linux/arch/x86/kernel/process_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Pentium III FXSR, SSE support
   5 *      Gareth Hughes <gareth@valinux.com>, May 2000
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling..
  10 */
  11
  12#include <linux/stackprotector.h>
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/sched.h>
  16#include <linux/fs.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/elfcore.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/user.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/reboot.h>
  28#include <linux/init.h>
  29#include <linux/mc146818rtc.h>
  30#include <linux/module.h>
  31#include <linux/kallsyms.h>
  32#include <linux/ptrace.h>
  33#include <linux/personality.h>
  34#include <linux/tick.h>
  35#include <linux/percpu.h>
  36#include <linux/prctl.h>
  37#include <linux/ftrace.h>
  38#include <linux/uaccess.h>
  39#include <linux/io.h>
  40#include <linux/kdebug.h>
  41#include <linux/cpuidle.h>
  42
  43#include <asm/pgtable.h>
  44#include <asm/system.h>
  45#include <asm/ldt.h>
  46#include <asm/processor.h>
  47#include <asm/i387.h>
  48#include <asm/desc.h>
  49#ifdef CONFIG_MATH_EMULATION
  50#include <asm/math_emu.h>
  51#endif
  52
  53#include <linux/err.h>
  54
  55#include <asm/tlbflush.h>
  56#include <asm/cpu.h>
  57#include <asm/idle.h>
  58#include <asm/syscalls.h>
  59#include <asm/debugreg.h>
  60#include <asm/nmi.h>
  61
  62asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  63
  64/*
  65 * Return saved PC of a blocked thread.
  66 */
  67unsigned long thread_saved_pc(struct task_struct *tsk)
  68{
  69        return ((unsigned long *)tsk->thread.sp)[3];
  70}
  71
  72#ifndef CONFIG_SMP
  73static inline void play_dead(void)
  74{
  75        BUG();
  76}
  77#endif
  78
  79/*
  80 * The idle thread. There's no useful work to be
  81 * done, so just try to conserve power and have a
  82 * low exit latency (ie sit in a loop waiting for
  83 * somebody to say that they'd like to reschedule)
  84 */
  85void cpu_idle(void)
  86{
  87        int cpu = smp_processor_id();
  88
  89        /*
  90         * If we're the non-boot CPU, nothing set the stack canary up
  91         * for us.  CPU0 already has it initialized but no harm in
  92         * doing it again.  This is a good place for updating it, as
  93         * we wont ever return from this function (so the invalid
  94         * canaries already on the stack wont ever trigger).
  95         */
  96        boot_init_stack_canary();
  97
  98        current_thread_info()->status |= TS_POLLING;
  99
 100        /* endless idle loop with no priority at all */
 101        while (1) {
 102                tick_nohz_stop_sched_tick(1);
 103                while (!need_resched()) {
 104
 105                        check_pgt_cache();
 106                        rmb();
 107
 108                        if (cpu_is_offline(cpu))
 109                                play_dead();
 110
 111                        local_touch_nmi();
 112                        local_irq_disable();
 113                        /* Don't trace irqs off for idle */
 114                        stop_critical_timings();
 115                        if (cpuidle_idle_call())
 116                                pm_idle();
 117                        start_critical_timings();
 118                }
 119                tick_nohz_restart_sched_tick();
 120                preempt_enable_no_resched();
 121                schedule();
 122                preempt_disable();
 123        }
 124}
 125
 126void __show_regs(struct pt_regs *regs, int all)
 127{
 128        unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 129        unsigned long d0, d1, d2, d3, d6, d7;
 130        unsigned long sp;
 131        unsigned short ss, gs;
 132
 133        if (user_mode_vm(regs)) {
 134                sp = regs->sp;
 135                ss = regs->ss & 0xffff;
 136                gs = get_user_gs(regs);
 137        } else {
 138                sp = kernel_stack_pointer(regs);
 139                savesegment(ss, ss);
 140                savesegment(gs, gs);
 141        }
 142
 143        show_regs_common();
 144
 145        printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
 146                        (u16)regs->cs, regs->ip, regs->flags,
 147                        smp_processor_id());
 148        print_symbol("EIP is at %s\n", regs->ip);
 149
 150        printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 151                regs->ax, regs->bx, regs->cx, regs->dx);
 152        printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 153                regs->si, regs->di, regs->bp, sp);
 154        printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
 155               (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
 156
 157        if (!all)
 158                return;
 159
 160        cr0 = read_cr0();
 161        cr2 = read_cr2();
 162        cr3 = read_cr3();
 163        cr4 = read_cr4_safe();
 164        printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 165                        cr0, cr2, cr3, cr4);
 166
 167        get_debugreg(d0, 0);
 168        get_debugreg(d1, 1);
 169        get_debugreg(d2, 2);
 170        get_debugreg(d3, 3);
 171        printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
 172                        d0, d1, d2, d3);
 173
 174        get_debugreg(d6, 6);
 175        get_debugreg(d7, 7);
 176        printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
 177                        d6, d7);
 178}
 179
 180void release_thread(struct task_struct *dead_task)
 181{
 182        BUG_ON(dead_task->mm);
 183        release_vm86_irqs(dead_task);
 184}
 185
 186/*
 187 * This gets called before we allocate a new thread and copy
 188 * the current task into it.
 189 */
 190void prepare_to_copy(struct task_struct *tsk)
 191{
 192        unlazy_fpu(tsk);
 193}
 194
 195int copy_thread(unsigned long clone_flags, unsigned long sp,
 196        unsigned long unused,
 197        struct task_struct *p, struct pt_regs *regs)
 198{
 199        struct pt_regs *childregs;
 200        struct task_struct *tsk;
 201        int err;
 202
 203        childregs = task_pt_regs(p);
 204        *childregs = *regs;
 205        childregs->ax = 0;
 206        childregs->sp = sp;
 207
 208        p->thread.sp = (unsigned long) childregs;
 209        p->thread.sp0 = (unsigned long) (childregs+1);
 210
 211        p->thread.ip = (unsigned long) ret_from_fork;
 212
 213        task_user_gs(p) = get_user_gs(regs);
 214
 215        p->thread.io_bitmap_ptr = NULL;
 216        tsk = current;
 217        err = -ENOMEM;
 218
 219        memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 220
 221        if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
 222                p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
 223                                                IO_BITMAP_BYTES, GFP_KERNEL);
 224                if (!p->thread.io_bitmap_ptr) {
 225                        p->thread.io_bitmap_max = 0;
 226                        return -ENOMEM;
 227                }
 228                set_tsk_thread_flag(p, TIF_IO_BITMAP);
 229        }
 230
 231        err = 0;
 232
 233        /*
 234         * Set a new TLS for the child thread?
 235         */
 236        if (clone_flags & CLONE_SETTLS)
 237                err = do_set_thread_area(p, -1,
 238                        (struct user_desc __user *)childregs->si, 0);
 239
 240        if (err && p->thread.io_bitmap_ptr) {
 241                kfree(p->thread.io_bitmap_ptr);
 242                p->thread.io_bitmap_max = 0;
 243        }
 244        return err;
 245}
 246
 247void
 248start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 249{
 250        set_user_gs(regs, 0);
 251        regs->fs                = 0;
 252        regs->ds                = __USER_DS;
 253        regs->es                = __USER_DS;
 254        regs->ss                = __USER_DS;
 255        regs->cs                = __USER_CS;
 256        regs->ip                = new_ip;
 257        regs->sp                = new_sp;
 258        /*
 259         * Free the old FP and other extended state
 260         */
 261        free_thread_xstate(current);
 262}
 263EXPORT_SYMBOL_GPL(start_thread);
 264
 265
 266/*
 267 *      switch_to(x,y) should switch tasks from x to y.
 268 *
 269 * We fsave/fwait so that an exception goes off at the right time
 270 * (as a call from the fsave or fwait in effect) rather than to
 271 * the wrong process. Lazy FP saving no longer makes any sense
 272 * with modern CPU's, and this simplifies a lot of things (SMP
 273 * and UP become the same).
 274 *
 275 * NOTE! We used to use the x86 hardware context switching. The
 276 * reason for not using it any more becomes apparent when you
 277 * try to recover gracefully from saved state that is no longer
 278 * valid (stale segment register values in particular). With the
 279 * hardware task-switch, there is no way to fix up bad state in
 280 * a reasonable manner.
 281 *
 282 * The fact that Intel documents the hardware task-switching to
 283 * be slow is a fairly red herring - this code is not noticeably
 284 * faster. However, there _is_ some room for improvement here,
 285 * so the performance issues may eventually be a valid point.
 286 * More important, however, is the fact that this allows us much
 287 * more flexibility.
 288 *
 289 * The return value (in %ax) will be the "prev" task after
 290 * the task-switch, and shows up in ret_from_fork in entry.S,
 291 * for example.
 292 */
 293__notrace_funcgraph struct task_struct *
 294__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 295{
 296        struct thread_struct *prev = &prev_p->thread,
 297                                 *next = &next_p->thread;
 298        int cpu = smp_processor_id();
 299        struct tss_struct *tss = &per_cpu(init_tss, cpu);
 300        bool preload_fpu;
 301
 302        /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 303
 304        /*
 305         * If the task has used fpu the last 5 timeslices, just do a full
 306         * restore of the math state immediately to avoid the trap; the
 307         * chances of needing FPU soon are obviously high now
 308         */
 309        preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
 310
 311        __unlazy_fpu(prev_p);
 312
 313        /* we're going to use this soon, after a few expensive things */
 314        if (preload_fpu)
 315                prefetch(next->fpu.state);
 316
 317        /*
 318         * Reload esp0.
 319         */
 320        load_sp0(tss, next);
 321
 322        /*
 323         * Save away %gs. No need to save %fs, as it was saved on the
 324         * stack on entry.  No need to save %es and %ds, as those are
 325         * always kernel segments while inside the kernel.  Doing this
 326         * before setting the new TLS descriptors avoids the situation
 327         * where we temporarily have non-reloadable segments in %fs
 328         * and %gs.  This could be an issue if the NMI handler ever
 329         * used %fs or %gs (it does not today), or if the kernel is
 330         * running inside of a hypervisor layer.
 331         */
 332        lazy_save_gs(prev->gs);
 333
 334        /*
 335         * Load the per-thread Thread-Local Storage descriptor.
 336         */
 337        load_TLS(next, cpu);
 338
 339        /*
 340         * Restore IOPL if needed.  In normal use, the flags restore
 341         * in the switch assembly will handle this.  But if the kernel
 342         * is running virtualized at a non-zero CPL, the popf will
 343         * not restore flags, so it must be done in a separate step.
 344         */
 345        if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 346                set_iopl_mask(next->iopl);
 347
 348        /*
 349         * Now maybe handle debug registers and/or IO bitmaps
 350         */
 351        if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
 352                     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
 353                __switch_to_xtra(prev_p, next_p, tss);
 354
 355        /* If we're going to preload the fpu context, make sure clts
 356           is run while we're batching the cpu state updates. */
 357        if (preload_fpu)
 358                clts();
 359
 360        /*
 361         * Leave lazy mode, flushing any hypercalls made here.
 362         * This must be done before restoring TLS segments so
 363         * the GDT and LDT are properly updated, and must be
 364         * done before math_state_restore, so the TS bit is up
 365         * to date.
 366         */
 367        arch_end_context_switch(next_p);
 368
 369        if (preload_fpu)
 370                __math_state_restore();
 371
 372        /*
 373         * Restore %gs if needed (which is common)
 374         */
 375        if (prev->gs | next->gs)
 376                lazy_load_gs(next->gs);
 377
 378        percpu_write(current_task, next_p);
 379
 380        return prev_p;
 381}
 382
 383#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
 384#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
 385
 386unsigned long get_wchan(struct task_struct *p)
 387{
 388        unsigned long bp, sp, ip;
 389        unsigned long stack_page;
 390        int count = 0;
 391        if (!p || p == current || p->state == TASK_RUNNING)
 392                return 0;
 393        stack_page = (unsigned long)task_stack_page(p);
 394        sp = p->thread.sp;
 395        if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
 396                return 0;
 397        /* include/asm-i386/system.h:switch_to() pushes bp last. */
 398        bp = *(unsigned long *) sp;
 399        do {
 400                if (bp < stack_page || bp > top_ebp+stack_page)
 401                        return 0;
 402                ip = *(unsigned long *) (bp+4);
 403                if (!in_sched_functions(ip))
 404                        return ip;
 405                bp = *(unsigned long *) bp;
 406        } while (count++ < 16);
 407        return 0;
 408}
 409
 410