linux/block/blk-throttle.c
<<
>>
Prefs
   1/*
   2 * Interface for controlling IO bandwidth on a request queue
   3 *
   4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/blkdev.h>
  10#include <linux/bio.h>
  11#include <linux/blktrace_api.h>
  12#include "blk-cgroup.h"
  13#include "blk.h"
  14
  15/* Max dispatch from a group in 1 round */
  16static int throtl_grp_quantum = 8;
  17
  18/* Total max dispatch from all groups in one round */
  19static int throtl_quantum = 32;
  20
  21/* Throttling is performed over 100ms slice and after that slice is renewed */
  22static unsigned long throtl_slice = HZ/10;      /* 100 ms */
  23
  24/* A workqueue to queue throttle related work */
  25static struct workqueue_struct *kthrotld_workqueue;
  26static void throtl_schedule_delayed_work(struct throtl_data *td,
  27                                unsigned long delay);
  28
  29struct throtl_rb_root {
  30        struct rb_root rb;
  31        struct rb_node *left;
  32        unsigned int count;
  33        unsigned long min_disptime;
  34};
  35
  36#define THROTL_RB_ROOT  (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
  37                        .count = 0, .min_disptime = 0}
  38
  39#define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
  40
  41struct throtl_grp {
  42        /* List of throtl groups on the request queue*/
  43        struct hlist_node tg_node;
  44
  45        /* active throtl group service_tree member */
  46        struct rb_node rb_node;
  47
  48        /*
  49         * Dispatch time in jiffies. This is the estimated time when group
  50         * will unthrottle and is ready to dispatch more bio. It is used as
  51         * key to sort active groups in service tree.
  52         */
  53        unsigned long disptime;
  54
  55        struct blkio_group blkg;
  56        atomic_t ref;
  57        unsigned int flags;
  58
  59        /* Two lists for READ and WRITE */
  60        struct bio_list bio_lists[2];
  61
  62        /* Number of queued bios on READ and WRITE lists */
  63        unsigned int nr_queued[2];
  64
  65        /* bytes per second rate limits */
  66        uint64_t bps[2];
  67
  68        /* IOPS limits */
  69        unsigned int iops[2];
  70
  71        /* Number of bytes disptached in current slice */
  72        uint64_t bytes_disp[2];
  73        /* Number of bio's dispatched in current slice */
  74        unsigned int io_disp[2];
  75
  76        /* When did we start a new slice */
  77        unsigned long slice_start[2];
  78        unsigned long slice_end[2];
  79
  80        /* Some throttle limits got updated for the group */
  81        int limits_changed;
  82
  83        struct rcu_head rcu_head;
  84};
  85
  86struct throtl_data
  87{
  88        /* List of throtl groups */
  89        struct hlist_head tg_list;
  90
  91        /* service tree for active throtl groups */
  92        struct throtl_rb_root tg_service_tree;
  93
  94        struct throtl_grp *root_tg;
  95        struct request_queue *queue;
  96
  97        /* Total Number of queued bios on READ and WRITE lists */
  98        unsigned int nr_queued[2];
  99
 100        /*
 101         * number of total undestroyed groups
 102         */
 103        unsigned int nr_undestroyed_grps;
 104
 105        /* Work for dispatching throttled bios */
 106        struct delayed_work throtl_work;
 107
 108        int limits_changed;
 109};
 110
 111enum tg_state_flags {
 112        THROTL_TG_FLAG_on_rr = 0,       /* on round-robin busy list */
 113};
 114
 115#define THROTL_TG_FNS(name)                                             \
 116static inline void throtl_mark_tg_##name(struct throtl_grp *tg)         \
 117{                                                                       \
 118        (tg)->flags |= (1 << THROTL_TG_FLAG_##name);                    \
 119}                                                                       \
 120static inline void throtl_clear_tg_##name(struct throtl_grp *tg)        \
 121{                                                                       \
 122        (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);                   \
 123}                                                                       \
 124static inline int throtl_tg_##name(const struct throtl_grp *tg)         \
 125{                                                                       \
 126        return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;       \
 127}
 128
 129THROTL_TG_FNS(on_rr);
 130
 131#define throtl_log_tg(td, tg, fmt, args...)                             \
 132        blk_add_trace_msg((td)->queue, "throtl %s " fmt,                \
 133                                blkg_path(&(tg)->blkg), ##args);        \
 134
 135#define throtl_log(td, fmt, args...)    \
 136        blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
 137
 138static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
 139{
 140        if (blkg)
 141                return container_of(blkg, struct throtl_grp, blkg);
 142
 143        return NULL;
 144}
 145
 146static inline unsigned int total_nr_queued(struct throtl_data *td)
 147{
 148        return td->nr_queued[0] + td->nr_queued[1];
 149}
 150
 151static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
 152{
 153        atomic_inc(&tg->ref);
 154        return tg;
 155}
 156
 157static void throtl_free_tg(struct rcu_head *head)
 158{
 159        struct throtl_grp *tg;
 160
 161        tg = container_of(head, struct throtl_grp, rcu_head);
 162        free_percpu(tg->blkg.stats_cpu);
 163        kfree(tg);
 164}
 165
 166static void throtl_put_tg(struct throtl_grp *tg)
 167{
 168        BUG_ON(atomic_read(&tg->ref) <= 0);
 169        if (!atomic_dec_and_test(&tg->ref))
 170                return;
 171
 172        /*
 173         * A group is freed in rcu manner. But having an rcu lock does not
 174         * mean that one can access all the fields of blkg and assume these
 175         * are valid. For example, don't try to follow throtl_data and
 176         * request queue links.
 177         *
 178         * Having a reference to blkg under an rcu allows acess to only
 179         * values local to groups like group stats and group rate limits
 180         */
 181        call_rcu(&tg->rcu_head, throtl_free_tg);
 182}
 183
 184static void throtl_init_group(struct throtl_grp *tg)
 185{
 186        INIT_HLIST_NODE(&tg->tg_node);
 187        RB_CLEAR_NODE(&tg->rb_node);
 188        bio_list_init(&tg->bio_lists[0]);
 189        bio_list_init(&tg->bio_lists[1]);
 190        tg->limits_changed = false;
 191
 192        /* Practically unlimited BW */
 193        tg->bps[0] = tg->bps[1] = -1;
 194        tg->iops[0] = tg->iops[1] = -1;
 195
 196        /*
 197         * Take the initial reference that will be released on destroy
 198         * This can be thought of a joint reference by cgroup and
 199         * request queue which will be dropped by either request queue
 200         * exit or cgroup deletion path depending on who is exiting first.
 201         */
 202        atomic_set(&tg->ref, 1);
 203}
 204
 205/* Should be called with rcu read lock held (needed for blkcg) */
 206static void
 207throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
 208{
 209        hlist_add_head(&tg->tg_node, &td->tg_list);
 210        td->nr_undestroyed_grps++;
 211}
 212
 213static void
 214__throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
 215{
 216        struct backing_dev_info *bdi = &td->queue->backing_dev_info;
 217        unsigned int major, minor;
 218
 219        if (!tg || tg->blkg.dev)
 220                return;
 221
 222        /*
 223         * Fill in device details for a group which might not have been
 224         * filled at group creation time as queue was being instantiated
 225         * and driver had not attached a device yet
 226         */
 227        if (bdi->dev && dev_name(bdi->dev)) {
 228                sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
 229                tg->blkg.dev = MKDEV(major, minor);
 230        }
 231}
 232
 233/*
 234 * Should be called with without queue lock held. Here queue lock will be
 235 * taken rarely. It will be taken only once during life time of a group
 236 * if need be
 237 */
 238static void
 239throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
 240{
 241        if (!tg || tg->blkg.dev)
 242                return;
 243
 244        spin_lock_irq(td->queue->queue_lock);
 245        __throtl_tg_fill_dev_details(td, tg);
 246        spin_unlock_irq(td->queue->queue_lock);
 247}
 248
 249static void throtl_init_add_tg_lists(struct throtl_data *td,
 250                        struct throtl_grp *tg, struct blkio_cgroup *blkcg)
 251{
 252        __throtl_tg_fill_dev_details(td, tg);
 253
 254        /* Add group onto cgroup list */
 255        blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
 256                                tg->blkg.dev, BLKIO_POLICY_THROTL);
 257
 258        tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
 259        tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
 260        tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
 261        tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
 262
 263        throtl_add_group_to_td_list(td, tg);
 264}
 265
 266/* Should be called without queue lock and outside of rcu period */
 267static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
 268{
 269        struct throtl_grp *tg = NULL;
 270        int ret;
 271
 272        tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
 273        if (!tg)
 274                return NULL;
 275
 276        ret = blkio_alloc_blkg_stats(&tg->blkg);
 277
 278        if (ret) {
 279                kfree(tg);
 280                return NULL;
 281        }
 282
 283        throtl_init_group(tg);
 284        return tg;
 285}
 286
 287static struct
 288throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
 289{
 290        struct throtl_grp *tg = NULL;
 291        void *key = td;
 292
 293        /*
 294         * This is the common case when there are no blkio cgroups.
 295         * Avoid lookup in this case
 296         */
 297        if (blkcg == &blkio_root_cgroup)
 298                tg = td->root_tg;
 299        else
 300                tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
 301
 302        __throtl_tg_fill_dev_details(td, tg);
 303        return tg;
 304}
 305
 306static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
 307{
 308        struct throtl_grp *tg = NULL, *__tg = NULL;
 309        struct blkio_cgroup *blkcg;
 310        struct request_queue *q = td->queue;
 311
 312        /* no throttling for dead queue */
 313        if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
 314                return NULL;
 315
 316        rcu_read_lock();
 317        blkcg = task_blkio_cgroup(current);
 318        tg = throtl_find_tg(td, blkcg);
 319        if (tg) {
 320                rcu_read_unlock();
 321                return tg;
 322        }
 323
 324        /*
 325         * Need to allocate a group. Allocation of group also needs allocation
 326         * of per cpu stats which in-turn takes a mutex() and can block. Hence
 327         * we need to drop rcu lock and queue_lock before we call alloc.
 328         */
 329        rcu_read_unlock();
 330        spin_unlock_irq(q->queue_lock);
 331
 332        tg = throtl_alloc_tg(td);
 333
 334        /* Group allocated and queue is still alive. take the lock */
 335        spin_lock_irq(q->queue_lock);
 336
 337        /* Make sure @q is still alive */
 338        if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 339                kfree(tg);
 340                return NULL;
 341        }
 342
 343        /*
 344         * Initialize the new group. After sleeping, read the blkcg again.
 345         */
 346        rcu_read_lock();
 347        blkcg = task_blkio_cgroup(current);
 348
 349        /*
 350         * If some other thread already allocated the group while we were
 351         * not holding queue lock, free up the group
 352         */
 353        __tg = throtl_find_tg(td, blkcg);
 354
 355        if (__tg) {
 356                kfree(tg);
 357                rcu_read_unlock();
 358                return __tg;
 359        }
 360
 361        /* Group allocation failed. Account the IO to root group */
 362        if (!tg) {
 363                tg = td->root_tg;
 364                return tg;
 365        }
 366
 367        throtl_init_add_tg_lists(td, tg, blkcg);
 368        rcu_read_unlock();
 369        return tg;
 370}
 371
 372static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
 373{
 374        /* Service tree is empty */
 375        if (!root->count)
 376                return NULL;
 377
 378        if (!root->left)
 379                root->left = rb_first(&root->rb);
 380
 381        if (root->left)
 382                return rb_entry_tg(root->left);
 383
 384        return NULL;
 385}
 386
 387static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 388{
 389        rb_erase(n, root);
 390        RB_CLEAR_NODE(n);
 391}
 392
 393static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
 394{
 395        if (root->left == n)
 396                root->left = NULL;
 397        rb_erase_init(n, &root->rb);
 398        --root->count;
 399}
 400
 401static void update_min_dispatch_time(struct throtl_rb_root *st)
 402{
 403        struct throtl_grp *tg;
 404
 405        tg = throtl_rb_first(st);
 406        if (!tg)
 407                return;
 408
 409        st->min_disptime = tg->disptime;
 410}
 411
 412static void
 413tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
 414{
 415        struct rb_node **node = &st->rb.rb_node;
 416        struct rb_node *parent = NULL;
 417        struct throtl_grp *__tg;
 418        unsigned long key = tg->disptime;
 419        int left = 1;
 420
 421        while (*node != NULL) {
 422                parent = *node;
 423                __tg = rb_entry_tg(parent);
 424
 425                if (time_before(key, __tg->disptime))
 426                        node = &parent->rb_left;
 427                else {
 428                        node = &parent->rb_right;
 429                        left = 0;
 430                }
 431        }
 432
 433        if (left)
 434                st->left = &tg->rb_node;
 435
 436        rb_link_node(&tg->rb_node, parent, node);
 437        rb_insert_color(&tg->rb_node, &st->rb);
 438}
 439
 440static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
 441{
 442        struct throtl_rb_root *st = &td->tg_service_tree;
 443
 444        tg_service_tree_add(st, tg);
 445        throtl_mark_tg_on_rr(tg);
 446        st->count++;
 447}
 448
 449static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
 450{
 451        if (!throtl_tg_on_rr(tg))
 452                __throtl_enqueue_tg(td, tg);
 453}
 454
 455static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
 456{
 457        throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
 458        throtl_clear_tg_on_rr(tg);
 459}
 460
 461static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
 462{
 463        if (throtl_tg_on_rr(tg))
 464                __throtl_dequeue_tg(td, tg);
 465}
 466
 467static void throtl_schedule_next_dispatch(struct throtl_data *td)
 468{
 469        struct throtl_rb_root *st = &td->tg_service_tree;
 470
 471        /*
 472         * If there are more bios pending, schedule more work.
 473         */
 474        if (!total_nr_queued(td))
 475                return;
 476
 477        BUG_ON(!st->count);
 478
 479        update_min_dispatch_time(st);
 480
 481        if (time_before_eq(st->min_disptime, jiffies))
 482                throtl_schedule_delayed_work(td, 0);
 483        else
 484                throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
 485}
 486
 487static inline void
 488throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
 489{
 490        tg->bytes_disp[rw] = 0;
 491        tg->io_disp[rw] = 0;
 492        tg->slice_start[rw] = jiffies;
 493        tg->slice_end[rw] = jiffies + throtl_slice;
 494        throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
 495                        rw == READ ? 'R' : 'W', tg->slice_start[rw],
 496                        tg->slice_end[rw], jiffies);
 497}
 498
 499static inline void throtl_set_slice_end(struct throtl_data *td,
 500                struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
 501{
 502        tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 503}
 504
 505static inline void throtl_extend_slice(struct throtl_data *td,
 506                struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
 507{
 508        tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 509        throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 510                        rw == READ ? 'R' : 'W', tg->slice_start[rw],
 511                        tg->slice_end[rw], jiffies);
 512}
 513
 514/* Determine if previously allocated or extended slice is complete or not */
 515static bool
 516throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
 517{
 518        if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 519                return 0;
 520
 521        return 1;
 522}
 523
 524/* Trim the used slices and adjust slice start accordingly */
 525static inline void
 526throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
 527{
 528        unsigned long nr_slices, time_elapsed, io_trim;
 529        u64 bytes_trim, tmp;
 530
 531        BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 532
 533        /*
 534         * If bps are unlimited (-1), then time slice don't get
 535         * renewed. Don't try to trim the slice if slice is used. A new
 536         * slice will start when appropriate.
 537         */
 538        if (throtl_slice_used(td, tg, rw))
 539                return;
 540
 541        /*
 542         * A bio has been dispatched. Also adjust slice_end. It might happen
 543         * that initially cgroup limit was very low resulting in high
 544         * slice_end, but later limit was bumped up and bio was dispached
 545         * sooner, then we need to reduce slice_end. A high bogus slice_end
 546         * is bad because it does not allow new slice to start.
 547         */
 548
 549        throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
 550
 551        time_elapsed = jiffies - tg->slice_start[rw];
 552
 553        nr_slices = time_elapsed / throtl_slice;
 554
 555        if (!nr_slices)
 556                return;
 557        tmp = tg->bps[rw] * throtl_slice * nr_slices;
 558        do_div(tmp, HZ);
 559        bytes_trim = tmp;
 560
 561        io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
 562
 563        if (!bytes_trim && !io_trim)
 564                return;
 565
 566        if (tg->bytes_disp[rw] >= bytes_trim)
 567                tg->bytes_disp[rw] -= bytes_trim;
 568        else
 569                tg->bytes_disp[rw] = 0;
 570
 571        if (tg->io_disp[rw] >= io_trim)
 572                tg->io_disp[rw] -= io_trim;
 573        else
 574                tg->io_disp[rw] = 0;
 575
 576        tg->slice_start[rw] += nr_slices * throtl_slice;
 577
 578        throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
 579                        " start=%lu end=%lu jiffies=%lu",
 580                        rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 581                        tg->slice_start[rw], tg->slice_end[rw], jiffies);
 582}
 583
 584static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
 585                struct bio *bio, unsigned long *wait)
 586{
 587        bool rw = bio_data_dir(bio);
 588        unsigned int io_allowed;
 589        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 590        u64 tmp;
 591
 592        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 593
 594        /* Slice has just started. Consider one slice interval */
 595        if (!jiffy_elapsed)
 596                jiffy_elapsed_rnd = throtl_slice;
 597
 598        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 599
 600        /*
 601         * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 602         * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 603         * will allow dispatch after 1 second and after that slice should
 604         * have been trimmed.
 605         */
 606
 607        tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
 608        do_div(tmp, HZ);
 609
 610        if (tmp > UINT_MAX)
 611                io_allowed = UINT_MAX;
 612        else
 613                io_allowed = tmp;
 614
 615        if (tg->io_disp[rw] + 1 <= io_allowed) {
 616                if (wait)
 617                        *wait = 0;
 618                return 1;
 619        }
 620
 621        /* Calc approx time to dispatch */
 622        jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
 623
 624        if (jiffy_wait > jiffy_elapsed)
 625                jiffy_wait = jiffy_wait - jiffy_elapsed;
 626        else
 627                jiffy_wait = 1;
 628
 629        if (wait)
 630                *wait = jiffy_wait;
 631        return 0;
 632}
 633
 634static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
 635                struct bio *bio, unsigned long *wait)
 636{
 637        bool rw = bio_data_dir(bio);
 638        u64 bytes_allowed, extra_bytes, tmp;
 639        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 640
 641        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 642
 643        /* Slice has just started. Consider one slice interval */
 644        if (!jiffy_elapsed)
 645                jiffy_elapsed_rnd = throtl_slice;
 646
 647        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 648
 649        tmp = tg->bps[rw] * jiffy_elapsed_rnd;
 650        do_div(tmp, HZ);
 651        bytes_allowed = tmp;
 652
 653        if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
 654                if (wait)
 655                        *wait = 0;
 656                return 1;
 657        }
 658
 659        /* Calc approx time to dispatch */
 660        extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
 661        jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
 662
 663        if (!jiffy_wait)
 664                jiffy_wait = 1;
 665
 666        /*
 667         * This wait time is without taking into consideration the rounding
 668         * up we did. Add that time also.
 669         */
 670        jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 671        if (wait)
 672                *wait = jiffy_wait;
 673        return 0;
 674}
 675
 676static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
 677        if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
 678                return 1;
 679        return 0;
 680}
 681
 682/*
 683 * Returns whether one can dispatch a bio or not. Also returns approx number
 684 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 685 */
 686static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
 687                                struct bio *bio, unsigned long *wait)
 688{
 689        bool rw = bio_data_dir(bio);
 690        unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 691
 692        /*
 693         * Currently whole state machine of group depends on first bio
 694         * queued in the group bio list. So one should not be calling
 695         * this function with a different bio if there are other bios
 696         * queued.
 697         */
 698        BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
 699
 700        /* If tg->bps = -1, then BW is unlimited */
 701        if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
 702                if (wait)
 703                        *wait = 0;
 704                return 1;
 705        }
 706
 707        /*
 708         * If previous slice expired, start a new one otherwise renew/extend
 709         * existing slice to make sure it is at least throtl_slice interval
 710         * long since now.
 711         */
 712        if (throtl_slice_used(td, tg, rw))
 713                throtl_start_new_slice(td, tg, rw);
 714        else {
 715                if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
 716                        throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
 717        }
 718
 719        if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
 720            && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
 721                if (wait)
 722                        *wait = 0;
 723                return 1;
 724        }
 725
 726        max_wait = max(bps_wait, iops_wait);
 727
 728        if (wait)
 729                *wait = max_wait;
 730
 731        if (time_before(tg->slice_end[rw], jiffies + max_wait))
 732                throtl_extend_slice(td, tg, rw, jiffies + max_wait);
 733
 734        return 0;
 735}
 736
 737static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 738{
 739        bool rw = bio_data_dir(bio);
 740        bool sync = rw_is_sync(bio->bi_rw);
 741
 742        /* Charge the bio to the group */
 743        tg->bytes_disp[rw] += bio->bi_size;
 744        tg->io_disp[rw]++;
 745
 746        blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
 747}
 748
 749static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
 750                        struct bio *bio)
 751{
 752        bool rw = bio_data_dir(bio);
 753
 754        bio_list_add(&tg->bio_lists[rw], bio);
 755        /* Take a bio reference on tg */
 756        throtl_ref_get_tg(tg);
 757        tg->nr_queued[rw]++;
 758        td->nr_queued[rw]++;
 759        throtl_enqueue_tg(td, tg);
 760}
 761
 762static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
 763{
 764        unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
 765        struct bio *bio;
 766
 767        if ((bio = bio_list_peek(&tg->bio_lists[READ])))
 768                tg_may_dispatch(td, tg, bio, &read_wait);
 769
 770        if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
 771                tg_may_dispatch(td, tg, bio, &write_wait);
 772
 773        min_wait = min(read_wait, write_wait);
 774        disptime = jiffies + min_wait;
 775
 776        /* Update dispatch time */
 777        throtl_dequeue_tg(td, tg);
 778        tg->disptime = disptime;
 779        throtl_enqueue_tg(td, tg);
 780}
 781
 782static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
 783                                bool rw, struct bio_list *bl)
 784{
 785        struct bio *bio;
 786
 787        bio = bio_list_pop(&tg->bio_lists[rw]);
 788        tg->nr_queued[rw]--;
 789        /* Drop bio reference on tg */
 790        throtl_put_tg(tg);
 791
 792        BUG_ON(td->nr_queued[rw] <= 0);
 793        td->nr_queued[rw]--;
 794
 795        throtl_charge_bio(tg, bio);
 796        bio_list_add(bl, bio);
 797        bio->bi_rw |= REQ_THROTTLED;
 798
 799        throtl_trim_slice(td, tg, rw);
 800}
 801
 802static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
 803                                struct bio_list *bl)
 804{
 805        unsigned int nr_reads = 0, nr_writes = 0;
 806        unsigned int max_nr_reads = throtl_grp_quantum*3/4;
 807        unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
 808        struct bio *bio;
 809
 810        /* Try to dispatch 75% READS and 25% WRITES */
 811
 812        while ((bio = bio_list_peek(&tg->bio_lists[READ]))
 813                && tg_may_dispatch(td, tg, bio, NULL)) {
 814
 815                tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
 816                nr_reads++;
 817
 818                if (nr_reads >= max_nr_reads)
 819                        break;
 820        }
 821
 822        while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
 823                && tg_may_dispatch(td, tg, bio, NULL)) {
 824
 825                tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
 826                nr_writes++;
 827
 828                if (nr_writes >= max_nr_writes)
 829                        break;
 830        }
 831
 832        return nr_reads + nr_writes;
 833}
 834
 835static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
 836{
 837        unsigned int nr_disp = 0;
 838        struct throtl_grp *tg;
 839        struct throtl_rb_root *st = &td->tg_service_tree;
 840
 841        while (1) {
 842                tg = throtl_rb_first(st);
 843
 844                if (!tg)
 845                        break;
 846
 847                if (time_before(jiffies, tg->disptime))
 848                        break;
 849
 850                throtl_dequeue_tg(td, tg);
 851
 852                nr_disp += throtl_dispatch_tg(td, tg, bl);
 853
 854                if (tg->nr_queued[0] || tg->nr_queued[1]) {
 855                        tg_update_disptime(td, tg);
 856                        throtl_enqueue_tg(td, tg);
 857                }
 858
 859                if (nr_disp >= throtl_quantum)
 860                        break;
 861        }
 862
 863        return nr_disp;
 864}
 865
 866static void throtl_process_limit_change(struct throtl_data *td)
 867{
 868        struct throtl_grp *tg;
 869        struct hlist_node *pos, *n;
 870
 871        if (!td->limits_changed)
 872                return;
 873
 874        xchg(&td->limits_changed, false);
 875
 876        throtl_log(td, "limits changed");
 877
 878        hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
 879                if (!tg->limits_changed)
 880                        continue;
 881
 882                if (!xchg(&tg->limits_changed, false))
 883                        continue;
 884
 885                throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
 886                        " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
 887                        tg->iops[READ], tg->iops[WRITE]);
 888
 889                /*
 890                 * Restart the slices for both READ and WRITES. It
 891                 * might happen that a group's limit are dropped
 892                 * suddenly and we don't want to account recently
 893                 * dispatched IO with new low rate
 894                 */
 895                throtl_start_new_slice(td, tg, 0);
 896                throtl_start_new_slice(td, tg, 1);
 897
 898                if (throtl_tg_on_rr(tg))
 899                        tg_update_disptime(td, tg);
 900        }
 901}
 902
 903/* Dispatch throttled bios. Should be called without queue lock held. */
 904static int throtl_dispatch(struct request_queue *q)
 905{
 906        struct throtl_data *td = q->td;
 907        unsigned int nr_disp = 0;
 908        struct bio_list bio_list_on_stack;
 909        struct bio *bio;
 910        struct blk_plug plug;
 911
 912        spin_lock_irq(q->queue_lock);
 913
 914        throtl_process_limit_change(td);
 915
 916        if (!total_nr_queued(td))
 917                goto out;
 918
 919        bio_list_init(&bio_list_on_stack);
 920
 921        throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
 922                        total_nr_queued(td), td->nr_queued[READ],
 923                        td->nr_queued[WRITE]);
 924
 925        nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
 926
 927        if (nr_disp)
 928                throtl_log(td, "bios disp=%u", nr_disp);
 929
 930        throtl_schedule_next_dispatch(td);
 931out:
 932        spin_unlock_irq(q->queue_lock);
 933
 934        /*
 935         * If we dispatched some requests, unplug the queue to make sure
 936         * immediate dispatch
 937         */
 938        if (nr_disp) {
 939                blk_start_plug(&plug);
 940                while((bio = bio_list_pop(&bio_list_on_stack)))
 941                        generic_make_request(bio);
 942                blk_finish_plug(&plug);
 943        }
 944        return nr_disp;
 945}
 946
 947void blk_throtl_work(struct work_struct *work)
 948{
 949        struct throtl_data *td = container_of(work, struct throtl_data,
 950                                        throtl_work.work);
 951        struct request_queue *q = td->queue;
 952
 953        throtl_dispatch(q);
 954}
 955
 956/* Call with queue lock held */
 957static void
 958throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
 959{
 960
 961        struct delayed_work *dwork = &td->throtl_work;
 962
 963        /* schedule work if limits changed even if no bio is queued */
 964        if (total_nr_queued(td) || td->limits_changed) {
 965                /*
 966                 * We might have a work scheduled to be executed in future.
 967                 * Cancel that and schedule a new one.
 968                 */
 969                __cancel_delayed_work(dwork);
 970                queue_delayed_work(kthrotld_workqueue, dwork, delay);
 971                throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
 972                                delay, jiffies);
 973        }
 974}
 975
 976static void
 977throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
 978{
 979        /* Something wrong if we are trying to remove same group twice */
 980        BUG_ON(hlist_unhashed(&tg->tg_node));
 981
 982        hlist_del_init(&tg->tg_node);
 983
 984        /*
 985         * Put the reference taken at the time of creation so that when all
 986         * queues are gone, group can be destroyed.
 987         */
 988        throtl_put_tg(tg);
 989        td->nr_undestroyed_grps--;
 990}
 991
 992static void throtl_release_tgs(struct throtl_data *td)
 993{
 994        struct hlist_node *pos, *n;
 995        struct throtl_grp *tg;
 996
 997        hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
 998                /*
 999                 * If cgroup removal path got to blk_group first and removed
1000                 * it from cgroup list, then it will take care of destroying
1001                 * cfqg also.
1002                 */
1003                if (!blkiocg_del_blkio_group(&tg->blkg))
1004                        throtl_destroy_tg(td, tg);
1005        }
1006}
1007
1008/*
1009 * Blk cgroup controller notification saying that blkio_group object is being
1010 * delinked as associated cgroup object is going away. That also means that
1011 * no new IO will come in this group. So get rid of this group as soon as
1012 * any pending IO in the group is finished.
1013 *
1014 * This function is called under rcu_read_lock(). key is the rcu protected
1015 * pointer. That means "key" is a valid throtl_data pointer as long as we are
1016 * rcu read lock.
1017 *
1018 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1019 * it should not be NULL as even if queue was going away, cgroup deltion
1020 * path got to it first.
1021 */
1022void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
1023{
1024        unsigned long flags;
1025        struct throtl_data *td = key;
1026
1027        spin_lock_irqsave(td->queue->queue_lock, flags);
1028        throtl_destroy_tg(td, tg_of_blkg(blkg));
1029        spin_unlock_irqrestore(td->queue->queue_lock, flags);
1030}
1031
1032static void throtl_update_blkio_group_common(struct throtl_data *td,
1033                                struct throtl_grp *tg)
1034{
1035        xchg(&tg->limits_changed, true);
1036        xchg(&td->limits_changed, true);
1037        /* Schedule a work now to process the limit change */
1038        throtl_schedule_delayed_work(td, 0);
1039}
1040
1041/*
1042 * For all update functions, key should be a valid pointer because these
1043 * update functions are called under blkcg_lock, that means, blkg is
1044 * valid and in turn key is valid. queue exit path can not race because
1045 * of blkcg_lock
1046 *
1047 * Can not take queue lock in update functions as queue lock under blkcg_lock
1048 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
1049 */
1050static void throtl_update_blkio_group_read_bps(void *key,
1051                                struct blkio_group *blkg, u64 read_bps)
1052{
1053        struct throtl_data *td = key;
1054        struct throtl_grp *tg = tg_of_blkg(blkg);
1055
1056        tg->bps[READ] = read_bps;
1057        throtl_update_blkio_group_common(td, tg);
1058}
1059
1060static void throtl_update_blkio_group_write_bps(void *key,
1061                                struct blkio_group *blkg, u64 write_bps)
1062{
1063        struct throtl_data *td = key;
1064        struct throtl_grp *tg = tg_of_blkg(blkg);
1065
1066        tg->bps[WRITE] = write_bps;
1067        throtl_update_blkio_group_common(td, tg);
1068}
1069
1070static void throtl_update_blkio_group_read_iops(void *key,
1071                        struct blkio_group *blkg, unsigned int read_iops)
1072{
1073        struct throtl_data *td = key;
1074        struct throtl_grp *tg = tg_of_blkg(blkg);
1075
1076        tg->iops[READ] = read_iops;
1077        throtl_update_blkio_group_common(td, tg);
1078}
1079
1080static void throtl_update_blkio_group_write_iops(void *key,
1081                        struct blkio_group *blkg, unsigned int write_iops)
1082{
1083        struct throtl_data *td = key;
1084        struct throtl_grp *tg = tg_of_blkg(blkg);
1085
1086        tg->iops[WRITE] = write_iops;
1087        throtl_update_blkio_group_common(td, tg);
1088}
1089
1090static void throtl_shutdown_wq(struct request_queue *q)
1091{
1092        struct throtl_data *td = q->td;
1093
1094        cancel_delayed_work_sync(&td->throtl_work);
1095}
1096
1097static struct blkio_policy_type blkio_policy_throtl = {
1098        .ops = {
1099                .blkio_unlink_group_fn = throtl_unlink_blkio_group,
1100                .blkio_update_group_read_bps_fn =
1101                                        throtl_update_blkio_group_read_bps,
1102                .blkio_update_group_write_bps_fn =
1103                                        throtl_update_blkio_group_write_bps,
1104                .blkio_update_group_read_iops_fn =
1105                                        throtl_update_blkio_group_read_iops,
1106                .blkio_update_group_write_iops_fn =
1107                                        throtl_update_blkio_group_write_iops,
1108        },
1109        .plid = BLKIO_POLICY_THROTL,
1110};
1111
1112bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1113{
1114        struct throtl_data *td = q->td;
1115        struct throtl_grp *tg;
1116        bool rw = bio_data_dir(bio), update_disptime = true;
1117        struct blkio_cgroup *blkcg;
1118        bool throttled = false;
1119
1120        if (bio->bi_rw & REQ_THROTTLED) {
1121                bio->bi_rw &= ~REQ_THROTTLED;
1122                goto out;
1123        }
1124
1125        /*
1126         * A throtl_grp pointer retrieved under rcu can be used to access
1127         * basic fields like stats and io rates. If a group has no rules,
1128         * just update the dispatch stats in lockless manner and return.
1129         */
1130
1131        rcu_read_lock();
1132        blkcg = task_blkio_cgroup(current);
1133        tg = throtl_find_tg(td, blkcg);
1134        if (tg) {
1135                throtl_tg_fill_dev_details(td, tg);
1136
1137                if (tg_no_rule_group(tg, rw)) {
1138                        blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1139                                        rw, rw_is_sync(bio->bi_rw));
1140                        rcu_read_unlock();
1141                        goto out;
1142                }
1143        }
1144        rcu_read_unlock();
1145
1146        /*
1147         * Either group has not been allocated yet or it is not an unlimited
1148         * IO group
1149         */
1150        spin_lock_irq(q->queue_lock);
1151        tg = throtl_get_tg(td);
1152        if (unlikely(!tg))
1153                goto out_unlock;
1154
1155        if (tg->nr_queued[rw]) {
1156                /*
1157                 * There is already another bio queued in same dir. No
1158                 * need to update dispatch time.
1159                 */
1160                update_disptime = false;
1161                goto queue_bio;
1162
1163        }
1164
1165        /* Bio is with-in rate limit of group */
1166        if (tg_may_dispatch(td, tg, bio, NULL)) {
1167                throtl_charge_bio(tg, bio);
1168
1169                /*
1170                 * We need to trim slice even when bios are not being queued
1171                 * otherwise it might happen that a bio is not queued for
1172                 * a long time and slice keeps on extending and trim is not
1173                 * called for a long time. Now if limits are reduced suddenly
1174                 * we take into account all the IO dispatched so far at new
1175                 * low rate and * newly queued IO gets a really long dispatch
1176                 * time.
1177                 *
1178                 * So keep on trimming slice even if bio is not queued.
1179                 */
1180                throtl_trim_slice(td, tg, rw);
1181                goto out_unlock;
1182        }
1183
1184queue_bio:
1185        throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1186                        " iodisp=%u iops=%u queued=%d/%d",
1187                        rw == READ ? 'R' : 'W',
1188                        tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1189                        tg->io_disp[rw], tg->iops[rw],
1190                        tg->nr_queued[READ], tg->nr_queued[WRITE]);
1191
1192        throtl_add_bio_tg(q->td, tg, bio);
1193        throttled = true;
1194
1195        if (update_disptime) {
1196                tg_update_disptime(td, tg);
1197                throtl_schedule_next_dispatch(td);
1198        }
1199
1200out_unlock:
1201        spin_unlock_irq(q->queue_lock);
1202out:
1203        return throttled;
1204}
1205
1206/**
1207 * blk_throtl_drain - drain throttled bios
1208 * @q: request_queue to drain throttled bios for
1209 *
1210 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1211 */
1212void blk_throtl_drain(struct request_queue *q)
1213        __releases(q->queue_lock) __acquires(q->queue_lock)
1214{
1215        struct throtl_data *td = q->td;
1216        struct throtl_rb_root *st = &td->tg_service_tree;
1217        struct throtl_grp *tg;
1218        struct bio_list bl;
1219        struct bio *bio;
1220
1221        WARN_ON_ONCE(!queue_is_locked(q));
1222
1223        bio_list_init(&bl);
1224
1225        while ((tg = throtl_rb_first(st))) {
1226                throtl_dequeue_tg(td, tg);
1227
1228                while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1229                        tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1230                while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1231                        tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1232        }
1233        spin_unlock_irq(q->queue_lock);
1234
1235        while ((bio = bio_list_pop(&bl)))
1236                generic_make_request(bio);
1237
1238        spin_lock_irq(q->queue_lock);
1239}
1240
1241int blk_throtl_init(struct request_queue *q)
1242{
1243        struct throtl_data *td;
1244        struct throtl_grp *tg;
1245
1246        td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1247        if (!td)
1248                return -ENOMEM;
1249
1250        INIT_HLIST_HEAD(&td->tg_list);
1251        td->tg_service_tree = THROTL_RB_ROOT;
1252        td->limits_changed = false;
1253        INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1254
1255        /* alloc and Init root group. */
1256        td->queue = q;
1257        tg = throtl_alloc_tg(td);
1258
1259        if (!tg) {
1260                kfree(td);
1261                return -ENOMEM;
1262        }
1263
1264        td->root_tg = tg;
1265
1266        rcu_read_lock();
1267        throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1268        rcu_read_unlock();
1269
1270        /* Attach throtl data to request queue */
1271        q->td = td;
1272        return 0;
1273}
1274
1275void blk_throtl_exit(struct request_queue *q)
1276{
1277        struct throtl_data *td = q->td;
1278        bool wait = false;
1279
1280        BUG_ON(!td);
1281
1282        throtl_shutdown_wq(q);
1283
1284        spin_lock_irq(q->queue_lock);
1285        throtl_release_tgs(td);
1286
1287        /* If there are other groups */
1288        if (td->nr_undestroyed_grps > 0)
1289                wait = true;
1290
1291        spin_unlock_irq(q->queue_lock);
1292
1293        /*
1294         * Wait for tg->blkg->key accessors to exit their grace periods.
1295         * Do this wait only if there are other undestroyed groups out
1296         * there (other than root group). This can happen if cgroup deletion
1297         * path claimed the responsibility of cleaning up a group before
1298         * queue cleanup code get to the group.
1299         *
1300         * Do not call synchronize_rcu() unconditionally as there are drivers
1301         * which create/delete request queue hundreds of times during scan/boot
1302         * and synchronize_rcu() can take significant time and slow down boot.
1303         */
1304        if (wait)
1305                synchronize_rcu();
1306
1307        /*
1308         * Just being safe to make sure after previous flush if some body did
1309         * update limits through cgroup and another work got queued, cancel
1310         * it.
1311         */
1312        throtl_shutdown_wq(q);
1313}
1314
1315void blk_throtl_release(struct request_queue *q)
1316{
1317        kfree(q->td);
1318}
1319
1320static int __init throtl_init(void)
1321{
1322        kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1323        if (!kthrotld_workqueue)
1324                panic("Failed to create kthrotld\n");
1325
1326        blkio_policy_register(&blkio_policy_throtl);
1327        return 0;
1328}
1329
1330module_init(throtl_init);
1331