linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  drivers/mtd/nand.c
   3 *
   4 *  Overview:
   5 *   This is the generic MTD driver for NAND flash devices. It should be
   6 *   capable of working with almost all NAND chips currently available.
   7 *   Basic support for AG-AND chips is provided.
   8 *
   9 *      Additional technical information is available on
  10 *      http://www.linux-mtd.infradead.org/doc/nand.html
  11 *
  12 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  13 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  14 *
  15 *  Credits:
  16 *      David Woodhouse for adding multichip support
  17 *
  18 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  19 *      rework for 2K page size chips
  20 *
  21 *  TODO:
  22 *      Enable cached programming for 2k page size chips
  23 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  24 *      if we have HW ECC support.
  25 *      The AG-AND chips have nice features for speed improvement,
  26 *      which are not supported yet. Read / program 4 pages in one go.
  27 *      BBT table is not serialized, has to be fixed
  28 *
  29 * This program is free software; you can redistribute it and/or modify
  30 * it under the terms of the GNU General Public License version 2 as
  31 * published by the Free Software Foundation.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/delay.h>
  37#include <linux/errno.h>
  38#include <linux/err.h>
  39#include <linux/sched.h>
  40#include <linux/slab.h>
  41#include <linux/types.h>
  42#include <linux/mtd/mtd.h>
  43#include <linux/mtd/nand.h>
  44#include <linux/mtd/nand_ecc.h>
  45#include <linux/mtd/nand_bch.h>
  46#include <linux/interrupt.h>
  47#include <linux/bitops.h>
  48#include <linux/leds.h>
  49#include <linux/io.h>
  50#include <linux/mtd/partitions.h>
  51
  52/* Define default oob placement schemes for large and small page devices */
  53static struct nand_ecclayout nand_oob_8 = {
  54        .eccbytes = 3,
  55        .eccpos = {0, 1, 2},
  56        .oobfree = {
  57                {.offset = 3,
  58                 .length = 2},
  59                {.offset = 6,
  60                 .length = 2} }
  61};
  62
  63static struct nand_ecclayout nand_oob_16 = {
  64        .eccbytes = 6,
  65        .eccpos = {0, 1, 2, 3, 6, 7},
  66        .oobfree = {
  67                {.offset = 8,
  68                 . length = 8} }
  69};
  70
  71static struct nand_ecclayout nand_oob_64 = {
  72        .eccbytes = 24,
  73        .eccpos = {
  74                   40, 41, 42, 43, 44, 45, 46, 47,
  75                   48, 49, 50, 51, 52, 53, 54, 55,
  76                   56, 57, 58, 59, 60, 61, 62, 63},
  77        .oobfree = {
  78                {.offset = 2,
  79                 .length = 38} }
  80};
  81
  82static struct nand_ecclayout nand_oob_128 = {
  83        .eccbytes = 48,
  84        .eccpos = {
  85                   80, 81, 82, 83, 84, 85, 86, 87,
  86                   88, 89, 90, 91, 92, 93, 94, 95,
  87                   96, 97, 98, 99, 100, 101, 102, 103,
  88                   104, 105, 106, 107, 108, 109, 110, 111,
  89                   112, 113, 114, 115, 116, 117, 118, 119,
  90                   120, 121, 122, 123, 124, 125, 126, 127},
  91        .oobfree = {
  92                {.offset = 2,
  93                 .length = 78} }
  94};
  95
  96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
  97                           int new_state);
  98
  99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
 100                             struct mtd_oob_ops *ops);
 101
 102/*
 103 * For devices which display every fart in the system on a separate LED. Is
 104 * compiled away when LED support is disabled.
 105 */
 106DEFINE_LED_TRIGGER(nand_led_trigger);
 107
 108static int check_offs_len(struct mtd_info *mtd,
 109                                        loff_t ofs, uint64_t len)
 110{
 111        struct nand_chip *chip = mtd->priv;
 112        int ret = 0;
 113
 114        /* Start address must align on block boundary */
 115        if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
 116                pr_debug("%s: unaligned address\n", __func__);
 117                ret = -EINVAL;
 118        }
 119
 120        /* Length must align on block boundary */
 121        if (len & ((1 << chip->phys_erase_shift) - 1)) {
 122                pr_debug("%s: length not block aligned\n", __func__);
 123                ret = -EINVAL;
 124        }
 125
 126        /* Do not allow past end of device */
 127        if (ofs + len > mtd->size) {
 128                pr_debug("%s: past end of device\n", __func__);
 129                ret = -EINVAL;
 130        }
 131
 132        return ret;
 133}
 134
 135/**
 136 * nand_release_device - [GENERIC] release chip
 137 * @mtd: MTD device structure
 138 *
 139 * Deselect, release chip lock and wake up anyone waiting on the device.
 140 */
 141static void nand_release_device(struct mtd_info *mtd)
 142{
 143        struct nand_chip *chip = mtd->priv;
 144
 145        /* De-select the NAND device */
 146        chip->select_chip(mtd, -1);
 147
 148        /* Release the controller and the chip */
 149        spin_lock(&chip->controller->lock);
 150        chip->controller->active = NULL;
 151        chip->state = FL_READY;
 152        wake_up(&chip->controller->wq);
 153        spin_unlock(&chip->controller->lock);
 154}
 155
 156/**
 157 * nand_read_byte - [DEFAULT] read one byte from the chip
 158 * @mtd: MTD device structure
 159 *
 160 * Default read function for 8bit buswidth
 161 */
 162static uint8_t nand_read_byte(struct mtd_info *mtd)
 163{
 164        struct nand_chip *chip = mtd->priv;
 165        return readb(chip->IO_ADDR_R);
 166}
 167
 168/**
 169 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
 170 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 171 * @mtd: MTD device structure
 172 *
 173 * Default read function for 16bit buswidth with endianness conversion.
 174 *
 175 */
 176static uint8_t nand_read_byte16(struct mtd_info *mtd)
 177{
 178        struct nand_chip *chip = mtd->priv;
 179        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 180}
 181
 182/**
 183 * nand_read_word - [DEFAULT] read one word from the chip
 184 * @mtd: MTD device structure
 185 *
 186 * Default read function for 16bit buswidth without endianness conversion.
 187 */
 188static u16 nand_read_word(struct mtd_info *mtd)
 189{
 190        struct nand_chip *chip = mtd->priv;
 191        return readw(chip->IO_ADDR_R);
 192}
 193
 194/**
 195 * nand_select_chip - [DEFAULT] control CE line
 196 * @mtd: MTD device structure
 197 * @chipnr: chipnumber to select, -1 for deselect
 198 *
 199 * Default select function for 1 chip devices.
 200 */
 201static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 202{
 203        struct nand_chip *chip = mtd->priv;
 204
 205        switch (chipnr) {
 206        case -1:
 207                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 208                break;
 209        case 0:
 210                break;
 211
 212        default:
 213                BUG();
 214        }
 215}
 216
 217/**
 218 * nand_write_buf - [DEFAULT] write buffer to chip
 219 * @mtd: MTD device structure
 220 * @buf: data buffer
 221 * @len: number of bytes to write
 222 *
 223 * Default write function for 8bit buswidth.
 224 */
 225static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 226{
 227        int i;
 228        struct nand_chip *chip = mtd->priv;
 229
 230        for (i = 0; i < len; i++)
 231                writeb(buf[i], chip->IO_ADDR_W);
 232}
 233
 234/**
 235 * nand_read_buf - [DEFAULT] read chip data into buffer
 236 * @mtd: MTD device structure
 237 * @buf: buffer to store date
 238 * @len: number of bytes to read
 239 *
 240 * Default read function for 8bit buswidth.
 241 */
 242static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 243{
 244        int i;
 245        struct nand_chip *chip = mtd->priv;
 246
 247        for (i = 0; i < len; i++)
 248                buf[i] = readb(chip->IO_ADDR_R);
 249}
 250
 251/**
 252 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
 253 * @mtd: MTD device structure
 254 * @buf: buffer containing the data to compare
 255 * @len: number of bytes to compare
 256 *
 257 * Default verify function for 8bit buswidth.
 258 */
 259static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 260{
 261        int i;
 262        struct nand_chip *chip = mtd->priv;
 263
 264        for (i = 0; i < len; i++)
 265                if (buf[i] != readb(chip->IO_ADDR_R))
 266                        return -EFAULT;
 267        return 0;
 268}
 269
 270/**
 271 * nand_write_buf16 - [DEFAULT] write buffer to chip
 272 * @mtd: MTD device structure
 273 * @buf: data buffer
 274 * @len: number of bytes to write
 275 *
 276 * Default write function for 16bit buswidth.
 277 */
 278static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 279{
 280        int i;
 281        struct nand_chip *chip = mtd->priv;
 282        u16 *p = (u16 *) buf;
 283        len >>= 1;
 284
 285        for (i = 0; i < len; i++)
 286                writew(p[i], chip->IO_ADDR_W);
 287
 288}
 289
 290/**
 291 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 292 * @mtd: MTD device structure
 293 * @buf: buffer to store date
 294 * @len: number of bytes to read
 295 *
 296 * Default read function for 16bit buswidth.
 297 */
 298static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 299{
 300        int i;
 301        struct nand_chip *chip = mtd->priv;
 302        u16 *p = (u16 *) buf;
 303        len >>= 1;
 304
 305        for (i = 0; i < len; i++)
 306                p[i] = readw(chip->IO_ADDR_R);
 307}
 308
 309/**
 310 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
 311 * @mtd: MTD device structure
 312 * @buf: buffer containing the data to compare
 313 * @len: number of bytes to compare
 314 *
 315 * Default verify function for 16bit buswidth.
 316 */
 317static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 318{
 319        int i;
 320        struct nand_chip *chip = mtd->priv;
 321        u16 *p = (u16 *) buf;
 322        len >>= 1;
 323
 324        for (i = 0; i < len; i++)
 325                if (p[i] != readw(chip->IO_ADDR_R))
 326                        return -EFAULT;
 327
 328        return 0;
 329}
 330
 331/**
 332 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 333 * @mtd: MTD device structure
 334 * @ofs: offset from device start
 335 * @getchip: 0, if the chip is already selected
 336 *
 337 * Check, if the block is bad.
 338 */
 339static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 340{
 341        int page, chipnr, res = 0;
 342        struct nand_chip *chip = mtd->priv;
 343        u16 bad;
 344
 345        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 346                ofs += mtd->erasesize - mtd->writesize;
 347
 348        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 349
 350        if (getchip) {
 351                chipnr = (int)(ofs >> chip->chip_shift);
 352
 353                nand_get_device(chip, mtd, FL_READING);
 354
 355                /* Select the NAND device */
 356                chip->select_chip(mtd, chipnr);
 357        }
 358
 359        if (chip->options & NAND_BUSWIDTH_16) {
 360                chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
 361                              page);
 362                bad = cpu_to_le16(chip->read_word(mtd));
 363                if (chip->badblockpos & 0x1)
 364                        bad >>= 8;
 365                else
 366                        bad &= 0xFF;
 367        } else {
 368                chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
 369                bad = chip->read_byte(mtd);
 370        }
 371
 372        if (likely(chip->badblockbits == 8))
 373                res = bad != 0xFF;
 374        else
 375                res = hweight8(bad) < chip->badblockbits;
 376
 377        if (getchip)
 378                nand_release_device(mtd);
 379
 380        return res;
 381}
 382
 383/**
 384 * nand_default_block_markbad - [DEFAULT] mark a block bad
 385 * @mtd: MTD device structure
 386 * @ofs: offset from device start
 387 *
 388 * This is the default implementation, which can be overridden by a hardware
 389 * specific driver.
 390*/
 391static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 392{
 393        struct nand_chip *chip = mtd->priv;
 394        uint8_t buf[2] = { 0, 0 };
 395        int block, ret, i = 0;
 396
 397        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 398                ofs += mtd->erasesize - mtd->writesize;
 399
 400        /* Get block number */
 401        block = (int)(ofs >> chip->bbt_erase_shift);
 402        if (chip->bbt)
 403                chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 404
 405        /* Do we have a flash based bad block table? */
 406        if (chip->bbt_options & NAND_BBT_USE_FLASH)
 407                ret = nand_update_bbt(mtd, ofs);
 408        else {
 409                struct mtd_oob_ops ops;
 410
 411                nand_get_device(chip, mtd, FL_WRITING);
 412
 413                /*
 414                 * Write to first two pages if necessary. If we write to more
 415                 * than one location, the first error encountered quits the
 416                 * procedure. We write two bytes per location, so we dont have
 417                 * to mess with 16 bit access.
 418                 */
 419                ops.len = ops.ooblen = 2;
 420                ops.datbuf = NULL;
 421                ops.oobbuf = buf;
 422                ops.ooboffs = chip->badblockpos & ~0x01;
 423                ops.mode = MTD_OPS_PLACE_OOB;
 424                do {
 425                        ret = nand_do_write_oob(mtd, ofs, &ops);
 426
 427                        i++;
 428                        ofs += mtd->writesize;
 429                } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) &&
 430                                i < 2);
 431
 432                nand_release_device(mtd);
 433        }
 434        if (!ret)
 435                mtd->ecc_stats.badblocks++;
 436
 437        return ret;
 438}
 439
 440/**
 441 * nand_check_wp - [GENERIC] check if the chip is write protected
 442 * @mtd: MTD device structure
 443 *
 444 * Check, if the device is write protected. The function expects, that the
 445 * device is already selected.
 446 */
 447static int nand_check_wp(struct mtd_info *mtd)
 448{
 449        struct nand_chip *chip = mtd->priv;
 450
 451        /* Broken xD cards report WP despite being writable */
 452        if (chip->options & NAND_BROKEN_XD)
 453                return 0;
 454
 455        /* Check the WP bit */
 456        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 457        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 458}
 459
 460/**
 461 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 462 * @mtd: MTD device structure
 463 * @ofs: offset from device start
 464 * @getchip: 0, if the chip is already selected
 465 * @allowbbt: 1, if its allowed to access the bbt area
 466 *
 467 * Check, if the block is bad. Either by reading the bad block table or
 468 * calling of the scan function.
 469 */
 470static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 471                               int allowbbt)
 472{
 473        struct nand_chip *chip = mtd->priv;
 474
 475        if (!chip->bbt)
 476                return chip->block_bad(mtd, ofs, getchip);
 477
 478        /* Return info from the table */
 479        return nand_isbad_bbt(mtd, ofs, allowbbt);
 480}
 481
 482/**
 483 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 484 * @mtd: MTD device structure
 485 * @timeo: Timeout
 486 *
 487 * Helper function for nand_wait_ready used when needing to wait in interrupt
 488 * context.
 489 */
 490static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 491{
 492        struct nand_chip *chip = mtd->priv;
 493        int i;
 494
 495        /* Wait for the device to get ready */
 496        for (i = 0; i < timeo; i++) {
 497                if (chip->dev_ready(mtd))
 498                        break;
 499                touch_softlockup_watchdog();
 500                mdelay(1);
 501        }
 502}
 503
 504/* Wait for the ready pin, after a command. The timeout is caught later. */
 505void nand_wait_ready(struct mtd_info *mtd)
 506{
 507        struct nand_chip *chip = mtd->priv;
 508        unsigned long timeo = jiffies + 2;
 509
 510        /* 400ms timeout */
 511        if (in_interrupt() || oops_in_progress)
 512                return panic_nand_wait_ready(mtd, 400);
 513
 514        led_trigger_event(nand_led_trigger, LED_FULL);
 515        /* Wait until command is processed or timeout occurs */
 516        do {
 517                if (chip->dev_ready(mtd))
 518                        break;
 519                touch_softlockup_watchdog();
 520        } while (time_before(jiffies, timeo));
 521        led_trigger_event(nand_led_trigger, LED_OFF);
 522}
 523EXPORT_SYMBOL_GPL(nand_wait_ready);
 524
 525/**
 526 * nand_command - [DEFAULT] Send command to NAND device
 527 * @mtd: MTD device structure
 528 * @command: the command to be sent
 529 * @column: the column address for this command, -1 if none
 530 * @page_addr: the page address for this command, -1 if none
 531 *
 532 * Send command to NAND device. This function is used for small page devices
 533 * (256/512 Bytes per page).
 534 */
 535static void nand_command(struct mtd_info *mtd, unsigned int command,
 536                         int column, int page_addr)
 537{
 538        register struct nand_chip *chip = mtd->priv;
 539        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 540
 541        /* Write out the command to the device */
 542        if (command == NAND_CMD_SEQIN) {
 543                int readcmd;
 544
 545                if (column >= mtd->writesize) {
 546                        /* OOB area */
 547                        column -= mtd->writesize;
 548                        readcmd = NAND_CMD_READOOB;
 549                } else if (column < 256) {
 550                        /* First 256 bytes --> READ0 */
 551                        readcmd = NAND_CMD_READ0;
 552                } else {
 553                        column -= 256;
 554                        readcmd = NAND_CMD_READ1;
 555                }
 556                chip->cmd_ctrl(mtd, readcmd, ctrl);
 557                ctrl &= ~NAND_CTRL_CHANGE;
 558        }
 559        chip->cmd_ctrl(mtd, command, ctrl);
 560
 561        /* Address cycle, when necessary */
 562        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 563        /* Serially input address */
 564        if (column != -1) {
 565                /* Adjust columns for 16 bit buswidth */
 566                if (chip->options & NAND_BUSWIDTH_16)
 567                        column >>= 1;
 568                chip->cmd_ctrl(mtd, column, ctrl);
 569                ctrl &= ~NAND_CTRL_CHANGE;
 570        }
 571        if (page_addr != -1) {
 572                chip->cmd_ctrl(mtd, page_addr, ctrl);
 573                ctrl &= ~NAND_CTRL_CHANGE;
 574                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 575                /* One more address cycle for devices > 32MiB */
 576                if (chip->chipsize > (32 << 20))
 577                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 578        }
 579        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 580
 581        /*
 582         * Program and erase have their own busy handlers status and sequential
 583         * in needs no delay
 584         */
 585        switch (command) {
 586
 587        case NAND_CMD_PAGEPROG:
 588        case NAND_CMD_ERASE1:
 589        case NAND_CMD_ERASE2:
 590        case NAND_CMD_SEQIN:
 591        case NAND_CMD_STATUS:
 592                return;
 593
 594        case NAND_CMD_RESET:
 595                if (chip->dev_ready)
 596                        break;
 597                udelay(chip->chip_delay);
 598                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 599                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 600                chip->cmd_ctrl(mtd,
 601                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 602                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 603                                ;
 604                return;
 605
 606                /* This applies to read commands */
 607        default:
 608                /*
 609                 * If we don't have access to the busy pin, we apply the given
 610                 * command delay
 611                 */
 612                if (!chip->dev_ready) {
 613                        udelay(chip->chip_delay);
 614                        return;
 615                }
 616        }
 617        /*
 618         * Apply this short delay always to ensure that we do wait tWB in
 619         * any case on any machine.
 620         */
 621        ndelay(100);
 622
 623        nand_wait_ready(mtd);
 624}
 625
 626/**
 627 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 628 * @mtd: MTD device structure
 629 * @command: the command to be sent
 630 * @column: the column address for this command, -1 if none
 631 * @page_addr: the page address for this command, -1 if none
 632 *
 633 * Send command to NAND device. This is the version for the new large page
 634 * devices. We don't have the separate regions as we have in the small page
 635 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 636 */
 637static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 638                            int column, int page_addr)
 639{
 640        register struct nand_chip *chip = mtd->priv;
 641
 642        /* Emulate NAND_CMD_READOOB */
 643        if (command == NAND_CMD_READOOB) {
 644                column += mtd->writesize;
 645                command = NAND_CMD_READ0;
 646        }
 647
 648        /* Command latch cycle */
 649        chip->cmd_ctrl(mtd, command & 0xff,
 650                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 651
 652        if (column != -1 || page_addr != -1) {
 653                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 654
 655                /* Serially input address */
 656                if (column != -1) {
 657                        /* Adjust columns for 16 bit buswidth */
 658                        if (chip->options & NAND_BUSWIDTH_16)
 659                                column >>= 1;
 660                        chip->cmd_ctrl(mtd, column, ctrl);
 661                        ctrl &= ~NAND_CTRL_CHANGE;
 662                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 663                }
 664                if (page_addr != -1) {
 665                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 666                        chip->cmd_ctrl(mtd, page_addr >> 8,
 667                                       NAND_NCE | NAND_ALE);
 668                        /* One more address cycle for devices > 128MiB */
 669                        if (chip->chipsize > (128 << 20))
 670                                chip->cmd_ctrl(mtd, page_addr >> 16,
 671                                               NAND_NCE | NAND_ALE);
 672                }
 673        }
 674        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 675
 676        /*
 677         * Program and erase have their own busy handlers status, sequential
 678         * in, and deplete1 need no delay.
 679         */
 680        switch (command) {
 681
 682        case NAND_CMD_CACHEDPROG:
 683        case NAND_CMD_PAGEPROG:
 684        case NAND_CMD_ERASE1:
 685        case NAND_CMD_ERASE2:
 686        case NAND_CMD_SEQIN:
 687        case NAND_CMD_RNDIN:
 688        case NAND_CMD_STATUS:
 689        case NAND_CMD_DEPLETE1:
 690                return;
 691
 692        case NAND_CMD_STATUS_ERROR:
 693        case NAND_CMD_STATUS_ERROR0:
 694        case NAND_CMD_STATUS_ERROR1:
 695        case NAND_CMD_STATUS_ERROR2:
 696        case NAND_CMD_STATUS_ERROR3:
 697                /* Read error status commands require only a short delay */
 698                udelay(chip->chip_delay);
 699                return;
 700
 701        case NAND_CMD_RESET:
 702                if (chip->dev_ready)
 703                        break;
 704                udelay(chip->chip_delay);
 705                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 706                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 707                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 708                               NAND_NCE | NAND_CTRL_CHANGE);
 709                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 710                                ;
 711                return;
 712
 713        case NAND_CMD_RNDOUT:
 714                /* No ready / busy check necessary */
 715                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 716                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 717                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 718                               NAND_NCE | NAND_CTRL_CHANGE);
 719                return;
 720
 721        case NAND_CMD_READ0:
 722                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 723                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 724                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 725                               NAND_NCE | NAND_CTRL_CHANGE);
 726
 727                /* This applies to read commands */
 728        default:
 729                /*
 730                 * If we don't have access to the busy pin, we apply the given
 731                 * command delay.
 732                 */
 733                if (!chip->dev_ready) {
 734                        udelay(chip->chip_delay);
 735                        return;
 736                }
 737        }
 738
 739        /*
 740         * Apply this short delay always to ensure that we do wait tWB in
 741         * any case on any machine.
 742         */
 743        ndelay(100);
 744
 745        nand_wait_ready(mtd);
 746}
 747
 748/**
 749 * panic_nand_get_device - [GENERIC] Get chip for selected access
 750 * @chip: the nand chip descriptor
 751 * @mtd: MTD device structure
 752 * @new_state: the state which is requested
 753 *
 754 * Used when in panic, no locks are taken.
 755 */
 756static void panic_nand_get_device(struct nand_chip *chip,
 757                      struct mtd_info *mtd, int new_state)
 758{
 759        /* Hardware controller shared among independent devices */
 760        chip->controller->active = chip;
 761        chip->state = new_state;
 762}
 763
 764/**
 765 * nand_get_device - [GENERIC] Get chip for selected access
 766 * @chip: the nand chip descriptor
 767 * @mtd: MTD device structure
 768 * @new_state: the state which is requested
 769 *
 770 * Get the device and lock it for exclusive access
 771 */
 772static int
 773nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
 774{
 775        spinlock_t *lock = &chip->controller->lock;
 776        wait_queue_head_t *wq = &chip->controller->wq;
 777        DECLARE_WAITQUEUE(wait, current);
 778retry:
 779        spin_lock(lock);
 780
 781        /* Hardware controller shared among independent devices */
 782        if (!chip->controller->active)
 783                chip->controller->active = chip;
 784
 785        if (chip->controller->active == chip && chip->state == FL_READY) {
 786                chip->state = new_state;
 787                spin_unlock(lock);
 788                return 0;
 789        }
 790        if (new_state == FL_PM_SUSPENDED) {
 791                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 792                        chip->state = FL_PM_SUSPENDED;
 793                        spin_unlock(lock);
 794                        return 0;
 795                }
 796        }
 797        set_current_state(TASK_UNINTERRUPTIBLE);
 798        add_wait_queue(wq, &wait);
 799        spin_unlock(lock);
 800        schedule();
 801        remove_wait_queue(wq, &wait);
 802        goto retry;
 803}
 804
 805/**
 806 * panic_nand_wait - [GENERIC] wait until the command is done
 807 * @mtd: MTD device structure
 808 * @chip: NAND chip structure
 809 * @timeo: timeout
 810 *
 811 * Wait for command done. This is a helper function for nand_wait used when
 812 * we are in interrupt context. May happen when in panic and trying to write
 813 * an oops through mtdoops.
 814 */
 815static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 816                            unsigned long timeo)
 817{
 818        int i;
 819        for (i = 0; i < timeo; i++) {
 820                if (chip->dev_ready) {
 821                        if (chip->dev_ready(mtd))
 822                                break;
 823                } else {
 824                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 825                                break;
 826                }
 827                mdelay(1);
 828        }
 829}
 830
 831/**
 832 * nand_wait - [DEFAULT] wait until the command is done
 833 * @mtd: MTD device structure
 834 * @chip: NAND chip structure
 835 *
 836 * Wait for command done. This applies to erase and program only. Erase can
 837 * take up to 400ms and program up to 20ms according to general NAND and
 838 * SmartMedia specs.
 839 */
 840static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 841{
 842
 843        unsigned long timeo = jiffies;
 844        int status, state = chip->state;
 845
 846        if (state == FL_ERASING)
 847                timeo += (HZ * 400) / 1000;
 848        else
 849                timeo += (HZ * 20) / 1000;
 850
 851        led_trigger_event(nand_led_trigger, LED_FULL);
 852
 853        /*
 854         * Apply this short delay always to ensure that we do wait tWB in any
 855         * case on any machine.
 856         */
 857        ndelay(100);
 858
 859        if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
 860                chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
 861        else
 862                chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 863
 864        if (in_interrupt() || oops_in_progress)
 865                panic_nand_wait(mtd, chip, timeo);
 866        else {
 867                while (time_before(jiffies, timeo)) {
 868                        if (chip->dev_ready) {
 869                                if (chip->dev_ready(mtd))
 870                                        break;
 871                        } else {
 872                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
 873                                        break;
 874                        }
 875                        cond_resched();
 876                }
 877        }
 878        led_trigger_event(nand_led_trigger, LED_OFF);
 879
 880        status = (int)chip->read_byte(mtd);
 881        return status;
 882}
 883
 884/**
 885 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 886 * @mtd: mtd info
 887 * @ofs: offset to start unlock from
 888 * @len: length to unlock
 889 * @invert: when = 0, unlock the range of blocks within the lower and
 890 *                    upper boundary address
 891 *          when = 1, unlock the range of blocks outside the boundaries
 892 *                    of the lower and upper boundary address
 893 *
 894 * Returs unlock status.
 895 */
 896static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 897                                        uint64_t len, int invert)
 898{
 899        int ret = 0;
 900        int status, page;
 901        struct nand_chip *chip = mtd->priv;
 902
 903        /* Submit address of first page to unlock */
 904        page = ofs >> chip->page_shift;
 905        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 906
 907        /* Submit address of last page to unlock */
 908        page = (ofs + len) >> chip->page_shift;
 909        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 910                                (page | invert) & chip->pagemask);
 911
 912        /* Call wait ready function */
 913        status = chip->waitfunc(mtd, chip);
 914        /* See if device thinks it succeeded */
 915        if (status & 0x01) {
 916                pr_debug("%s: error status = 0x%08x\n",
 917                                        __func__, status);
 918                ret = -EIO;
 919        }
 920
 921        return ret;
 922}
 923
 924/**
 925 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 926 * @mtd: mtd info
 927 * @ofs: offset to start unlock from
 928 * @len: length to unlock
 929 *
 930 * Returns unlock status.
 931 */
 932int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 933{
 934        int ret = 0;
 935        int chipnr;
 936        struct nand_chip *chip = mtd->priv;
 937
 938        pr_debug("%s: start = 0x%012llx, len = %llu\n",
 939                        __func__, (unsigned long long)ofs, len);
 940
 941        if (check_offs_len(mtd, ofs, len))
 942                ret = -EINVAL;
 943
 944        /* Align to last block address if size addresses end of the device */
 945        if (ofs + len == mtd->size)
 946                len -= mtd->erasesize;
 947
 948        nand_get_device(chip, mtd, FL_UNLOCKING);
 949
 950        /* Shift to get chip number */
 951        chipnr = ofs >> chip->chip_shift;
 952
 953        chip->select_chip(mtd, chipnr);
 954
 955        /* Check, if it is write protected */
 956        if (nand_check_wp(mtd)) {
 957                pr_debug("%s: device is write protected!\n",
 958                                        __func__);
 959                ret = -EIO;
 960                goto out;
 961        }
 962
 963        ret = __nand_unlock(mtd, ofs, len, 0);
 964
 965out:
 966        nand_release_device(mtd);
 967
 968        return ret;
 969}
 970EXPORT_SYMBOL(nand_unlock);
 971
 972/**
 973 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 974 * @mtd: mtd info
 975 * @ofs: offset to start unlock from
 976 * @len: length to unlock
 977 *
 978 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 979 * have this feature, but it allows only to lock all blocks, not for specified
 980 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 981 * now.
 982 *
 983 * Returns lock status.
 984 */
 985int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 986{
 987        int ret = 0;
 988        int chipnr, status, page;
 989        struct nand_chip *chip = mtd->priv;
 990
 991        pr_debug("%s: start = 0x%012llx, len = %llu\n",
 992                        __func__, (unsigned long long)ofs, len);
 993
 994        if (check_offs_len(mtd, ofs, len))
 995                ret = -EINVAL;
 996
 997        nand_get_device(chip, mtd, FL_LOCKING);
 998
 999        /* Shift to get chip number */
1000        chipnr = ofs >> chip->chip_shift;
1001
1002        chip->select_chip(mtd, chipnr);
1003
1004        /* Check, if it is write protected */
1005        if (nand_check_wp(mtd)) {
1006                pr_debug("%s: device is write protected!\n",
1007                                        __func__);
1008                status = MTD_ERASE_FAILED;
1009                ret = -EIO;
1010                goto out;
1011        }
1012
1013        /* Submit address of first page to lock */
1014        page = ofs >> chip->page_shift;
1015        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1016
1017        /* Call wait ready function */
1018        status = chip->waitfunc(mtd, chip);
1019        /* See if device thinks it succeeded */
1020        if (status & 0x01) {
1021                pr_debug("%s: error status = 0x%08x\n",
1022                                        __func__, status);
1023                ret = -EIO;
1024                goto out;
1025        }
1026
1027        ret = __nand_unlock(mtd, ofs, len, 0x1);
1028
1029out:
1030        nand_release_device(mtd);
1031
1032        return ret;
1033}
1034EXPORT_SYMBOL(nand_lock);
1035
1036/**
1037 * nand_read_page_raw - [INTERN] read raw page data without ecc
1038 * @mtd: mtd info structure
1039 * @chip: nand chip info structure
1040 * @buf: buffer to store read data
1041 * @page: page number to read
1042 *
1043 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1044 */
1045static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1046                              uint8_t *buf, int page)
1047{
1048        chip->read_buf(mtd, buf, mtd->writesize);
1049        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1050        return 0;
1051}
1052
1053/**
1054 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
1058 * @page: page number to read
1059 *
1060 * We need a special oob layout and handling even when OOB isn't used.
1061 */
1062static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1063                                        struct nand_chip *chip,
1064                                        uint8_t *buf, int page)
1065{
1066        int eccsize = chip->ecc.size;
1067        int eccbytes = chip->ecc.bytes;
1068        uint8_t *oob = chip->oob_poi;
1069        int steps, size;
1070
1071        for (steps = chip->ecc.steps; steps > 0; steps--) {
1072                chip->read_buf(mtd, buf, eccsize);
1073                buf += eccsize;
1074
1075                if (chip->ecc.prepad) {
1076                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1077                        oob += chip->ecc.prepad;
1078                }
1079
1080                chip->read_buf(mtd, oob, eccbytes);
1081                oob += eccbytes;
1082
1083                if (chip->ecc.postpad) {
1084                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1085                        oob += chip->ecc.postpad;
1086                }
1087        }
1088
1089        size = mtd->oobsize - (oob - chip->oob_poi);
1090        if (size)
1091                chip->read_buf(mtd, oob, size);
1092
1093        return 0;
1094}
1095
1096/**
1097 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1098 * @mtd: mtd info structure
1099 * @chip: nand chip info structure
1100 * @buf: buffer to store read data
1101 * @page: page number to read
1102 */
1103static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1104                                uint8_t *buf, int page)
1105{
1106        int i, eccsize = chip->ecc.size;
1107        int eccbytes = chip->ecc.bytes;
1108        int eccsteps = chip->ecc.steps;
1109        uint8_t *p = buf;
1110        uint8_t *ecc_calc = chip->buffers->ecccalc;
1111        uint8_t *ecc_code = chip->buffers->ecccode;
1112        uint32_t *eccpos = chip->ecc.layout->eccpos;
1113
1114        chip->ecc.read_page_raw(mtd, chip, buf, page);
1115
1116        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1117                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1118
1119        for (i = 0; i < chip->ecc.total; i++)
1120                ecc_code[i] = chip->oob_poi[eccpos[i]];
1121
1122        eccsteps = chip->ecc.steps;
1123        p = buf;
1124
1125        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1126                int stat;
1127
1128                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1129                if (stat < 0)
1130                        mtd->ecc_stats.failed++;
1131                else
1132                        mtd->ecc_stats.corrected += stat;
1133        }
1134        return 0;
1135}
1136
1137/**
1138 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1139 * @mtd: mtd info structure
1140 * @chip: nand chip info structure
1141 * @data_offs: offset of requested data within the page
1142 * @readlen: data length
1143 * @bufpoi: buffer to store read data
1144 */
1145static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1146                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1147{
1148        int start_step, end_step, num_steps;
1149        uint32_t *eccpos = chip->ecc.layout->eccpos;
1150        uint8_t *p;
1151        int data_col_addr, i, gaps = 0;
1152        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1153        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1154        int index = 0;
1155
1156        /* Column address within the page aligned to ECC size (256bytes) */
1157        start_step = data_offs / chip->ecc.size;
1158        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1159        num_steps = end_step - start_step + 1;
1160
1161        /* Data size aligned to ECC ecc.size */
1162        datafrag_len = num_steps * chip->ecc.size;
1163        eccfrag_len = num_steps * chip->ecc.bytes;
1164
1165        data_col_addr = start_step * chip->ecc.size;
1166        /* If we read not a page aligned data */
1167        if (data_col_addr != 0)
1168                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1169
1170        p = bufpoi + data_col_addr;
1171        chip->read_buf(mtd, p, datafrag_len);
1172
1173        /* Calculate ECC */
1174        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1175                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1176
1177        /*
1178         * The performance is faster if we position offsets according to
1179         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1180         */
1181        for (i = 0; i < eccfrag_len - 1; i++) {
1182                if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1183                        eccpos[i + start_step * chip->ecc.bytes + 1]) {
1184                        gaps = 1;
1185                        break;
1186                }
1187        }
1188        if (gaps) {
1189                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1190                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1191        } else {
1192                /*
1193                 * Send the command to read the particular ECC bytes take care
1194                 * about buswidth alignment in read_buf.
1195                 */
1196                index = start_step * chip->ecc.bytes;
1197
1198                aligned_pos = eccpos[index] & ~(busw - 1);
1199                aligned_len = eccfrag_len;
1200                if (eccpos[index] & (busw - 1))
1201                        aligned_len++;
1202                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1203                        aligned_len++;
1204
1205                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1206                                        mtd->writesize + aligned_pos, -1);
1207                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1208        }
1209
1210        for (i = 0; i < eccfrag_len; i++)
1211                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1212
1213        p = bufpoi + data_col_addr;
1214        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1215                int stat;
1216
1217                stat = chip->ecc.correct(mtd, p,
1218                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1219                if (stat < 0)
1220                        mtd->ecc_stats.failed++;
1221                else
1222                        mtd->ecc_stats.corrected += stat;
1223        }
1224        return 0;
1225}
1226
1227/**
1228 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @buf: buffer to store read data
1232 * @page: page number to read
1233 *
1234 * Not for syndrome calculating ECC controllers which need a special oob layout.
1235 */
1236static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1237                                uint8_t *buf, int page)
1238{
1239        int i, eccsize = chip->ecc.size;
1240        int eccbytes = chip->ecc.bytes;
1241        int eccsteps = chip->ecc.steps;
1242        uint8_t *p = buf;
1243        uint8_t *ecc_calc = chip->buffers->ecccalc;
1244        uint8_t *ecc_code = chip->buffers->ecccode;
1245        uint32_t *eccpos = chip->ecc.layout->eccpos;
1246
1247        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1248                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1249                chip->read_buf(mtd, p, eccsize);
1250                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1251        }
1252        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1253
1254        for (i = 0; i < chip->ecc.total; i++)
1255                ecc_code[i] = chip->oob_poi[eccpos[i]];
1256
1257        eccsteps = chip->ecc.steps;
1258        p = buf;
1259
1260        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1261                int stat;
1262
1263                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1264                if (stat < 0)
1265                        mtd->ecc_stats.failed++;
1266                else
1267                        mtd->ecc_stats.corrected += stat;
1268        }
1269        return 0;
1270}
1271
1272/**
1273 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1274 * @mtd: mtd info structure
1275 * @chip: nand chip info structure
1276 * @buf: buffer to store read data
1277 * @page: page number to read
1278 *
1279 * Hardware ECC for large page chips, require OOB to be read first. For this
1280 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283 * the data area, by overwriting the NAND manufacturer bad block markings.
1284 */
1285static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286        struct nand_chip *chip, uint8_t *buf, int page)
1287{
1288        int i, eccsize = chip->ecc.size;
1289        int eccbytes = chip->ecc.bytes;
1290        int eccsteps = chip->ecc.steps;
1291        uint8_t *p = buf;
1292        uint8_t *ecc_code = chip->buffers->ecccode;
1293        uint32_t *eccpos = chip->ecc.layout->eccpos;
1294        uint8_t *ecc_calc = chip->buffers->ecccalc;
1295
1296        /* Read the OOB area first */
1297        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1298        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1299        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1300
1301        for (i = 0; i < chip->ecc.total; i++)
1302                ecc_code[i] = chip->oob_poi[eccpos[i]];
1303
1304        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305                int stat;
1306
1307                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1308                chip->read_buf(mtd, p, eccsize);
1309                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1310
1311                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1312                if (stat < 0)
1313                        mtd->ecc_stats.failed++;
1314                else
1315                        mtd->ecc_stats.corrected += stat;
1316        }
1317        return 0;
1318}
1319
1320/**
1321 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1322 * @mtd: mtd info structure
1323 * @chip: nand chip info structure
1324 * @buf: buffer to store read data
1325 * @page: page number to read
1326 *
1327 * The hw generator calculates the error syndrome automatically. Therefore we
1328 * need a special oob layout and handling.
1329 */
1330static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1331                                   uint8_t *buf, int page)
1332{
1333        int i, eccsize = chip->ecc.size;
1334        int eccbytes = chip->ecc.bytes;
1335        int eccsteps = chip->ecc.steps;
1336        uint8_t *p = buf;
1337        uint8_t *oob = chip->oob_poi;
1338
1339        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1340                int stat;
1341
1342                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1343                chip->read_buf(mtd, p, eccsize);
1344
1345                if (chip->ecc.prepad) {
1346                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1347                        oob += chip->ecc.prepad;
1348                }
1349
1350                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1351                chip->read_buf(mtd, oob, eccbytes);
1352                stat = chip->ecc.correct(mtd, p, oob, NULL);
1353
1354                if (stat < 0)
1355                        mtd->ecc_stats.failed++;
1356                else
1357                        mtd->ecc_stats.corrected += stat;
1358
1359                oob += eccbytes;
1360
1361                if (chip->ecc.postpad) {
1362                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1363                        oob += chip->ecc.postpad;
1364                }
1365        }
1366
1367        /* Calculate remaining oob bytes */
1368        i = mtd->oobsize - (oob - chip->oob_poi);
1369        if (i)
1370                chip->read_buf(mtd, oob, i);
1371
1372        return 0;
1373}
1374
1375/**
1376 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1377 * @chip: nand chip structure
1378 * @oob: oob destination address
1379 * @ops: oob ops structure
1380 * @len: size of oob to transfer
1381 */
1382static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1383                                  struct mtd_oob_ops *ops, size_t len)
1384{
1385        switch (ops->mode) {
1386
1387        case MTD_OPS_PLACE_OOB:
1388        case MTD_OPS_RAW:
1389                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1390                return oob + len;
1391
1392        case MTD_OPS_AUTO_OOB: {
1393                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1394                uint32_t boffs = 0, roffs = ops->ooboffs;
1395                size_t bytes = 0;
1396
1397                for (; free->length && len; free++, len -= bytes) {
1398                        /* Read request not from offset 0? */
1399                        if (unlikely(roffs)) {
1400                                if (roffs >= free->length) {
1401                                        roffs -= free->length;
1402                                        continue;
1403                                }
1404                                boffs = free->offset + roffs;
1405                                bytes = min_t(size_t, len,
1406                                              (free->length - roffs));
1407                                roffs = 0;
1408                        } else {
1409                                bytes = min_t(size_t, len, free->length);
1410                                boffs = free->offset;
1411                        }
1412                        memcpy(oob, chip->oob_poi + boffs, bytes);
1413                        oob += bytes;
1414                }
1415                return oob;
1416        }
1417        default:
1418                BUG();
1419        }
1420        return NULL;
1421}
1422
1423/**
1424 * nand_do_read_ops - [INTERN] Read data with ECC
1425 * @mtd: MTD device structure
1426 * @from: offset to read from
1427 * @ops: oob ops structure
1428 *
1429 * Internal function. Called with chip held.
1430 */
1431static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1432                            struct mtd_oob_ops *ops)
1433{
1434        int chipnr, page, realpage, col, bytes, aligned;
1435        struct nand_chip *chip = mtd->priv;
1436        struct mtd_ecc_stats stats;
1437        int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1438        int sndcmd = 1;
1439        int ret = 0;
1440        uint32_t readlen = ops->len;
1441        uint32_t oobreadlen = ops->ooblen;
1442        uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1443                mtd->oobavail : mtd->oobsize;
1444
1445        uint8_t *bufpoi, *oob, *buf;
1446
1447        stats = mtd->ecc_stats;
1448
1449        chipnr = (int)(from >> chip->chip_shift);
1450        chip->select_chip(mtd, chipnr);
1451
1452        realpage = (int)(from >> chip->page_shift);
1453        page = realpage & chip->pagemask;
1454
1455        col = (int)(from & (mtd->writesize - 1));
1456
1457        buf = ops->datbuf;
1458        oob = ops->oobbuf;
1459
1460        while (1) {
1461                bytes = min(mtd->writesize - col, readlen);
1462                aligned = (bytes == mtd->writesize);
1463
1464                /* Is the current page in the buffer? */
1465                if (realpage != chip->pagebuf || oob) {
1466                        bufpoi = aligned ? buf : chip->buffers->databuf;
1467
1468                        if (likely(sndcmd)) {
1469                                chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1470                                sndcmd = 0;
1471                        }
1472
1473                        /* Now read the page into the buffer */
1474                        if (unlikely(ops->mode == MTD_OPS_RAW))
1475                                ret = chip->ecc.read_page_raw(mtd, chip,
1476                                                              bufpoi, page);
1477                        else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1478                                ret = chip->ecc.read_subpage(mtd, chip,
1479                                                        col, bytes, bufpoi);
1480                        else
1481                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1482                                                          page);
1483                        if (ret < 0) {
1484                                if (!aligned)
1485                                        /* Invalidate page cache */
1486                                        chip->pagebuf = -1;
1487                                break;
1488                        }
1489
1490                        /* Transfer not aligned data */
1491                        if (!aligned) {
1492                                if (!NAND_SUBPAGE_READ(chip) && !oob &&
1493                                    !(mtd->ecc_stats.failed - stats.failed) &&
1494                                    (ops->mode != MTD_OPS_RAW))
1495                                        chip->pagebuf = realpage;
1496                                else
1497                                        /* Invalidate page cache */
1498                                        chip->pagebuf = -1;
1499                                memcpy(buf, chip->buffers->databuf + col, bytes);
1500                        }
1501
1502                        buf += bytes;
1503
1504                        if (unlikely(oob)) {
1505
1506                                int toread = min(oobreadlen, max_oobsize);
1507
1508                                if (toread) {
1509                                        oob = nand_transfer_oob(chip,
1510                                                oob, ops, toread);
1511                                        oobreadlen -= toread;
1512                                }
1513                        }
1514
1515                        if (!(chip->options & NAND_NO_READRDY)) {
1516                                /*
1517                                 * Apply delay or wait for ready/busy pin. Do
1518                                 * this before the AUTOINCR check, so no
1519                                 * problems arise if a chip which does auto
1520                                 * increment is marked as NOAUTOINCR by the
1521                                 * board driver.
1522                                 */
1523                                if (!chip->dev_ready)
1524                                        udelay(chip->chip_delay);
1525                                else
1526                                        nand_wait_ready(mtd);
1527                        }
1528                } else {
1529                        memcpy(buf, chip->buffers->databuf + col, bytes);
1530                        buf += bytes;
1531                }
1532
1533                readlen -= bytes;
1534
1535                if (!readlen)
1536                        break;
1537
1538                /* For subsequent reads align to page boundary */
1539                col = 0;
1540                /* Increment page address */
1541                realpage++;
1542
1543                page = realpage & chip->pagemask;
1544                /* Check, if we cross a chip boundary */
1545                if (!page) {
1546                        chipnr++;
1547                        chip->select_chip(mtd, -1);
1548                        chip->select_chip(mtd, chipnr);
1549                }
1550
1551                /*
1552                 * Check, if the chip supports auto page increment or if we
1553                 * have hit a block boundary.
1554                 */
1555                if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1556                        sndcmd = 1;
1557        }
1558
1559        ops->retlen = ops->len - (size_t) readlen;
1560        if (oob)
1561                ops->oobretlen = ops->ooblen - oobreadlen;
1562
1563        if (ret)
1564                return ret;
1565
1566        if (mtd->ecc_stats.failed - stats.failed)
1567                return -EBADMSG;
1568
1569        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1570}
1571
1572/**
1573 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1574 * @mtd: MTD device structure
1575 * @from: offset to read from
1576 * @len: number of bytes to read
1577 * @retlen: pointer to variable to store the number of read bytes
1578 * @buf: the databuffer to put data
1579 *
1580 * Get hold of the chip and call nand_do_read.
1581 */
1582static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1583                     size_t *retlen, uint8_t *buf)
1584{
1585        struct nand_chip *chip = mtd->priv;
1586        struct mtd_oob_ops ops;
1587        int ret;
1588
1589        /* Do not allow reads past end of device */
1590        if ((from + len) > mtd->size)
1591                return -EINVAL;
1592        if (!len)
1593                return 0;
1594
1595        nand_get_device(chip, mtd, FL_READING);
1596
1597        ops.len = len;
1598        ops.datbuf = buf;
1599        ops.oobbuf = NULL;
1600        ops.mode = 0;
1601
1602        ret = nand_do_read_ops(mtd, from, &ops);
1603
1604        *retlen = ops.retlen;
1605
1606        nand_release_device(mtd);
1607
1608        return ret;
1609}
1610
1611/**
1612 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1613 * @mtd: mtd info structure
1614 * @chip: nand chip info structure
1615 * @page: page number to read
1616 * @sndcmd: flag whether to issue read command or not
1617 */
1618static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1619                             int page, int sndcmd)
1620{
1621        if (sndcmd) {
1622                chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1623                sndcmd = 0;
1624        }
1625        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1626        return sndcmd;
1627}
1628
1629/**
1630 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1631 *                          with syndromes
1632 * @mtd: mtd info structure
1633 * @chip: nand chip info structure
1634 * @page: page number to read
1635 * @sndcmd: flag whether to issue read command or not
1636 */
1637static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1638                                  int page, int sndcmd)
1639{
1640        uint8_t *buf = chip->oob_poi;
1641        int length = mtd->oobsize;
1642        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1643        int eccsize = chip->ecc.size;
1644        uint8_t *bufpoi = buf;
1645        int i, toread, sndrnd = 0, pos;
1646
1647        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1648        for (i = 0; i < chip->ecc.steps; i++) {
1649                if (sndrnd) {
1650                        pos = eccsize + i * (eccsize + chunk);
1651                        if (mtd->writesize > 512)
1652                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1653                        else
1654                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1655                } else
1656                        sndrnd = 1;
1657                toread = min_t(int, length, chunk);
1658                chip->read_buf(mtd, bufpoi, toread);
1659                bufpoi += toread;
1660                length -= toread;
1661        }
1662        if (length > 0)
1663                chip->read_buf(mtd, bufpoi, length);
1664
1665        return 1;
1666}
1667
1668/**
1669 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1670 * @mtd: mtd info structure
1671 * @chip: nand chip info structure
1672 * @page: page number to write
1673 */
1674static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1675                              int page)
1676{
1677        int status = 0;
1678        const uint8_t *buf = chip->oob_poi;
1679        int length = mtd->oobsize;
1680
1681        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1682        chip->write_buf(mtd, buf, length);
1683        /* Send command to program the OOB data */
1684        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1685
1686        status = chip->waitfunc(mtd, chip);
1687
1688        return status & NAND_STATUS_FAIL ? -EIO : 0;
1689}
1690
1691/**
1692 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1693 *                           with syndrome - only for large page flash
1694 * @mtd: mtd info structure
1695 * @chip: nand chip info structure
1696 * @page: page number to write
1697 */
1698static int nand_write_oob_syndrome(struct mtd_info *mtd,
1699                                   struct nand_chip *chip, int page)
1700{
1701        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1702        int eccsize = chip->ecc.size, length = mtd->oobsize;
1703        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1704        const uint8_t *bufpoi = chip->oob_poi;
1705
1706        /*
1707         * data-ecc-data-ecc ... ecc-oob
1708         * or
1709         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1710         */
1711        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1712                pos = steps * (eccsize + chunk);
1713                steps = 0;
1714        } else
1715                pos = eccsize;
1716
1717        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1718        for (i = 0; i < steps; i++) {
1719                if (sndcmd) {
1720                        if (mtd->writesize <= 512) {
1721                                uint32_t fill = 0xFFFFFFFF;
1722
1723                                len = eccsize;
1724                                while (len > 0) {
1725                                        int num = min_t(int, len, 4);
1726                                        chip->write_buf(mtd, (uint8_t *)&fill,
1727                                                        num);
1728                                        len -= num;
1729                                }
1730                        } else {
1731                                pos = eccsize + i * (eccsize + chunk);
1732                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1733                        }
1734                } else
1735                        sndcmd = 1;
1736                len = min_t(int, length, chunk);
1737                chip->write_buf(mtd, bufpoi, len);
1738                bufpoi += len;
1739                length -= len;
1740        }
1741        if (length > 0)
1742                chip->write_buf(mtd, bufpoi, length);
1743
1744        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1745        status = chip->waitfunc(mtd, chip);
1746
1747        return status & NAND_STATUS_FAIL ? -EIO : 0;
1748}
1749
1750/**
1751 * nand_do_read_oob - [INTERN] NAND read out-of-band
1752 * @mtd: MTD device structure
1753 * @from: offset to read from
1754 * @ops: oob operations description structure
1755 *
1756 * NAND read out-of-band data from the spare area.
1757 */
1758static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1759                            struct mtd_oob_ops *ops)
1760{
1761        int page, realpage, chipnr, sndcmd = 1;
1762        struct nand_chip *chip = mtd->priv;
1763        struct mtd_ecc_stats stats;
1764        int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1765        int readlen = ops->ooblen;
1766        int len;
1767        uint8_t *buf = ops->oobbuf;
1768
1769        pr_debug("%s: from = 0x%08Lx, len = %i\n",
1770                        __func__, (unsigned long long)from, readlen);
1771
1772        stats = mtd->ecc_stats;
1773
1774        if (ops->mode == MTD_OPS_AUTO_OOB)
1775                len = chip->ecc.layout->oobavail;
1776        else
1777                len = mtd->oobsize;
1778
1779        if (unlikely(ops->ooboffs >= len)) {
1780                pr_debug("%s: attempt to start read outside oob\n",
1781                                __func__);
1782                return -EINVAL;
1783        }
1784
1785        /* Do not allow reads past end of device */
1786        if (unlikely(from >= mtd->size ||
1787                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1788                                        (from >> chip->page_shift)) * len)) {
1789                pr_debug("%s: attempt to read beyond end of device\n",
1790                                __func__);
1791                return -EINVAL;
1792        }
1793
1794        chipnr = (int)(from >> chip->chip_shift);
1795        chip->select_chip(mtd, chipnr);
1796
1797        /* Shift to get page */
1798        realpage = (int)(from >> chip->page_shift);
1799        page = realpage & chip->pagemask;
1800
1801        while (1) {
1802                if (ops->mode == MTD_OPS_RAW)
1803                        sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd);
1804                else
1805                        sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1806
1807                len = min(len, readlen);
1808                buf = nand_transfer_oob(chip, buf, ops, len);
1809
1810                if (!(chip->options & NAND_NO_READRDY)) {
1811                        /*
1812                         * Apply delay or wait for ready/busy pin. Do this
1813                         * before the AUTOINCR check, so no problems arise if a
1814                         * chip which does auto increment is marked as
1815                         * NOAUTOINCR by the board driver.
1816                         */
1817                        if (!chip->dev_ready)
1818                                udelay(chip->chip_delay);
1819                        else
1820                                nand_wait_ready(mtd);
1821                }
1822
1823                readlen -= len;
1824                if (!readlen)
1825                        break;
1826
1827                /* Increment page address */
1828                realpage++;
1829
1830                page = realpage & chip->pagemask;
1831                /* Check, if we cross a chip boundary */
1832                if (!page) {
1833                        chipnr++;
1834                        chip->select_chip(mtd, -1);
1835                        chip->select_chip(mtd, chipnr);
1836                }
1837
1838                /*
1839                 * Check, if the chip supports auto page increment or if we
1840                 * have hit a block boundary.
1841                 */
1842                if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1843                        sndcmd = 1;
1844        }
1845
1846        ops->oobretlen = ops->ooblen;
1847
1848        if (mtd->ecc_stats.failed - stats.failed)
1849                return -EBADMSG;
1850
1851        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1852}
1853
1854/**
1855 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1856 * @mtd: MTD device structure
1857 * @from: offset to read from
1858 * @ops: oob operation description structure
1859 *
1860 * NAND read data and/or out-of-band data.
1861 */
1862static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1863                         struct mtd_oob_ops *ops)
1864{
1865        struct nand_chip *chip = mtd->priv;
1866        int ret = -ENOTSUPP;
1867
1868        ops->retlen = 0;
1869
1870        /* Do not allow reads past end of device */
1871        if (ops->datbuf && (from + ops->len) > mtd->size) {
1872                pr_debug("%s: attempt to read beyond end of device\n",
1873                                __func__);
1874                return -EINVAL;
1875        }
1876
1877        nand_get_device(chip, mtd, FL_READING);
1878
1879        switch (ops->mode) {
1880        case MTD_OPS_PLACE_OOB:
1881        case MTD_OPS_AUTO_OOB:
1882        case MTD_OPS_RAW:
1883                break;
1884
1885        default:
1886                goto out;
1887        }
1888
1889        if (!ops->datbuf)
1890                ret = nand_do_read_oob(mtd, from, ops);
1891        else
1892                ret = nand_do_read_ops(mtd, from, ops);
1893
1894out:
1895        nand_release_device(mtd);
1896        return ret;
1897}
1898
1899
1900/**
1901 * nand_write_page_raw - [INTERN] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1904 * @buf: data buffer
1905 *
1906 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1907 */
1908static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1909                                const uint8_t *buf)
1910{
1911        chip->write_buf(mtd, buf, mtd->writesize);
1912        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1913}
1914
1915/**
1916 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1917 * @mtd: mtd info structure
1918 * @chip: nand chip info structure
1919 * @buf: data buffer
1920 *
1921 * We need a special oob layout and handling even when ECC isn't checked.
1922 */
1923static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1924                                        struct nand_chip *chip,
1925                                        const uint8_t *buf)
1926{
1927        int eccsize = chip->ecc.size;
1928        int eccbytes = chip->ecc.bytes;
1929        uint8_t *oob = chip->oob_poi;
1930        int steps, size;
1931
1932        for (steps = chip->ecc.steps; steps > 0; steps--) {
1933                chip->write_buf(mtd, buf, eccsize);
1934                buf += eccsize;
1935
1936                if (chip->ecc.prepad) {
1937                        chip->write_buf(mtd, oob, chip->ecc.prepad);
1938                        oob += chip->ecc.prepad;
1939                }
1940
1941                chip->read_buf(mtd, oob, eccbytes);
1942                oob += eccbytes;
1943
1944                if (chip->ecc.postpad) {
1945                        chip->write_buf(mtd, oob, chip->ecc.postpad);
1946                        oob += chip->ecc.postpad;
1947                }
1948        }
1949
1950        size = mtd->oobsize - (oob - chip->oob_poi);
1951        if (size)
1952                chip->write_buf(mtd, oob, size);
1953}
1954/**
1955 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1956 * @mtd: mtd info structure
1957 * @chip: nand chip info structure
1958 * @buf: data buffer
1959 */
1960static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1961                                  const uint8_t *buf)
1962{
1963        int i, eccsize = chip->ecc.size;
1964        int eccbytes = chip->ecc.bytes;
1965        int eccsteps = chip->ecc.steps;
1966        uint8_t *ecc_calc = chip->buffers->ecccalc;
1967        const uint8_t *p = buf;
1968        uint32_t *eccpos = chip->ecc.layout->eccpos;
1969
1970        /* Software ECC calculation */
1971        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1972                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1973
1974        for (i = 0; i < chip->ecc.total; i++)
1975                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1976
1977        chip->ecc.write_page_raw(mtd, chip, buf);
1978}
1979
1980/**
1981 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1982 * @mtd: mtd info structure
1983 * @chip: nand chip info structure
1984 * @buf: data buffer
1985 */
1986static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1987                                  const uint8_t *buf)
1988{
1989        int i, eccsize = chip->ecc.size;
1990        int eccbytes = chip->ecc.bytes;
1991        int eccsteps = chip->ecc.steps;
1992        uint8_t *ecc_calc = chip->buffers->ecccalc;
1993        const uint8_t *p = buf;
1994        uint32_t *eccpos = chip->ecc.layout->eccpos;
1995
1996        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1997                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1998                chip->write_buf(mtd, p, eccsize);
1999                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2000        }
2001
2002        for (i = 0; i < chip->ecc.total; i++)
2003                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2004
2005        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2006}
2007
2008/**
2009 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2010 * @mtd: mtd info structure
2011 * @chip: nand chip info structure
2012 * @buf: data buffer
2013 *
2014 * The hw generator calculates the error syndrome automatically. Therefore we
2015 * need a special oob layout and handling.
2016 */
2017static void nand_write_page_syndrome(struct mtd_info *mtd,
2018                                    struct nand_chip *chip, const uint8_t *buf)
2019{
2020        int i, eccsize = chip->ecc.size;
2021        int eccbytes = chip->ecc.bytes;
2022        int eccsteps = chip->ecc.steps;
2023        const uint8_t *p = buf;
2024        uint8_t *oob = chip->oob_poi;
2025
2026        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2027
2028                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2029                chip->write_buf(mtd, p, eccsize);
2030
2031                if (chip->ecc.prepad) {
2032                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2033                        oob += chip->ecc.prepad;
2034                }
2035
2036                chip->ecc.calculate(mtd, p, oob);
2037                chip->write_buf(mtd, oob, eccbytes);
2038                oob += eccbytes;
2039
2040                if (chip->ecc.postpad) {
2041                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2042                        oob += chip->ecc.postpad;
2043                }
2044        }
2045
2046        /* Calculate remaining oob bytes */
2047        i = mtd->oobsize - (oob - chip->oob_poi);
2048        if (i)
2049                chip->write_buf(mtd, oob, i);
2050}
2051
2052/**
2053 * nand_write_page - [REPLACEABLE] write one page
2054 * @mtd: MTD device structure
2055 * @chip: NAND chip descriptor
2056 * @buf: the data to write
2057 * @page: page number to write
2058 * @cached: cached programming
2059 * @raw: use _raw version of write_page
2060 */
2061static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2062                           const uint8_t *buf, int page, int cached, int raw)
2063{
2064        int status;
2065
2066        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2067
2068        if (unlikely(raw))
2069                chip->ecc.write_page_raw(mtd, chip, buf);
2070        else
2071                chip->ecc.write_page(mtd, chip, buf);
2072
2073        /*
2074         * Cached progamming disabled for now. Not sure if it's worth the
2075         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2076         */
2077        cached = 0;
2078
2079        if (!cached || !(chip->options & NAND_CACHEPRG)) {
2080
2081                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2082                status = chip->waitfunc(mtd, chip);
2083                /*
2084                 * See if operation failed and additional status checks are
2085                 * available.
2086                 */
2087                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2088                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2089                                               page);
2090
2091                if (status & NAND_STATUS_FAIL)
2092                        return -EIO;
2093        } else {
2094                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2095                status = chip->waitfunc(mtd, chip);
2096        }
2097
2098#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2099        /* Send command to read back the data */
2100        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2101
2102        if (chip->verify_buf(mtd, buf, mtd->writesize))
2103                return -EIO;
2104#endif
2105        return 0;
2106}
2107
2108/**
2109 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2110 * @mtd: MTD device structure
2111 * @oob: oob data buffer
2112 * @len: oob data write length
2113 * @ops: oob ops structure
2114 */
2115static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2116                              struct mtd_oob_ops *ops)
2117{
2118        struct nand_chip *chip = mtd->priv;
2119
2120        /*
2121         * Initialise to all 0xFF, to avoid the possibility of left over OOB
2122         * data from a previous OOB read.
2123         */
2124        memset(chip->oob_poi, 0xff, mtd->oobsize);
2125
2126        switch (ops->mode) {
2127
2128        case MTD_OPS_PLACE_OOB:
2129        case MTD_OPS_RAW:
2130                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2131                return oob + len;
2132
2133        case MTD_OPS_AUTO_OOB: {
2134                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2135                uint32_t boffs = 0, woffs = ops->ooboffs;
2136                size_t bytes = 0;
2137
2138                for (; free->length && len; free++, len -= bytes) {
2139                        /* Write request not from offset 0? */
2140                        if (unlikely(woffs)) {
2141                                if (woffs >= free->length) {
2142                                        woffs -= free->length;
2143                                        continue;
2144                                }
2145                                boffs = free->offset + woffs;
2146                                bytes = min_t(size_t, len,
2147                                              (free->length - woffs));
2148                                woffs = 0;
2149                        } else {
2150                                bytes = min_t(size_t, len, free->length);
2151                                boffs = free->offset;
2152                        }
2153                        memcpy(chip->oob_poi + boffs, oob, bytes);
2154                        oob += bytes;
2155                }
2156                return oob;
2157        }
2158        default:
2159                BUG();
2160        }
2161        return NULL;
2162}
2163
2164#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2165
2166/**
2167 * nand_do_write_ops - [INTERN] NAND write with ECC
2168 * @mtd: MTD device structure
2169 * @to: offset to write to
2170 * @ops: oob operations description structure
2171 *
2172 * NAND write with ECC.
2173 */
2174static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2175                             struct mtd_oob_ops *ops)
2176{
2177        int chipnr, realpage, page, blockmask, column;
2178        struct nand_chip *chip = mtd->priv;
2179        uint32_t writelen = ops->len;
2180
2181        uint32_t oobwritelen = ops->ooblen;
2182        uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2183                                mtd->oobavail : mtd->oobsize;
2184
2185        uint8_t *oob = ops->oobbuf;
2186        uint8_t *buf = ops->datbuf;
2187        int ret, subpage;
2188
2189        ops->retlen = 0;
2190        if (!writelen)
2191                return 0;
2192
2193        /* Reject writes, which are not page aligned */
2194        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2195                pr_notice("%s: attempt to write non page aligned data\n",
2196                           __func__);
2197                return -EINVAL;
2198        }
2199
2200        column = to & (mtd->writesize - 1);
2201        subpage = column || (writelen & (mtd->writesize - 1));
2202
2203        if (subpage && oob)
2204                return -EINVAL;
2205
2206        chipnr = (int)(to >> chip->chip_shift);
2207        chip->select_chip(mtd, chipnr);
2208
2209        /* Check, if it is write protected */
2210        if (nand_check_wp(mtd))
2211                return -EIO;
2212
2213        realpage = (int)(to >> chip->page_shift);
2214        page = realpage & chip->pagemask;
2215        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2216
2217        /* Invalidate the page cache, when we write to the cached page */
2218        if (to <= (chip->pagebuf << chip->page_shift) &&
2219            (chip->pagebuf << chip->page_shift) < (to + ops->len))
2220                chip->pagebuf = -1;
2221
2222        /* Don't allow multipage oob writes with offset */
2223        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2224                return -EINVAL;
2225
2226        while (1) {
2227                int bytes = mtd->writesize;
2228                int cached = writelen > bytes && page != blockmask;
2229                uint8_t *wbuf = buf;
2230
2231                /* Partial page write? */
2232                if (unlikely(column || writelen < (mtd->writesize - 1))) {
2233                        cached = 0;
2234                        bytes = min_t(int, bytes - column, (int) writelen);
2235                        chip->pagebuf = -1;
2236                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2237                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2238                        wbuf = chip->buffers->databuf;
2239                }
2240
2241                if (unlikely(oob)) {
2242                        size_t len = min(oobwritelen, oobmaxlen);
2243                        oob = nand_fill_oob(mtd, oob, len, ops);
2244                        oobwritelen -= len;
2245                } else {
2246                        /* We still need to erase leftover OOB data */
2247                        memset(chip->oob_poi, 0xff, mtd->oobsize);
2248                }
2249
2250                ret = chip->write_page(mtd, chip, wbuf, page, cached,
2251                                       (ops->mode == MTD_OPS_RAW));
2252                if (ret)
2253                        break;
2254
2255                writelen -= bytes;
2256                if (!writelen)
2257                        break;
2258
2259                column = 0;
2260                buf += bytes;
2261                realpage++;
2262
2263                page = realpage & chip->pagemask;
2264                /* Check, if we cross a chip boundary */
2265                if (!page) {
2266                        chipnr++;
2267                        chip->select_chip(mtd, -1);
2268                        chip->select_chip(mtd, chipnr);
2269                }
2270        }
2271
2272        ops->retlen = ops->len - writelen;
2273        if (unlikely(oob))
2274                ops->oobretlen = ops->ooblen;
2275        return ret;
2276}
2277
2278/**
2279 * panic_nand_write - [MTD Interface] NAND write with ECC
2280 * @mtd: MTD device structure
2281 * @to: offset to write to
2282 * @len: number of bytes to write
2283 * @retlen: pointer to variable to store the number of written bytes
2284 * @buf: the data to write
2285 *
2286 * NAND write with ECC. Used when performing writes in interrupt context, this
2287 * may for example be called by mtdoops when writing an oops while in panic.
2288 */
2289static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2290                            size_t *retlen, const uint8_t *buf)
2291{
2292        struct nand_chip *chip = mtd->priv;
2293        struct mtd_oob_ops ops;
2294        int ret;
2295
2296        /* Do not allow reads past end of device */
2297        if ((to + len) > mtd->size)
2298                return -EINVAL;
2299        if (!len)
2300                return 0;
2301
2302        /* Wait for the device to get ready */
2303        panic_nand_wait(mtd, chip, 400);
2304
2305        /* Grab the device */
2306        panic_nand_get_device(chip, mtd, FL_WRITING);
2307
2308        ops.len = len;
2309        ops.datbuf = (uint8_t *)buf;
2310        ops.oobbuf = NULL;
2311        ops.mode = 0;
2312
2313        ret = nand_do_write_ops(mtd, to, &ops);
2314
2315        *retlen = ops.retlen;
2316        return ret;
2317}
2318
2319/**
2320 * nand_write - [MTD Interface] NAND write with ECC
2321 * @mtd: MTD device structure
2322 * @to: offset to write to
2323 * @len: number of bytes to write
2324 * @retlen: pointer to variable to store the number of written bytes
2325 * @buf: the data to write
2326 *
2327 * NAND write with ECC.
2328 */
2329static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2330                          size_t *retlen, const uint8_t *buf)
2331{
2332        struct nand_chip *chip = mtd->priv;
2333        struct mtd_oob_ops ops;
2334        int ret;
2335
2336        /* Do not allow reads past end of device */
2337        if ((to + len) > mtd->size)
2338                return -EINVAL;
2339        if (!len)
2340                return 0;
2341
2342        nand_get_device(chip, mtd, FL_WRITING);
2343
2344        ops.len = len;
2345        ops.datbuf = (uint8_t *)buf;
2346        ops.oobbuf = NULL;
2347        ops.mode = 0;
2348
2349        ret = nand_do_write_ops(mtd, to, &ops);
2350
2351        *retlen = ops.retlen;
2352
2353        nand_release_device(mtd);
2354
2355        return ret;
2356}
2357
2358/**
2359 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2360 * @mtd: MTD device structure
2361 * @to: offset to write to
2362 * @ops: oob operation description structure
2363 *
2364 * NAND write out-of-band.
2365 */
2366static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2367                             struct mtd_oob_ops *ops)
2368{
2369        int chipnr, page, status, len;
2370        struct nand_chip *chip = mtd->priv;
2371
2372        pr_debug("%s: to = 0x%08x, len = %i\n",
2373                         __func__, (unsigned int)to, (int)ops->ooblen);
2374
2375        if (ops->mode == MTD_OPS_AUTO_OOB)
2376                len = chip->ecc.layout->oobavail;
2377        else
2378                len = mtd->oobsize;
2379
2380        /* Do not allow write past end of page */
2381        if ((ops->ooboffs + ops->ooblen) > len) {
2382                pr_debug("%s: attempt to write past end of page\n",
2383                                __func__);
2384                return -EINVAL;
2385        }
2386
2387        if (unlikely(ops->ooboffs >= len)) {
2388                pr_debug("%s: attempt to start write outside oob\n",
2389                                __func__);
2390                return -EINVAL;
2391        }
2392
2393        /* Do not allow write past end of device */
2394        if (unlikely(to >= mtd->size ||
2395                     ops->ooboffs + ops->ooblen >
2396                        ((mtd->size >> chip->page_shift) -
2397                         (to >> chip->page_shift)) * len)) {
2398                pr_debug("%s: attempt to write beyond end of device\n",
2399                                __func__);
2400                return -EINVAL;
2401        }
2402
2403        chipnr = (int)(to >> chip->chip_shift);
2404        chip->select_chip(mtd, chipnr);
2405
2406        /* Shift to get page */
2407        page = (int)(to >> chip->page_shift);
2408
2409        /*
2410         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2411         * of my DiskOnChip 2000 test units) will clear the whole data page too
2412         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2413         * it in the doc2000 driver in August 1999.  dwmw2.
2414         */
2415        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2416
2417        /* Check, if it is write protected */
2418        if (nand_check_wp(mtd))
2419                return -EROFS;
2420
2421        /* Invalidate the page cache, if we write to the cached page */
2422        if (page == chip->pagebuf)
2423                chip->pagebuf = -1;
2424
2425        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2426
2427        if (ops->mode == MTD_OPS_RAW)
2428                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2429        else
2430                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2431
2432        if (status)
2433                return status;
2434
2435        ops->oobretlen = ops->ooblen;
2436
2437        return 0;
2438}
2439
2440/**
2441 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2442 * @mtd: MTD device structure
2443 * @to: offset to write to
2444 * @ops: oob operation description structure
2445 */
2446static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2447                          struct mtd_oob_ops *ops)
2448{
2449        struct nand_chip *chip = mtd->priv;
2450        int ret = -ENOTSUPP;
2451
2452        ops->retlen = 0;
2453
2454        /* Do not allow writes past end of device */
2455        if (ops->datbuf && (to + ops->len) > mtd->size) {
2456                pr_debug("%s: attempt to write beyond end of device\n",
2457                                __func__);
2458                return -EINVAL;
2459        }
2460
2461        nand_get_device(chip, mtd, FL_WRITING);
2462
2463        switch (ops->mode) {
2464        case MTD_OPS_PLACE_OOB:
2465        case MTD_OPS_AUTO_OOB:
2466        case MTD_OPS_RAW:
2467                break;
2468
2469        default:
2470                goto out;
2471        }
2472
2473        if (!ops->datbuf)
2474                ret = nand_do_write_oob(mtd, to, ops);
2475        else
2476                ret = nand_do_write_ops(mtd, to, ops);
2477
2478out:
2479        nand_release_device(mtd);
2480        return ret;
2481}
2482
2483/**
2484 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2485 * @mtd: MTD device structure
2486 * @page: the page address of the block which will be erased
2487 *
2488 * Standard erase command for NAND chips.
2489 */
2490static void single_erase_cmd(struct mtd_info *mtd, int page)
2491{
2492        struct nand_chip *chip = mtd->priv;
2493        /* Send commands to erase a block */
2494        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2495        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2496}
2497
2498/**
2499 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2500 * @mtd: MTD device structure
2501 * @page: the page address of the block which will be erased
2502 *
2503 * AND multi block erase command function. Erase 4 consecutive blocks.
2504 */
2505static void multi_erase_cmd(struct mtd_info *mtd, int page)
2506{
2507        struct nand_chip *chip = mtd->priv;
2508        /* Send commands to erase a block */
2509        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2510        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2511        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2512        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2513        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2514}
2515
2516/**
2517 * nand_erase - [MTD Interface] erase block(s)
2518 * @mtd: MTD device structure
2519 * @instr: erase instruction
2520 *
2521 * Erase one ore more blocks.
2522 */
2523static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2524{
2525        return nand_erase_nand(mtd, instr, 0);
2526}
2527
2528#define BBT_PAGE_MASK   0xffffff3f
2529/**
2530 * nand_erase_nand - [INTERN] erase block(s)
2531 * @mtd: MTD device structure
2532 * @instr: erase instruction
2533 * @allowbbt: allow erasing the bbt area
2534 *
2535 * Erase one ore more blocks.
2536 */
2537int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2538                    int allowbbt)
2539{
2540        int page, status, pages_per_block, ret, chipnr;
2541        struct nand_chip *chip = mtd->priv;
2542        loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2543        unsigned int bbt_masked_page = 0xffffffff;
2544        loff_t len;
2545
2546        pr_debug("%s: start = 0x%012llx, len = %llu\n",
2547                        __func__, (unsigned long long)instr->addr,
2548                        (unsigned long long)instr->len);
2549
2550        if (check_offs_len(mtd, instr->addr, instr->len))
2551                return -EINVAL;
2552
2553        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2554
2555        /* Grab the lock and see if the device is available */
2556        nand_get_device(chip, mtd, FL_ERASING);
2557
2558        /* Shift to get first page */
2559        page = (int)(instr->addr >> chip->page_shift);
2560        chipnr = (int)(instr->addr >> chip->chip_shift);
2561
2562        /* Calculate pages in each block */
2563        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2564
2565        /* Select the NAND device */
2566        chip->select_chip(mtd, chipnr);
2567
2568        /* Check, if it is write protected */
2569        if (nand_check_wp(mtd)) {
2570                pr_debug("%s: device is write protected!\n",
2571                                __func__);
2572                instr->state = MTD_ERASE_FAILED;
2573                goto erase_exit;
2574        }
2575
2576        /*
2577         * If BBT requires refresh, set the BBT page mask to see if the BBT
2578         * should be rewritten. Otherwise the mask is set to 0xffffffff which
2579         * can not be matched. This is also done when the bbt is actually
2580         * erased to avoid recursive updates.
2581         */
2582        if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2583                bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2584
2585        /* Loop through the pages */
2586        len = instr->len;
2587
2588        instr->state = MTD_ERASING;
2589
2590        while (len) {
2591                /* Heck if we have a bad block, we do not erase bad blocks! */
2592                if (nand_block_checkbad(mtd, ((loff_t) page) <<
2593                                        chip->page_shift, 0, allowbbt)) {
2594                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2595                                    __func__, page);
2596                        instr->state = MTD_ERASE_FAILED;
2597                        goto erase_exit;
2598                }
2599
2600                /*
2601                 * Invalidate the page cache, if we erase the block which
2602                 * contains the current cached page.
2603                 */
2604                if (page <= chip->pagebuf && chip->pagebuf <
2605                    (page + pages_per_block))
2606                        chip->pagebuf = -1;
2607
2608                chip->erase_cmd(mtd, page & chip->pagemask);
2609
2610                status = chip->waitfunc(mtd, chip);
2611
2612                /*
2613                 * See if operation failed and additional status checks are
2614                 * available
2615                 */
2616                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2617                        status = chip->errstat(mtd, chip, FL_ERASING,
2618                                               status, page);
2619
2620                /* See if block erase succeeded */
2621                if (status & NAND_STATUS_FAIL) {
2622                        pr_debug("%s: failed erase, page 0x%08x\n",
2623                                        __func__, page);
2624                        instr->state = MTD_ERASE_FAILED;
2625                        instr->fail_addr =
2626                                ((loff_t)page << chip->page_shift);
2627                        goto erase_exit;
2628                }
2629
2630                /*
2631                 * If BBT requires refresh, set the BBT rewrite flag to the
2632                 * page being erased.
2633                 */
2634                if (bbt_masked_page != 0xffffffff &&
2635                    (page & BBT_PAGE_MASK) == bbt_masked_page)
2636                            rewrite_bbt[chipnr] =
2637                                        ((loff_t)page << chip->page_shift);
2638
2639                /* Increment page address and decrement length */
2640                len -= (1 << chip->phys_erase_shift);
2641                page += pages_per_block;
2642
2643                /* Check, if we cross a chip boundary */
2644                if (len && !(page & chip->pagemask)) {
2645                        chipnr++;
2646                        chip->select_chip(mtd, -1);
2647                        chip->select_chip(mtd, chipnr);
2648
2649                        /*
2650                         * If BBT requires refresh and BBT-PERCHIP, set the BBT
2651                         * page mask to see if this BBT should be rewritten.
2652                         */
2653                        if (bbt_masked_page != 0xffffffff &&
2654                            (chip->bbt_td->options & NAND_BBT_PERCHIP))
2655                                bbt_masked_page = chip->bbt_td->pages[chipnr] &
2656                                        BBT_PAGE_MASK;
2657                }
2658        }
2659        instr->state = MTD_ERASE_DONE;
2660
2661erase_exit:
2662
2663        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2664
2665        /* Deselect and wake up anyone waiting on the device */
2666        nand_release_device(mtd);
2667
2668        /* Do call back function */
2669        if (!ret)
2670                mtd_erase_callback(instr);
2671
2672        /*
2673         * If BBT requires refresh and erase was successful, rewrite any
2674         * selected bad block tables.
2675         */
2676        if (bbt_masked_page == 0xffffffff || ret)
2677                return ret;
2678
2679        for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2680                if (!rewrite_bbt[chipnr])
2681                        continue;
2682                /* Update the BBT for chip */
2683                pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2684                                __func__, chipnr, rewrite_bbt[chipnr],
2685                                chip->bbt_td->pages[chipnr]);
2686                nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2687        }
2688
2689        /* Return more or less happy */
2690        return ret;
2691}
2692
2693/**
2694 * nand_sync - [MTD Interface] sync
2695 * @mtd: MTD device structure
2696 *
2697 * Sync is actually a wait for chip ready function.
2698 */
2699static void nand_sync(struct mtd_info *mtd)
2700{
2701        struct nand_chip *chip = mtd->priv;
2702
2703        pr_debug("%s: called\n", __func__);
2704
2705        /* Grab the lock and see if the device is available */
2706        nand_get_device(chip, mtd, FL_SYNCING);
2707        /* Release it and go back */
2708        nand_release_device(mtd);
2709}
2710
2711/**
2712 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2713 * @mtd: MTD device structure
2714 * @offs: offset relative to mtd start
2715 */
2716static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2717{
2718        /* Check for invalid offset */
2719        if (offs > mtd->size)
2720                return -EINVAL;
2721
2722        return nand_block_checkbad(mtd, offs, 1, 0);
2723}
2724
2725/**
2726 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2727 * @mtd: MTD device structure
2728 * @ofs: offset relative to mtd start
2729 */
2730static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2731{
2732        struct nand_chip *chip = mtd->priv;
2733        int ret;
2734
2735        ret = nand_block_isbad(mtd, ofs);
2736        if (ret) {
2737                /* If it was bad already, return success and do nothing */
2738                if (ret > 0)
2739                        return 0;
2740                return ret;
2741        }
2742
2743        return chip->block_markbad(mtd, ofs);
2744}
2745
2746/**
2747 * nand_suspend - [MTD Interface] Suspend the NAND flash
2748 * @mtd: MTD device structure
2749 */
2750static int nand_suspend(struct mtd_info *mtd)
2751{
2752        struct nand_chip *chip = mtd->priv;
2753
2754        return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2755}
2756
2757/**
2758 * nand_resume - [MTD Interface] Resume the NAND flash
2759 * @mtd: MTD device structure
2760 */
2761static void nand_resume(struct mtd_info *mtd)
2762{
2763        struct nand_chip *chip = mtd->priv;
2764
2765        if (chip->state == FL_PM_SUSPENDED)
2766                nand_release_device(mtd);
2767        else
2768                pr_err("%s called for a chip which is not in suspended state\n",
2769                        __func__);
2770}
2771
2772/* Set default functions */
2773static void nand_set_defaults(struct nand_chip *chip, int busw)
2774{
2775        /* check for proper chip_delay setup, set 20us if not */
2776        if (!chip->chip_delay)
2777                chip->chip_delay = 20;
2778
2779        /* check, if a user supplied command function given */
2780        if (chip->cmdfunc == NULL)
2781                chip->cmdfunc = nand_command;
2782
2783        /* check, if a user supplied wait function given */
2784        if (chip->waitfunc == NULL)
2785                chip->waitfunc = nand_wait;
2786
2787        if (!chip->select_chip)
2788                chip->select_chip = nand_select_chip;
2789        if (!chip->read_byte)
2790                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2791        if (!chip->read_word)
2792                chip->read_word = nand_read_word;
2793        if (!chip->block_bad)
2794                chip->block_bad = nand_block_bad;
2795        if (!chip->block_markbad)
2796                chip->block_markbad = nand_default_block_markbad;
2797        if (!chip->write_buf)
2798                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2799        if (!chip->read_buf)
2800                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2801        if (!chip->verify_buf)
2802                chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2803        if (!chip->scan_bbt)
2804                chip->scan_bbt = nand_default_bbt;
2805
2806        if (!chip->controller) {
2807                chip->controller = &chip->hwcontrol;
2808                spin_lock_init(&chip->controller->lock);
2809                init_waitqueue_head(&chip->controller->wq);
2810        }
2811
2812}
2813
2814/* Sanitize ONFI strings so we can safely print them */
2815static void sanitize_string(uint8_t *s, size_t len)
2816{
2817        ssize_t i;
2818
2819        /* Null terminate */
2820        s[len - 1] = 0;
2821
2822        /* Remove non printable chars */
2823        for (i = 0; i < len - 1; i++) {
2824                if (s[i] < ' ' || s[i] > 127)
2825                        s[i] = '?';
2826        }
2827
2828        /* Remove trailing spaces */
2829        strim(s);
2830}
2831
2832static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2833{
2834        int i;
2835        while (len--) {
2836                crc ^= *p++ << 8;
2837                for (i = 0; i < 8; i++)
2838                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2839        }
2840
2841        return crc;
2842}
2843
2844/*
2845 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2846 */
2847static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2848                                        int *busw)
2849{
2850        struct nand_onfi_params *p = &chip->onfi_params;
2851        int i;
2852        int val;
2853
2854        /* Try ONFI for unknown chip or LP */
2855        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2856        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2857                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2858                return 0;
2859
2860        pr_info("ONFI flash detected\n");
2861        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2862        for (i = 0; i < 3; i++) {
2863                chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2864                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2865                                le16_to_cpu(p->crc)) {
2866                        pr_info("ONFI param page %d valid\n", i);
2867                        break;
2868                }
2869        }
2870
2871        if (i == 3)
2872                return 0;
2873
2874        /* Check version */
2875        val = le16_to_cpu(p->revision);
2876        if (val & (1 << 5))
2877                chip->onfi_version = 23;
2878        else if (val & (1 << 4))
2879                chip->onfi_version = 22;
2880        else if (val & (1 << 3))
2881                chip->onfi_version = 21;
2882        else if (val & (1 << 2))
2883                chip->onfi_version = 20;
2884        else if (val & (1 << 1))
2885                chip->onfi_version = 10;
2886        else
2887                chip->onfi_version = 0;
2888
2889        if (!chip->onfi_version) {
2890                pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2891                return 0;
2892        }
2893
2894        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2895        sanitize_string(p->model, sizeof(p->model));
2896        if (!mtd->name)
2897                mtd->name = p->model;
2898        mtd->writesize = le32_to_cpu(p->byte_per_page);
2899        mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2900        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2901        chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2902        *busw = 0;
2903        if (le16_to_cpu(p->features) & 1)
2904                *busw = NAND_BUSWIDTH_16;
2905
2906        chip->options &= ~NAND_CHIPOPTIONS_MSK;
2907        chip->options |= (NAND_NO_READRDY |
2908                        NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2909
2910        return 1;
2911}
2912
2913/*
2914 * Get the flash and manufacturer id and lookup if the type is supported.
2915 */
2916static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2917                                                  struct nand_chip *chip,
2918                                                  int busw,
2919                                                  int *maf_id, int *dev_id,
2920                                                  struct nand_flash_dev *type)
2921{
2922        int i, maf_idx;
2923        u8 id_data[8];
2924        int ret;
2925
2926        /* Select the device */
2927        chip->select_chip(mtd, 0);
2928
2929        /*
2930         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2931         * after power-up.
2932         */
2933        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2934
2935        /* Send the command for reading device ID */
2936        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2937
2938        /* Read manufacturer and device IDs */
2939        *maf_id = chip->read_byte(mtd);
2940        *dev_id = chip->read_byte(mtd);
2941
2942        /*
2943         * Try again to make sure, as some systems the bus-hold or other
2944         * interface concerns can cause random data which looks like a
2945         * possibly credible NAND flash to appear. If the two results do
2946         * not match, ignore the device completely.
2947         */
2948
2949        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2950
2951        for (i = 0; i < 2; i++)
2952                id_data[i] = chip->read_byte(mtd);
2953
2954        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2955                pr_info("%s: second ID read did not match "
2956                        "%02x,%02x against %02x,%02x\n", __func__,
2957                        *maf_id, *dev_id, id_data[0], id_data[1]);
2958                return ERR_PTR(-ENODEV);
2959        }
2960
2961        if (!type)
2962                type = nand_flash_ids;
2963
2964        for (; type->name != NULL; type++)
2965                if (*dev_id == type->id)
2966                        break;
2967
2968        chip->onfi_version = 0;
2969        if (!type->name || !type->pagesize) {
2970                /* Check is chip is ONFI compliant */
2971                ret = nand_flash_detect_onfi(mtd, chip, &busw);
2972                if (ret)
2973                        goto ident_done;
2974        }
2975
2976        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2977
2978        /* Read entire ID string */
2979
2980        for (i = 0; i < 8; i++)
2981                id_data[i] = chip->read_byte(mtd);
2982
2983        if (!type->name)
2984                return ERR_PTR(-ENODEV);
2985
2986        if (!mtd->name)
2987                mtd->name = type->name;
2988
2989        chip->chipsize = (uint64_t)type->chipsize << 20;
2990
2991        if (!type->pagesize && chip->init_size) {
2992                /* Set the pagesize, oobsize, erasesize by the driver */
2993                busw = chip->init_size(mtd, chip, id_data);
2994        } else if (!type->pagesize) {
2995                int extid;
2996                /* The 3rd id byte holds MLC / multichip data */
2997                chip->cellinfo = id_data[2];
2998                /* The 4th id byte is the important one */
2999                extid = id_data[3];
3000
3001                /*
3002                 * Field definitions are in the following datasheets:
3003                 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3004                 * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
3005                 *
3006                 * Check for wraparound + Samsung ID + nonzero 6th byte
3007                 * to decide what to do.
3008                 */
3009                if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3010                                id_data[0] == NAND_MFR_SAMSUNG &&
3011                                (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3012                                id_data[5] != 0x00) {
3013                        /* Calc pagesize */
3014                        mtd->writesize = 2048 << (extid & 0x03);
3015                        extid >>= 2;
3016                        /* Calc oobsize */
3017                        switch (extid & 0x03) {
3018                        case 1:
3019                                mtd->oobsize = 128;
3020                                break;
3021                        case 2:
3022                                mtd->oobsize = 218;
3023                                break;
3024                        case 3:
3025                                mtd->oobsize = 400;
3026                                break;
3027                        default:
3028                                mtd->oobsize = 436;
3029                                break;
3030                        }
3031                        extid >>= 2;
3032                        /* Calc blocksize */
3033                        mtd->erasesize = (128 * 1024) <<
3034                                (((extid >> 1) & 0x04) | (extid & 0x03));
3035                        busw = 0;
3036                } else {
3037                        /* Calc pagesize */
3038                        mtd->writesize = 1024 << (extid & 0x03);
3039                        extid >>= 2;
3040                        /* Calc oobsize */
3041                        mtd->oobsize = (8 << (extid & 0x01)) *
3042                                (mtd->writesize >> 9);
3043                        extid >>= 2;
3044                        /* Calc blocksize. Blocksize is multiples of 64KiB */
3045                        mtd->erasesize = (64 * 1024) << (extid & 0x03);
3046                        extid >>= 2;
3047                        /* Get buswidth information */
3048                        busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3049                }
3050        } else {
3051                /*
3052                 * Old devices have chip data hardcoded in the device id table.
3053                 */
3054                mtd->erasesize = type->erasesize;
3055                mtd->writesize = type->pagesize;
3056                mtd->oobsize = mtd->writesize / 32;
3057                busw = type->options & NAND_BUSWIDTH_16;
3058
3059                /*
3060                 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3061                 * some Spansion chips have erasesize that conflicts with size
3062                 * listed in nand_ids table.
3063                 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3064                 */
3065                if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3066                                id_data[5] == 0x00 && id_data[6] == 0x00 &&
3067                                id_data[7] == 0x00 && mtd->writesize == 512) {
3068                        mtd->erasesize = 128 * 1024;
3069                        mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3070                }
3071        }
3072        /* Get chip options, preserve non chip based options */
3073        chip->options &= ~NAND_CHIPOPTIONS_MSK;
3074        chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3075
3076        /*
3077         * Check if chip is not a Samsung device. Do not clear the
3078         * options for chips which do not have an extended id.
3079         */
3080        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3081                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3082ident_done:
3083
3084        /*
3085         * Set chip as a default. Board drivers can override it, if necessary.
3086         */
3087        chip->options |= NAND_NO_AUTOINCR;
3088
3089        /* Try to identify manufacturer */
3090        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3091                if (nand_manuf_ids[maf_idx].id == *maf_id)
3092                        break;
3093        }
3094
3095        /*
3096         * Check, if buswidth is correct. Hardware drivers should set
3097         * chip correct!
3098         */
3099        if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3100                pr_info("NAND device: Manufacturer ID:"
3101                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3102                        *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3103                pr_warn("NAND bus width %d instead %d bit\n",
3104                           (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3105                           busw ? 16 : 8);
3106                return ERR_PTR(-EINVAL);
3107        }
3108
3109        /* Calculate the address shift from the page size */
3110        chip->page_shift = ffs(mtd->writesize) - 1;
3111        /* Convert chipsize to number of pages per chip -1 */
3112        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3113
3114        chip->bbt_erase_shift = chip->phys_erase_shift =
3115                ffs(mtd->erasesize) - 1;
3116        if (chip->chipsize & 0xffffffff)
3117                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3118        else {
3119                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3120                chip->chip_shift += 32 - 1;
3121        }
3122
3123        chip->badblockbits = 8;
3124
3125        /* Set the bad block position */
3126        if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3127                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3128        else
3129                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3130
3131        /*
3132         * Bad block marker is stored in the last page of each block
3133         * on Samsung and Hynix MLC devices; stored in first two pages
3134         * of each block on Micron devices with 2KiB pages and on
3135         * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3136         * only the first page.
3137         */
3138        if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3139                        (*maf_id == NAND_MFR_SAMSUNG ||
3140                         *maf_id == NAND_MFR_HYNIX))
3141                chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3142        else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3143                                (*maf_id == NAND_MFR_SAMSUNG ||
3144                                 *maf_id == NAND_MFR_HYNIX ||
3145                                 *maf_id == NAND_MFR_TOSHIBA ||
3146                                 *maf_id == NAND_MFR_AMD)) ||
3147                        (mtd->writesize == 2048 &&
3148                         *maf_id == NAND_MFR_MICRON))
3149                chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3150
3151        /* Check for AND chips with 4 page planes */
3152        if (chip->options & NAND_4PAGE_ARRAY)
3153                chip->erase_cmd = multi_erase_cmd;
3154        else
3155                chip->erase_cmd = single_erase_cmd;
3156
3157        /* Do not replace user supplied command function! */
3158        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3159                chip->cmdfunc = nand_command_lp;
3160
3161        pr_info("NAND device: Manufacturer ID:"
3162                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3163                nand_manuf_ids[maf_idx].name,
3164                chip->onfi_version ? chip->onfi_params.model : type->name);
3165
3166        return type;
3167}
3168
3169/**
3170 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3171 * @mtd: MTD device structure
3172 * @maxchips: number of chips to scan for
3173 * @table: alternative NAND ID table
3174 *
3175 * This is the first phase of the normal nand_scan() function. It reads the
3176 * flash ID and sets up MTD fields accordingly.
3177 *
3178 * The mtd->owner field must be set to the module of the caller.
3179 */
3180int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3181                    struct nand_flash_dev *table)
3182{
3183        int i, busw, nand_maf_id, nand_dev_id;
3184        struct nand_chip *chip = mtd->priv;
3185        struct nand_flash_dev *type;
3186
3187        /* Get buswidth to select the correct functions */
3188        busw = chip->options & NAND_BUSWIDTH_16;
3189        /* Set the default functions */
3190        nand_set_defaults(chip, busw);
3191
3192        /* Read the flash type */
3193        type = nand_get_flash_type(mtd, chip, busw,
3194                                &nand_maf_id, &nand_dev_id, table);
3195
3196        if (IS_ERR(type)) {
3197                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3198                        pr_warn("No NAND device found\n");
3199                chip->select_chip(mtd, -1);
3200                return PTR_ERR(type);
3201        }
3202
3203        /* Check for a chip array */
3204        for (i = 1; i < maxchips; i++) {
3205                chip->select_chip(mtd, i);
3206                /* See comment in nand_get_flash_type for reset */
3207                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3208                /* Send the command for reading device ID */
3209                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3210                /* Read manufacturer and device IDs */
3211                if (nand_maf_id != chip->read_byte(mtd) ||
3212                    nand_dev_id != chip->read_byte(mtd))
3213                        break;
3214        }
3215        if (i > 1)
3216                pr_info("%d NAND chips detected\n", i);
3217
3218        /* Store the number of chips and calc total size for mtd */
3219        chip->numchips = i;
3220        mtd->size = i * chip->chipsize;
3221
3222        return 0;
3223}
3224EXPORT_SYMBOL(nand_scan_ident);
3225
3226
3227/**
3228 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3229 * @mtd: MTD device structure
3230 *
3231 * This is the second phase of the normal nand_scan() function. It fills out
3232 * all the uninitialized function pointers with the defaults and scans for a
3233 * bad block table if appropriate.
3234 */
3235int nand_scan_tail(struct mtd_info *mtd)
3236{
3237        int i;
3238        struct nand_chip *chip = mtd->priv;
3239
3240        if (!(chip->options & NAND_OWN_BUFFERS))
3241                chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3242        if (!chip->buffers)
3243                return -ENOMEM;
3244
3245        /* Set the internal oob buffer location, just after the page data */
3246        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3247
3248        /*
3249         * If no default placement scheme is given, select an appropriate one.
3250         */
3251        if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3252                switch (mtd->oobsize) {
3253                case 8:
3254                        chip->ecc.layout = &nand_oob_8;
3255                        break;
3256                case 16:
3257                        chip->ecc.layout = &nand_oob_16;
3258                        break;
3259                case 64:
3260                        chip->ecc.layout = &nand_oob_64;
3261                        break;
3262                case 128:
3263                        chip->ecc.layout = &nand_oob_128;
3264                        break;
3265                default:
3266                        pr_warn("No oob scheme defined for oobsize %d\n",
3267                                   mtd->oobsize);
3268                        BUG();
3269                }
3270        }
3271
3272        if (!chip->write_page)
3273                chip->write_page = nand_write_page;
3274
3275        /*
3276         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3277         * selected and we have 256 byte pagesize fallback to software ECC
3278         */
3279
3280        switch (chip->ecc.mode) {
3281        case NAND_ECC_HW_OOB_FIRST:
3282                /* Similar to NAND_ECC_HW, but a separate read_page handle */
3283                if (!chip->ecc.calculate || !chip->ecc.correct ||
3284                     !chip->ecc.hwctl) {
3285                        pr_warn("No ECC functions supplied; "
3286                                   "hardware ECC not possible\n");
3287                        BUG();
3288                }
3289                if (!chip->ecc.read_page)
3290                        chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3291
3292        case NAND_ECC_HW:
3293                /* Use standard hwecc read page function? */
3294                if (!chip->ecc.read_page)
3295                        chip->ecc.read_page = nand_read_page_hwecc;
3296                if (!chip->ecc.write_page)
3297                        chip->ecc.write_page = nand_write_page_hwecc;
3298                if (!chip->ecc.read_page_raw)
3299                        chip->ecc.read_page_raw = nand_read_page_raw;
3300                if (!chip->ecc.write_page_raw)
3301                        chip->ecc.write_page_raw = nand_write_page_raw;
3302                if (!chip->ecc.read_oob)
3303                        chip->ecc.read_oob = nand_read_oob_std;
3304                if (!chip->ecc.write_oob)
3305                        chip->ecc.write_oob = nand_write_oob_std;
3306
3307        case NAND_ECC_HW_SYNDROME:
3308                if ((!chip->ecc.calculate || !chip->ecc.correct ||
3309                     !chip->ecc.hwctl) &&
3310                    (!chip->ecc.read_page ||
3311                     chip->ecc.read_page == nand_read_page_hwecc ||
3312                     !chip->ecc.write_page ||
3313                     chip->ecc.write_page == nand_write_page_hwecc)) {
3314                        pr_warn("No ECC functions supplied; "
3315                                   "hardware ECC not possible\n");
3316                        BUG();
3317                }
3318                /* Use standard syndrome read/write page function? */
3319                if (!chip->ecc.read_page)
3320                        chip->ecc.read_page = nand_read_page_syndrome;
3321                if (!chip->ecc.write_page)
3322                        chip->ecc.write_page = nand_write_page_syndrome;
3323                if (!chip->ecc.read_page_raw)
3324                        chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3325                if (!chip->ecc.write_page_raw)
3326                        chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3327                if (!chip->ecc.read_oob)
3328                        chip->ecc.read_oob = nand_read_oob_syndrome;
3329                if (!chip->ecc.write_oob)
3330                        chip->ecc.write_oob = nand_write_oob_syndrome;
3331
3332                if (mtd->writesize >= chip->ecc.size)
3333                        break;
3334                pr_warn("%d byte HW ECC not possible on "
3335                           "%d byte page size, fallback to SW ECC\n",
3336                           chip->ecc.size, mtd->writesize);
3337                chip->ecc.mode = NAND_ECC_SOFT;
3338
3339        case NAND_ECC_SOFT:
3340                chip->ecc.calculate = nand_calculate_ecc;
3341                chip->ecc.correct = nand_correct_data;
3342                chip->ecc.read_page = nand_read_page_swecc;
3343                chip->ecc.read_subpage = nand_read_subpage;
3344                chip->ecc.write_page = nand_write_page_swecc;
3345                chip->ecc.read_page_raw = nand_read_page_raw;
3346                chip->ecc.write_page_raw = nand_write_page_raw;
3347                chip->ecc.read_oob = nand_read_oob_std;
3348                chip->ecc.write_oob = nand_write_oob_std;
3349                if (!chip->ecc.size)
3350                        chip->ecc.size = 256;
3351                chip->ecc.bytes = 3;
3352                break;
3353
3354        case NAND_ECC_SOFT_BCH:
3355                if (!mtd_nand_has_bch()) {
3356                        pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3357                        BUG();
3358                }
3359                chip->ecc.calculate = nand_bch_calculate_ecc;
3360                chip->ecc.correct = nand_bch_correct_data;
3361                chip->ecc.read_page = nand_read_page_swecc;
3362                chip->ecc.read_subpage = nand_read_subpage;
3363                chip->ecc.write_page = nand_write_page_swecc;
3364                chip->ecc.read_page_raw = nand_read_page_raw;
3365                chip->ecc.write_page_raw = nand_write_page_raw;
3366                chip->ecc.read_oob = nand_read_oob_std;
3367                chip->ecc.write_oob = nand_write_oob_std;
3368                /*
3369                 * Board driver should supply ecc.size and ecc.bytes values to
3370                 * select how many bits are correctable; see nand_bch_init()
3371                 * for details. Otherwise, default to 4 bits for large page
3372                 * devices.
3373                 */
3374                if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3375                        chip->ecc.size = 512;
3376                        chip->ecc.bytes = 7;
3377                }
3378                chip->ecc.priv = nand_bch_init(mtd,
3379                                               chip->ecc.size,
3380                                               chip->ecc.bytes,
3381                                               &chip->ecc.layout);
3382                if (!chip->ecc.priv) {
3383                        pr_warn("BCH ECC initialization failed!\n");
3384                        BUG();
3385                }
3386                break;
3387
3388        case NAND_ECC_NONE:
3389                pr_warn("NAND_ECC_NONE selected by board driver. "
3390                           "This is not recommended!\n");
3391                chip->ecc.read_page = nand_read_page_raw;
3392                chip->ecc.write_page = nand_write_page_raw;
3393                chip->ecc.read_oob = nand_read_oob_std;
3394                chip->ecc.read_page_raw = nand_read_page_raw;
3395                chip->ecc.write_page_raw = nand_write_page_raw;
3396                chip->ecc.write_oob = nand_write_oob_std;
3397                chip->ecc.size = mtd->writesize;
3398                chip->ecc.bytes = 0;
3399                break;
3400
3401        default:
3402                pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3403                BUG();
3404        }
3405
3406        /* For many systems, the standard OOB write also works for raw */
3407        if (!chip->ecc.read_oob_raw)
3408                chip->ecc.read_oob_raw = chip->ecc.read_oob;
3409        if (!chip->ecc.write_oob_raw)
3410                chip->ecc.write_oob_raw = chip->ecc.write_oob;
3411
3412        /*
3413         * The number of bytes available for a client to place data into
3414         * the out of band area.
3415         */
3416        chip->ecc.layout->oobavail = 0;
3417        for (i = 0; chip->ecc.layout->oobfree[i].length
3418                        && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3419                chip->ecc.layout->oobavail +=
3420                        chip->ecc.layout->oobfree[i].length;
3421        mtd->oobavail = chip->ecc.layout->oobavail;
3422
3423        /*
3424         * Set the number of read / write steps for one page depending on ECC
3425         * mode.
3426         */
3427        chip->ecc.steps = mtd->writesize / chip->ecc.size;
3428        if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3429                pr_warn("Invalid ECC parameters\n");
3430                BUG();
3431        }
3432        chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3433
3434        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3435        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3436            !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3437                switch (chip->ecc.steps) {
3438                case 2:
3439                        mtd->subpage_sft = 1;
3440                        break;
3441                case 4:
3442                case 8:
3443                case 16:
3444                        mtd->subpage_sft = 2;
3445                        break;
3446                }
3447        }
3448        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3449
3450        /* Initialize state */
3451        chip->state = FL_READY;
3452
3453        /* De-select the device */
3454        chip->select_chip(mtd, -1);
3455
3456        /* Invalidate the pagebuffer reference */
3457        chip->pagebuf = -1;
3458
3459        /* Fill in remaining MTD driver data */
3460        mtd->type = MTD_NANDFLASH;
3461        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3462                                                MTD_CAP_NANDFLASH;
3463        mtd->erase = nand_erase;
3464        mtd->point = NULL;
3465        mtd->unpoint = NULL;
3466        mtd->read = nand_read;
3467        mtd->write = nand_write;
3468        mtd->panic_write = panic_nand_write;
3469        mtd->read_oob = nand_read_oob;
3470        mtd->write_oob = nand_write_oob;
3471        mtd->sync = nand_sync;
3472        mtd->lock = NULL;
3473        mtd->unlock = NULL;
3474        mtd->suspend = nand_suspend;
3475        mtd->resume = nand_resume;
3476        mtd->block_isbad = nand_block_isbad;
3477        mtd->block_markbad = nand_block_markbad;
3478        mtd->writebufsize = mtd->writesize;
3479
3480        /* propagate ecc.layout to mtd_info */
3481        mtd->ecclayout = chip->ecc.layout;
3482
3483        /* Check, if we should skip the bad block table scan */
3484        if (chip->options & NAND_SKIP_BBTSCAN)
3485                return 0;
3486
3487        /* Build bad block table */
3488        return chip->scan_bbt(mtd);
3489}
3490EXPORT_SYMBOL(nand_scan_tail);
3491
3492/*
3493 * is_module_text_address() isn't exported, and it's mostly a pointless
3494 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3495 * to call us from in-kernel code if the core NAND support is modular.
3496 */
3497#ifdef MODULE
3498#define caller_is_module() (1)
3499#else
3500#define caller_is_module() \
3501        is_module_text_address((unsigned long)__builtin_return_address(0))
3502#endif
3503
3504/**
3505 * nand_scan - [NAND Interface] Scan for the NAND device
3506 * @mtd: MTD device structure
3507 * @maxchips: number of chips to scan for
3508 *
3509 * This fills out all the uninitialized function pointers with the defaults.
3510 * The flash ID is read and the mtd/chip structures are filled with the
3511 * appropriate values. The mtd->owner field must be set to the module of the
3512 * caller.
3513 */
3514int nand_scan(struct mtd_info *mtd, int maxchips)
3515{
3516        int ret;
3517
3518        /* Many callers got this wrong, so check for it for a while... */
3519        if (!mtd->owner && caller_is_module()) {
3520                pr_crit("%s called with NULL mtd->owner!\n", __func__);
3521                BUG();
3522        }
3523
3524        ret = nand_scan_ident(mtd, maxchips, NULL);
3525        if (!ret)
3526                ret = nand_scan_tail(mtd);
3527        return ret;
3528}
3529EXPORT_SYMBOL(nand_scan);
3530
3531/**
3532 * nand_release - [NAND Interface] Free resources held by the NAND device
3533 * @mtd: MTD device structure
3534 */
3535void nand_release(struct mtd_info *mtd)
3536{
3537        struct nand_chip *chip = mtd->priv;
3538
3539        if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3540                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3541
3542        mtd_device_unregister(mtd);
3543
3544        /* Free bad block table memory */
3545        kfree(chip->bbt);
3546        if (!(chip->options & NAND_OWN_BUFFERS))
3547                kfree(chip->buffers);
3548
3549        /* Free bad block descriptor memory */
3550        if (chip->badblock_pattern && chip->badblock_pattern->options
3551                        & NAND_BBT_DYNAMICSTRUCT)
3552                kfree(chip->badblock_pattern);
3553}
3554EXPORT_SYMBOL_GPL(nand_release);
3555
3556static int __init nand_base_init(void)
3557{
3558        led_trigger_register_simple("nand-disk", &nand_led_trigger);
3559        return 0;
3560}
3561
3562static void __exit nand_base_exit(void)
3563{
3564        led_trigger_unregister_simple(nand_led_trigger);
3565}
3566
3567module_init(nand_base_init);
3568module_exit(nand_base_exit);
3569
3570MODULE_LICENSE("GPL");
3571MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3572MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3573MODULE_DESCRIPTION("Generic NAND flash driver code");
3574