linux/arch/x86/kernel/kvmclock.c
<<
>>
Prefs
   1/*  KVM paravirtual clock driver. A clocksource implementation
   2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
   3
   4    This program is free software; you can redistribute it and/or modify
   5    it under the terms of the GNU General Public License as published by
   6    the Free Software Foundation; either version 2 of the License, or
   7    (at your option) any later version.
   8
   9    This program is distributed in the hope that it will be useful,
  10    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12    GNU General Public License for more details.
  13
  14    You should have received a copy of the GNU General Public License
  15    along with this program; if not, write to the Free Software
  16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17*/
  18
  19#include <linux/clocksource.h>
  20#include <linux/kvm_para.h>
  21#include <asm/pvclock.h>
  22#include <asm/msr.h>
  23#include <asm/apic.h>
  24#include <linux/percpu.h>
  25
  26#include <asm/x86_init.h>
  27#include <asm/reboot.h>
  28
  29static int kvmclock = 1;
  30static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
  31static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
  32
  33static int parse_no_kvmclock(char *arg)
  34{
  35        kvmclock = 0;
  36        return 0;
  37}
  38early_param("no-kvmclock", parse_no_kvmclock);
  39
  40/* The hypervisor will put information about time periodically here */
  41static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
  42static struct pvclock_wall_clock wall_clock;
  43
  44/*
  45 * The wallclock is the time of day when we booted. Since then, some time may
  46 * have elapsed since the hypervisor wrote the data. So we try to account for
  47 * that with system time
  48 */
  49static unsigned long kvm_get_wallclock(void)
  50{
  51        struct pvclock_vcpu_time_info *vcpu_time;
  52        struct timespec ts;
  53        int low, high;
  54
  55        low = (int)__pa_symbol(&wall_clock);
  56        high = ((u64)__pa_symbol(&wall_clock) >> 32);
  57
  58        native_write_msr(msr_kvm_wall_clock, low, high);
  59
  60        vcpu_time = &get_cpu_var(hv_clock);
  61        pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
  62        put_cpu_var(hv_clock);
  63
  64        return ts.tv_sec;
  65}
  66
  67static int kvm_set_wallclock(unsigned long now)
  68{
  69        return -1;
  70}
  71
  72static cycle_t kvm_clock_read(void)
  73{
  74        struct pvclock_vcpu_time_info *src;
  75        cycle_t ret;
  76
  77        preempt_disable_notrace();
  78        src = &__get_cpu_var(hv_clock);
  79        ret = pvclock_clocksource_read(src);
  80        preempt_enable_notrace();
  81        return ret;
  82}
  83
  84static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
  85{
  86        return kvm_clock_read();
  87}
  88
  89/*
  90 * If we don't do that, there is the possibility that the guest
  91 * will calibrate under heavy load - thus, getting a lower lpj -
  92 * and execute the delays themselves without load. This is wrong,
  93 * because no delay loop can finish beforehand.
  94 * Any heuristics is subject to fail, because ultimately, a large
  95 * poll of guests can be running and trouble each other. So we preset
  96 * lpj here
  97 */
  98static unsigned long kvm_get_tsc_khz(void)
  99{
 100        struct pvclock_vcpu_time_info *src;
 101        src = &per_cpu(hv_clock, 0);
 102        return pvclock_tsc_khz(src);
 103}
 104
 105static void kvm_get_preset_lpj(void)
 106{
 107        unsigned long khz;
 108        u64 lpj;
 109
 110        khz = kvm_get_tsc_khz();
 111
 112        lpj = ((u64)khz * 1000);
 113        do_div(lpj, HZ);
 114        preset_lpj = lpj;
 115}
 116
 117static struct clocksource kvm_clock = {
 118        .name = "kvm-clock",
 119        .read = kvm_clock_get_cycles,
 120        .rating = 400,
 121        .mask = CLOCKSOURCE_MASK(64),
 122        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 123};
 124
 125int kvm_register_clock(char *txt)
 126{
 127        int cpu = smp_processor_id();
 128        int low, high, ret;
 129
 130        low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
 131        high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
 132        ret = native_write_msr_safe(msr_kvm_system_time, low, high);
 133        printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
 134               cpu, high, low, txt);
 135
 136        return ret;
 137}
 138
 139#ifdef CONFIG_X86_LOCAL_APIC
 140static void __cpuinit kvm_setup_secondary_clock(void)
 141{
 142        /*
 143         * Now that the first cpu already had this clocksource initialized,
 144         * we shouldn't fail.
 145         */
 146        WARN_ON(kvm_register_clock("secondary cpu clock"));
 147        /* ok, done with our trickery, call native */
 148        setup_secondary_APIC_clock();
 149}
 150#endif
 151
 152/*
 153 * After the clock is registered, the host will keep writing to the
 154 * registered memory location. If the guest happens to shutdown, this memory
 155 * won't be valid. In cases like kexec, in which you install a new kernel, this
 156 * means a random memory location will be kept being written. So before any
 157 * kind of shutdown from our side, we unregister the clock by writting anything
 158 * that does not have the 'enable' bit set in the msr
 159 */
 160#ifdef CONFIG_KEXEC
 161static void kvm_crash_shutdown(struct pt_regs *regs)
 162{
 163        native_write_msr(msr_kvm_system_time, 0, 0);
 164        kvm_disable_steal_time();
 165        native_machine_crash_shutdown(regs);
 166}
 167#endif
 168
 169static void kvm_shutdown(void)
 170{
 171        native_write_msr(msr_kvm_system_time, 0, 0);
 172        kvm_disable_steal_time();
 173        native_machine_shutdown();
 174}
 175
 176void __init kvmclock_init(void)
 177{
 178        if (!kvm_para_available())
 179                return;
 180
 181        if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 182                msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 183                msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 184        } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
 185                return;
 186
 187        printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
 188                msr_kvm_system_time, msr_kvm_wall_clock);
 189
 190        if (kvm_register_clock("boot clock"))
 191                return;
 192        pv_time_ops.sched_clock = kvm_clock_read;
 193        x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 194        x86_platform.get_wallclock = kvm_get_wallclock;
 195        x86_platform.set_wallclock = kvm_set_wallclock;
 196#ifdef CONFIG_X86_LOCAL_APIC
 197        x86_cpuinit.setup_percpu_clockev =
 198                kvm_setup_secondary_clock;
 199#endif
 200        machine_ops.shutdown  = kvm_shutdown;
 201#ifdef CONFIG_KEXEC
 202        machine_ops.crash_shutdown  = kvm_crash_shutdown;
 203#endif
 204        kvm_get_preset_lpj();
 205        clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 206        pv_info.paravirt_enabled = 1;
 207        pv_info.name = "KVM";
 208
 209        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 210                pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 211}
 212