 170                        return 0;
 171                return test_bit(*opcodes,
 172                                (unsigned long *)twobyte_is_boostable);
 173        }
 174
 175        switch (opcode & 0xf0) {
 176#ifdef CONFIG_X86_64
 177        case 0x40:
 178                goto retry; /* REX prefix is boostable */
 179#endif
 180        case 0x60:
 181                if (0x63 < opcode && opcode < 0x67)
 182                        goto retry; /* prefixes */
 183                /* can't boost Address-size override and bound */
 184                return (opcode != 0x62 && opcode != 0x67);
 185        case 0x70:
 186                return 0; /* can't boost conditional jump */
 187        case 0xc0:
 188                /* can't boost software-interruptions */
 189                return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 190        case 0xd0:
 191                /* can boost AA* and XLAT */
 192                return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 193        case 0xe0:
 194                /* can boost in/out and absolute jmps */
 195                return ((opcode & 0x04) || opcode == 0xea);
 196        case 0xf0:
 197                if ((opcode & 0x0c) == 0 && opcode != 0xf1)
 198                        goto retry; /* lock/rep(ne) prefix */
 199                /* clear and set flags are boostable */
 200                return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 201        default:
 202                /* segment override prefixes are boostable */
 203                if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
 204                        goto retry; /* prefixes */
 205                /* CS override prefix and call are not boostable */
 206                return (opcode != 0x2e && opcode != 0x9a);
 207        }
 208}
 209
 210/* Recover the probed instruction at addr for further analysis. */
 211static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 212{
 213        struct kprobe *kp;
 214        kp = get_kprobe((void *)addr);
 215        if (!kp)
 216                return -EINVAL;
 217
 218        /*
 219         *  Basically, kp->ainsn.insn has an original instruction.
 220         *  However, RIP-relative instruction can not do single-stepping
 221         *  at different place, __copy_instruction() tweaks the displacement of
 222         *  that instruction. In that case, we can't recover the instruction
 223         *  from the kp->ainsn.insn.
 224         *
 225         *  On the other hand, kp->opcode has a copy of the first byte of
 226         *  the probed instruction, which is overwritten by int3. And
 227         *  the instruction at kp->addr is not modified by kprobes except
 228         *  for the first byte, we can recover the original instruction
 229         *  from it and kp->opcode.
 230         */
 231        memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 232        buf[0] = kp->opcode;
 233        return 0;
 234}
 235
 236/* Check if paddr is at an instruction boundary */
 237static int __kprobes can_probe(unsigned long paddr)
 238{
 239        int ret;
 240        unsigned long addr, offset = 0;
 241        struct insn insn;
 242        kprobe_opcode_t buf[MAX_INSN_SIZE];
 243
 244        if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 245                return 0;
 246
 247        /* Decode instructions */
 248        addr = paddr - offset;
 249        while (addr < paddr) {
 250                kernel_insn_init(&insn, (void *)addr);
 251                insn_get_opcode(&insn);
 252
 253                /*
 254                 * Check if the instruction has been modified by another
 255                 * kprobe, in which case we replace the breakpoint by the
 256                 * original instruction in our buffer.
 257                 */
 258                if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
 259                        ret = recover_probed_instruction(buf, addr);
 260                        if (ret)
 261                                /*
 262                                 * Another debugging subsystem might insert
 263                                 * this breakpoint. In that case, we can't
 264                                 * recover it.
 265                                 */
 266                                return 0;
 267                        kernel_insn_init(&insn, buf);
 268                }
 269                insn_get_length(&insn);
 270                addr += insn.length;
 271        }
 272
 273        return (addr == paddr);
 274}
 275
 276/*
 277 * Returns non-zero if opcode modifies the interrupt flag.
 278 */
 279static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
 280{
 281        /* Skip prefixes */
 282        insn = skip_prefixes(insn);
 283
 284        switch (*insn) {
 285        case 0xfa:              /* cli */
 286        case 0xfb:              /* sti */
 287        case 0xcf:              /* iret/iretd */
 288        case 0x9d:              /* popf/popfd */
 289                return 1;
 290        }
 291
 292        return 0;
 293}
 294
 295/*
 296 * Copy an instruction and adjust the displacement if the instruction
 297 * uses the %rip-relative addressing mode.
 298 * If it does, Return the address of the 32-bit displacement word.
 299 * If not, return null.
 300 * Only applicable to 64-bit x86.
 301 */
 302static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
 303{
 304        struct insn insn;
 305        int ret;
 306        kprobe_opcode_t buf[MAX_INSN_SIZE];
 307
 308        kernel_insn_init(&insn, src);
 309        if (recover) {
 310                insn_get_opcode(&insn);
 311                if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
 312                        ret = recover_probed_instruction(buf,
 313                                                         (unsigned long)src);
 314                        if (ret)
 315                                return 0;
 316                        kernel_insn_init(&insn, buf);
 317                }
 318        }
 319        insn_get_length(&insn);
 320        memcpy(dest, insn.kaddr, insn.length);
 321
 322#ifdef CONFIG_X86_64
 323        if (insn_rip_relative(&insn)) {
 324                s64 newdisp;
 325                u8 *disp;
 326                kernel_insn_init(&insn, dest);
 327                insn_get_displacement(&insn);
 328                /*
 329                 * The copied instruction uses the %rip-relative addressing
 330                 * mode.  Adjust the displacement for the difference between
 331                 * the original location of this instruction and the location
 332                 * of the copy that will actually be run.  The tricky bit here
 333                 * is making sure that the sign extension happens correctly in
 334                 * this calculation, since we need a signed 32-bit result to
 335                 * be sign-extended to 64 bits when it's added to the %rip
 336                 * value and yield the same 64-bit result that the sign-
 337                 * extension of the original signed 32-bit displacement would
 338                 * have given.
 339                 */
 340                newdisp = (u8 *) src + (s64) insn.displacement.value -
 341                          (u8 *) dest;
 342                BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
 343                disp = (u8 *) dest + insn_offset_displacement(&insn);
 344                *(s32 *) disp = (s32) newdisp;
 345        }
 346#endif
 347        return insn.length;
 348}
 349
 350static void __kprobes arch_copy_kprobe(struct kprobe *p)
 351{
 352        /*
 353         * Copy an instruction without recovering int3, because it will be
 354         * put by another subsystem.
 355         */
 356        __copy_instruction(p->ainsn.insn, p->addr, 0);
 357
 358        if (can_boost(p->addr))
 359                p->ainsn.boostable = 0;
 360        else
 361                p->ainsn.boostable = -1;
 362
 363        p->opcode = *p->addr;
 364}
 365
 366int __kprobes arch_prepare_kprobe(struct kprobe *p)
 367{
 368        if (alternatives_text_reserved(p->addr, p->addr))
 369                return -EINVAL;
 370
 371        if (!can_probe((unsigned long)p->addr))
 372                return -EILSEQ;
 373        /* insn: must be on special executable page on x86. */
 374        p->ainsn.insn = get_insn_slot();
 375        if (!p->ainsn.insn)
 376                return -ENOMEM;
 377        arch_copy_kprobe(p);
 378        return 0;
 379}
 380
 381void __kprobes arch_arm_kprobe(struct kprobe *p)
 382{
 383        text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
 384}
 385
 386void __kprobes arch_disarm_kprobe(struct kprobe *p)
 387{
 388        text_poke(p->addr, &p->opcode, 1);
 389}
 390
 391void __kprobes arch_remove_kprobe(struct kprobe *p)
 392{
 393        if (p->ainsn.insn) {
 394                free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
 395                p->ainsn.insn = NULL;
 396        }
 397}
 398
 399static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 400{
 401        kcb->prev_kprobe.kp = kprobe_running();
 402        kcb->prev_kprobe.status = kcb->kprobe_status;
 403        kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 404        kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 405}
 406
 407static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 408{
 409        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 410        kcb->kprobe_status = kcb->prev_kprobe.status;
 411        kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 412        kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 413}
 414
 415static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 416                                struct kprobe_ctlblk *kcb)
 417{
 418        __this_cpu_write(current_kprobe, p);
 419        kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 420                = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 421        if (is_IF_modifier(p->ainsn.insn))
 422                kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 423}
 424
 425static void __kprobes clear_btf(void)
 426{
 427        if (test_thread_flag(TIF_BLOCKSTEP)) {
 428                unsigned long debugctl = get_debugctlmsr();
 429
 430                debugctl &= ~DEBUGCTLMSR_BTF;
 431                update_debugctlmsr(debugctl);
 432        }
 433}
 434
 435static void __kprobes restore_btf(void)
 436{
 437        if (test_thread_flag(TIF_BLOCKSTEP)) {
 438                unsigned long debugctl = get_debugctlmsr();
 439
 440                debugctl |= DEBUGCTLMSR_BTF;
 441                update_debugctlmsr(debugctl);
 442        }
 443}
 444
 445void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 446                                      struct pt_regs *regs)
 447{
 448        unsigned long *sara = stack_addr(regs);
 449
 450        ri->ret_addr = (kprobe_opcode_t *) *sara;
 451
 452        /* Replace the return addr with trampoline addr */
 453        *sara = (unsigned long) &kretprobe_trampoline;
 454}
 455
 456#ifdef CONFIG_OPTPROBES
 457static int  __kprobes setup_detour_execution(struct kprobe *p,
 458                                             struct pt_regs *regs,
 459                                             int reenter);
 460#else
 461#define setup_detour_execution(p, regs, reenter) (0)
 462#endif
 463
 464static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 465                                       struct kprobe_ctlblk *kcb, int reenter)
 466{
 467        if (setup_detour_execution(p, regs, reenter))
 468                return;
 469
 470#if !defined(CONFIG_PREEMPT)
 471        if (p->ainsn.boostable == 1 && !p->post_handler) {
 472                /* Boost up -- we can execute copied instructions directly */
 473                if (!reenter)
 474                        reset_current_kprobe();
 475                /*
 476                 * Reentering boosted probe doesn't reset current_kprobe,
 477                 * nor set current_kprobe, because it doesn't use single
 478                 * stepping.
 479                 */
 480                regs->ip = (unsigned long)p->ainsn.insn;
 481                preempt_enable_no_resched();
 482                return;
 483        }
 484#endif
 485        if (reenter) {
 486                save_previous_kprobe(kcb);
 487                set_current_kprobe(p, regs, kcb);
 488                kcb->kprobe_status = KPROBE_REENTER;
 489        } else
 490                kcb->kprobe_status = KPROBE_HIT_SS;
 491        /* Prepare real single stepping */
 492        clear_btf();
 493        regs->flags |= X86_EFLAGS_TF;
 494        regs->flags &= ~X86_EFLAGS_IF;
 495        /* single step inline if the instruction is an int3 */
 496        if (p->opcode == BREAKPOINT_INSTRUCTION)
 497                regs->ip = (unsigned long)p->addr;
 498        else
 499                regs->ip = (unsigned long)p->ainsn.insn;
 500}
 501
 502/*
 503 * We have reentered the kprobe_handler(), since another probe was hit while
 504 * within the handler. We save the original kprobes variables and just single
 505 * step on the instruction of the new probe without calling any user handlers.
 506 */
 507static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 508                                    struct kprobe_ctlblk *kcb)
 509{
 510        switch (kcb->kprobe_status) {
 511        case KPROBE_HIT_SSDONE:
 512        case KPROBE_HIT_ACTIVE:
 513                kprobes_inc_nmissed_count(p);
 514                setup_singlestep(p, regs, kcb, 1);
 515                break;
 516        case KPROBE_HIT_SS:
 517                /* A probe has been hit in the codepath leading up to, or just
 518                 * after, single-stepping of a probed instruction. This entire
 519                 * codepath should strictly reside in .kprobes.text section.
 520                 * Raise a BUG or we'll continue in an endless reentering loop
 521                 * and eventually a stack overflow.
 522                 */
 523                printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
 524                       p->addr);
 525                dump_kprobe(p);
 526                BUG();
 527        default:
 528                /* impossible cases */
 529                WARN_ON(1);
 530                return 0;
 531        }
 532
 533        return 1;
 534}
 535
 536/*
 537 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 538 * remain disabled throughout this function.
 539 */
 540static int __kprobes kprobe_handler(struct pt_regs *regs)
 541{
 542        kprobe_opcode_t *addr;
 543        struct kprobe *p;
 544        struct kprobe_ctlblk *kcb;
 545
 546        addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 547        /*
 548         * We don't want to be preempted for the entire
 549         * duration of kprobe processing. We conditionally
 550         * re-enable preemption at the end of this function,
 551         * and also in reenter_kprobe() and setup_singlestep().
 552         */
 553        preempt_disable();
 554
 555        kcb = get_kprobe_ctlblk();
 556        p = get_kprobe(addr);
 557
 558        if (p) {
 559                if (kprobe_running()) {
 560                        if (reenter_kprobe(p, regs, kcb))
 561                                return 1;
 562                } else {
 563                        set_current_kprobe(p, regs, kcb);
 564                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 565
 566                        /*
 567                         * If we have no pre-handler or it returned 0, we
 568                         * continue with normal processing.  If we have a
 569                         * pre-handler and it returned non-zero, it prepped
 570                         * for calling the break_handler below on re-entry
 571                         * for jprobe processing, so get out doing nothing
 572                         * more here.
 573                         */
 574                        if (!p->pre_handler || !p->pre_handler(p, regs))
 575                                setup_singlestep(p, regs, kcb, 0);
 576                        return 1;
 577                }
 578        } else if (*addr != BREAKPOINT_INSTRUCTION) {
 579                /*
 580                 * The breakpoint instruction was removed right
 581                 * after we hit it.  Another cpu has removed
 582                 * either a probepoint or a debugger breakpoint
 583                 * at this address.  In either case, no further
 584                 * handling of this interrupt is appropriate.
 585                 * Back up over the (now missing) int3 and run
 586                 * the original instruction.
 587                 */
 588                regs->ip = (unsigned long)addr;
 589                preempt_enable_no_resched();
 590                return 1;
 591        } else if (kprobe_running()) {
 592                p = __this_cpu_read(current_kprobe);
 593                if (p->break_handler && p->break_handler(p, regs)) {
 594                        setup_singlestep(p, regs, kcb, 0);
 595                        return 1;
 596                }
 597        } /* else: not a kprobe fault; let the kernel handle it */
 598
 599        preempt_enable_no_resched();
 600        return 0;
 601}
 602
 603#ifdef CONFIG_X86_64
 604#define SAVE_REGS_STRING                \
 605        /* Skip cs, ip, orig_ax. */     \
 606        "       subq $24, %rsp\n"       \
 607        "       pushq %rdi\n"           \
 608        "       pushq %rsi\n"           \
 609        "       pushq %rdx\n"           \
 610        "       pushq %rcx\n"           \
 611        "       pushq %rax\n"           \
 612        "       pushq %r8\n"            \
 613        "       pushq %r9\n"            \
 614        "       pushq %r10\n"           \
 615        "       pushq %r11\n"           \
 616        "       pushq %rbx\n"           \
 617        "       pushq %rbp\n"           \
 618        "       pushq %r12\n"           \
 619        "       pushq %r13\n"           \
 620        "       pushq %r14\n"           \
 621        "       pushq %r15\n"
 622#define RESTORE_REGS_STRING             \
 623        "       popq %r15\n"            \
 624        "       popq %r14\n"            \
 625        "       popq %r13\n"            \
 626        "       popq %r12\n"            \
 627        "       popq %rbp\n"            \
 628        "       popq %rbx\n"            \
 629        "       popq %r11\n"            \
 630        "       popq %r10\n"            \
 631        "       popq %r9\n"             \
 632        "       popq %r8\n"             \
 633        "       popq %rax\n"            \
 634        "       popq %rcx\n"            \
 635        "       popq %rdx\n"            \
 636        "       popq %rsi\n"            \
 637        "       popq %rdi\n"            \
 638        /* Skip orig_ax, ip, cs */      \
 639        "       addq $24, %rsp\n"
 640#else
 641#define SAVE_REGS_STRING                \
 642        /* Skip cs, ip, orig_ax and gs. */      \
 643        "       subl $16, %esp\n"       \
 644        "       pushl %fs\n"            \
 645        "       pushl %es\n"            \
 646        "       pushl %ds\n"            \
 647        "       pushl %eax\n"           \
 648        "       pushl %ebp\n"           \
 649        "       pushl %edi\n"           \
 650        "       pushl %esi\n"           \
 651        "       pushl %edx\n"           \
 652        "       pushl %ecx\n"           \
 653        "       pushl %ebx\n"
 654#define RESTORE_REGS_STRING             \
 655        "       popl %ebx\n"            \
 656        "       popl %ecx\n"            \
 657        "       popl %edx\n"            \
 658        "       popl %esi\n"            \
 659        "       popl %edi\n"            \
 660        "       popl %ebp\n"            \
 661        "       popl %eax\n"            \
 662        /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
 663        "       addl $24, %esp\n"
 664#endif
 665
 666/*
 667 * When a retprobed function returns, this code saves registers and
 668 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 669 */
 670static void __used __kprobes kretprobe_trampoline_holder(void)
 671{
 672        asm volatile (
 673                        ".global kretprobe_trampoline\n"
 674                        "kretprobe_trampoline: \n"
 675#ifdef CONFIG_X86_64
 676                        /* We don't bother saving the ss register */
 677                        "       pushq %rsp\n"
 678                        "       pushfq\n"
 679                        SAVE_REGS_STRING
 680                        "       movq %rsp, %rdi\n"
 681                        "       call trampoline_handler\n"
 682                        /* Replace saved sp with true return address. */
 683                        "       movq %rax, 152(%rsp)\n"
 684                        RESTORE_REGS_STRING
 685                        "       popfq\n"
 686#else
 687                        "       pushf\n"
 688                        SAVE_REGS_STRING
 689                        "       movl %esp, %eax\n"
 690                        "       call trampoline_handler\n"
 691                        /* Move flags to cs */
 692                        "       movl 56(%esp), %edx\n"
 693                        "       movl %edx, 52(%esp)\n"
 694                        /* Replace saved flags with true return address. */
 695                        "       movl %eax, 56(%esp)\n"
 696                        RESTORE_REGS_STRING
 697                        "       popf\n"
 698#endif
 699                        "       ret\n");
 700}
 701
 702/*
 703 * Called from kretprobe_trampoline
 704 */
 705static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 706{
 707        struct kretprobe_instance *ri = NULL;
 708        struct hlist_head *head, empty_rp;
 709        struct hlist_node *node, *tmp;
 710        unsigned long flags, orig_ret_address = 0;
 711        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 712        kprobe_opcode_t *correct_ret_addr = NULL;
 713
 714        INIT_HLIST_HEAD(&empty_rp);
 715        kretprobe_hash_lock(current, &head, &flags);
 716        /* fixup registers */
 717#ifdef CONFIG_X86_64
 718        regs->cs = __KERNEL_CS;
 719#else
 720        regs->cs = __KERNEL_CS | get_kernel_rpl();
 721        regs->gs = 0;
 722#endif
 723        regs->ip = trampoline_address;
 724        regs->orig_ax = ~0UL;
 725
 726        /*
 727         * It is possible to have multiple instances associated with a given
 728         * task either because multiple functions in the call path have
 729         * return probes installed on them, and/or more than one
 730         * return probe was registered for a target function.
 731         *
 732         * We can handle this because:
 733         *     - instances are always pushed into the head of the list
 734         *     - when multiple return probes are registered for the same
 735         *       function, the (chronologically) first instance's ret_addr
 736         *       will be the real return address, and all the rest will
 737         *       point to kretprobe_trampoline.
 738         */
 739        hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 740                if (ri->task != current)
 741                        /* another task is sharing our hash bucket */
 742                        continue;
 743
 744                orig_ret_address = (unsigned long)ri->ret_addr;
 745
 746                if (orig_ret_address != trampoline_address)
 747                        /*
 748                         * This is the real return address. Any other
 749                         * instances associated with this task are for
 750                         * other calls deeper on the call stack
 751                         */
 752                        break;
 753        }
 754
 755        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 756
 757        correct_ret_addr = ri->ret_addr;
 758        hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 759                if (ri->task != current)
 760                        /* another task is sharing our hash bucket */
 761                        continue;
 762
 763                orig_ret_address = (unsigned long)ri->ret_addr;
 764                if (ri->rp && ri->rp->handler) {
 765                        __this_cpu_write(current_kprobe, &ri->rp->kp);
 766                        get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 767                        ri->ret_addr = correct_ret_addr;
 768                        ri->rp->handler(ri, regs);
 769                        __this_cpu_write(current_kprobe, NULL);
 770                }
 771
 772                recycle_rp_inst(ri, &empty_rp);
 773
 774                if (orig_ret_address != trampoline_address)
 775                        /*
 776                         * This is the real return address. Any other
 777                         * instances associated with this task are for
 778                         * other calls deeper on the call stack
 779                         */
 780                        break;
 781        }
 782
 783        kretprobe_hash_unlock(current, &flags);
 784
 785        hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 786                hlist_del(&ri->hlist);
 787                kfree(ri);
 788        }
 789        return (void *)orig_ret_address;
 790}
 791
 792/*
 793 * Called after single-stepping.  p->addr is the address of the
 794 * instruction whose first byte has been replaced by the "int 3"
 795 * instruction.  To avoid the SMP problems that can occur when we
 796 * temporarily put back the original opcode to single-step, we
 797 * single-stepped a copy of the instruction.  The address of this
 798 * copy is p->ainsn.insn.
 799 *
 800 * This function prepares to return from the post-single-step
 801 * interrupt.  We have to fix up the stack as follows:
 802 *
 803 * 0) Except in the case of absolute or indirect jump or call instructions,
 804 * the new ip is relative to the copied instruction.  We need to make
 805 * it relative to the original instruction.
 806 *
 807 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 808 * flags are set in the just-pushed flags, and may need to be cleared.
 809 *
 810 * 2) If the single-stepped instruction was a call, the return address
 811 * that is atop the stack is the address following the copied instruction.
 812 * We need to make it the address following the original instruction.
 813 *
 814 * If this is the first time we've single-stepped the instruction at
 815 * this probepoint, and the instruction is boostable, boost it: add a
 816 * jump instruction after the copied instruction, that jumps to the next
 817 * instruction after the probepoint.
 818 */
 819static void __kprobes resume_execution(struct kprobe *p,
 820                struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 821{
 822        unsigned long *tos = stack_addr(regs);
 823        unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 824        unsigned long orig_ip = (unsigned long)p->addr;
 825        kprobe_opcode_t *insn = p->ainsn.insn;
 826
 827        /* Skip prefixes */
 828        insn = skip_prefixes(insn);
 829
 830        regs->flags &= ~X86_EFLAGS_TF;
 831        switch (*insn) {
 832        case 0x9c:      /* pushfl */
 833                *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 834                *tos |= kcb->kprobe_old_flags;
 835                break;
 836        case 0xc2:      /* iret/ret/lret */
 837        case 0xc3:
 838        case 0xca:
 839        case 0xcb:
 840        case 0xcf:
 841        case 0xea:      /* jmp absolute -- ip is correct */
 842                /* ip is already adjusted, no more changes required */
 843                p->ainsn.boostable = 1;
 844                goto no_change;
 845        case 0xe8:      /* call relative - Fix return addr */
 846                *tos = orig_ip + (*tos - copy_ip);
 847                break;
 848#ifdef CONFIG_X86_32
 849        case 0x9a:      /* call absolute -- same as call absolute, indirect */
 850                *tos = orig_ip + (*tos - copy_ip);
 851                goto no_change;
 852#endif
 853        case 0xff:
 854                if ((insn[1] & 0x30) == 0x10) {
 855                        /*
 856                         * call absolute, indirect
 857                         * Fix return addr; ip is correct.
 858                         * But this is not boostable
 859                         */
 860                        *tos = orig_ip + (*tos - copy_ip);
 861                        goto no_change;
 862                } else if (((insn[1] & 0x31) == 0x20) ||
 863                           ((insn[1] & 0x31) == 0x21)) {
 864                        /*
 865                         * jmp near and far, absolute indirect
 866                         * ip is correct. And this is boostable
 867                         */
 868                        p->ainsn.boostable = 1;
 869                        goto no_change;
 870                }
 871        default:
 872                break;
 873        }
 874
 875        if (p->ainsn.boostable == 0) {
 876                if ((regs->ip > copy_ip) &&
 877                    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
 878                        /*
 879                         * These instructions can be executed directly if it
 880                         * jumps back to correct address.
 881                         */
 882                        synthesize_reljump((void *)regs->ip,
 883                                (void *)orig_ip + (regs->ip - copy_ip));
 884                        p->ainsn.boostable = 1;
 885                } else {
 886                        p->ainsn.boostable = -1;
 887                }
 888        }
 889
 890        regs->ip += orig_ip - copy_ip;
 891
 892no_change:
 893        restore_btf();
 894}
 895
 896/*
 897 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 898 * remain disabled throughout this function.
 899 */
 900static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 901{
 902        struct kprobe *cur = kprobe_running();
 903        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 904
 905        if (!cur)
 906                return 0;
 907
 908        resume_execution(cur, regs, kcb);
 909        regs->flags |= kcb->kprobe_saved_flags;
 910
 911        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 912                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 913                cur->post_handler(cur, regs, 0);
 914        }
 915
 916        /* Restore back the original saved kprobes variables and continue. */
 917        if (kcb->kprobe_status == KPROBE_REENTER) {
 918                restore_previous_kprobe(kcb);
 919                goto out;
 920        }
 921        reset_current_kprobe();
 922out:
 923        preempt_enable_no_resched();
 924
 925        /*
 926         * if somebody else is singlestepping across a probe point, flags
 927         * will have TF set, in which case, continue the remaining processing
 928         * of do_debug, as if this is not a probe hit.
 929         */
 930        if (regs->flags & X86_EFLAGS_TF)
 931                return 0;
 932
 933        return 1;
 934}
 935
 936int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 937{
 938        struct kprobe *cur = kprobe_running();
 939        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 940
 941        switch (kcb->kprobe_status) {
 942        case KPROBE_HIT_SS:
 943        case KPROBE_REENTER:
 944                /*
 945                 * We are here because the instruction being single
 946                 * stepped caused a page fault. We reset the current
 947                 * kprobe and the ip points back to the probe address
 948                 * and allow the page fault handler to continue as a
 949                 * normal page fault.
 950                 */
 951                regs->ip = (unsigned long)cur->addr;
 952                regs->flags |= kcb->kprobe_old_flags;
 953                if (kcb->kprobe_status == KPROBE_REENTER)
 954                        restore_previous_kprobe(kcb);
 955                else
 956                        reset_current_kprobe();
 957                preempt_enable_no_resched();
 958                break;
 959        case KPROBE_HIT_ACTIVE:
 960        case KPROBE_HIT_SSDONE:
 961                /*
 962                 * We increment the nmissed count for accounting,
 963                 * we can also use npre/npostfault count for accounting
 964                 * these specific fault cases.
 965                 */
 966                kprobes_inc_nmissed_count(cur);
 967
 968                /*
 969                 * We come here because instructions in the pre/post
 970                 * handler caused the page_fault, this could happen
 971                 * if handler tries to access user space by
 972                 * copy_from_user(), get_user() etc. Let the
 973                 * user-specified handler try to fix it first.
 974                 */
 975                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 976                        return 1;
 977
 978                /*
 979                 * In case the user-specified fault handler returned
 980                 * zero, try to fix up.
 981                 */
 982                if (fixup_exception(regs))
 983                        return 1;
 984
 985                /*
 986                 * fixup routine could not handle it,
 987                 * Let do_page_fault() fix it.
 988                 */
 989                break;
 990        default:
 991                break;
 992        }
 993        return 0;
 994}
 995
 996/*
 997 * Wrapper routine for handling exceptions.
 998 */
 999int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
1000                                       unsigned long val, void *data)
1001{
1002        struct die_args *args = data;
1003        int ret = NOTIFY_DONE;
1004
1005        if (args->regs && user_mode_vm(args->regs))
1006                return ret;
1007
1008        switch (val) {
1009        case DIE_INT3:
1010                if (kprobe_handler(args->regs))
1011                        ret = NOTIFY_STOP;
1012                break;
1013        case DIE_DEBUG:
1014                if (post_kprobe_handler(args->regs)) {
1015                        /*
1016                         * Reset the BS bit in dr6 (pointed by args->err) to
1017                         * denote completion of processing
1018                         */
1019                        (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
1020                        ret = NOTIFY_STOP;
1021                }
1022                break;
1023        case DIE_GPF:
1024                /*
1025                 * To be potentially processing a kprobe fault and to
1026                 * trust the result from kprobe_running(), we have
1027                 * be non-preemptible.
1028                 */
1029                if (!preemptible() && kprobe_running() &&
1030                    kprobe_fault_handler(args->regs, args->trapnr))
1031                        ret = NOTIFY_STOP;
1032                break;
1033        default:
1034                break;
1035        }
1036        return ret;
1037}
1038
1039int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1040{
1041        struct jprobe *jp = container_of(p, struct jprobe, kp);
1042        unsigned long addr;
1043        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1044
1045        kcb->jprobe_saved_regs = *regs;
1046        kcb->jprobe_saved_sp = stack_addr(regs);
1047        addr = (unsigned long)(kcb->jprobe_saved_sp);
1048
1049        /*
1050         * As Linus pointed out, gcc assumes that the callee
1051         * owns the argument space and could overwrite it, e.g.
1052         * tailcall optimization. So, to be absolutely safe
1053         * we also save and restore enough stack bytes to cover
1054         * the argument area.
1055         */
1056        memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1057               MIN_STACK_SIZE(addr));
1058        regs->flags &= ~X86_EFLAGS_IF;
1059        trace_hardirqs_off();
1060        regs->ip = (unsigned long)(jp->entry);
1061        return 1;
1062}
1063
1064void __kprobes jprobe_return(void)
1065{
1066        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1067
1068        asm volatile (
1069#ifdef CONFIG_X86_64
1070                        "       xchg   %%rbx,%%rsp      \n"
1071#else
1072                        "       xchgl   %%ebx,%%esp     \n"
1073#endif
1074                        "       int3                    \n"
1075                        "       .globl jprobe_return_end\n"
1076                        "       jprobe_return_end:      \n"
1077                        "       nop                     \n"::"b"
1078                        (kcb->jprobe_saved_sp):"memory");
1079}
1080
1081int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1082{
1083        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084        u8 *addr = (u8 *) (regs->ip - 1);
1085        struct jprobe *jp = container_of(p, struct jprobe, kp);
1086
1087        if ((addr > (u8 *) jprobe_return) &&
1088            (addr < (u8 *) jprobe_return_end)) {
1089                if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1090                        struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1091                        printk(KERN_ERR
1092                               "current sp %p does not match saved sp %p\n",
1093                               stack_addr(regs), kcb->jprobe_saved_sp);
1094                        printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1095                        show_registers(saved_regs);
1096                        printk(KERN_ERR "Current registers\n");
1097                        show_registers(regs);
1098                        BUG();
1099                }
1100                *regs = kcb->jprobe_saved_regs;
1101                memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1102                       kcb->jprobes_stack,
1103                       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1104                preempt_enable_no_resched();
1105                return 1;
1106        }
1107        return 0;
1108}
1109
1110
1111#ifdef CONFIG_OPTPROBES
1112
1113/* Insert a call instruction at address 'from', which calls address 'to'.*/
1114static void __kprobes synthesize_relcall(void *from, void *to)
1115{
1116        __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1117}
1118
1119/* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1120static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1121                                          unsigned long val)
1122{
1123#ifdef CONFIG_X86_64
1124        *addr++ = 0x48;
1125        *addr++ = 0xbf;
1126#else
1127        *addr++ = 0xb8;
1128#endif
1129        *(unsigned long *)addr = val;
1130}
1131
1132static void __used __kprobes kprobes_optinsn_template_holder(void)
1133{
1134        asm volatile (
1135                        ".global optprobe_template_entry\n"
1136                        "optprobe_template_entry: \n"
1137#ifdef CONFIG_X86_64
1138                        /* We don't bother saving the ss register */
1139                        "       pushq %rsp\n"
1140                        "       pushfq\n"
1141                        SAVE_REGS_STRING
1142                        "       movq %rsp, %rsi\n"
1143                        ".global optprobe_template_val\n"
1144                        "optprobe_template_val: \n"
1145                        ASM_NOP5
1146                        ASM_NOP5
1147                        ".global optprobe_template_call\n"
1148                        "optprobe_template_call: \n"
1149                        ASM_NOP5
1150                        /* Move flags to rsp */
1151                        "       movq 144(%rsp), %rdx\n"
1152                        "       movq %rdx, 152(%rsp)\n"
1153                        RESTORE_REGS_STRING
1154                        /* Skip flags entry */
1155                        "       addq $8, %rsp\n"
1156                        "       popfq\n"
1157#else /* CONFIG_X86_32 */
1158                        "       pushf\n"
1159                        SAVE_REGS_STRING
1160                        "       movl %esp, %edx\n"
1161                        ".global optprobe_template_val\n"
1162                        "optprobe_template_val: \n"
1163                        ASM_NOP5
1164                        ".global optprobe_template_call\n"
1165                        "optprobe_template_call: \n"
1166                        ASM_NOP5
1167                        RESTORE_REGS_STRING
1168                        "       addl $4, %esp\n"        /* skip cs */
1169                        "       popf\n"
1170#endif
1171                        ".global optprobe_template_end\n"
1172                        "optprobe_template_end: \n");
1173}
1174
1175#define TMPL_MOVE_IDX \
1176        ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1177#define TMPL_CALL_IDX \
1178        ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1179#define TMPL_END_IDX \
1180        ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1181
1182#define INT3_SIZE sizeof(kprobe_opcode_t)
1183
1184/* Optimized kprobe call back function: called from optinsn */
1185static void __kprobes optimized_callback(struct optimized_kprobe *op,
1186                                         struct pt_regs *regs)
1187{
1188        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1189        unsigned long flags;
1190
1191        /* This is possible if op is under delayed unoptimizing */
1192        if (kprobe_disabled(&op->kp))
1193                return;
1194
1195        local_irq_save(flags);
1196        if (kprobe_running()) {
1197                kprobes_inc_nmissed_count(&op->kp);
1198        } else {
1199                /* Save skipped registers */
1200#ifdef CONFIG_X86_64
1201                regs->cs = __KERNEL_CS;
1202#else
1203                regs->cs = __KERNEL_CS | get_kernel_rpl();
1204                regs->gs = 0;
1205#endif
1206                regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1207                regs->orig_ax = ~0UL;
1208
1209                __this_cpu_write(current_kprobe, &op->kp);
1210                kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1211                opt_pre_handler(&op->kp, regs);
1212                __this_cpu_write(current_kprobe, NULL);
1213        }
1214        local_irq_restore(flags);
1215}
1216
1217static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1218{
1219        int len = 0, ret;
1220
1221        while (len < RELATIVEJUMP_SIZE) {
1222                ret = __copy_instruction(dest + len, src + len, 1);
1223                if (!ret || !can_boost(dest + len))
1224                        return -EINVAL;
1225                len += ret;
1226        }
1227        /* Check whether the address range is reserved */
1228        if (ftrace_text_reserved(src, src + len - 1) ||
1229            alternatives_text_reserved(src, src + len - 1) ||
1230            jump_label_text_reserved(src, src + len - 1))
1231                return -EBUSY;
1232
1233        return len;
1234}
1235
1236/* Check whether insn is indirect jump */
1237static int __kprobes insn_is_indirect_jump(struct insn *insn)
1238{
1239        return ((insn->opcode.bytes[0] == 0xff &&
1240                (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1241                insn->opcode.bytes[0] == 0xea); /* Segment based jump */
1242}
1243
1244/* Check whether insn jumps into specified address range */
1245static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1246{
1247        unsigned long target = 0;
1248
1249        switch (insn->opcode.bytes[0]) {
1250        case 0xe0:      /* loopne */
1251        case 0xe1:      /* loope */
1252        case 0xe2:      /* loop */
1253        case 0xe3:      /* jcxz */
1254        case 0xe9:      /* near relative jump */
1255        case 0xeb:      /* short relative jump */
1256                break;
1257        case 0x0f:
1258                if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1259                        break;
1260                return 0;
1261        default:
1262                if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1263                        break;
1264                return 0;
1265        }
1266        target = (unsigned long)insn->next_byte + insn->immediate.value;
1267
1268        return (start <= target && target <= start + len);
1269}
1270
1271/* Decode whole function to ensure any instructions don't jump into target */
1272static int __kprobes can_optimize(unsigned long paddr)
1273{
1274        int ret;
1275        unsigned long addr, size = 0, offset = 0;
1276        struct insn insn;
1277        kprobe_opcode_t buf[MAX_INSN_SIZE];
1278
1279        /* Lookup symbol including addr */
1280        if (!kallsyms_lookup_size_offset(paddr, &size, &offset))
1281                return 0;
1282
1283        /*
1284         * Do not optimize in the entry code due to the unstable
1285         * stack handling.
1286         */
1287        if ((paddr >= (unsigned long )__entry_text_start) &&
1288            (paddr <  (unsigned long )__entry_text_end))
1289                return 0;
1290
1291        /* Check there is enough space for a relative jump. */
1292        if (size - offset < RELATIVEJUMP_SIZE)
1293                return 0;
1294
1295        /* Decode instructions */
1296        addr = paddr - offset;
1297        while (addr < paddr - offset + size) { /* Decode until function end */
1298                if (search_exception_tables(addr))
1299                        /*
1300                         * Since some fixup code will jumps into this function,
1301                         * we can't optimize kprobe in this function.
1302                         */
1303                        return 0;
1304                kernel_insn_init(&insn, (void *)addr);
1305                insn_get_opcode(&insn);
1306                if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1307                        ret = recover_probed_instruction(buf, addr);
1308                        if (ret)
1309                                return 0;
1310                        kernel_insn_init(&insn, buf);
1311                }
1312                insn_get_length(&insn);
1313                /* Recover address */
1314                insn.kaddr = (void *)addr;
1315                insn.next_byte = (void *)(addr + insn.length);
1316                /* Check any instructions don't jump into target */
1317                if (insn_is_indirect_jump(&insn) ||
1318                    insn_jump_into_range(&insn, paddr + INT3_SIZE,
1319                                         RELATIVE_ADDR_SIZE))
1320                        return 0;
1321                addr += insn.length;
1322        }
1323
1324        return 1;
1325}
1326
1327/* Check optimized_kprobe can actually be optimized. */
1328int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1329{
1330        int i;
1331        struct kprobe *p;
1332
1333        for (i = 1; i < op->optinsn.size; i++) {
1334                p = get_kprobe(op->kp.addr + i);
1335                if (p && !kprobe_disabled(p))
1336                        return -EEXIST;
1337        }
1338
1339        return 0;
1340}
1341
1342/* Check the addr is within the optimized instructions. */
1343int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1344                                           unsigned long addr)
1345{
1346        return ((unsigned long)op->kp.addr <= addr &&
1347                (unsigned long)op->kp.addr + op->optinsn.size > addr);
1348}
1349
1350/* Free optimized instruction slot */
1351static __kprobes
1352void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1353{
1354        if (op->optinsn.insn) {
1355                free_optinsn_slot(op->optinsn.insn, dirty);
1356                op->optinsn.insn = NULL;
1357                op->optinsn.size = 0;
1358        }
1359}
1360
1361void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1362{
1363        __arch_remove_optimized_kprobe(op, 1);
1364}
1365
1366/*
1367 * Copy replacing target instructions
1368 * Target instructions MUST be relocatable (checked inside)
1369 */
1370int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1371{
1372        u8 *buf;
1373        int ret;
1374        long rel;
1375
1376        if (!can_optimize((unsigned long)op->kp.addr))
1377                return -EILSEQ;
1378
1379        op->optinsn.insn = get_optinsn_slot();
1380        if (!op->optinsn.insn)
1381                return -ENOMEM;
1382
1383        /*
1384         * Verify if the address gap is in 2GB range, because this uses
1385         * a relative jump.
1386         */
1387        rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1388        if (abs(rel) > 0x7fffffff)
1389                return -ERANGE;
1390
1391        buf = (u8 *)op->optinsn.insn;
1392
1393        /* Copy instructions into the out-of-line buffer */
1394        ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1395        if (ret < 0) {
1396                __arch_remove_optimized_kprobe(op, 0);
1397                return ret;
1398        }
1399        op->optinsn.size = ret;
1400
1401        /* Copy arch-dep-instance from template */
1402        memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1403
1404        /* Set probe information */
1405        synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1406
1407        /* Set probe function call */
1408        synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1409
1410        /* Set returning jmp instruction at the tail of out-of-line buffer */
1411        synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1412                           (u8 *)op->kp.addr + op->optinsn.size);
1413
1414        flush_icache_range((unsigned long) buf,
1415                           (unsigned long) buf + TMPL_END_IDX +
1416                           op->optinsn.size + RELATIVEJUMP_SIZE);
1417        return 0;
1418}
1419
1420#define MAX_OPTIMIZE_PROBES 256
1421static struct text_poke_param *jump_poke_params;
1422static struct jump_poke_buffer {
1423        u8 buf[RELATIVEJUMP_SIZE];
1424} *jump_poke_bufs;
1425
1426static void __kprobes setup_optimize_kprobe(struct text_poke_param *tprm,
1427                                            u8 *insn_buf,
1428                                            struct optimized_kprobe *op)
1429{
1430        s32 rel = (s32)((long)op->optinsn.insn -
1431                        ((long)op->kp.addr + RELATIVEJUMP_SIZE));
1432
1433        /* Backup instructions which will be replaced by jump address */
1434        memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1435               RELATIVE_ADDR_SIZE);
1436
1437        insn_buf[0] = RELATIVEJUMP_OPCODE;
1438        *(s32 *)(&insn_buf[1]) = rel;
1439
1440        tprm->addr = op->kp.addr;
1441        tprm->opcode = insn_buf;
1442        tprm->len = RELATIVEJUMP_SIZE;
1443}
1444
1445/*
1446 * Replace breakpoints (int3) with relative jumps.
1447 * Caller must call with locking kprobe_mutex and text_mutex.
1448 */
1449void __kprobes arch_optimize_kprobes(struct list_head *oplist)
1450{
1451        struct optimized_kprobe *op, *tmp;
1452        int c = 0;
1453
1454        list_for_each_entry_safe(op, tmp, oplist, list) {
1455                WARN_ON(kprobe_disabled(&op->kp));
1456                /* Setup param */
1457                setup_optimize_kprobe(&jump_poke_params[c],
1458                                      jump_poke_bufs[c].buf, op);
1459                list_del_init(&op->list);
1460                if (++c >= MAX_OPTIMIZE_PROBES)
1461                        break;
1462        }
1463
1464        /*
1465         * text_poke_smp doesn't support NMI/MCE code modifying.
1466         * However, since kprobes itself also doesn't support NMI/MCE
1467         * code probing, it's not a problem.
1468         */
1469        text_poke_smp_batch(jump_poke_params, c);
1470}
1471
1472static void __kprobes setup_unoptimize_kprobe(struct text_poke_param *tprm,
1473                                              u8 *insn_buf,
1474                                              struct optimized_kprobe *op)
1475{
1476        /* Set int3 to first byte for kprobes */
1477        insn_buf[0] = BREAKPOINT_INSTRUCTION;
1478        memcpy(insn_buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1479
1480        tprm->addr = op->kp.addr;
1481        tprm->opcode = insn_buf;
1482        tprm->len = RELATIVEJUMP_SIZE;
1483}
1484
1485/*
1486 * Recover original instructions and breakpoints from relative jumps.
1487 * Caller must call with locking kprobe_mutex.
1488 */
1489extern void arch_unoptimize_kprobes(struct list_head *oplist,
1490                                    struct list_head *done_list)
1491{
1492        struct optimized_kprobe *op, *tmp;
1493        int c = 0;
1494
1495        list_for_each_entry_safe(op, tmp, oplist, list) {
1496                /* Setup param */
1497                setup_unoptimize_kprobe(&jump_poke_params[c],
1498                                        jump_poke_bufs[c].buf, op);
1499                list_move(&op->list, done_list);
1500                if (++c >= MAX_OPTIMIZE_PROBES)
1501                        break;
1502        }
1503
1504        /*
1505         * text_poke_smp doesn't support NMI/MCE code modifying.
1506         * However, since kprobes itself also doesn't support NMI/MCE
1507         * code probing, it's not a problem.
1508         */
1509        text_poke_smp_batch(jump_poke_params, c);
1510}
1511
1512/* Replace a relative jump with a breakpoint (int3).  */
1513void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1514{
1515        u8 buf[RELATIVEJUMP_SIZE];
1516
1517        /* Set int3 to first byte for kprobes */
1518        buf[0] = BREAKPOINT_INSTRUCTION;
1519        memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1520        text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1521}
1522
1523static int  __kprobes setup_detour_execution(struct kprobe *p,
1524                                             struct pt_regs *regs,
1525                                             int reenter)
1526{
1527        struct optimized_kprobe *op;
1528
1529        if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1530                /* This kprobe is really able to run optimized path. */
1531                op = container_of(p, struct optimized_kprobe, kp);
1532                /* Detour through copied instructions */
1533                regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1534                if (!reenter)
1535                        reset_current_kprobe();
1536                preempt_enable_no_resched();
1537                return 1;
1538        }
1539        return 0;
1540}
1541
1542static int __kprobes init_poke_params(void)
1543{
1544        /* Allocate code buffer and parameter array */
1545        jump_poke_bufs = kmalloc(sizeof(struct jump_poke_buffer) *
1546                                 MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1547        if (!jump_poke_bufs)
1548                return -ENOMEM;
1549
1550        jump_poke_params = kmalloc(sizeof(struct text_poke_param) *
1551                                   MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1552        if (!jump_poke_params) {
1553                kfree(jump_poke_bufs);
1554                jump_poke_bufs = NULL;
1555                return -ENOMEM;
1556        }
1557
1558        return 0;
1559}
1560#else   /* !CONFIG_OPTPROBES */
1561static int __kprobes init_poke_params(void)
1562{
1563        return 0;
1564}
1565#endif
1566
1567int __init arch_init_kprobes(void)
1568{
1569        return init_poke_params();
1570}
1571
1572int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1573{
1574        return 0;
1575}
1576