linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/* ethtool support for e1000 */
  30
  31#include "e1000.h"
  32#include <asm/uaccess.h>
  33
  34enum {NETDEV_STATS, E1000_STATS};
  35
  36struct e1000_stats {
  37        char stat_string[ETH_GSTRING_LEN];
  38        int type;
  39        int sizeof_stat;
  40        int stat_offset;
  41};
  42
  43#define E1000_STAT(m)           E1000_STATS, \
  44                                sizeof(((struct e1000_adapter *)0)->m), \
  45                                offsetof(struct e1000_adapter, m)
  46#define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
  47                                sizeof(((struct net_device *)0)->m), \
  48                                offsetof(struct net_device, m)
  49
  50static const struct e1000_stats e1000_gstrings_stats[] = {
  51        { "rx_packets", E1000_STAT(stats.gprc) },
  52        { "tx_packets", E1000_STAT(stats.gptc) },
  53        { "rx_bytes", E1000_STAT(stats.gorcl) },
  54        { "tx_bytes", E1000_STAT(stats.gotcl) },
  55        { "rx_broadcast", E1000_STAT(stats.bprc) },
  56        { "tx_broadcast", E1000_STAT(stats.bptc) },
  57        { "rx_multicast", E1000_STAT(stats.mprc) },
  58        { "tx_multicast", E1000_STAT(stats.mptc) },
  59        { "rx_errors", E1000_STAT(stats.rxerrc) },
  60        { "tx_errors", E1000_STAT(stats.txerrc) },
  61        { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  62        { "multicast", E1000_STAT(stats.mprc) },
  63        { "collisions", E1000_STAT(stats.colc) },
  64        { "rx_length_errors", E1000_STAT(stats.rlerrc) },
  65        { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  66        { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  67        { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  68        { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  69        { "rx_missed_errors", E1000_STAT(stats.mpc) },
  70        { "tx_aborted_errors", E1000_STAT(stats.ecol) },
  71        { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  72        { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  73        { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  74        { "tx_window_errors", E1000_STAT(stats.latecol) },
  75        { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  76        { "tx_deferred_ok", E1000_STAT(stats.dc) },
  77        { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  78        { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  79        { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  80        { "tx_restart_queue", E1000_STAT(restart_queue) },
  81        { "rx_long_length_errors", E1000_STAT(stats.roc) },
  82        { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  83        { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  84        { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  85        { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  86        { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  87        { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  88        { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  89        { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  90        { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  91        { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  92        { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  93        { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  94        { "tx_smbus", E1000_STAT(stats.mgptc) },
  95        { "rx_smbus", E1000_STAT(stats.mgprc) },
  96        { "dropped_smbus", E1000_STAT(stats.mgpdc) },
  97};
  98
  99#define E1000_QUEUE_STATS_LEN 0
 100#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103        "Register test  (offline)", "Eeprom test    (offline)",
 104        "Interrupt test (offline)", "Loopback test  (offline)",
 105        "Link test   (on/offline)"
 106};
 107#define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
 108
 109static int e1000_get_settings(struct net_device *netdev,
 110                              struct ethtool_cmd *ecmd)
 111{
 112        struct e1000_adapter *adapter = netdev_priv(netdev);
 113        struct e1000_hw *hw = &adapter->hw;
 114
 115        if (hw->media_type == e1000_media_type_copper) {
 116
 117                ecmd->supported = (SUPPORTED_10baseT_Half |
 118                                   SUPPORTED_10baseT_Full |
 119                                   SUPPORTED_100baseT_Half |
 120                                   SUPPORTED_100baseT_Full |
 121                                   SUPPORTED_1000baseT_Full|
 122                                   SUPPORTED_Autoneg |
 123                                   SUPPORTED_TP);
 124                ecmd->advertising = ADVERTISED_TP;
 125
 126                if (hw->autoneg == 1) {
 127                        ecmd->advertising |= ADVERTISED_Autoneg;
 128                        /* the e1000 autoneg seems to match ethtool nicely */
 129                        ecmd->advertising |= hw->autoneg_advertised;
 130                }
 131
 132                ecmd->port = PORT_TP;
 133                ecmd->phy_address = hw->phy_addr;
 134
 135                if (hw->mac_type == e1000_82543)
 136                        ecmd->transceiver = XCVR_EXTERNAL;
 137                else
 138                        ecmd->transceiver = XCVR_INTERNAL;
 139
 140        } else {
 141                ecmd->supported   = (SUPPORTED_1000baseT_Full |
 142                                     SUPPORTED_FIBRE |
 143                                     SUPPORTED_Autoneg);
 144
 145                ecmd->advertising = (ADVERTISED_1000baseT_Full |
 146                                     ADVERTISED_FIBRE |
 147                                     ADVERTISED_Autoneg);
 148
 149                ecmd->port = PORT_FIBRE;
 150
 151                if (hw->mac_type >= e1000_82545)
 152                        ecmd->transceiver = XCVR_INTERNAL;
 153                else
 154                        ecmd->transceiver = XCVR_EXTERNAL;
 155        }
 156
 157        if (er32(STATUS) & E1000_STATUS_LU) {
 158
 159                e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 160                                                   &adapter->link_duplex);
 161                ethtool_cmd_speed_set(ecmd, adapter->link_speed);
 162
 163                /* unfortunately FULL_DUPLEX != DUPLEX_FULL
 164                 *          and HALF_DUPLEX != DUPLEX_HALF */
 165
 166                if (adapter->link_duplex == FULL_DUPLEX)
 167                        ecmd->duplex = DUPLEX_FULL;
 168                else
 169                        ecmd->duplex = DUPLEX_HALF;
 170        } else {
 171                ethtool_cmd_speed_set(ecmd, -1);
 172                ecmd->duplex = -1;
 173        }
 174
 175        ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 176                         hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 177        return 0;
 178}
 179
 180static int e1000_set_settings(struct net_device *netdev,
 181                              struct ethtool_cmd *ecmd)
 182{
 183        struct e1000_adapter *adapter = netdev_priv(netdev);
 184        struct e1000_hw *hw = &adapter->hw;
 185
 186        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 187                msleep(1);
 188
 189        if (ecmd->autoneg == AUTONEG_ENABLE) {
 190                hw->autoneg = 1;
 191                if (hw->media_type == e1000_media_type_fiber)
 192                        hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 193                                     ADVERTISED_FIBRE |
 194                                     ADVERTISED_Autoneg;
 195                else
 196                        hw->autoneg_advertised = ecmd->advertising |
 197                                                 ADVERTISED_TP |
 198                                                 ADVERTISED_Autoneg;
 199                ecmd->advertising = hw->autoneg_advertised;
 200        } else {
 201                u32 speed = ethtool_cmd_speed(ecmd);
 202                if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 203                        clear_bit(__E1000_RESETTING, &adapter->flags);
 204                        return -EINVAL;
 205                }
 206        }
 207
 208        /* reset the link */
 209
 210        if (netif_running(adapter->netdev)) {
 211                e1000_down(adapter);
 212                e1000_up(adapter);
 213        } else
 214                e1000_reset(adapter);
 215
 216        clear_bit(__E1000_RESETTING, &adapter->flags);
 217        return 0;
 218}
 219
 220static u32 e1000_get_link(struct net_device *netdev)
 221{
 222        struct e1000_adapter *adapter = netdev_priv(netdev);
 223
 224        /*
 225         * If the link is not reported up to netdev, interrupts are disabled,
 226         * and so the physical link state may have changed since we last
 227         * looked. Set get_link_status to make sure that the true link
 228         * state is interrogated, rather than pulling a cached and possibly
 229         * stale link state from the driver.
 230         */
 231        if (!netif_carrier_ok(netdev))
 232                adapter->hw.get_link_status = 1;
 233
 234        return e1000_has_link(adapter);
 235}
 236
 237static void e1000_get_pauseparam(struct net_device *netdev,
 238                                 struct ethtool_pauseparam *pause)
 239{
 240        struct e1000_adapter *adapter = netdev_priv(netdev);
 241        struct e1000_hw *hw = &adapter->hw;
 242
 243        pause->autoneg =
 244                (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 245
 246        if (hw->fc == E1000_FC_RX_PAUSE)
 247                pause->rx_pause = 1;
 248        else if (hw->fc == E1000_FC_TX_PAUSE)
 249                pause->tx_pause = 1;
 250        else if (hw->fc == E1000_FC_FULL) {
 251                pause->rx_pause = 1;
 252                pause->tx_pause = 1;
 253        }
 254}
 255
 256static int e1000_set_pauseparam(struct net_device *netdev,
 257                                struct ethtool_pauseparam *pause)
 258{
 259        struct e1000_adapter *adapter = netdev_priv(netdev);
 260        struct e1000_hw *hw = &adapter->hw;
 261        int retval = 0;
 262
 263        adapter->fc_autoneg = pause->autoneg;
 264
 265        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 266                msleep(1);
 267
 268        if (pause->rx_pause && pause->tx_pause)
 269                hw->fc = E1000_FC_FULL;
 270        else if (pause->rx_pause && !pause->tx_pause)
 271                hw->fc = E1000_FC_RX_PAUSE;
 272        else if (!pause->rx_pause && pause->tx_pause)
 273                hw->fc = E1000_FC_TX_PAUSE;
 274        else if (!pause->rx_pause && !pause->tx_pause)
 275                hw->fc = E1000_FC_NONE;
 276
 277        hw->original_fc = hw->fc;
 278
 279        if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 280                if (netif_running(adapter->netdev)) {
 281                        e1000_down(adapter);
 282                        e1000_up(adapter);
 283                } else
 284                        e1000_reset(adapter);
 285        } else
 286                retval = ((hw->media_type == e1000_media_type_fiber) ?
 287                          e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 288
 289        clear_bit(__E1000_RESETTING, &adapter->flags);
 290        return retval;
 291}
 292
 293static u32 e1000_get_msglevel(struct net_device *netdev)
 294{
 295        struct e1000_adapter *adapter = netdev_priv(netdev);
 296        return adapter->msg_enable;
 297}
 298
 299static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 300{
 301        struct e1000_adapter *adapter = netdev_priv(netdev);
 302        adapter->msg_enable = data;
 303}
 304
 305static int e1000_get_regs_len(struct net_device *netdev)
 306{
 307#define E1000_REGS_LEN 32
 308        return E1000_REGS_LEN * sizeof(u32);
 309}
 310
 311static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 312                           void *p)
 313{
 314        struct e1000_adapter *adapter = netdev_priv(netdev);
 315        struct e1000_hw *hw = &adapter->hw;
 316        u32 *regs_buff = p;
 317        u16 phy_data;
 318
 319        memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 320
 321        regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 322
 323        regs_buff[0]  = er32(CTRL);
 324        regs_buff[1]  = er32(STATUS);
 325
 326        regs_buff[2]  = er32(RCTL);
 327        regs_buff[3]  = er32(RDLEN);
 328        regs_buff[4]  = er32(RDH);
 329        regs_buff[5]  = er32(RDT);
 330        regs_buff[6]  = er32(RDTR);
 331
 332        regs_buff[7]  = er32(TCTL);
 333        regs_buff[8]  = er32(TDLEN);
 334        regs_buff[9]  = er32(TDH);
 335        regs_buff[10] = er32(TDT);
 336        regs_buff[11] = er32(TIDV);
 337
 338        regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 339        if (hw->phy_type == e1000_phy_igp) {
 340                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 341                                    IGP01E1000_PHY_AGC_A);
 342                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 343                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 344                regs_buff[13] = (u32)phy_data; /* cable length */
 345                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 346                                    IGP01E1000_PHY_AGC_B);
 347                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 348                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 349                regs_buff[14] = (u32)phy_data; /* cable length */
 350                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 351                                    IGP01E1000_PHY_AGC_C);
 352                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 353                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 354                regs_buff[15] = (u32)phy_data; /* cable length */
 355                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 356                                    IGP01E1000_PHY_AGC_D);
 357                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 358                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 359                regs_buff[16] = (u32)phy_data; /* cable length */
 360                regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 361                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 362                e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 363                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 364                regs_buff[18] = (u32)phy_data; /* cable polarity */
 365                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 366                                    IGP01E1000_PHY_PCS_INIT_REG);
 367                e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 368                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 369                regs_buff[19] = (u32)phy_data; /* cable polarity */
 370                regs_buff[20] = 0; /* polarity correction enabled (always) */
 371                regs_buff[22] = 0; /* phy receive errors (unavailable) */
 372                regs_buff[23] = regs_buff[18]; /* mdix mode */
 373                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 374        } else {
 375                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 376                regs_buff[13] = (u32)phy_data; /* cable length */
 377                regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 378                regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 379                regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 380                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 381                regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 382                regs_buff[18] = regs_buff[13]; /* cable polarity */
 383                regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 384                regs_buff[20] = regs_buff[17]; /* polarity correction */
 385                /* phy receive errors */
 386                regs_buff[22] = adapter->phy_stats.receive_errors;
 387                regs_buff[23] = regs_buff[13]; /* mdix mode */
 388        }
 389        regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 390        e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 391        regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 392        regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 393        if (hw->mac_type >= e1000_82540 &&
 394            hw->media_type == e1000_media_type_copper) {
 395                regs_buff[26] = er32(MANC);
 396        }
 397}
 398
 399static int e1000_get_eeprom_len(struct net_device *netdev)
 400{
 401        struct e1000_adapter *adapter = netdev_priv(netdev);
 402        struct e1000_hw *hw = &adapter->hw;
 403
 404        return hw->eeprom.word_size * 2;
 405}
 406
 407static int e1000_get_eeprom(struct net_device *netdev,
 408                            struct ethtool_eeprom *eeprom, u8 *bytes)
 409{
 410        struct e1000_adapter *adapter = netdev_priv(netdev);
 411        struct e1000_hw *hw = &adapter->hw;
 412        u16 *eeprom_buff;
 413        int first_word, last_word;
 414        int ret_val = 0;
 415        u16 i;
 416
 417        if (eeprom->len == 0)
 418                return -EINVAL;
 419
 420        eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 421
 422        first_word = eeprom->offset >> 1;
 423        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 424
 425        eeprom_buff = kmalloc(sizeof(u16) *
 426                        (last_word - first_word + 1), GFP_KERNEL);
 427        if (!eeprom_buff)
 428                return -ENOMEM;
 429
 430        if (hw->eeprom.type == e1000_eeprom_spi)
 431                ret_val = e1000_read_eeprom(hw, first_word,
 432                                            last_word - first_word + 1,
 433                                            eeprom_buff);
 434        else {
 435                for (i = 0; i < last_word - first_word + 1; i++) {
 436                        ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 437                                                    &eeprom_buff[i]);
 438                        if (ret_val)
 439                                break;
 440                }
 441        }
 442
 443        /* Device's eeprom is always little-endian, word addressable */
 444        for (i = 0; i < last_word - first_word + 1; i++)
 445                le16_to_cpus(&eeprom_buff[i]);
 446
 447        memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 448                        eeprom->len);
 449        kfree(eeprom_buff);
 450
 451        return ret_val;
 452}
 453
 454static int e1000_set_eeprom(struct net_device *netdev,
 455                            struct ethtool_eeprom *eeprom, u8 *bytes)
 456{
 457        struct e1000_adapter *adapter = netdev_priv(netdev);
 458        struct e1000_hw *hw = &adapter->hw;
 459        u16 *eeprom_buff;
 460        void *ptr;
 461        int max_len, first_word, last_word, ret_val = 0;
 462        u16 i;
 463
 464        if (eeprom->len == 0)
 465                return -EOPNOTSUPP;
 466
 467        if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 468                return -EFAULT;
 469
 470        max_len = hw->eeprom.word_size * 2;
 471
 472        first_word = eeprom->offset >> 1;
 473        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 474        eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 475        if (!eeprom_buff)
 476                return -ENOMEM;
 477
 478        ptr = (void *)eeprom_buff;
 479
 480        if (eeprom->offset & 1) {
 481                /* need read/modify/write of first changed EEPROM word */
 482                /* only the second byte of the word is being modified */
 483                ret_val = e1000_read_eeprom(hw, first_word, 1,
 484                                            &eeprom_buff[0]);
 485                ptr++;
 486        }
 487        if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 488                /* need read/modify/write of last changed EEPROM word */
 489                /* only the first byte of the word is being modified */
 490                ret_val = e1000_read_eeprom(hw, last_word, 1,
 491                                  &eeprom_buff[last_word - first_word]);
 492        }
 493
 494        /* Device's eeprom is always little-endian, word addressable */
 495        for (i = 0; i < last_word - first_word + 1; i++)
 496                le16_to_cpus(&eeprom_buff[i]);
 497
 498        memcpy(ptr, bytes, eeprom->len);
 499
 500        for (i = 0; i < last_word - first_word + 1; i++)
 501                eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 502
 503        ret_val = e1000_write_eeprom(hw, first_word,
 504                                     last_word - first_word + 1, eeprom_buff);
 505
 506        /* Update the checksum over the first part of the EEPROM if needed */
 507        if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 508                e1000_update_eeprom_checksum(hw);
 509
 510        kfree(eeprom_buff);
 511        return ret_val;
 512}
 513
 514static void e1000_get_drvinfo(struct net_device *netdev,
 515                              struct ethtool_drvinfo *drvinfo)
 516{
 517        struct e1000_adapter *adapter = netdev_priv(netdev);
 518        char firmware_version[32];
 519
 520        strncpy(drvinfo->driver,  e1000_driver_name, 32);
 521        strncpy(drvinfo->version, e1000_driver_version, 32);
 522
 523        sprintf(firmware_version, "N/A");
 524        strncpy(drvinfo->fw_version, firmware_version, 32);
 525        strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
 526        drvinfo->regdump_len = e1000_get_regs_len(netdev);
 527        drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
 528}
 529
 530static void e1000_get_ringparam(struct net_device *netdev,
 531                                struct ethtool_ringparam *ring)
 532{
 533        struct e1000_adapter *adapter = netdev_priv(netdev);
 534        struct e1000_hw *hw = &adapter->hw;
 535        e1000_mac_type mac_type = hw->mac_type;
 536        struct e1000_tx_ring *txdr = adapter->tx_ring;
 537        struct e1000_rx_ring *rxdr = adapter->rx_ring;
 538
 539        ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 540                E1000_MAX_82544_RXD;
 541        ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 542                E1000_MAX_82544_TXD;
 543        ring->rx_pending = rxdr->count;
 544        ring->tx_pending = txdr->count;
 545}
 546
 547static int e1000_set_ringparam(struct net_device *netdev,
 548                               struct ethtool_ringparam *ring)
 549{
 550        struct e1000_adapter *adapter = netdev_priv(netdev);
 551        struct e1000_hw *hw = &adapter->hw;
 552        e1000_mac_type mac_type = hw->mac_type;
 553        struct e1000_tx_ring *txdr, *tx_old;
 554        struct e1000_rx_ring *rxdr, *rx_old;
 555        int i, err;
 556
 557        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 558                return -EINVAL;
 559
 560        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 561                msleep(1);
 562
 563        if (netif_running(adapter->netdev))
 564                e1000_down(adapter);
 565
 566        tx_old = adapter->tx_ring;
 567        rx_old = adapter->rx_ring;
 568
 569        err = -ENOMEM;
 570        txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
 571        if (!txdr)
 572                goto err_alloc_tx;
 573
 574        rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
 575        if (!rxdr)
 576                goto err_alloc_rx;
 577
 578        adapter->tx_ring = txdr;
 579        adapter->rx_ring = rxdr;
 580
 581        rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
 582        rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
 583                E1000_MAX_RXD : E1000_MAX_82544_RXD));
 584        rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 585
 586        txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
 587        txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
 588                E1000_MAX_TXD : E1000_MAX_82544_TXD));
 589        txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 590
 591        for (i = 0; i < adapter->num_tx_queues; i++)
 592                txdr[i].count = txdr->count;
 593        for (i = 0; i < adapter->num_rx_queues; i++)
 594                rxdr[i].count = rxdr->count;
 595
 596        if (netif_running(adapter->netdev)) {
 597                /* Try to get new resources before deleting old */
 598                err = e1000_setup_all_rx_resources(adapter);
 599                if (err)
 600                        goto err_setup_rx;
 601                err = e1000_setup_all_tx_resources(adapter);
 602                if (err)
 603                        goto err_setup_tx;
 604
 605                /* save the new, restore the old in order to free it,
 606                 * then restore the new back again */
 607
 608                adapter->rx_ring = rx_old;
 609                adapter->tx_ring = tx_old;
 610                e1000_free_all_rx_resources(adapter);
 611                e1000_free_all_tx_resources(adapter);
 612                kfree(tx_old);
 613                kfree(rx_old);
 614                adapter->rx_ring = rxdr;
 615                adapter->tx_ring = txdr;
 616                err = e1000_up(adapter);
 617                if (err)
 618                        goto err_setup;
 619        }
 620
 621        clear_bit(__E1000_RESETTING, &adapter->flags);
 622        return 0;
 623err_setup_tx:
 624        e1000_free_all_rx_resources(adapter);
 625err_setup_rx:
 626        adapter->rx_ring = rx_old;
 627        adapter->tx_ring = tx_old;
 628        kfree(rxdr);
 629err_alloc_rx:
 630        kfree(txdr);
 631err_alloc_tx:
 632        e1000_up(adapter);
 633err_setup:
 634        clear_bit(__E1000_RESETTING, &adapter->flags);
 635        return err;
 636}
 637
 638static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 639                             u32 mask, u32 write)
 640{
 641        struct e1000_hw *hw = &adapter->hw;
 642        static const u32 test[] =
 643                {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
 644        u8 __iomem *address = hw->hw_addr + reg;
 645        u32 read;
 646        int i;
 647
 648        for (i = 0; i < ARRAY_SIZE(test); i++) {
 649                writel(write & test[i], address);
 650                read = readl(address);
 651                if (read != (write & test[i] & mask)) {
 652                        e_err(drv, "pattern test reg %04X failed: "
 653                              "got 0x%08X expected 0x%08X\n",
 654                              reg, read, (write & test[i] & mask));
 655                        *data = reg;
 656                        return true;
 657                }
 658        }
 659        return false;
 660}
 661
 662static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 663                              u32 mask, u32 write)
 664{
 665        struct e1000_hw *hw = &adapter->hw;
 666        u8 __iomem *address = hw->hw_addr + reg;
 667        u32 read;
 668
 669        writel(write & mask, address);
 670        read = readl(address);
 671        if ((read & mask) != (write & mask)) {
 672                e_err(drv, "set/check reg %04X test failed: "
 673                      "got 0x%08X expected 0x%08X\n",
 674                      reg, (read & mask), (write & mask));
 675                *data = reg;
 676                return true;
 677        }
 678        return false;
 679}
 680
 681#define REG_PATTERN_TEST(reg, mask, write)                           \
 682        do {                                                         \
 683                if (reg_pattern_test(adapter, data,                  \
 684                             (hw->mac_type >= e1000_82543)   \
 685                             ? E1000_##reg : E1000_82542_##reg,      \
 686                             mask, write))                           \
 687                        return 1;                                    \
 688        } while (0)
 689
 690#define REG_SET_AND_CHECK(reg, mask, write)                          \
 691        do {                                                         \
 692                if (reg_set_and_check(adapter, data,                 \
 693                              (hw->mac_type >= e1000_82543)  \
 694                              ? E1000_##reg : E1000_82542_##reg,     \
 695                              mask, write))                          \
 696                        return 1;                                    \
 697        } while (0)
 698
 699static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 700{
 701        u32 value, before, after;
 702        u32 i, toggle;
 703        struct e1000_hw *hw = &adapter->hw;
 704
 705        /* The status register is Read Only, so a write should fail.
 706         * Some bits that get toggled are ignored.
 707         */
 708
 709        /* there are several bits on newer hardware that are r/w */
 710        toggle = 0xFFFFF833;
 711
 712        before = er32(STATUS);
 713        value = (er32(STATUS) & toggle);
 714        ew32(STATUS, toggle);
 715        after = er32(STATUS) & toggle;
 716        if (value != after) {
 717                e_err(drv, "failed STATUS register test got: "
 718                      "0x%08X expected: 0x%08X\n", after, value);
 719                *data = 1;
 720                return 1;
 721        }
 722        /* restore previous status */
 723        ew32(STATUS, before);
 724
 725        REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 726        REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 727        REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 728        REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 729
 730        REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 731        REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 732        REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 733        REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 734        REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 735        REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 736        REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 737        REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 738        REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 739        REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 740
 741        REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 742
 743        before = 0x06DFB3FE;
 744        REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 745        REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 746
 747        if (hw->mac_type >= e1000_82543) {
 748
 749                REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 750                REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 751                REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 752                REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 753                REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 754                value = E1000_RAR_ENTRIES;
 755                for (i = 0; i < value; i++) {
 756                        REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
 757                                         0xFFFFFFFF);
 758                }
 759
 760        } else {
 761
 762                REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 763                REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 764                REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 765                REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 766
 767        }
 768
 769        value = E1000_MC_TBL_SIZE;
 770        for (i = 0; i < value; i++)
 771                REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 772
 773        *data = 0;
 774        return 0;
 775}
 776
 777static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 778{
 779        struct e1000_hw *hw = &adapter->hw;
 780        u16 temp;
 781        u16 checksum = 0;
 782        u16 i;
 783
 784        *data = 0;
 785        /* Read and add up the contents of the EEPROM */
 786        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 787                if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 788                        *data = 1;
 789                        break;
 790                }
 791                checksum += temp;
 792        }
 793
 794        /* If Checksum is not Correct return error else test passed */
 795        if ((checksum != (u16)EEPROM_SUM) && !(*data))
 796                *data = 2;
 797
 798        return *data;
 799}
 800
 801static irqreturn_t e1000_test_intr(int irq, void *data)
 802{
 803        struct net_device *netdev = (struct net_device *)data;
 804        struct e1000_adapter *adapter = netdev_priv(netdev);
 805        struct e1000_hw *hw = &adapter->hw;
 806
 807        adapter->test_icr |= er32(ICR);
 808
 809        return IRQ_HANDLED;
 810}
 811
 812static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 813{
 814        struct net_device *netdev = adapter->netdev;
 815        u32 mask, i = 0;
 816        bool shared_int = true;
 817        u32 irq = adapter->pdev->irq;
 818        struct e1000_hw *hw = &adapter->hw;
 819
 820        *data = 0;
 821
 822        /* NOTE: we don't test MSI interrupts here, yet */
 823        /* Hook up test interrupt handler just for this test */
 824        if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 825                         netdev))
 826                shared_int = false;
 827        else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 828                 netdev->name, netdev)) {
 829                *data = 1;
 830                return -1;
 831        }
 832        e_info(hw, "testing %s interrupt\n", (shared_int ?
 833               "shared" : "unshared"));
 834
 835        /* Disable all the interrupts */
 836        ew32(IMC, 0xFFFFFFFF);
 837        E1000_WRITE_FLUSH();
 838        msleep(10);
 839
 840        /* Test each interrupt */
 841        for (; i < 10; i++) {
 842
 843                /* Interrupt to test */
 844                mask = 1 << i;
 845
 846                if (!shared_int) {
 847                        /* Disable the interrupt to be reported in
 848                         * the cause register and then force the same
 849                         * interrupt and see if one gets posted.  If
 850                         * an interrupt was posted to the bus, the
 851                         * test failed.
 852                         */
 853                        adapter->test_icr = 0;
 854                        ew32(IMC, mask);
 855                        ew32(ICS, mask);
 856                        E1000_WRITE_FLUSH();
 857                        msleep(10);
 858
 859                        if (adapter->test_icr & mask) {
 860                                *data = 3;
 861                                break;
 862                        }
 863                }
 864
 865                /* Enable the interrupt to be reported in
 866                 * the cause register and then force the same
 867                 * interrupt and see if one gets posted.  If
 868                 * an interrupt was not posted to the bus, the
 869                 * test failed.
 870                 */
 871                adapter->test_icr = 0;
 872                ew32(IMS, mask);
 873                ew32(ICS, mask);
 874                E1000_WRITE_FLUSH();
 875                msleep(10);
 876
 877                if (!(adapter->test_icr & mask)) {
 878                        *data = 4;
 879                        break;
 880                }
 881
 882                if (!shared_int) {
 883                        /* Disable the other interrupts to be reported in
 884                         * the cause register and then force the other
 885                         * interrupts and see if any get posted.  If
 886                         * an interrupt was posted to the bus, the
 887                         * test failed.
 888                         */
 889                        adapter->test_icr = 0;
 890                        ew32(IMC, ~mask & 0x00007FFF);
 891                        ew32(ICS, ~mask & 0x00007FFF);
 892                        E1000_WRITE_FLUSH();
 893                        msleep(10);
 894
 895                        if (adapter->test_icr) {
 896                                *data = 5;
 897                                break;
 898                        }
 899                }
 900        }
 901
 902        /* Disable all the interrupts */
 903        ew32(IMC, 0xFFFFFFFF);
 904        E1000_WRITE_FLUSH();
 905        msleep(10);
 906
 907        /* Unhook test interrupt handler */
 908        free_irq(irq, netdev);
 909
 910        return *data;
 911}
 912
 913static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 914{
 915        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 916        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 917        struct pci_dev *pdev = adapter->pdev;
 918        int i;
 919
 920        if (txdr->desc && txdr->buffer_info) {
 921                for (i = 0; i < txdr->count; i++) {
 922                        if (txdr->buffer_info[i].dma)
 923                                dma_unmap_single(&pdev->dev,
 924                                                 txdr->buffer_info[i].dma,
 925                                                 txdr->buffer_info[i].length,
 926                                                 DMA_TO_DEVICE);
 927                        if (txdr->buffer_info[i].skb)
 928                                dev_kfree_skb(txdr->buffer_info[i].skb);
 929                }
 930        }
 931
 932        if (rxdr->desc && rxdr->buffer_info) {
 933                for (i = 0; i < rxdr->count; i++) {
 934                        if (rxdr->buffer_info[i].dma)
 935                                dma_unmap_single(&pdev->dev,
 936                                                 rxdr->buffer_info[i].dma,
 937                                                 rxdr->buffer_info[i].length,
 938                                                 DMA_FROM_DEVICE);
 939                        if (rxdr->buffer_info[i].skb)
 940                                dev_kfree_skb(rxdr->buffer_info[i].skb);
 941                }
 942        }
 943
 944        if (txdr->desc) {
 945                dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 946                                  txdr->dma);
 947                txdr->desc = NULL;
 948        }
 949        if (rxdr->desc) {
 950                dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 951                                  rxdr->dma);
 952                rxdr->desc = NULL;
 953        }
 954
 955        kfree(txdr->buffer_info);
 956        txdr->buffer_info = NULL;
 957        kfree(rxdr->buffer_info);
 958        rxdr->buffer_info = NULL;
 959}
 960
 961static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 962{
 963        struct e1000_hw *hw = &adapter->hw;
 964        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 965        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 966        struct pci_dev *pdev = adapter->pdev;
 967        u32 rctl;
 968        int i, ret_val;
 969
 970        /* Setup Tx descriptor ring and Tx buffers */
 971
 972        if (!txdr->count)
 973                txdr->count = E1000_DEFAULT_TXD;
 974
 975        txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
 976                                    GFP_KERNEL);
 977        if (!txdr->buffer_info) {
 978                ret_val = 1;
 979                goto err_nomem;
 980        }
 981
 982        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 983        txdr->size = ALIGN(txdr->size, 4096);
 984        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 985                                        GFP_KERNEL);
 986        if (!txdr->desc) {
 987                ret_val = 2;
 988                goto err_nomem;
 989        }
 990        memset(txdr->desc, 0, txdr->size);
 991        txdr->next_to_use = txdr->next_to_clean = 0;
 992
 993        ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
 994        ew32(TDBAH, ((u64)txdr->dma >> 32));
 995        ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
 996        ew32(TDH, 0);
 997        ew32(TDT, 0);
 998        ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
 999             E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1000             E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1001
1002        for (i = 0; i < txdr->count; i++) {
1003                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1004                struct sk_buff *skb;
1005                unsigned int size = 1024;
1006
1007                skb = alloc_skb(size, GFP_KERNEL);
1008                if (!skb) {
1009                        ret_val = 3;
1010                        goto err_nomem;
1011                }
1012                skb_put(skb, size);
1013                txdr->buffer_info[i].skb = skb;
1014                txdr->buffer_info[i].length = skb->len;
1015                txdr->buffer_info[i].dma =
1016                        dma_map_single(&pdev->dev, skb->data, skb->len,
1017                                       DMA_TO_DEVICE);
1018                tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1019                tx_desc->lower.data = cpu_to_le32(skb->len);
1020                tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1021                                                   E1000_TXD_CMD_IFCS |
1022                                                   E1000_TXD_CMD_RPS);
1023                tx_desc->upper.data = 0;
1024        }
1025
1026        /* Setup Rx descriptor ring and Rx buffers */
1027
1028        if (!rxdr->count)
1029                rxdr->count = E1000_DEFAULT_RXD;
1030
1031        rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1032                                    GFP_KERNEL);
1033        if (!rxdr->buffer_info) {
1034                ret_val = 4;
1035                goto err_nomem;
1036        }
1037
1038        rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1039        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1040                                        GFP_KERNEL);
1041        if (!rxdr->desc) {
1042                ret_val = 5;
1043                goto err_nomem;
1044        }
1045        memset(rxdr->desc, 0, rxdr->size);
1046        rxdr->next_to_use = rxdr->next_to_clean = 0;
1047
1048        rctl = er32(RCTL);
1049        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1050        ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1051        ew32(RDBAH, ((u64)rxdr->dma >> 32));
1052        ew32(RDLEN, rxdr->size);
1053        ew32(RDH, 0);
1054        ew32(RDT, 0);
1055        rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1056                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1057                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1058        ew32(RCTL, rctl);
1059
1060        for (i = 0; i < rxdr->count; i++) {
1061                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1062                struct sk_buff *skb;
1063
1064                skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1065                if (!skb) {
1066                        ret_val = 6;
1067                        goto err_nomem;
1068                }
1069                skb_reserve(skb, NET_IP_ALIGN);
1070                rxdr->buffer_info[i].skb = skb;
1071                rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1072                rxdr->buffer_info[i].dma =
1073                        dma_map_single(&pdev->dev, skb->data,
1074                                       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1075                rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1076                memset(skb->data, 0x00, skb->len);
1077        }
1078
1079        return 0;
1080
1081err_nomem:
1082        e1000_free_desc_rings(adapter);
1083        return ret_val;
1084}
1085
1086static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1087{
1088        struct e1000_hw *hw = &adapter->hw;
1089
1090        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1091        e1000_write_phy_reg(hw, 29, 0x001F);
1092        e1000_write_phy_reg(hw, 30, 0x8FFC);
1093        e1000_write_phy_reg(hw, 29, 0x001A);
1094        e1000_write_phy_reg(hw, 30, 0x8FF0);
1095}
1096
1097static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1098{
1099        struct e1000_hw *hw = &adapter->hw;
1100        u16 phy_reg;
1101
1102        /* Because we reset the PHY above, we need to re-force TX_CLK in the
1103         * Extended PHY Specific Control Register to 25MHz clock.  This
1104         * value defaults back to a 2.5MHz clock when the PHY is reset.
1105         */
1106        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1107        phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1108        e1000_write_phy_reg(hw,
1109                M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1110
1111        /* In addition, because of the s/w reset above, we need to enable
1112         * CRS on TX.  This must be set for both full and half duplex
1113         * operation.
1114         */
1115        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1116        phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1117        e1000_write_phy_reg(hw,
1118                M88E1000_PHY_SPEC_CTRL, phy_reg);
1119}
1120
1121static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1122{
1123        struct e1000_hw *hw = &adapter->hw;
1124        u32 ctrl_reg;
1125        u16 phy_reg;
1126
1127        /* Setup the Device Control Register for PHY loopback test. */
1128
1129        ctrl_reg = er32(CTRL);
1130        ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1131                     E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1132                     E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1133                     E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1134                     E1000_CTRL_FD);            /* Force Duplex to FULL */
1135
1136        ew32(CTRL, ctrl_reg);
1137
1138        /* Read the PHY Specific Control Register (0x10) */
1139        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1140
1141        /* Clear Auto-Crossover bits in PHY Specific Control Register
1142         * (bits 6:5).
1143         */
1144        phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1145        e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1146
1147        /* Perform software reset on the PHY */
1148        e1000_phy_reset(hw);
1149
1150        /* Have to setup TX_CLK and TX_CRS after software reset */
1151        e1000_phy_reset_clk_and_crs(adapter);
1152
1153        e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1154
1155        /* Wait for reset to complete. */
1156        udelay(500);
1157
1158        /* Have to setup TX_CLK and TX_CRS after software reset */
1159        e1000_phy_reset_clk_and_crs(adapter);
1160
1161        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1162        e1000_phy_disable_receiver(adapter);
1163
1164        /* Set the loopback bit in the PHY control register. */
1165        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1166        phy_reg |= MII_CR_LOOPBACK;
1167        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1168
1169        /* Setup TX_CLK and TX_CRS one more time. */
1170        e1000_phy_reset_clk_and_crs(adapter);
1171
1172        /* Check Phy Configuration */
1173        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1174        if (phy_reg != 0x4100)
1175                 return 9;
1176
1177        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1178        if (phy_reg != 0x0070)
1179                return 10;
1180
1181        e1000_read_phy_reg(hw, 29, &phy_reg);
1182        if (phy_reg != 0x001A)
1183                return 11;
1184
1185        return 0;
1186}
1187
1188static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1189{
1190        struct e1000_hw *hw = &adapter->hw;
1191        u32 ctrl_reg = 0;
1192        u32 stat_reg = 0;
1193
1194        hw->autoneg = false;
1195
1196        if (hw->phy_type == e1000_phy_m88) {
1197                /* Auto-MDI/MDIX Off */
1198                e1000_write_phy_reg(hw,
1199                                    M88E1000_PHY_SPEC_CTRL, 0x0808);
1200                /* reset to update Auto-MDI/MDIX */
1201                e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1202                /* autoneg off */
1203                e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1204        }
1205
1206        ctrl_reg = er32(CTRL);
1207
1208        /* force 1000, set loopback */
1209        e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1210
1211        /* Now set up the MAC to the same speed/duplex as the PHY. */
1212        ctrl_reg = er32(CTRL);
1213        ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1214        ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1215                        E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1216                        E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1217                        E1000_CTRL_FD);  /* Force Duplex to FULL */
1218
1219        if (hw->media_type == e1000_media_type_copper &&
1220           hw->phy_type == e1000_phy_m88)
1221                ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1222        else {
1223                /* Set the ILOS bit on the fiber Nic is half
1224                 * duplex link is detected. */
1225                stat_reg = er32(STATUS);
1226                if ((stat_reg & E1000_STATUS_FD) == 0)
1227                        ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1228        }
1229
1230        ew32(CTRL, ctrl_reg);
1231
1232        /* Disable the receiver on the PHY so when a cable is plugged in, the
1233         * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1234         */
1235        if (hw->phy_type == e1000_phy_m88)
1236                e1000_phy_disable_receiver(adapter);
1237
1238        udelay(500);
1239
1240        return 0;
1241}
1242
1243static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1244{
1245        struct e1000_hw *hw = &adapter->hw;
1246        u16 phy_reg = 0;
1247        u16 count = 0;
1248
1249        switch (hw->mac_type) {
1250        case e1000_82543:
1251                if (hw->media_type == e1000_media_type_copper) {
1252                        /* Attempt to setup Loopback mode on Non-integrated PHY.
1253                         * Some PHY registers get corrupted at random, so
1254                         * attempt this 10 times.
1255                         */
1256                        while (e1000_nonintegrated_phy_loopback(adapter) &&
1257                              count++ < 10);
1258                        if (count < 11)
1259                                return 0;
1260                }
1261                break;
1262
1263        case e1000_82544:
1264        case e1000_82540:
1265        case e1000_82545:
1266        case e1000_82545_rev_3:
1267        case e1000_82546:
1268        case e1000_82546_rev_3:
1269        case e1000_82541:
1270        case e1000_82541_rev_2:
1271        case e1000_82547:
1272        case e1000_82547_rev_2:
1273                return e1000_integrated_phy_loopback(adapter);
1274                break;
1275        default:
1276                /* Default PHY loopback work is to read the MII
1277                 * control register and assert bit 14 (loopback mode).
1278                 */
1279                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1280                phy_reg |= MII_CR_LOOPBACK;
1281                e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1282                return 0;
1283                break;
1284        }
1285
1286        return 8;
1287}
1288
1289static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1290{
1291        struct e1000_hw *hw = &adapter->hw;
1292        u32 rctl;
1293
1294        if (hw->media_type == e1000_media_type_fiber ||
1295            hw->media_type == e1000_media_type_internal_serdes) {
1296                switch (hw->mac_type) {
1297                case e1000_82545:
1298                case e1000_82546:
1299                case e1000_82545_rev_3:
1300                case e1000_82546_rev_3:
1301                        return e1000_set_phy_loopback(adapter);
1302                        break;
1303                default:
1304                        rctl = er32(RCTL);
1305                        rctl |= E1000_RCTL_LBM_TCVR;
1306                        ew32(RCTL, rctl);
1307                        return 0;
1308                }
1309        } else if (hw->media_type == e1000_media_type_copper)
1310                return e1000_set_phy_loopback(adapter);
1311
1312        return 7;
1313}
1314
1315static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1316{
1317        struct e1000_hw *hw = &adapter->hw;
1318        u32 rctl;
1319        u16 phy_reg;
1320
1321        rctl = er32(RCTL);
1322        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1323        ew32(RCTL, rctl);
1324
1325        switch (hw->mac_type) {
1326        case e1000_82545:
1327        case e1000_82546:
1328        case e1000_82545_rev_3:
1329        case e1000_82546_rev_3:
1330        default:
1331                hw->autoneg = true;
1332                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1333                if (phy_reg & MII_CR_LOOPBACK) {
1334                        phy_reg &= ~MII_CR_LOOPBACK;
1335                        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1336                        e1000_phy_reset(hw);
1337                }
1338                break;
1339        }
1340}
1341
1342static void e1000_create_lbtest_frame(struct sk_buff *skb,
1343                                      unsigned int frame_size)
1344{
1345        memset(skb->data, 0xFF, frame_size);
1346        frame_size &= ~1;
1347        memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1348        memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1349        memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1350}
1351
1352static int e1000_check_lbtest_frame(struct sk_buff *skb,
1353                                    unsigned int frame_size)
1354{
1355        frame_size &= ~1;
1356        if (*(skb->data + 3) == 0xFF) {
1357                if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1358                   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1359                        return 0;
1360                }
1361        }
1362        return 13;
1363}
1364
1365static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1366{
1367        struct e1000_hw *hw = &adapter->hw;
1368        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1369        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1370        struct pci_dev *pdev = adapter->pdev;
1371        int i, j, k, l, lc, good_cnt, ret_val=0;
1372        unsigned long time;
1373
1374        ew32(RDT, rxdr->count - 1);
1375
1376        /* Calculate the loop count based on the largest descriptor ring
1377         * The idea is to wrap the largest ring a number of times using 64
1378         * send/receive pairs during each loop
1379         */
1380
1381        if (rxdr->count <= txdr->count)
1382                lc = ((txdr->count / 64) * 2) + 1;
1383        else
1384                lc = ((rxdr->count / 64) * 2) + 1;
1385
1386        k = l = 0;
1387        for (j = 0; j <= lc; j++) { /* loop count loop */
1388                for (i = 0; i < 64; i++) { /* send the packets */
1389                        e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1390                                        1024);
1391                        dma_sync_single_for_device(&pdev->dev,
1392                                                   txdr->buffer_info[k].dma,
1393                                                   txdr->buffer_info[k].length,
1394                                                   DMA_TO_DEVICE);
1395                        if (unlikely(++k == txdr->count)) k = 0;
1396                }
1397                ew32(TDT, k);
1398                E1000_WRITE_FLUSH();
1399                msleep(200);
1400                time = jiffies; /* set the start time for the receive */
1401                good_cnt = 0;
1402                do { /* receive the sent packets */
1403                        dma_sync_single_for_cpu(&pdev->dev,
1404                                                rxdr->buffer_info[l].dma,
1405                                                rxdr->buffer_info[l].length,
1406                                                DMA_FROM_DEVICE);
1407
1408                        ret_val = e1000_check_lbtest_frame(
1409                                        rxdr->buffer_info[l].skb,
1410                                        1024);
1411                        if (!ret_val)
1412                                good_cnt++;
1413                        if (unlikely(++l == rxdr->count)) l = 0;
1414                        /* time + 20 msecs (200 msecs on 2.4) is more than
1415                         * enough time to complete the receives, if it's
1416                         * exceeded, break and error off
1417                         */
1418                } while (good_cnt < 64 && jiffies < (time + 20));
1419                if (good_cnt != 64) {
1420                        ret_val = 13; /* ret_val is the same as mis-compare */
1421                        break;
1422                }
1423                if (jiffies >= (time + 2)) {
1424                        ret_val = 14; /* error code for time out error */
1425                        break;
1426                }
1427        } /* end loop count loop */
1428        return ret_val;
1429}
1430
1431static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1432{
1433        *data = e1000_setup_desc_rings(adapter);
1434        if (*data)
1435                goto out;
1436        *data = e1000_setup_loopback_test(adapter);
1437        if (*data)
1438                goto err_loopback;
1439        *data = e1000_run_loopback_test(adapter);
1440        e1000_loopback_cleanup(adapter);
1441
1442err_loopback:
1443        e1000_free_desc_rings(adapter);
1444out:
1445        return *data;
1446}
1447
1448static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1449{
1450        struct e1000_hw *hw = &adapter->hw;
1451        *data = 0;
1452        if (hw->media_type == e1000_media_type_internal_serdes) {
1453                int i = 0;
1454                hw->serdes_has_link = false;
1455
1456                /* On some blade server designs, link establishment
1457                 * could take as long as 2-3 minutes */
1458                do {
1459                        e1000_check_for_link(hw);
1460                        if (hw->serdes_has_link)
1461                                return *data;
1462                        msleep(20);
1463                } while (i++ < 3750);
1464
1465                *data = 1;
1466        } else {
1467                e1000_check_for_link(hw);
1468                if (hw->autoneg)  /* if auto_neg is set wait for it */
1469                        msleep(4000);
1470
1471                if (!(er32(STATUS) & E1000_STATUS_LU)) {
1472                        *data = 1;
1473                }
1474        }
1475        return *data;
1476}
1477
1478static int e1000_get_sset_count(struct net_device *netdev, int sset)
1479{
1480        switch (sset) {
1481        case ETH_SS_TEST:
1482                return E1000_TEST_LEN;
1483        case ETH_SS_STATS:
1484                return E1000_STATS_LEN;
1485        default:
1486                return -EOPNOTSUPP;
1487        }
1488}
1489
1490static void e1000_diag_test(struct net_device *netdev,
1491                            struct ethtool_test *eth_test, u64 *data)
1492{
1493        struct e1000_adapter *adapter = netdev_priv(netdev);
1494        struct e1000_hw *hw = &adapter->hw;
1495        bool if_running = netif_running(netdev);
1496
1497        set_bit(__E1000_TESTING, &adapter->flags);
1498        if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1499                /* Offline tests */
1500
1501                /* save speed, duplex, autoneg settings */
1502                u16 autoneg_advertised = hw->autoneg_advertised;
1503                u8 forced_speed_duplex = hw->forced_speed_duplex;
1504                u8 autoneg = hw->autoneg;
1505
1506                e_info(hw, "offline testing starting\n");
1507
1508                /* Link test performed before hardware reset so autoneg doesn't
1509                 * interfere with test result */
1510                if (e1000_link_test(adapter, &data[4]))
1511                        eth_test->flags |= ETH_TEST_FL_FAILED;
1512
1513                if (if_running)
1514                        /* indicate we're in test mode */
1515                        dev_close(netdev);
1516                else
1517                        e1000_reset(adapter);
1518
1519                if (e1000_reg_test(adapter, &data[0]))
1520                        eth_test->flags |= ETH_TEST_FL_FAILED;
1521
1522                e1000_reset(adapter);
1523                if (e1000_eeprom_test(adapter, &data[1]))
1524                        eth_test->flags |= ETH_TEST_FL_FAILED;
1525
1526                e1000_reset(adapter);
1527                if (e1000_intr_test(adapter, &data[2]))
1528                        eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530                e1000_reset(adapter);
1531                /* make sure the phy is powered up */
1532                e1000_power_up_phy(adapter);
1533                if (e1000_loopback_test(adapter, &data[3]))
1534                        eth_test->flags |= ETH_TEST_FL_FAILED;
1535
1536                /* restore speed, duplex, autoneg settings */
1537                hw->autoneg_advertised = autoneg_advertised;
1538                hw->forced_speed_duplex = forced_speed_duplex;
1539                hw->autoneg = autoneg;
1540
1541                e1000_reset(adapter);
1542                clear_bit(__E1000_TESTING, &adapter->flags);
1543                if (if_running)
1544                        dev_open(netdev);
1545        } else {
1546                e_info(hw, "online testing starting\n");
1547                /* Online tests */
1548                if (e1000_link_test(adapter, &data[4]))
1549                        eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551                /* Online tests aren't run; pass by default */
1552                data[0] = 0;
1553                data[1] = 0;
1554                data[2] = 0;
1555                data[3] = 0;
1556
1557                clear_bit(__E1000_TESTING, &adapter->flags);
1558        }
1559        msleep_interruptible(4 * 1000);
1560}
1561
1562static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1563                               struct ethtool_wolinfo *wol)
1564{
1565        struct e1000_hw *hw = &adapter->hw;
1566        int retval = 1; /* fail by default */
1567
1568        switch (hw->device_id) {
1569        case E1000_DEV_ID_82542:
1570        case E1000_DEV_ID_82543GC_FIBER:
1571        case E1000_DEV_ID_82543GC_COPPER:
1572        case E1000_DEV_ID_82544EI_FIBER:
1573        case E1000_DEV_ID_82546EB_QUAD_COPPER:
1574        case E1000_DEV_ID_82545EM_FIBER:
1575        case E1000_DEV_ID_82545EM_COPPER:
1576        case E1000_DEV_ID_82546GB_QUAD_COPPER:
1577        case E1000_DEV_ID_82546GB_PCIE:
1578                /* these don't support WoL at all */
1579                wol->supported = 0;
1580                break;
1581        case E1000_DEV_ID_82546EB_FIBER:
1582        case E1000_DEV_ID_82546GB_FIBER:
1583                /* Wake events not supported on port B */
1584                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1585                        wol->supported = 0;
1586                        break;
1587                }
1588                /* return success for non excluded adapter ports */
1589                retval = 0;
1590                break;
1591        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1592                /* quad port adapters only support WoL on port A */
1593                if (!adapter->quad_port_a) {
1594                        wol->supported = 0;
1595                        break;
1596                }
1597                /* return success for non excluded adapter ports */
1598                retval = 0;
1599                break;
1600        default:
1601                /* dual port cards only support WoL on port A from now on
1602                 * unless it was enabled in the eeprom for port B
1603                 * so exclude FUNC_1 ports from having WoL enabled */
1604                if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1605                    !adapter->eeprom_wol) {
1606                        wol->supported = 0;
1607                        break;
1608                }
1609
1610                retval = 0;
1611        }
1612
1613        return retval;
1614}
1615
1616static void e1000_get_wol(struct net_device *netdev,
1617                          struct ethtool_wolinfo *wol)
1618{
1619        struct e1000_adapter *adapter = netdev_priv(netdev);
1620        struct e1000_hw *hw = &adapter->hw;
1621
1622        wol->supported = WAKE_UCAST | WAKE_MCAST |
1623                         WAKE_BCAST | WAKE_MAGIC;
1624        wol->wolopts = 0;
1625
1626        /* this function will set ->supported = 0 and return 1 if wol is not
1627         * supported by this hardware */
1628        if (e1000_wol_exclusion(adapter, wol) ||
1629            !device_can_wakeup(&adapter->pdev->dev))
1630                return;
1631
1632        /* apply any specific unsupported masks here */
1633        switch (hw->device_id) {
1634        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635                /* KSP3 does not suppport UCAST wake-ups */
1636                wol->supported &= ~WAKE_UCAST;
1637
1638                if (adapter->wol & E1000_WUFC_EX)
1639                        e_err(drv, "Interface does not support directed "
1640                              "(unicast) frame wake-up packets\n");
1641                break;
1642        default:
1643                break;
1644        }
1645
1646        if (adapter->wol & E1000_WUFC_EX)
1647                wol->wolopts |= WAKE_UCAST;
1648        if (adapter->wol & E1000_WUFC_MC)
1649                wol->wolopts |= WAKE_MCAST;
1650        if (adapter->wol & E1000_WUFC_BC)
1651                wol->wolopts |= WAKE_BCAST;
1652        if (adapter->wol & E1000_WUFC_MAG)
1653                wol->wolopts |= WAKE_MAGIC;
1654}
1655
1656static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1657{
1658        struct e1000_adapter *adapter = netdev_priv(netdev);
1659        struct e1000_hw *hw = &adapter->hw;
1660
1661        if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1662                return -EOPNOTSUPP;
1663
1664        if (e1000_wol_exclusion(adapter, wol) ||
1665            !device_can_wakeup(&adapter->pdev->dev))
1666                return wol->wolopts ? -EOPNOTSUPP : 0;
1667
1668        switch (hw->device_id) {
1669        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1670                if (wol->wolopts & WAKE_UCAST) {
1671                        e_err(drv, "Interface does not support directed "
1672                              "(unicast) frame wake-up packets\n");
1673                        return -EOPNOTSUPP;
1674                }
1675                break;
1676        default:
1677                break;
1678        }
1679
1680        /* these settings will always override what we currently have */
1681        adapter->wol = 0;
1682
1683        if (wol->wolopts & WAKE_UCAST)
1684                adapter->wol |= E1000_WUFC_EX;
1685        if (wol->wolopts & WAKE_MCAST)
1686                adapter->wol |= E1000_WUFC_MC;
1687        if (wol->wolopts & WAKE_BCAST)
1688                adapter->wol |= E1000_WUFC_BC;
1689        if (wol->wolopts & WAKE_MAGIC)
1690                adapter->wol |= E1000_WUFC_MAG;
1691
1692        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1693
1694        return 0;
1695}
1696
1697static int e1000_set_phys_id(struct net_device *netdev,
1698                             enum ethtool_phys_id_state state)
1699{
1700        struct e1000_adapter *adapter = netdev_priv(netdev);
1701        struct e1000_hw *hw = &adapter->hw;
1702
1703        switch (state) {
1704        case ETHTOOL_ID_ACTIVE:
1705                e1000_setup_led(hw);
1706                return 2;
1707
1708        case ETHTOOL_ID_ON:
1709                e1000_led_on(hw);
1710                break;
1711
1712        case ETHTOOL_ID_OFF:
1713                e1000_led_off(hw);
1714                break;
1715
1716        case ETHTOOL_ID_INACTIVE:
1717                e1000_cleanup_led(hw);
1718        }
1719
1720        return 0;
1721}
1722
1723static int e1000_get_coalesce(struct net_device *netdev,
1724                              struct ethtool_coalesce *ec)
1725{
1726        struct e1000_adapter *adapter = netdev_priv(netdev);
1727
1728        if (adapter->hw.mac_type < e1000_82545)
1729                return -EOPNOTSUPP;
1730
1731        if (adapter->itr_setting <= 4)
1732                ec->rx_coalesce_usecs = adapter->itr_setting;
1733        else
1734                ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1735
1736        return 0;
1737}
1738
1739static int e1000_set_coalesce(struct net_device *netdev,
1740                              struct ethtool_coalesce *ec)
1741{
1742        struct e1000_adapter *adapter = netdev_priv(netdev);
1743        struct e1000_hw *hw = &adapter->hw;
1744
1745        if (hw->mac_type < e1000_82545)
1746                return -EOPNOTSUPP;
1747
1748        if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1749            ((ec->rx_coalesce_usecs > 4) &&
1750             (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1751            (ec->rx_coalesce_usecs == 2))
1752                return -EINVAL;
1753
1754        if (ec->rx_coalesce_usecs == 4) {
1755                adapter->itr = adapter->itr_setting = 4;
1756        } else if (ec->rx_coalesce_usecs <= 3) {
1757                adapter->itr = 20000;
1758                adapter->itr_setting = ec->rx_coalesce_usecs;
1759        } else {
1760                adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1761                adapter->itr_setting = adapter->itr & ~3;
1762        }
1763
1764        if (adapter->itr_setting != 0)
1765                ew32(ITR, 1000000000 / (adapter->itr * 256));
1766        else
1767                ew32(ITR, 0);
1768
1769        return 0;
1770}
1771
1772static int e1000_nway_reset(struct net_device *netdev)
1773{
1774        struct e1000_adapter *adapter = netdev_priv(netdev);
1775        if (netif_running(netdev))
1776                e1000_reinit_locked(adapter);
1777        return 0;
1778}
1779
1780static void e1000_get_ethtool_stats(struct net_device *netdev,
1781                                    struct ethtool_stats *stats, u64 *data)
1782{
1783        struct e1000_adapter *adapter = netdev_priv(netdev);
1784        int i;
1785        char *p = NULL;
1786
1787        e1000_update_stats(adapter);
1788        for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1789                switch (e1000_gstrings_stats[i].type) {
1790                case NETDEV_STATS:
1791                        p = (char *) netdev +
1792                                        e1000_gstrings_stats[i].stat_offset;
1793                        break;
1794                case E1000_STATS:
1795                        p = (char *) adapter +
1796                                        e1000_gstrings_stats[i].stat_offset;
1797                        break;
1798                }
1799
1800                data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1801                        sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1802        }
1803/*      BUG_ON(i != E1000_STATS_LEN); */
1804}
1805
1806static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1807                              u8 *data)
1808{
1809        u8 *p = data;
1810        int i;
1811
1812        switch (stringset) {
1813        case ETH_SS_TEST:
1814                memcpy(data, *e1000_gstrings_test,
1815                        sizeof(e1000_gstrings_test));
1816                break;
1817        case ETH_SS_STATS:
1818                for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1819                        memcpy(p, e1000_gstrings_stats[i].stat_string,
1820                               ETH_GSTRING_LEN);
1821                        p += ETH_GSTRING_LEN;
1822                }
1823/*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1824                break;
1825        }
1826}
1827
1828static const struct ethtool_ops e1000_ethtool_ops = {
1829        .get_settings           = e1000_get_settings,
1830        .set_settings           = e1000_set_settings,
1831        .get_drvinfo            = e1000_get_drvinfo,
1832        .get_regs_len           = e1000_get_regs_len,
1833        .get_regs               = e1000_get_regs,
1834        .get_wol                = e1000_get_wol,
1835        .set_wol                = e1000_set_wol,
1836        .get_msglevel           = e1000_get_msglevel,
1837        .set_msglevel           = e1000_set_msglevel,
1838        .nway_reset             = e1000_nway_reset,
1839        .get_link               = e1000_get_link,
1840        .get_eeprom_len         = e1000_get_eeprom_len,
1841        .get_eeprom             = e1000_get_eeprom,
1842        .set_eeprom             = e1000_set_eeprom,
1843        .get_ringparam          = e1000_get_ringparam,
1844        .set_ringparam          = e1000_set_ringparam,
1845        .get_pauseparam         = e1000_get_pauseparam,
1846        .set_pauseparam         = e1000_set_pauseparam,
1847        .self_test              = e1000_diag_test,
1848        .get_strings            = e1000_get_strings,
1849        .set_phys_id            = e1000_set_phys_id,
1850        .get_ethtool_stats      = e1000_get_ethtool_stats,
1851        .get_sset_count         = e1000_get_sset_count,
1852        .get_coalesce           = e1000_get_coalesce,
1853        .set_coalesce           = e1000_set_coalesce,
1854};
1855
1856void e1000_set_ethtool_ops(struct net_device *netdev)
1857{
1858        SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1859}
1860