linux/drivers/net/ethernet/intel/igbvf/netdev.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2010 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/module.h>
  29#include <linux/types.h>
  30#include <linux/init.h>
  31#include <linux/pci.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/tcp.h>
  37#include <linux/ipv6.h>
  38#include <linux/slab.h>
  39#include <net/checksum.h>
  40#include <net/ip6_checksum.h>
  41#include <linux/mii.h>
  42#include <linux/ethtool.h>
  43#include <linux/if_vlan.h>
  44#include <linux/prefetch.h>
  45
  46#include "igbvf.h"
  47
  48#define DRV_VERSION "2.0.1-k"
  49char igbvf_driver_name[] = "igbvf";
  50const char igbvf_driver_version[] = DRV_VERSION;
  51static const char igbvf_driver_string[] =
  52                  "Intel(R) Gigabit Virtual Function Network Driver";
  53static const char igbvf_copyright[] =
  54                  "Copyright (c) 2009 - 2011 Intel Corporation.";
  55
  56static int igbvf_poll(struct napi_struct *napi, int budget);
  57static void igbvf_reset(struct igbvf_adapter *);
  58static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  59static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  60
  61static struct igbvf_info igbvf_vf_info = {
  62        .mac                    = e1000_vfadapt,
  63        .flags                  = 0,
  64        .pba                    = 10,
  65        .init_ops               = e1000_init_function_pointers_vf,
  66};
  67
  68static struct igbvf_info igbvf_i350_vf_info = {
  69        .mac                    = e1000_vfadapt_i350,
  70        .flags                  = 0,
  71        .pba                    = 10,
  72        .init_ops               = e1000_init_function_pointers_vf,
  73};
  74
  75static const struct igbvf_info *igbvf_info_tbl[] = {
  76        [board_vf]              = &igbvf_vf_info,
  77        [board_i350_vf]         = &igbvf_i350_vf_info,
  78};
  79
  80/**
  81 * igbvf_desc_unused - calculate if we have unused descriptors
  82 **/
  83static int igbvf_desc_unused(struct igbvf_ring *ring)
  84{
  85        if (ring->next_to_clean > ring->next_to_use)
  86                return ring->next_to_clean - ring->next_to_use - 1;
  87
  88        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  89}
  90
  91/**
  92 * igbvf_receive_skb - helper function to handle Rx indications
  93 * @adapter: board private structure
  94 * @status: descriptor status field as written by hardware
  95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  96 * @skb: pointer to sk_buff to be indicated to stack
  97 **/
  98static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  99                              struct net_device *netdev,
 100                              struct sk_buff *skb,
 101                              u32 status, u16 vlan)
 102{
 103        if (status & E1000_RXD_STAT_VP) {
 104                u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 105                if (test_bit(vid, adapter->active_vlans))
 106                        __vlan_hwaccel_put_tag(skb, vid);
 107        }
 108        netif_receive_skb(skb);
 109}
 110
 111static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 112                                         u32 status_err, struct sk_buff *skb)
 113{
 114        skb_checksum_none_assert(skb);
 115
 116        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 117        if ((status_err & E1000_RXD_STAT_IXSM) ||
 118            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 119                return;
 120
 121        /* TCP/UDP checksum error bit is set */
 122        if (status_err &
 123            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 124                /* let the stack verify checksum errors */
 125                adapter->hw_csum_err++;
 126                return;
 127        }
 128
 129        /* It must be a TCP or UDP packet with a valid checksum */
 130        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 131                skb->ip_summed = CHECKSUM_UNNECESSARY;
 132
 133        adapter->hw_csum_good++;
 134}
 135
 136/**
 137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 138 * @rx_ring: address of ring structure to repopulate
 139 * @cleaned_count: number of buffers to repopulate
 140 **/
 141static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 142                                   int cleaned_count)
 143{
 144        struct igbvf_adapter *adapter = rx_ring->adapter;
 145        struct net_device *netdev = adapter->netdev;
 146        struct pci_dev *pdev = adapter->pdev;
 147        union e1000_adv_rx_desc *rx_desc;
 148        struct igbvf_buffer *buffer_info;
 149        struct sk_buff *skb;
 150        unsigned int i;
 151        int bufsz;
 152
 153        i = rx_ring->next_to_use;
 154        buffer_info = &rx_ring->buffer_info[i];
 155
 156        if (adapter->rx_ps_hdr_size)
 157                bufsz = adapter->rx_ps_hdr_size;
 158        else
 159                bufsz = adapter->rx_buffer_len;
 160
 161        while (cleaned_count--) {
 162                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 163
 164                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 165                        if (!buffer_info->page) {
 166                                buffer_info->page = alloc_page(GFP_ATOMIC);
 167                                if (!buffer_info->page) {
 168                                        adapter->alloc_rx_buff_failed++;
 169                                        goto no_buffers;
 170                                }
 171                                buffer_info->page_offset = 0;
 172                        } else {
 173                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 174                        }
 175                        buffer_info->page_dma =
 176                                dma_map_page(&pdev->dev, buffer_info->page,
 177                                             buffer_info->page_offset,
 178                                             PAGE_SIZE / 2,
 179                                             DMA_FROM_DEVICE);
 180                }
 181
 182                if (!buffer_info->skb) {
 183                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 184                        if (!skb) {
 185                                adapter->alloc_rx_buff_failed++;
 186                                goto no_buffers;
 187                        }
 188
 189                        buffer_info->skb = skb;
 190                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 191                                                          bufsz,
 192                                                          DMA_FROM_DEVICE);
 193                }
 194                /* Refresh the desc even if buffer_addrs didn't change because
 195                 * each write-back erases this info. */
 196                if (adapter->rx_ps_hdr_size) {
 197                        rx_desc->read.pkt_addr =
 198                             cpu_to_le64(buffer_info->page_dma);
 199                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 200                } else {
 201                        rx_desc->read.pkt_addr =
 202                             cpu_to_le64(buffer_info->dma);
 203                        rx_desc->read.hdr_addr = 0;
 204                }
 205
 206                i++;
 207                if (i == rx_ring->count)
 208                        i = 0;
 209                buffer_info = &rx_ring->buffer_info[i];
 210        }
 211
 212no_buffers:
 213        if (rx_ring->next_to_use != i) {
 214                rx_ring->next_to_use = i;
 215                if (i == 0)
 216                        i = (rx_ring->count - 1);
 217                else
 218                        i--;
 219
 220                /* Force memory writes to complete before letting h/w
 221                 * know there are new descriptors to fetch.  (Only
 222                 * applicable for weak-ordered memory model archs,
 223                 * such as IA-64). */
 224                wmb();
 225                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 226        }
 227}
 228
 229/**
 230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 231 * @adapter: board private structure
 232 *
 233 * the return value indicates whether actual cleaning was done, there
 234 * is no guarantee that everything was cleaned
 235 **/
 236static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 237                               int *work_done, int work_to_do)
 238{
 239        struct igbvf_ring *rx_ring = adapter->rx_ring;
 240        struct net_device *netdev = adapter->netdev;
 241        struct pci_dev *pdev = adapter->pdev;
 242        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 243        struct igbvf_buffer *buffer_info, *next_buffer;
 244        struct sk_buff *skb;
 245        bool cleaned = false;
 246        int cleaned_count = 0;
 247        unsigned int total_bytes = 0, total_packets = 0;
 248        unsigned int i;
 249        u32 length, hlen, staterr;
 250
 251        i = rx_ring->next_to_clean;
 252        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 253        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 254
 255        while (staterr & E1000_RXD_STAT_DD) {
 256                if (*work_done >= work_to_do)
 257                        break;
 258                (*work_done)++;
 259                rmb(); /* read descriptor and rx_buffer_info after status DD */
 260
 261                buffer_info = &rx_ring->buffer_info[i];
 262
 263                /* HW will not DMA in data larger than the given buffer, even
 264                 * if it parses the (NFS, of course) header to be larger.  In
 265                 * that case, it fills the header buffer and spills the rest
 266                 * into the page.
 267                 */
 268                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
 269                  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
 270                if (hlen > adapter->rx_ps_hdr_size)
 271                        hlen = adapter->rx_ps_hdr_size;
 272
 273                length = le16_to_cpu(rx_desc->wb.upper.length);
 274                cleaned = true;
 275                cleaned_count++;
 276
 277                skb = buffer_info->skb;
 278                prefetch(skb->data - NET_IP_ALIGN);
 279                buffer_info->skb = NULL;
 280                if (!adapter->rx_ps_hdr_size) {
 281                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 282                                         adapter->rx_buffer_len,
 283                                         DMA_FROM_DEVICE);
 284                        buffer_info->dma = 0;
 285                        skb_put(skb, length);
 286                        goto send_up;
 287                }
 288
 289                if (!skb_shinfo(skb)->nr_frags) {
 290                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 291                                         adapter->rx_ps_hdr_size,
 292                                         DMA_FROM_DEVICE);
 293                        skb_put(skb, hlen);
 294                }
 295
 296                if (length) {
 297                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 298                                       PAGE_SIZE / 2,
 299                                       DMA_FROM_DEVICE);
 300                        buffer_info->page_dma = 0;
 301
 302                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 303                                           buffer_info->page,
 304                                           buffer_info->page_offset,
 305                                           length);
 306
 307                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 308                            (page_count(buffer_info->page) != 1))
 309                                buffer_info->page = NULL;
 310                        else
 311                                get_page(buffer_info->page);
 312
 313                        skb->len += length;
 314                        skb->data_len += length;
 315                        skb->truesize += PAGE_SIZE / 2;
 316                }
 317send_up:
 318                i++;
 319                if (i == rx_ring->count)
 320                        i = 0;
 321                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 322                prefetch(next_rxd);
 323                next_buffer = &rx_ring->buffer_info[i];
 324
 325                if (!(staterr & E1000_RXD_STAT_EOP)) {
 326                        buffer_info->skb = next_buffer->skb;
 327                        buffer_info->dma = next_buffer->dma;
 328                        next_buffer->skb = skb;
 329                        next_buffer->dma = 0;
 330                        goto next_desc;
 331                }
 332
 333                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 334                        dev_kfree_skb_irq(skb);
 335                        goto next_desc;
 336                }
 337
 338                total_bytes += skb->len;
 339                total_packets++;
 340
 341                igbvf_rx_checksum_adv(adapter, staterr, skb);
 342
 343                skb->protocol = eth_type_trans(skb, netdev);
 344
 345                igbvf_receive_skb(adapter, netdev, skb, staterr,
 346                                  rx_desc->wb.upper.vlan);
 347
 348next_desc:
 349                rx_desc->wb.upper.status_error = 0;
 350
 351                /* return some buffers to hardware, one at a time is too slow */
 352                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 353                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 354                        cleaned_count = 0;
 355                }
 356
 357                /* use prefetched values */
 358                rx_desc = next_rxd;
 359                buffer_info = next_buffer;
 360
 361                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 362        }
 363
 364        rx_ring->next_to_clean = i;
 365        cleaned_count = igbvf_desc_unused(rx_ring);
 366
 367        if (cleaned_count)
 368                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 369
 370        adapter->total_rx_packets += total_packets;
 371        adapter->total_rx_bytes += total_bytes;
 372        adapter->net_stats.rx_bytes += total_bytes;
 373        adapter->net_stats.rx_packets += total_packets;
 374        return cleaned;
 375}
 376
 377static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 378                            struct igbvf_buffer *buffer_info)
 379{
 380        if (buffer_info->dma) {
 381                if (buffer_info->mapped_as_page)
 382                        dma_unmap_page(&adapter->pdev->dev,
 383                                       buffer_info->dma,
 384                                       buffer_info->length,
 385                                       DMA_TO_DEVICE);
 386                else
 387                        dma_unmap_single(&adapter->pdev->dev,
 388                                         buffer_info->dma,
 389                                         buffer_info->length,
 390                                         DMA_TO_DEVICE);
 391                buffer_info->dma = 0;
 392        }
 393        if (buffer_info->skb) {
 394                dev_kfree_skb_any(buffer_info->skb);
 395                buffer_info->skb = NULL;
 396        }
 397        buffer_info->time_stamp = 0;
 398}
 399
 400/**
 401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 402 * @adapter: board private structure
 403 *
 404 * Return 0 on success, negative on failure
 405 **/
 406int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 407                             struct igbvf_ring *tx_ring)
 408{
 409        struct pci_dev *pdev = adapter->pdev;
 410        int size;
 411
 412        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 413        tx_ring->buffer_info = vzalloc(size);
 414        if (!tx_ring->buffer_info)
 415                goto err;
 416
 417        /* round up to nearest 4K */
 418        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 419        tx_ring->size = ALIGN(tx_ring->size, 4096);
 420
 421        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 422                                           &tx_ring->dma, GFP_KERNEL);
 423
 424        if (!tx_ring->desc)
 425                goto err;
 426
 427        tx_ring->adapter = adapter;
 428        tx_ring->next_to_use = 0;
 429        tx_ring->next_to_clean = 0;
 430
 431        return 0;
 432err:
 433        vfree(tx_ring->buffer_info);
 434        dev_err(&adapter->pdev->dev,
 435                "Unable to allocate memory for the transmit descriptor ring\n");
 436        return -ENOMEM;
 437}
 438
 439/**
 440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 441 * @adapter: board private structure
 442 *
 443 * Returns 0 on success, negative on failure
 444 **/
 445int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 446                             struct igbvf_ring *rx_ring)
 447{
 448        struct pci_dev *pdev = adapter->pdev;
 449        int size, desc_len;
 450
 451        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 452        rx_ring->buffer_info = vzalloc(size);
 453        if (!rx_ring->buffer_info)
 454                goto err;
 455
 456        desc_len = sizeof(union e1000_adv_rx_desc);
 457
 458        /* Round up to nearest 4K */
 459        rx_ring->size = rx_ring->count * desc_len;
 460        rx_ring->size = ALIGN(rx_ring->size, 4096);
 461
 462        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 463                                           &rx_ring->dma, GFP_KERNEL);
 464
 465        if (!rx_ring->desc)
 466                goto err;
 467
 468        rx_ring->next_to_clean = 0;
 469        rx_ring->next_to_use = 0;
 470
 471        rx_ring->adapter = adapter;
 472
 473        return 0;
 474
 475err:
 476        vfree(rx_ring->buffer_info);
 477        rx_ring->buffer_info = NULL;
 478        dev_err(&adapter->pdev->dev,
 479                "Unable to allocate memory for the receive descriptor ring\n");
 480        return -ENOMEM;
 481}
 482
 483/**
 484 * igbvf_clean_tx_ring - Free Tx Buffers
 485 * @tx_ring: ring to be cleaned
 486 **/
 487static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 488{
 489        struct igbvf_adapter *adapter = tx_ring->adapter;
 490        struct igbvf_buffer *buffer_info;
 491        unsigned long size;
 492        unsigned int i;
 493
 494        if (!tx_ring->buffer_info)
 495                return;
 496
 497        /* Free all the Tx ring sk_buffs */
 498        for (i = 0; i < tx_ring->count; i++) {
 499                buffer_info = &tx_ring->buffer_info[i];
 500                igbvf_put_txbuf(adapter, buffer_info);
 501        }
 502
 503        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 504        memset(tx_ring->buffer_info, 0, size);
 505
 506        /* Zero out the descriptor ring */
 507        memset(tx_ring->desc, 0, tx_ring->size);
 508
 509        tx_ring->next_to_use = 0;
 510        tx_ring->next_to_clean = 0;
 511
 512        writel(0, adapter->hw.hw_addr + tx_ring->head);
 513        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 514}
 515
 516/**
 517 * igbvf_free_tx_resources - Free Tx Resources per Queue
 518 * @tx_ring: ring to free resources from
 519 *
 520 * Free all transmit software resources
 521 **/
 522void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 523{
 524        struct pci_dev *pdev = tx_ring->adapter->pdev;
 525
 526        igbvf_clean_tx_ring(tx_ring);
 527
 528        vfree(tx_ring->buffer_info);
 529        tx_ring->buffer_info = NULL;
 530
 531        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 532                          tx_ring->dma);
 533
 534        tx_ring->desc = NULL;
 535}
 536
 537/**
 538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 539 * @adapter: board private structure
 540 **/
 541static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 542{
 543        struct igbvf_adapter *adapter = rx_ring->adapter;
 544        struct igbvf_buffer *buffer_info;
 545        struct pci_dev *pdev = adapter->pdev;
 546        unsigned long size;
 547        unsigned int i;
 548
 549        if (!rx_ring->buffer_info)
 550                return;
 551
 552        /* Free all the Rx ring sk_buffs */
 553        for (i = 0; i < rx_ring->count; i++) {
 554                buffer_info = &rx_ring->buffer_info[i];
 555                if (buffer_info->dma) {
 556                        if (adapter->rx_ps_hdr_size){
 557                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 558                                                 adapter->rx_ps_hdr_size,
 559                                                 DMA_FROM_DEVICE);
 560                        } else {
 561                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 562                                                 adapter->rx_buffer_len,
 563                                                 DMA_FROM_DEVICE);
 564                        }
 565                        buffer_info->dma = 0;
 566                }
 567
 568                if (buffer_info->skb) {
 569                        dev_kfree_skb(buffer_info->skb);
 570                        buffer_info->skb = NULL;
 571                }
 572
 573                if (buffer_info->page) {
 574                        if (buffer_info->page_dma)
 575                                dma_unmap_page(&pdev->dev,
 576                                               buffer_info->page_dma,
 577                                               PAGE_SIZE / 2,
 578                                               DMA_FROM_DEVICE);
 579                        put_page(buffer_info->page);
 580                        buffer_info->page = NULL;
 581                        buffer_info->page_dma = 0;
 582                        buffer_info->page_offset = 0;
 583                }
 584        }
 585
 586        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 587        memset(rx_ring->buffer_info, 0, size);
 588
 589        /* Zero out the descriptor ring */
 590        memset(rx_ring->desc, 0, rx_ring->size);
 591
 592        rx_ring->next_to_clean = 0;
 593        rx_ring->next_to_use = 0;
 594
 595        writel(0, adapter->hw.hw_addr + rx_ring->head);
 596        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 597}
 598
 599/**
 600 * igbvf_free_rx_resources - Free Rx Resources
 601 * @rx_ring: ring to clean the resources from
 602 *
 603 * Free all receive software resources
 604 **/
 605
 606void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 607{
 608        struct pci_dev *pdev = rx_ring->adapter->pdev;
 609
 610        igbvf_clean_rx_ring(rx_ring);
 611
 612        vfree(rx_ring->buffer_info);
 613        rx_ring->buffer_info = NULL;
 614
 615        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 616                          rx_ring->dma);
 617        rx_ring->desc = NULL;
 618}
 619
 620/**
 621 * igbvf_update_itr - update the dynamic ITR value based on statistics
 622 * @adapter: pointer to adapter
 623 * @itr_setting: current adapter->itr
 624 * @packets: the number of packets during this measurement interval
 625 * @bytes: the number of bytes during this measurement interval
 626 *
 627 *      Stores a new ITR value based on packets and byte
 628 *      counts during the last interrupt.  The advantage of per interrupt
 629 *      computation is faster updates and more accurate ITR for the current
 630 *      traffic pattern.  Constants in this function were computed
 631 *      based on theoretical maximum wire speed and thresholds were set based
 632 *      on testing data as well as attempting to minimize response time
 633 *      while increasing bulk throughput.  This functionality is controlled
 634 *      by the InterruptThrottleRate module parameter.
 635 **/
 636static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
 637                                     u16 itr_setting, int packets,
 638                                     int bytes)
 639{
 640        unsigned int retval = itr_setting;
 641
 642        if (packets == 0)
 643                goto update_itr_done;
 644
 645        switch (itr_setting) {
 646        case lowest_latency:
 647                /* handle TSO and jumbo frames */
 648                if (bytes/packets > 8000)
 649                        retval = bulk_latency;
 650                else if ((packets < 5) && (bytes > 512))
 651                        retval = low_latency;
 652                break;
 653        case low_latency:  /* 50 usec aka 20000 ints/s */
 654                if (bytes > 10000) {
 655                        /* this if handles the TSO accounting */
 656                        if (bytes/packets > 8000)
 657                                retval = bulk_latency;
 658                        else if ((packets < 10) || ((bytes/packets) > 1200))
 659                                retval = bulk_latency;
 660                        else if ((packets > 35))
 661                                retval = lowest_latency;
 662                } else if (bytes/packets > 2000) {
 663                        retval = bulk_latency;
 664                } else if (packets <= 2 && bytes < 512) {
 665                        retval = lowest_latency;
 666                }
 667                break;
 668        case bulk_latency: /* 250 usec aka 4000 ints/s */
 669                if (bytes > 25000) {
 670                        if (packets > 35)
 671                                retval = low_latency;
 672                } else if (bytes < 6000) {
 673                        retval = low_latency;
 674                }
 675                break;
 676        }
 677
 678update_itr_done:
 679        return retval;
 680}
 681
 682static void igbvf_set_itr(struct igbvf_adapter *adapter)
 683{
 684        struct e1000_hw *hw = &adapter->hw;
 685        u16 current_itr;
 686        u32 new_itr = adapter->itr;
 687
 688        adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
 689                                           adapter->total_tx_packets,
 690                                           adapter->total_tx_bytes);
 691        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 692        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
 693                adapter->tx_itr = low_latency;
 694
 695        adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
 696                                           adapter->total_rx_packets,
 697                                           adapter->total_rx_bytes);
 698        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 699        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
 700                adapter->rx_itr = low_latency;
 701
 702        current_itr = max(adapter->rx_itr, adapter->tx_itr);
 703
 704        switch (current_itr) {
 705        /* counts and packets in update_itr are dependent on these numbers */
 706        case lowest_latency:
 707                new_itr = 70000;
 708                break;
 709        case low_latency:
 710                new_itr = 20000; /* aka hwitr = ~200 */
 711                break;
 712        case bulk_latency:
 713                new_itr = 4000;
 714                break;
 715        default:
 716                break;
 717        }
 718
 719        if (new_itr != adapter->itr) {
 720                /*
 721                 * this attempts to bias the interrupt rate towards Bulk
 722                 * by adding intermediate steps when interrupt rate is
 723                 * increasing
 724                 */
 725                new_itr = new_itr > adapter->itr ?
 726                             min(adapter->itr + (new_itr >> 2), new_itr) :
 727                             new_itr;
 728                adapter->itr = new_itr;
 729                adapter->rx_ring->itr_val = 1952;
 730
 731                if (adapter->msix_entries)
 732                        adapter->rx_ring->set_itr = 1;
 733                else
 734                        ew32(ITR, 1952);
 735        }
 736}
 737
 738/**
 739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 740 * @adapter: board private structure
 741 * returns true if ring is completely cleaned
 742 **/
 743static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 744{
 745        struct igbvf_adapter *adapter = tx_ring->adapter;
 746        struct net_device *netdev = adapter->netdev;
 747        struct igbvf_buffer *buffer_info;
 748        struct sk_buff *skb;
 749        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 750        unsigned int total_bytes = 0, total_packets = 0;
 751        unsigned int i, eop, count = 0;
 752        bool cleaned = false;
 753
 754        i = tx_ring->next_to_clean;
 755        eop = tx_ring->buffer_info[i].next_to_watch;
 756        eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 757
 758        while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
 759               (count < tx_ring->count)) {
 760                rmb();  /* read buffer_info after eop_desc status */
 761                for (cleaned = false; !cleaned; count++) {
 762                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 763                        buffer_info = &tx_ring->buffer_info[i];
 764                        cleaned = (i == eop);
 765                        skb = buffer_info->skb;
 766
 767                        if (skb) {
 768                                unsigned int segs, bytecount;
 769
 770                                /* gso_segs is currently only valid for tcp */
 771                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 772                                /* multiply data chunks by size of headers */
 773                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 774                                            skb->len;
 775                                total_packets += segs;
 776                                total_bytes += bytecount;
 777                        }
 778
 779                        igbvf_put_txbuf(adapter, buffer_info);
 780                        tx_desc->wb.status = 0;
 781
 782                        i++;
 783                        if (i == tx_ring->count)
 784                                i = 0;
 785                }
 786                eop = tx_ring->buffer_info[i].next_to_watch;
 787                eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 788        }
 789
 790        tx_ring->next_to_clean = i;
 791
 792        if (unlikely(count &&
 793                     netif_carrier_ok(netdev) &&
 794                     igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 795                /* Make sure that anybody stopping the queue after this
 796                 * sees the new next_to_clean.
 797                 */
 798                smp_mb();
 799                if (netif_queue_stopped(netdev) &&
 800                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 801                        netif_wake_queue(netdev);
 802                        ++adapter->restart_queue;
 803                }
 804        }
 805
 806        adapter->net_stats.tx_bytes += total_bytes;
 807        adapter->net_stats.tx_packets += total_packets;
 808        return count < tx_ring->count;
 809}
 810
 811static irqreturn_t igbvf_msix_other(int irq, void *data)
 812{
 813        struct net_device *netdev = data;
 814        struct igbvf_adapter *adapter = netdev_priv(netdev);
 815        struct e1000_hw *hw = &adapter->hw;
 816
 817        adapter->int_counter1++;
 818
 819        netif_carrier_off(netdev);
 820        hw->mac.get_link_status = 1;
 821        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 822                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 823
 824        ew32(EIMS, adapter->eims_other);
 825
 826        return IRQ_HANDLED;
 827}
 828
 829static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 830{
 831        struct net_device *netdev = data;
 832        struct igbvf_adapter *adapter = netdev_priv(netdev);
 833        struct e1000_hw *hw = &adapter->hw;
 834        struct igbvf_ring *tx_ring = adapter->tx_ring;
 835
 836
 837        adapter->total_tx_bytes = 0;
 838        adapter->total_tx_packets = 0;
 839
 840        /* auto mask will automatically reenable the interrupt when we write
 841         * EICS */
 842        if (!igbvf_clean_tx_irq(tx_ring))
 843                /* Ring was not completely cleaned, so fire another interrupt */
 844                ew32(EICS, tx_ring->eims_value);
 845        else
 846                ew32(EIMS, tx_ring->eims_value);
 847
 848        return IRQ_HANDLED;
 849}
 850
 851static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 852{
 853        struct net_device *netdev = data;
 854        struct igbvf_adapter *adapter = netdev_priv(netdev);
 855
 856        adapter->int_counter0++;
 857
 858        /* Write the ITR value calculated at the end of the
 859         * previous interrupt.
 860         */
 861        if (adapter->rx_ring->set_itr) {
 862                writel(adapter->rx_ring->itr_val,
 863                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 864                adapter->rx_ring->set_itr = 0;
 865        }
 866
 867        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 868                adapter->total_rx_bytes = 0;
 869                adapter->total_rx_packets = 0;
 870                __napi_schedule(&adapter->rx_ring->napi);
 871        }
 872
 873        return IRQ_HANDLED;
 874}
 875
 876#define IGBVF_NO_QUEUE -1
 877
 878static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 879                                int tx_queue, int msix_vector)
 880{
 881        struct e1000_hw *hw = &adapter->hw;
 882        u32 ivar, index;
 883
 884        /* 82576 uses a table-based method for assigning vectors.
 885           Each queue has a single entry in the table to which we write
 886           a vector number along with a "valid" bit.  Sadly, the layout
 887           of the table is somewhat counterintuitive. */
 888        if (rx_queue > IGBVF_NO_QUEUE) {
 889                index = (rx_queue >> 1);
 890                ivar = array_er32(IVAR0, index);
 891                if (rx_queue & 0x1) {
 892                        /* vector goes into third byte of register */
 893                        ivar = ivar & 0xFF00FFFF;
 894                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 895                } else {
 896                        /* vector goes into low byte of register */
 897                        ivar = ivar & 0xFFFFFF00;
 898                        ivar |= msix_vector | E1000_IVAR_VALID;
 899                }
 900                adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 901                array_ew32(IVAR0, index, ivar);
 902        }
 903        if (tx_queue > IGBVF_NO_QUEUE) {
 904                index = (tx_queue >> 1);
 905                ivar = array_er32(IVAR0, index);
 906                if (tx_queue & 0x1) {
 907                        /* vector goes into high byte of register */
 908                        ivar = ivar & 0x00FFFFFF;
 909                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 910                } else {
 911                        /* vector goes into second byte of register */
 912                        ivar = ivar & 0xFFFF00FF;
 913                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 914                }
 915                adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 916                array_ew32(IVAR0, index, ivar);
 917        }
 918}
 919
 920/**
 921 * igbvf_configure_msix - Configure MSI-X hardware
 922 *
 923 * igbvf_configure_msix sets up the hardware to properly
 924 * generate MSI-X interrupts.
 925 **/
 926static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 927{
 928        u32 tmp;
 929        struct e1000_hw *hw = &adapter->hw;
 930        struct igbvf_ring *tx_ring = adapter->tx_ring;
 931        struct igbvf_ring *rx_ring = adapter->rx_ring;
 932        int vector = 0;
 933
 934        adapter->eims_enable_mask = 0;
 935
 936        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 937        adapter->eims_enable_mask |= tx_ring->eims_value;
 938        if (tx_ring->itr_val)
 939                writel(tx_ring->itr_val,
 940                       hw->hw_addr + tx_ring->itr_register);
 941        else
 942                writel(1952, hw->hw_addr + tx_ring->itr_register);
 943
 944        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 945        adapter->eims_enable_mask |= rx_ring->eims_value;
 946        if (rx_ring->itr_val)
 947                writel(rx_ring->itr_val,
 948                       hw->hw_addr + rx_ring->itr_register);
 949        else
 950                writel(1952, hw->hw_addr + rx_ring->itr_register);
 951
 952        /* set vector for other causes, i.e. link changes */
 953
 954        tmp = (vector++ | E1000_IVAR_VALID);
 955
 956        ew32(IVAR_MISC, tmp);
 957
 958        adapter->eims_enable_mask = (1 << (vector)) - 1;
 959        adapter->eims_other = 1 << (vector - 1);
 960        e1e_flush();
 961}
 962
 963static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
 964{
 965        if (adapter->msix_entries) {
 966                pci_disable_msix(adapter->pdev);
 967                kfree(adapter->msix_entries);
 968                adapter->msix_entries = NULL;
 969        }
 970}
 971
 972/**
 973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
 974 *
 975 * Attempt to configure interrupts using the best available
 976 * capabilities of the hardware and kernel.
 977 **/
 978static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
 979{
 980        int err = -ENOMEM;
 981        int i;
 982
 983        /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
 984        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
 985                                        GFP_KERNEL);
 986        if (adapter->msix_entries) {
 987                for (i = 0; i < 3; i++)
 988                        adapter->msix_entries[i].entry = i;
 989
 990                err = pci_enable_msix(adapter->pdev,
 991                                      adapter->msix_entries, 3);
 992        }
 993
 994        if (err) {
 995                /* MSI-X failed */
 996                dev_err(&adapter->pdev->dev,
 997                        "Failed to initialize MSI-X interrupts.\n");
 998                igbvf_reset_interrupt_capability(adapter);
 999        }
1000}
1001
1002/**
1003 * igbvf_request_msix - Initialize MSI-X interrupts
1004 *
1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006 * kernel.
1007 **/
1008static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009{
1010        struct net_device *netdev = adapter->netdev;
1011        int err = 0, vector = 0;
1012
1013        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016        } else {
1017                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019        }
1020
1021        err = request_irq(adapter->msix_entries[vector].vector,
1022                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023                          netdev);
1024        if (err)
1025                goto out;
1026
1027        adapter->tx_ring->itr_register = E1000_EITR(vector);
1028        adapter->tx_ring->itr_val = 1952;
1029        vector++;
1030
1031        err = request_irq(adapter->msix_entries[vector].vector,
1032                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033                          netdev);
1034        if (err)
1035                goto out;
1036
1037        adapter->rx_ring->itr_register = E1000_EITR(vector);
1038        adapter->rx_ring->itr_val = 1952;
1039        vector++;
1040
1041        err = request_irq(adapter->msix_entries[vector].vector,
1042                          igbvf_msix_other, 0, netdev->name, netdev);
1043        if (err)
1044                goto out;
1045
1046        igbvf_configure_msix(adapter);
1047        return 0;
1048out:
1049        return err;
1050}
1051
1052/**
1053 * igbvf_alloc_queues - Allocate memory for all rings
1054 * @adapter: board private structure to initialize
1055 **/
1056static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057{
1058        struct net_device *netdev = adapter->netdev;
1059
1060        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061        if (!adapter->tx_ring)
1062                return -ENOMEM;
1063
1064        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065        if (!adapter->rx_ring) {
1066                kfree(adapter->tx_ring);
1067                return -ENOMEM;
1068        }
1069
1070        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072        return 0;
1073}
1074
1075/**
1076 * igbvf_request_irq - initialize interrupts
1077 *
1078 * Attempts to configure interrupts using the best available
1079 * capabilities of the hardware and kernel.
1080 **/
1081static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082{
1083        int err = -1;
1084
1085        /* igbvf supports msi-x only */
1086        if (adapter->msix_entries)
1087                err = igbvf_request_msix(adapter);
1088
1089        if (!err)
1090                return err;
1091
1092        dev_err(&adapter->pdev->dev,
1093                "Unable to allocate interrupt, Error: %d\n", err);
1094
1095        return err;
1096}
1097
1098static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099{
1100        struct net_device *netdev = adapter->netdev;
1101        int vector;
1102
1103        if (adapter->msix_entries) {
1104                for (vector = 0; vector < 3; vector++)
1105                        free_irq(adapter->msix_entries[vector].vector, netdev);
1106        }
1107}
1108
1109/**
1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111 **/
1112static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113{
1114        struct e1000_hw *hw = &adapter->hw;
1115
1116        ew32(EIMC, ~0);
1117
1118        if (adapter->msix_entries)
1119                ew32(EIAC, 0);
1120}
1121
1122/**
1123 * igbvf_irq_enable - Enable default interrupt generation settings
1124 **/
1125static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126{
1127        struct e1000_hw *hw = &adapter->hw;
1128
1129        ew32(EIAC, adapter->eims_enable_mask);
1130        ew32(EIAM, adapter->eims_enable_mask);
1131        ew32(EIMS, adapter->eims_enable_mask);
1132}
1133
1134/**
1135 * igbvf_poll - NAPI Rx polling callback
1136 * @napi: struct associated with this polling callback
1137 * @budget: amount of packets driver is allowed to process this poll
1138 **/
1139static int igbvf_poll(struct napi_struct *napi, int budget)
1140{
1141        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142        struct igbvf_adapter *adapter = rx_ring->adapter;
1143        struct e1000_hw *hw = &adapter->hw;
1144        int work_done = 0;
1145
1146        igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148        /* If not enough Rx work done, exit the polling mode */
1149        if (work_done < budget) {
1150                napi_complete(napi);
1151
1152                if (adapter->itr_setting & 3)
1153                        igbvf_set_itr(adapter);
1154
1155                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156                        ew32(EIMS, adapter->rx_ring->eims_value);
1157        }
1158
1159        return work_done;
1160}
1161
1162/**
1163 * igbvf_set_rlpml - set receive large packet maximum length
1164 * @adapter: board private structure
1165 *
1166 * Configure the maximum size of packets that will be received
1167 */
1168static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169{
1170        int max_frame_size;
1171        struct e1000_hw *hw = &adapter->hw;
1172
1173        max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1174        e1000_rlpml_set_vf(hw, max_frame_size);
1175}
1176
1177static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1178{
1179        struct igbvf_adapter *adapter = netdev_priv(netdev);
1180        struct e1000_hw *hw = &adapter->hw;
1181
1182        if (hw->mac.ops.set_vfta(hw, vid, true))
1183                dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1184        else
1185                set_bit(vid, adapter->active_vlans);
1186}
1187
1188static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189{
1190        struct igbvf_adapter *adapter = netdev_priv(netdev);
1191        struct e1000_hw *hw = &adapter->hw;
1192
1193        igbvf_irq_disable(adapter);
1194
1195        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1196                igbvf_irq_enable(adapter);
1197
1198        if (hw->mac.ops.set_vfta(hw, vid, false))
1199                dev_err(&adapter->pdev->dev,
1200                        "Failed to remove vlan id %d\n", vid);
1201        else
1202                clear_bit(vid, adapter->active_vlans);
1203}
1204
1205static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1206{
1207        u16 vid;
1208
1209        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1210                igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1211}
1212
1213/**
1214 * igbvf_configure_tx - Configure Transmit Unit after Reset
1215 * @adapter: board private structure
1216 *
1217 * Configure the Tx unit of the MAC after a reset.
1218 **/
1219static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1220{
1221        struct e1000_hw *hw = &adapter->hw;
1222        struct igbvf_ring *tx_ring = adapter->tx_ring;
1223        u64 tdba;
1224        u32 txdctl, dca_txctrl;
1225
1226        /* disable transmits */
1227        txdctl = er32(TXDCTL(0));
1228        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1229        e1e_flush();
1230        msleep(10);
1231
1232        /* Setup the HW Tx Head and Tail descriptor pointers */
1233        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1234        tdba = tx_ring->dma;
1235        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1236        ew32(TDBAH(0), (tdba >> 32));
1237        ew32(TDH(0), 0);
1238        ew32(TDT(0), 0);
1239        tx_ring->head = E1000_TDH(0);
1240        tx_ring->tail = E1000_TDT(0);
1241
1242        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1243         * MUST be delivered in order or it will completely screw up
1244         * our bookeeping.
1245         */
1246        dca_txctrl = er32(DCA_TXCTRL(0));
1247        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1248        ew32(DCA_TXCTRL(0), dca_txctrl);
1249
1250        /* enable transmits */
1251        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1252        ew32(TXDCTL(0), txdctl);
1253
1254        /* Setup Transmit Descriptor Settings for eop descriptor */
1255        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1256
1257        /* enable Report Status bit */
1258        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1259}
1260
1261/**
1262 * igbvf_setup_srrctl - configure the receive control registers
1263 * @adapter: Board private structure
1264 **/
1265static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1266{
1267        struct e1000_hw *hw = &adapter->hw;
1268        u32 srrctl = 0;
1269
1270        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1271                    E1000_SRRCTL_BSIZEHDR_MASK |
1272                    E1000_SRRCTL_BSIZEPKT_MASK);
1273
1274        /* Enable queue drop to avoid head of line blocking */
1275        srrctl |= E1000_SRRCTL_DROP_EN;
1276
1277        /* Setup buffer sizes */
1278        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1279                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1280
1281        if (adapter->rx_buffer_len < 2048) {
1282                adapter->rx_ps_hdr_size = 0;
1283                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1284        } else {
1285                adapter->rx_ps_hdr_size = 128;
1286                srrctl |= adapter->rx_ps_hdr_size <<
1287                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1288                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1289        }
1290
1291        ew32(SRRCTL(0), srrctl);
1292}
1293
1294/**
1295 * igbvf_configure_rx - Configure Receive Unit after Reset
1296 * @adapter: board private structure
1297 *
1298 * Configure the Rx unit of the MAC after a reset.
1299 **/
1300static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1301{
1302        struct e1000_hw *hw = &adapter->hw;
1303        struct igbvf_ring *rx_ring = adapter->rx_ring;
1304        u64 rdba;
1305        u32 rdlen, rxdctl;
1306
1307        /* disable receives */
1308        rxdctl = er32(RXDCTL(0));
1309        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1310        e1e_flush();
1311        msleep(10);
1312
1313        rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1314
1315        /*
1316         * Setup the HW Rx Head and Tail Descriptor Pointers and
1317         * the Base and Length of the Rx Descriptor Ring
1318         */
1319        rdba = rx_ring->dma;
1320        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1321        ew32(RDBAH(0), (rdba >> 32));
1322        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1323        rx_ring->head = E1000_RDH(0);
1324        rx_ring->tail = E1000_RDT(0);
1325        ew32(RDH(0), 0);
1326        ew32(RDT(0), 0);
1327
1328        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1329        rxdctl &= 0xFFF00000;
1330        rxdctl |= IGBVF_RX_PTHRESH;
1331        rxdctl |= IGBVF_RX_HTHRESH << 8;
1332        rxdctl |= IGBVF_RX_WTHRESH << 16;
1333
1334        igbvf_set_rlpml(adapter);
1335
1336        /* enable receives */
1337        ew32(RXDCTL(0), rxdctl);
1338}
1339
1340/**
1341 * igbvf_set_multi - Multicast and Promiscuous mode set
1342 * @netdev: network interface device structure
1343 *
1344 * The set_multi entry point is called whenever the multicast address
1345 * list or the network interface flags are updated.  This routine is
1346 * responsible for configuring the hardware for proper multicast,
1347 * promiscuous mode, and all-multi behavior.
1348 **/
1349static void igbvf_set_multi(struct net_device *netdev)
1350{
1351        struct igbvf_adapter *adapter = netdev_priv(netdev);
1352        struct e1000_hw *hw = &adapter->hw;
1353        struct netdev_hw_addr *ha;
1354        u8  *mta_list = NULL;
1355        int i;
1356
1357        if (!netdev_mc_empty(netdev)) {
1358                mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1359                if (!mta_list) {
1360                        dev_err(&adapter->pdev->dev,
1361                                "failed to allocate multicast filter list\n");
1362                        return;
1363                }
1364        }
1365
1366        /* prepare a packed array of only addresses. */
1367        i = 0;
1368        netdev_for_each_mc_addr(ha, netdev)
1369                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1370
1371        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1372        kfree(mta_list);
1373}
1374
1375/**
1376 * igbvf_configure - configure the hardware for Rx and Tx
1377 * @adapter: private board structure
1378 **/
1379static void igbvf_configure(struct igbvf_adapter *adapter)
1380{
1381        igbvf_set_multi(adapter->netdev);
1382
1383        igbvf_restore_vlan(adapter);
1384
1385        igbvf_configure_tx(adapter);
1386        igbvf_setup_srrctl(adapter);
1387        igbvf_configure_rx(adapter);
1388        igbvf_alloc_rx_buffers(adapter->rx_ring,
1389                               igbvf_desc_unused(adapter->rx_ring));
1390}
1391
1392/* igbvf_reset - bring the hardware into a known good state
1393 *
1394 * This function boots the hardware and enables some settings that
1395 * require a configuration cycle of the hardware - those cannot be
1396 * set/changed during runtime. After reset the device needs to be
1397 * properly configured for Rx, Tx etc.
1398 */
1399static void igbvf_reset(struct igbvf_adapter *adapter)
1400{
1401        struct e1000_mac_info *mac = &adapter->hw.mac;
1402        struct net_device *netdev = adapter->netdev;
1403        struct e1000_hw *hw = &adapter->hw;
1404
1405        /* Allow time for pending master requests to run */
1406        if (mac->ops.reset_hw(hw))
1407                dev_err(&adapter->pdev->dev, "PF still resetting\n");
1408
1409        mac->ops.init_hw(hw);
1410
1411        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1412                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1413                       netdev->addr_len);
1414                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1415                       netdev->addr_len);
1416        }
1417
1418        adapter->last_reset = jiffies;
1419}
1420
1421int igbvf_up(struct igbvf_adapter *adapter)
1422{
1423        struct e1000_hw *hw = &adapter->hw;
1424
1425        /* hardware has been reset, we need to reload some things */
1426        igbvf_configure(adapter);
1427
1428        clear_bit(__IGBVF_DOWN, &adapter->state);
1429
1430        napi_enable(&adapter->rx_ring->napi);
1431        if (adapter->msix_entries)
1432                igbvf_configure_msix(adapter);
1433
1434        /* Clear any pending interrupts. */
1435        er32(EICR);
1436        igbvf_irq_enable(adapter);
1437
1438        /* start the watchdog */
1439        hw->mac.get_link_status = 1;
1440        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1441
1442
1443        return 0;
1444}
1445
1446void igbvf_down(struct igbvf_adapter *adapter)
1447{
1448        struct net_device *netdev = adapter->netdev;
1449        struct e1000_hw *hw = &adapter->hw;
1450        u32 rxdctl, txdctl;
1451
1452        /*
1453         * signal that we're down so the interrupt handler does not
1454         * reschedule our watchdog timer
1455         */
1456        set_bit(__IGBVF_DOWN, &adapter->state);
1457
1458        /* disable receives in the hardware */
1459        rxdctl = er32(RXDCTL(0));
1460        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1461
1462        netif_stop_queue(netdev);
1463
1464        /* disable transmits in the hardware */
1465        txdctl = er32(TXDCTL(0));
1466        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1467
1468        /* flush both disables and wait for them to finish */
1469        e1e_flush();
1470        msleep(10);
1471
1472        napi_disable(&adapter->rx_ring->napi);
1473
1474        igbvf_irq_disable(adapter);
1475
1476        del_timer_sync(&adapter->watchdog_timer);
1477
1478        netif_carrier_off(netdev);
1479
1480        /* record the stats before reset*/
1481        igbvf_update_stats(adapter);
1482
1483        adapter->link_speed = 0;
1484        adapter->link_duplex = 0;
1485
1486        igbvf_reset(adapter);
1487        igbvf_clean_tx_ring(adapter->tx_ring);
1488        igbvf_clean_rx_ring(adapter->rx_ring);
1489}
1490
1491void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1492{
1493        might_sleep();
1494        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1495                msleep(1);
1496        igbvf_down(adapter);
1497        igbvf_up(adapter);
1498        clear_bit(__IGBVF_RESETTING, &adapter->state);
1499}
1500
1501/**
1502 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1503 * @adapter: board private structure to initialize
1504 *
1505 * igbvf_sw_init initializes the Adapter private data structure.
1506 * Fields are initialized based on PCI device information and
1507 * OS network device settings (MTU size).
1508 **/
1509static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1510{
1511        struct net_device *netdev = adapter->netdev;
1512        s32 rc;
1513
1514        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1515        adapter->rx_ps_hdr_size = 0;
1516        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1517        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1518
1519        adapter->tx_int_delay = 8;
1520        adapter->tx_abs_int_delay = 32;
1521        adapter->rx_int_delay = 0;
1522        adapter->rx_abs_int_delay = 8;
1523        adapter->itr_setting = 3;
1524        adapter->itr = 20000;
1525
1526        /* Set various function pointers */
1527        adapter->ei->init_ops(&adapter->hw);
1528
1529        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1530        if (rc)
1531                return rc;
1532
1533        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1534        if (rc)
1535                return rc;
1536
1537        igbvf_set_interrupt_capability(adapter);
1538
1539        if (igbvf_alloc_queues(adapter))
1540                return -ENOMEM;
1541
1542        spin_lock_init(&adapter->tx_queue_lock);
1543
1544        /* Explicitly disable IRQ since the NIC can be in any state. */
1545        igbvf_irq_disable(adapter);
1546
1547        spin_lock_init(&adapter->stats_lock);
1548
1549        set_bit(__IGBVF_DOWN, &adapter->state);
1550        return 0;
1551}
1552
1553static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1554{
1555        struct e1000_hw *hw = &adapter->hw;
1556
1557        adapter->stats.last_gprc = er32(VFGPRC);
1558        adapter->stats.last_gorc = er32(VFGORC);
1559        adapter->stats.last_gptc = er32(VFGPTC);
1560        adapter->stats.last_gotc = er32(VFGOTC);
1561        adapter->stats.last_mprc = er32(VFMPRC);
1562        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1563        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1564        adapter->stats.last_gorlbc = er32(VFGORLBC);
1565        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1566
1567        adapter->stats.base_gprc = er32(VFGPRC);
1568        adapter->stats.base_gorc = er32(VFGORC);
1569        adapter->stats.base_gptc = er32(VFGPTC);
1570        adapter->stats.base_gotc = er32(VFGOTC);
1571        adapter->stats.base_mprc = er32(VFMPRC);
1572        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1573        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1574        adapter->stats.base_gorlbc = er32(VFGORLBC);
1575        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1576}
1577
1578/**
1579 * igbvf_open - Called when a network interface is made active
1580 * @netdev: network interface device structure
1581 *
1582 * Returns 0 on success, negative value on failure
1583 *
1584 * The open entry point is called when a network interface is made
1585 * active by the system (IFF_UP).  At this point all resources needed
1586 * for transmit and receive operations are allocated, the interrupt
1587 * handler is registered with the OS, the watchdog timer is started,
1588 * and the stack is notified that the interface is ready.
1589 **/
1590static int igbvf_open(struct net_device *netdev)
1591{
1592        struct igbvf_adapter *adapter = netdev_priv(netdev);
1593        struct e1000_hw *hw = &adapter->hw;
1594        int err;
1595
1596        /* disallow open during test */
1597        if (test_bit(__IGBVF_TESTING, &adapter->state))
1598                return -EBUSY;
1599
1600        /* allocate transmit descriptors */
1601        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1602        if (err)
1603                goto err_setup_tx;
1604
1605        /* allocate receive descriptors */
1606        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1607        if (err)
1608                goto err_setup_rx;
1609
1610        /*
1611         * before we allocate an interrupt, we must be ready to handle it.
1612         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1613         * as soon as we call pci_request_irq, so we have to setup our
1614         * clean_rx handler before we do so.
1615         */
1616        igbvf_configure(adapter);
1617
1618        err = igbvf_request_irq(adapter);
1619        if (err)
1620                goto err_req_irq;
1621
1622        /* From here on the code is the same as igbvf_up() */
1623        clear_bit(__IGBVF_DOWN, &adapter->state);
1624
1625        napi_enable(&adapter->rx_ring->napi);
1626
1627        /* clear any pending interrupts */
1628        er32(EICR);
1629
1630        igbvf_irq_enable(adapter);
1631
1632        /* start the watchdog */
1633        hw->mac.get_link_status = 1;
1634        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1635
1636        return 0;
1637
1638err_req_irq:
1639        igbvf_free_rx_resources(adapter->rx_ring);
1640err_setup_rx:
1641        igbvf_free_tx_resources(adapter->tx_ring);
1642err_setup_tx:
1643        igbvf_reset(adapter);
1644
1645        return err;
1646}
1647
1648/**
1649 * igbvf_close - Disables a network interface
1650 * @netdev: network interface device structure
1651 *
1652 * Returns 0, this is not allowed to fail
1653 *
1654 * The close entry point is called when an interface is de-activated
1655 * by the OS.  The hardware is still under the drivers control, but
1656 * needs to be disabled.  A global MAC reset is issued to stop the
1657 * hardware, and all transmit and receive resources are freed.
1658 **/
1659static int igbvf_close(struct net_device *netdev)
1660{
1661        struct igbvf_adapter *adapter = netdev_priv(netdev);
1662
1663        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1664        igbvf_down(adapter);
1665
1666        igbvf_free_irq(adapter);
1667
1668        igbvf_free_tx_resources(adapter->tx_ring);
1669        igbvf_free_rx_resources(adapter->rx_ring);
1670
1671        return 0;
1672}
1673/**
1674 * igbvf_set_mac - Change the Ethernet Address of the NIC
1675 * @netdev: network interface device structure
1676 * @p: pointer to an address structure
1677 *
1678 * Returns 0 on success, negative on failure
1679 **/
1680static int igbvf_set_mac(struct net_device *netdev, void *p)
1681{
1682        struct igbvf_adapter *adapter = netdev_priv(netdev);
1683        struct e1000_hw *hw = &adapter->hw;
1684        struct sockaddr *addr = p;
1685
1686        if (!is_valid_ether_addr(addr->sa_data))
1687                return -EADDRNOTAVAIL;
1688
1689        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1690
1691        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1692
1693        if (memcmp(addr->sa_data, hw->mac.addr, 6))
1694                return -EADDRNOTAVAIL;
1695
1696        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1697
1698        return 0;
1699}
1700
1701#define UPDATE_VF_COUNTER(reg, name)                                    \
1702        {                                                               \
1703                u32 current_counter = er32(reg);                        \
1704                if (current_counter < adapter->stats.last_##name)       \
1705                        adapter->stats.name += 0x100000000LL;           \
1706                adapter->stats.last_##name = current_counter;           \
1707                adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1708                adapter->stats.name |= current_counter;                 \
1709        }
1710
1711/**
1712 * igbvf_update_stats - Update the board statistics counters
1713 * @adapter: board private structure
1714**/
1715void igbvf_update_stats(struct igbvf_adapter *adapter)
1716{
1717        struct e1000_hw *hw = &adapter->hw;
1718        struct pci_dev *pdev = adapter->pdev;
1719
1720        /*
1721         * Prevent stats update while adapter is being reset, link is down
1722         * or if the pci connection is down.
1723         */
1724        if (adapter->link_speed == 0)
1725                return;
1726
1727        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1728                return;
1729
1730        if (pci_channel_offline(pdev))
1731                return;
1732
1733        UPDATE_VF_COUNTER(VFGPRC, gprc);
1734        UPDATE_VF_COUNTER(VFGORC, gorc);
1735        UPDATE_VF_COUNTER(VFGPTC, gptc);
1736        UPDATE_VF_COUNTER(VFGOTC, gotc);
1737        UPDATE_VF_COUNTER(VFMPRC, mprc);
1738        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1739        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1740        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1741        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1742
1743        /* Fill out the OS statistics structure */
1744        adapter->net_stats.multicast = adapter->stats.mprc;
1745}
1746
1747static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1748{
1749        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1750                 adapter->link_speed,
1751                 ((adapter->link_duplex == FULL_DUPLEX) ?
1752                  "Full Duplex" : "Half Duplex"));
1753}
1754
1755static bool igbvf_has_link(struct igbvf_adapter *adapter)
1756{
1757        struct e1000_hw *hw = &adapter->hw;
1758        s32 ret_val = E1000_SUCCESS;
1759        bool link_active;
1760
1761        /* If interface is down, stay link down */
1762        if (test_bit(__IGBVF_DOWN, &adapter->state))
1763                return false;
1764
1765        ret_val = hw->mac.ops.check_for_link(hw);
1766        link_active = !hw->mac.get_link_status;
1767
1768        /* if check for link returns error we will need to reset */
1769        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770                schedule_work(&adapter->reset_task);
1771
1772        return link_active;
1773}
1774
1775/**
1776 * igbvf_watchdog - Timer Call-back
1777 * @data: pointer to adapter cast into an unsigned long
1778 **/
1779static void igbvf_watchdog(unsigned long data)
1780{
1781        struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1782
1783        /* Do the rest outside of interrupt context */
1784        schedule_work(&adapter->watchdog_task);
1785}
1786
1787static void igbvf_watchdog_task(struct work_struct *work)
1788{
1789        struct igbvf_adapter *adapter = container_of(work,
1790                                                     struct igbvf_adapter,
1791                                                     watchdog_task);
1792        struct net_device *netdev = adapter->netdev;
1793        struct e1000_mac_info *mac = &adapter->hw.mac;
1794        struct igbvf_ring *tx_ring = adapter->tx_ring;
1795        struct e1000_hw *hw = &adapter->hw;
1796        u32 link;
1797        int tx_pending = 0;
1798
1799        link = igbvf_has_link(adapter);
1800
1801        if (link) {
1802                if (!netif_carrier_ok(netdev)) {
1803                        mac->ops.get_link_up_info(&adapter->hw,
1804                                                  &adapter->link_speed,
1805                                                  &adapter->link_duplex);
1806                        igbvf_print_link_info(adapter);
1807
1808                        netif_carrier_on(netdev);
1809                        netif_wake_queue(netdev);
1810                }
1811        } else {
1812                if (netif_carrier_ok(netdev)) {
1813                        adapter->link_speed = 0;
1814                        adapter->link_duplex = 0;
1815                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1816                        netif_carrier_off(netdev);
1817                        netif_stop_queue(netdev);
1818                }
1819        }
1820
1821        if (netif_carrier_ok(netdev)) {
1822                igbvf_update_stats(adapter);
1823        } else {
1824                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1825                              tx_ring->count);
1826                if (tx_pending) {
1827                        /*
1828                         * We've lost link, so the controller stops DMA,
1829                         * but we've got queued Tx work that's never going
1830                         * to get done, so reset controller to flush Tx.
1831                         * (Do the reset outside of interrupt context).
1832                         */
1833                        adapter->tx_timeout_count++;
1834                        schedule_work(&adapter->reset_task);
1835                }
1836        }
1837
1838        /* Cause software interrupt to ensure Rx ring is cleaned */
1839        ew32(EICS, adapter->rx_ring->eims_value);
1840
1841        /* Reset the timer */
1842        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1843                mod_timer(&adapter->watchdog_timer,
1844                          round_jiffies(jiffies + (2 * HZ)));
1845}
1846
1847#define IGBVF_TX_FLAGS_CSUM             0x00000001
1848#define IGBVF_TX_FLAGS_VLAN             0x00000002
1849#define IGBVF_TX_FLAGS_TSO              0x00000004
1850#define IGBVF_TX_FLAGS_IPV4             0x00000008
1851#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1852#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1853
1854static int igbvf_tso(struct igbvf_adapter *adapter,
1855                     struct igbvf_ring *tx_ring,
1856                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1857{
1858        struct e1000_adv_tx_context_desc *context_desc;
1859        unsigned int i;
1860        int err;
1861        struct igbvf_buffer *buffer_info;
1862        u32 info = 0, tu_cmd = 0;
1863        u32 mss_l4len_idx, l4len;
1864        *hdr_len = 0;
1865
1866        if (skb_header_cloned(skb)) {
1867                err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1868                if (err) {
1869                        dev_err(&adapter->pdev->dev,
1870                                "igbvf_tso returning an error\n");
1871                        return err;
1872                }
1873        }
1874
1875        l4len = tcp_hdrlen(skb);
1876        *hdr_len += l4len;
1877
1878        if (skb->protocol == htons(ETH_P_IP)) {
1879                struct iphdr *iph = ip_hdr(skb);
1880                iph->tot_len = 0;
1881                iph->check = 0;
1882                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1883                                                         iph->daddr, 0,
1884                                                         IPPROTO_TCP,
1885                                                         0);
1886        } else if (skb_is_gso_v6(skb)) {
1887                ipv6_hdr(skb)->payload_len = 0;
1888                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1889                                                       &ipv6_hdr(skb)->daddr,
1890                                                       0, IPPROTO_TCP, 0);
1891        }
1892
1893        i = tx_ring->next_to_use;
1894
1895        buffer_info = &tx_ring->buffer_info[i];
1896        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1897        /* VLAN MACLEN IPLEN */
1898        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1899                info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1900        info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1901        *hdr_len += skb_network_offset(skb);
1902        info |= (skb_transport_header(skb) - skb_network_header(skb));
1903        *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1904        context_desc->vlan_macip_lens = cpu_to_le32(info);
1905
1906        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907        tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1908
1909        if (skb->protocol == htons(ETH_P_IP))
1910                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1911        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1912
1913        context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1914
1915        /* MSS L4LEN IDX */
1916        mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1917        mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1918
1919        context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1920        context_desc->seqnum_seed = 0;
1921
1922        buffer_info->time_stamp = jiffies;
1923        buffer_info->next_to_watch = i;
1924        buffer_info->dma = 0;
1925        i++;
1926        if (i == tx_ring->count)
1927                i = 0;
1928
1929        tx_ring->next_to_use = i;
1930
1931        return true;
1932}
1933
1934static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1935                                 struct igbvf_ring *tx_ring,
1936                                 struct sk_buff *skb, u32 tx_flags)
1937{
1938        struct e1000_adv_tx_context_desc *context_desc;
1939        unsigned int i;
1940        struct igbvf_buffer *buffer_info;
1941        u32 info = 0, tu_cmd = 0;
1942
1943        if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1944            (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1945                i = tx_ring->next_to_use;
1946                buffer_info = &tx_ring->buffer_info[i];
1947                context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1948
1949                if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1950                        info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1951
1952                info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953                if (skb->ip_summed == CHECKSUM_PARTIAL)
1954                        info |= (skb_transport_header(skb) -
1955                                 skb_network_header(skb));
1956
1957
1958                context_desc->vlan_macip_lens = cpu_to_le32(info);
1959
1960                tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961
1962                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1963                        switch (skb->protocol) {
1964                        case __constant_htons(ETH_P_IP):
1965                                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1966                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1967                                        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968                                break;
1969                        case __constant_htons(ETH_P_IPV6):
1970                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1971                                        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1972                                break;
1973                        default:
1974                                break;
1975                        }
1976                }
1977
1978                context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979                context_desc->seqnum_seed = 0;
1980                context_desc->mss_l4len_idx = 0;
1981
1982                buffer_info->time_stamp = jiffies;
1983                buffer_info->next_to_watch = i;
1984                buffer_info->dma = 0;
1985                i++;
1986                if (i == tx_ring->count)
1987                        i = 0;
1988                tx_ring->next_to_use = i;
1989
1990                return true;
1991        }
1992
1993        return false;
1994}
1995
1996static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1997{
1998        struct igbvf_adapter *adapter = netdev_priv(netdev);
1999
2000        /* there is enough descriptors then we don't need to worry  */
2001        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2002                return 0;
2003
2004        netif_stop_queue(netdev);
2005
2006        smp_mb();
2007
2008        /* We need to check again just in case room has been made available */
2009        if (igbvf_desc_unused(adapter->tx_ring) < size)
2010                return -EBUSY;
2011
2012        netif_wake_queue(netdev);
2013
2014        ++adapter->restart_queue;
2015        return 0;
2016}
2017
2018#define IGBVF_MAX_TXD_PWR       16
2019#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2020
2021static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2022                                   struct igbvf_ring *tx_ring,
2023                                   struct sk_buff *skb,
2024                                   unsigned int first)
2025{
2026        struct igbvf_buffer *buffer_info;
2027        struct pci_dev *pdev = adapter->pdev;
2028        unsigned int len = skb_headlen(skb);
2029        unsigned int count = 0, i;
2030        unsigned int f;
2031
2032        i = tx_ring->next_to_use;
2033
2034        buffer_info = &tx_ring->buffer_info[i];
2035        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2036        buffer_info->length = len;
2037        /* set time_stamp *before* dma to help avoid a possible race */
2038        buffer_info->time_stamp = jiffies;
2039        buffer_info->next_to_watch = i;
2040        buffer_info->mapped_as_page = false;
2041        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2042                                          DMA_TO_DEVICE);
2043        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044                goto dma_error;
2045
2046
2047        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2048                const struct skb_frag_struct *frag;
2049
2050                count++;
2051                i++;
2052                if (i == tx_ring->count)
2053                        i = 0;
2054
2055                frag = &skb_shinfo(skb)->frags[f];
2056                len = skb_frag_size(frag);
2057
2058                buffer_info = &tx_ring->buffer_info[i];
2059                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060                buffer_info->length = len;
2061                buffer_info->time_stamp = jiffies;
2062                buffer_info->next_to_watch = i;
2063                buffer_info->mapped_as_page = true;
2064                buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2065                                                DMA_TO_DEVICE);
2066                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067                        goto dma_error;
2068        }
2069
2070        tx_ring->buffer_info[i].skb = skb;
2071        tx_ring->buffer_info[first].next_to_watch = i;
2072
2073        return ++count;
2074
2075dma_error:
2076        dev_err(&pdev->dev, "TX DMA map failed\n");
2077
2078        /* clear timestamp and dma mappings for failed buffer_info mapping */
2079        buffer_info->dma = 0;
2080        buffer_info->time_stamp = 0;
2081        buffer_info->length = 0;
2082        buffer_info->next_to_watch = 0;
2083        buffer_info->mapped_as_page = false;
2084        if (count)
2085                count--;
2086
2087        /* clear timestamp and dma mappings for remaining portion of packet */
2088        while (count--) {
2089                if (i==0)
2090                        i += tx_ring->count;
2091                i--;
2092                buffer_info = &tx_ring->buffer_info[i];
2093                igbvf_put_txbuf(adapter, buffer_info);
2094        }
2095
2096        return 0;
2097}
2098
2099static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2100                                      struct igbvf_ring *tx_ring,
2101                                      int tx_flags, int count, u32 paylen,
2102                                      u8 hdr_len)
2103{
2104        union e1000_adv_tx_desc *tx_desc = NULL;
2105        struct igbvf_buffer *buffer_info;
2106        u32 olinfo_status = 0, cmd_type_len;
2107        unsigned int i;
2108
2109        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2110                        E1000_ADVTXD_DCMD_DEXT);
2111
2112        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2113                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2114
2115        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2116                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2117
2118                /* insert tcp checksum */
2119                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2120
2121                /* insert ip checksum */
2122                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2123                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2124
2125        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2126                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2127        }
2128
2129        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2130
2131        i = tx_ring->next_to_use;
2132        while (count--) {
2133                buffer_info = &tx_ring->buffer_info[i];
2134                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2135                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2136                tx_desc->read.cmd_type_len =
2137                         cpu_to_le32(cmd_type_len | buffer_info->length);
2138                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2139                i++;
2140                if (i == tx_ring->count)
2141                        i = 0;
2142        }
2143
2144        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2145        /* Force memory writes to complete before letting h/w
2146         * know there are new descriptors to fetch.  (Only
2147         * applicable for weak-ordered memory model archs,
2148         * such as IA-64). */
2149        wmb();
2150
2151        tx_ring->next_to_use = i;
2152        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2153        /* we need this if more than one processor can write to our tail
2154         * at a time, it syncronizes IO on IA64/Altix systems */
2155        mmiowb();
2156}
2157
2158static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2159                                             struct net_device *netdev,
2160                                             struct igbvf_ring *tx_ring)
2161{
2162        struct igbvf_adapter *adapter = netdev_priv(netdev);
2163        unsigned int first, tx_flags = 0;
2164        u8 hdr_len = 0;
2165        int count = 0;
2166        int tso = 0;
2167
2168        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2169                dev_kfree_skb_any(skb);
2170                return NETDEV_TX_OK;
2171        }
2172
2173        if (skb->len <= 0) {
2174                dev_kfree_skb_any(skb);
2175                return NETDEV_TX_OK;
2176        }
2177
2178        /*
2179         * need: count + 4 desc gap to keep tail from touching
2180         *       + 2 desc gap to keep tail from touching head,
2181         *       + 1 desc for skb->data,
2182         *       + 1 desc for context descriptor,
2183         * head, otherwise try next time
2184         */
2185        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2186                /* this is a hard error */
2187                return NETDEV_TX_BUSY;
2188        }
2189
2190        if (vlan_tx_tag_present(skb)) {
2191                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2192                tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2193        }
2194
2195        if (skb->protocol == htons(ETH_P_IP))
2196                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2197
2198        first = tx_ring->next_to_use;
2199
2200        tso = skb_is_gso(skb) ?
2201                igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2202        if (unlikely(tso < 0)) {
2203                dev_kfree_skb_any(skb);
2204                return NETDEV_TX_OK;
2205        }
2206
2207        if (tso)
2208                tx_flags |= IGBVF_TX_FLAGS_TSO;
2209        else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2210                 (skb->ip_summed == CHECKSUM_PARTIAL))
2211                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2212
2213        /*
2214         * count reflects descriptors mapped, if 0 then mapping error
2215         * has occurred and we need to rewind the descriptor queue
2216         */
2217        count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2218
2219        if (count) {
2220                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2221                                   skb->len, hdr_len);
2222                /* Make sure there is space in the ring for the next send. */
2223                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2224        } else {
2225                dev_kfree_skb_any(skb);
2226                tx_ring->buffer_info[first].time_stamp = 0;
2227                tx_ring->next_to_use = first;
2228        }
2229
2230        return NETDEV_TX_OK;
2231}
2232
2233static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2234                                    struct net_device *netdev)
2235{
2236        struct igbvf_adapter *adapter = netdev_priv(netdev);
2237        struct igbvf_ring *tx_ring;
2238
2239        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2240                dev_kfree_skb_any(skb);
2241                return NETDEV_TX_OK;
2242        }
2243
2244        tx_ring = &adapter->tx_ring[0];
2245
2246        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2247}
2248
2249/**
2250 * igbvf_tx_timeout - Respond to a Tx Hang
2251 * @netdev: network interface device structure
2252 **/
2253static void igbvf_tx_timeout(struct net_device *netdev)
2254{
2255        struct igbvf_adapter *adapter = netdev_priv(netdev);
2256
2257        /* Do the reset outside of interrupt context */
2258        adapter->tx_timeout_count++;
2259        schedule_work(&adapter->reset_task);
2260}
2261
2262static void igbvf_reset_task(struct work_struct *work)
2263{
2264        struct igbvf_adapter *adapter;
2265        adapter = container_of(work, struct igbvf_adapter, reset_task);
2266
2267        igbvf_reinit_locked(adapter);
2268}
2269
2270/**
2271 * igbvf_get_stats - Get System Network Statistics
2272 * @netdev: network interface device structure
2273 *
2274 * Returns the address of the device statistics structure.
2275 * The statistics are actually updated from the timer callback.
2276 **/
2277static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2278{
2279        struct igbvf_adapter *adapter = netdev_priv(netdev);
2280
2281        /* only return the current stats */
2282        return &adapter->net_stats;
2283}
2284
2285/**
2286 * igbvf_change_mtu - Change the Maximum Transfer Unit
2287 * @netdev: network interface device structure
2288 * @new_mtu: new value for maximum frame size
2289 *
2290 * Returns 0 on success, negative on failure
2291 **/
2292static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2293{
2294        struct igbvf_adapter *adapter = netdev_priv(netdev);
2295        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2296
2297        if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2298                dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2299                return -EINVAL;
2300        }
2301
2302#define MAX_STD_JUMBO_FRAME_SIZE 9234
2303        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2304                dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2305                return -EINVAL;
2306        }
2307
2308        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2309                msleep(1);
2310        /* igbvf_down has a dependency on max_frame_size */
2311        adapter->max_frame_size = max_frame;
2312        if (netif_running(netdev))
2313                igbvf_down(adapter);
2314
2315        /*
2316         * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2317         * means we reserve 2 more, this pushes us to allocate from the next
2318         * larger slab size.
2319         * i.e. RXBUFFER_2048 --> size-4096 slab
2320         * However with the new *_jumbo_rx* routines, jumbo receives will use
2321         * fragmented skbs
2322         */
2323
2324        if (max_frame <= 1024)
2325                adapter->rx_buffer_len = 1024;
2326        else if (max_frame <= 2048)
2327                adapter->rx_buffer_len = 2048;
2328        else
2329#if (PAGE_SIZE / 2) > 16384
2330                adapter->rx_buffer_len = 16384;
2331#else
2332                adapter->rx_buffer_len = PAGE_SIZE / 2;
2333#endif
2334
2335
2336        /* adjust allocation if LPE protects us, and we aren't using SBP */
2337        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2338             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2339                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2340                                         ETH_FCS_LEN;
2341
2342        dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2343                 netdev->mtu, new_mtu);
2344        netdev->mtu = new_mtu;
2345
2346        if (netif_running(netdev))
2347                igbvf_up(adapter);
2348        else
2349                igbvf_reset(adapter);
2350
2351        clear_bit(__IGBVF_RESETTING, &adapter->state);
2352
2353        return 0;
2354}
2355
2356static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2357{
2358        switch (cmd) {
2359        default:
2360                return -EOPNOTSUPP;
2361        }
2362}
2363
2364static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2365{
2366        struct net_device *netdev = pci_get_drvdata(pdev);
2367        struct igbvf_adapter *adapter = netdev_priv(netdev);
2368#ifdef CONFIG_PM
2369        int retval = 0;
2370#endif
2371
2372        netif_device_detach(netdev);
2373
2374        if (netif_running(netdev)) {
2375                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2376                igbvf_down(adapter);
2377                igbvf_free_irq(adapter);
2378        }
2379
2380#ifdef CONFIG_PM
2381        retval = pci_save_state(pdev);
2382        if (retval)
2383                return retval;
2384#endif
2385
2386        pci_disable_device(pdev);
2387
2388        return 0;
2389}
2390
2391#ifdef CONFIG_PM
2392static int igbvf_resume(struct pci_dev *pdev)
2393{
2394        struct net_device *netdev = pci_get_drvdata(pdev);
2395        struct igbvf_adapter *adapter = netdev_priv(netdev);
2396        u32 err;
2397
2398        pci_restore_state(pdev);
2399        err = pci_enable_device_mem(pdev);
2400        if (err) {
2401                dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2402                return err;
2403        }
2404
2405        pci_set_master(pdev);
2406
2407        if (netif_running(netdev)) {
2408                err = igbvf_request_irq(adapter);
2409                if (err)
2410                        return err;
2411        }
2412
2413        igbvf_reset(adapter);
2414
2415        if (netif_running(netdev))
2416                igbvf_up(adapter);
2417
2418        netif_device_attach(netdev);
2419
2420        return 0;
2421}
2422#endif
2423
2424static void igbvf_shutdown(struct pci_dev *pdev)
2425{
2426        igbvf_suspend(pdev, PMSG_SUSPEND);
2427}
2428
2429#ifdef CONFIG_NET_POLL_CONTROLLER
2430/*
2431 * Polling 'interrupt' - used by things like netconsole to send skbs
2432 * without having to re-enable interrupts. It's not called while
2433 * the interrupt routine is executing.
2434 */
2435static void igbvf_netpoll(struct net_device *netdev)
2436{
2437        struct igbvf_adapter *adapter = netdev_priv(netdev);
2438
2439        disable_irq(adapter->pdev->irq);
2440
2441        igbvf_clean_tx_irq(adapter->tx_ring);
2442
2443        enable_irq(adapter->pdev->irq);
2444}
2445#endif
2446
2447/**
2448 * igbvf_io_error_detected - called when PCI error is detected
2449 * @pdev: Pointer to PCI device
2450 * @state: The current pci connection state
2451 *
2452 * This function is called after a PCI bus error affecting
2453 * this device has been detected.
2454 */
2455static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2456                                                pci_channel_state_t state)
2457{
2458        struct net_device *netdev = pci_get_drvdata(pdev);
2459        struct igbvf_adapter *adapter = netdev_priv(netdev);
2460
2461        netif_device_detach(netdev);
2462
2463        if (state == pci_channel_io_perm_failure)
2464                return PCI_ERS_RESULT_DISCONNECT;
2465
2466        if (netif_running(netdev))
2467                igbvf_down(adapter);
2468        pci_disable_device(pdev);
2469
2470        /* Request a slot slot reset. */
2471        return PCI_ERS_RESULT_NEED_RESET;
2472}
2473
2474/**
2475 * igbvf_io_slot_reset - called after the pci bus has been reset.
2476 * @pdev: Pointer to PCI device
2477 *
2478 * Restart the card from scratch, as if from a cold-boot. Implementation
2479 * resembles the first-half of the igbvf_resume routine.
2480 */
2481static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2482{
2483        struct net_device *netdev = pci_get_drvdata(pdev);
2484        struct igbvf_adapter *adapter = netdev_priv(netdev);
2485
2486        if (pci_enable_device_mem(pdev)) {
2487                dev_err(&pdev->dev,
2488                        "Cannot re-enable PCI device after reset.\n");
2489                return PCI_ERS_RESULT_DISCONNECT;
2490        }
2491        pci_set_master(pdev);
2492
2493        igbvf_reset(adapter);
2494
2495        return PCI_ERS_RESULT_RECOVERED;
2496}
2497
2498/**
2499 * igbvf_io_resume - called when traffic can start flowing again.
2500 * @pdev: Pointer to PCI device
2501 *
2502 * This callback is called when the error recovery driver tells us that
2503 * its OK to resume normal operation. Implementation resembles the
2504 * second-half of the igbvf_resume routine.
2505 */
2506static void igbvf_io_resume(struct pci_dev *pdev)
2507{
2508        struct net_device *netdev = pci_get_drvdata(pdev);
2509        struct igbvf_adapter *adapter = netdev_priv(netdev);
2510
2511        if (netif_running(netdev)) {
2512                if (igbvf_up(adapter)) {
2513                        dev_err(&pdev->dev,
2514                                "can't bring device back up after reset\n");
2515                        return;
2516                }
2517        }
2518
2519        netif_device_attach(netdev);
2520}
2521
2522static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2523{
2524        struct e1000_hw *hw = &adapter->hw;
2525        struct net_device *netdev = adapter->netdev;
2526        struct pci_dev *pdev = adapter->pdev;
2527
2528        if (hw->mac.type == e1000_vfadapt_i350)
2529                dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2530        else
2531                dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2532        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2533}
2534
2535static int igbvf_set_features(struct net_device *netdev, u32 features)
2536{
2537        struct igbvf_adapter *adapter = netdev_priv(netdev);
2538
2539        if (features & NETIF_F_RXCSUM)
2540                adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2541        else
2542                adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2543
2544        return 0;
2545}
2546
2547static const struct net_device_ops igbvf_netdev_ops = {
2548        .ndo_open                       = igbvf_open,
2549        .ndo_stop                       = igbvf_close,
2550        .ndo_start_xmit                 = igbvf_xmit_frame,
2551        .ndo_get_stats                  = igbvf_get_stats,
2552        .ndo_set_rx_mode                = igbvf_set_multi,
2553        .ndo_set_mac_address            = igbvf_set_mac,
2554        .ndo_change_mtu                 = igbvf_change_mtu,
2555        .ndo_do_ioctl                   = igbvf_ioctl,
2556        .ndo_tx_timeout                 = igbvf_tx_timeout,
2557        .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2558        .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2559#ifdef CONFIG_NET_POLL_CONTROLLER
2560        .ndo_poll_controller            = igbvf_netpoll,
2561#endif
2562        .ndo_set_features               = igbvf_set_features,
2563};
2564
2565/**
2566 * igbvf_probe - Device Initialization Routine
2567 * @pdev: PCI device information struct
2568 * @ent: entry in igbvf_pci_tbl
2569 *
2570 * Returns 0 on success, negative on failure
2571 *
2572 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2573 * The OS initialization, configuring of the adapter private structure,
2574 * and a hardware reset occur.
2575 **/
2576static int __devinit igbvf_probe(struct pci_dev *pdev,
2577                                 const struct pci_device_id *ent)
2578{
2579        struct net_device *netdev;
2580        struct igbvf_adapter *adapter;
2581        struct e1000_hw *hw;
2582        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2583
2584        static int cards_found;
2585        int err, pci_using_dac;
2586
2587        err = pci_enable_device_mem(pdev);
2588        if (err)
2589                return err;
2590
2591        pci_using_dac = 0;
2592        err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2593        if (!err) {
2594                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2595                if (!err)
2596                        pci_using_dac = 1;
2597        } else {
2598                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2599                if (err) {
2600                        err = dma_set_coherent_mask(&pdev->dev,
2601                                                    DMA_BIT_MASK(32));
2602                        if (err) {
2603                                dev_err(&pdev->dev, "No usable DMA "
2604                                        "configuration, aborting\n");
2605                                goto err_dma;
2606                        }
2607                }
2608        }
2609
2610        err = pci_request_regions(pdev, igbvf_driver_name);
2611        if (err)
2612                goto err_pci_reg;
2613
2614        pci_set_master(pdev);
2615
2616        err = -ENOMEM;
2617        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2618        if (!netdev)
2619                goto err_alloc_etherdev;
2620
2621        SET_NETDEV_DEV(netdev, &pdev->dev);
2622
2623        pci_set_drvdata(pdev, netdev);
2624        adapter = netdev_priv(netdev);
2625        hw = &adapter->hw;
2626        adapter->netdev = netdev;
2627        adapter->pdev = pdev;
2628        adapter->ei = ei;
2629        adapter->pba = ei->pba;
2630        adapter->flags = ei->flags;
2631        adapter->hw.back = adapter;
2632        adapter->hw.mac.type = ei->mac;
2633        adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2634
2635        /* PCI config space info */
2636
2637        hw->vendor_id = pdev->vendor;
2638        hw->device_id = pdev->device;
2639        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2640        hw->subsystem_device_id = pdev->subsystem_device;
2641        hw->revision_id = pdev->revision;
2642
2643        err = -EIO;
2644        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2645                                      pci_resource_len(pdev, 0));
2646
2647        if (!adapter->hw.hw_addr)
2648                goto err_ioremap;
2649
2650        if (ei->get_variants) {
2651                err = ei->get_variants(adapter);
2652                if (err)
2653                        goto err_ioremap;
2654        }
2655
2656        /* setup adapter struct */
2657        err = igbvf_sw_init(adapter);
2658        if (err)
2659                goto err_sw_init;
2660
2661        /* construct the net_device struct */
2662        netdev->netdev_ops = &igbvf_netdev_ops;
2663
2664        igbvf_set_ethtool_ops(netdev);
2665        netdev->watchdog_timeo = 5 * HZ;
2666        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2667
2668        adapter->bd_number = cards_found++;
2669
2670        netdev->hw_features = NETIF_F_SG |
2671                           NETIF_F_IP_CSUM |
2672                           NETIF_F_IPV6_CSUM |
2673                           NETIF_F_TSO |
2674                           NETIF_F_TSO6 |
2675                           NETIF_F_RXCSUM;
2676
2677        netdev->features = netdev->hw_features |
2678                           NETIF_F_HW_VLAN_TX |
2679                           NETIF_F_HW_VLAN_RX |
2680                           NETIF_F_HW_VLAN_FILTER;
2681
2682        if (pci_using_dac)
2683                netdev->features |= NETIF_F_HIGHDMA;
2684
2685        netdev->vlan_features |= NETIF_F_TSO;
2686        netdev->vlan_features |= NETIF_F_TSO6;
2687        netdev->vlan_features |= NETIF_F_IP_CSUM;
2688        netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2689        netdev->vlan_features |= NETIF_F_SG;
2690
2691        /*reset the controller to put the device in a known good state */
2692        err = hw->mac.ops.reset_hw(hw);
2693        if (err) {
2694                dev_info(&pdev->dev,
2695                         "PF still in reset state, assigning new address."
2696                         " Is the PF interface up?\n");
2697                dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2698        } else {
2699                err = hw->mac.ops.read_mac_addr(hw);
2700                if (err) {
2701                        dev_err(&pdev->dev, "Error reading MAC address\n");
2702                        goto err_hw_init;
2703                }
2704        }
2705
2706        memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2707        memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2708
2709        if (!is_valid_ether_addr(netdev->perm_addr)) {
2710                dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2711                        netdev->dev_addr);
2712                err = -EIO;
2713                goto err_hw_init;
2714        }
2715
2716        setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2717                    (unsigned long) adapter);
2718
2719        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2720        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2721
2722        /* ring size defaults */
2723        adapter->rx_ring->count = 1024;
2724        adapter->tx_ring->count = 1024;
2725
2726        /* reset the hardware with the new settings */
2727        igbvf_reset(adapter);
2728
2729        strcpy(netdev->name, "eth%d");
2730        err = register_netdev(netdev);
2731        if (err)
2732                goto err_hw_init;
2733
2734        /* tell the stack to leave us alone until igbvf_open() is called */
2735        netif_carrier_off(netdev);
2736        netif_stop_queue(netdev);
2737
2738        igbvf_print_device_info(adapter);
2739
2740        igbvf_initialize_last_counter_stats(adapter);
2741
2742        return 0;
2743
2744err_hw_init:
2745        kfree(adapter->tx_ring);
2746        kfree(adapter->rx_ring);
2747err_sw_init:
2748        igbvf_reset_interrupt_capability(adapter);
2749        iounmap(adapter->hw.hw_addr);
2750err_ioremap:
2751        free_netdev(netdev);
2752err_alloc_etherdev:
2753        pci_release_regions(pdev);
2754err_pci_reg:
2755err_dma:
2756        pci_disable_device(pdev);
2757        return err;
2758}
2759
2760/**
2761 * igbvf_remove - Device Removal Routine
2762 * @pdev: PCI device information struct
2763 *
2764 * igbvf_remove is called by the PCI subsystem to alert the driver
2765 * that it should release a PCI device.  The could be caused by a
2766 * Hot-Plug event, or because the driver is going to be removed from
2767 * memory.
2768 **/
2769static void __devexit igbvf_remove(struct pci_dev *pdev)
2770{
2771        struct net_device *netdev = pci_get_drvdata(pdev);
2772        struct igbvf_adapter *adapter = netdev_priv(netdev);
2773        struct e1000_hw *hw = &adapter->hw;
2774
2775        /*
2776         * The watchdog timer may be rescheduled, so explicitly
2777         * disable it from being rescheduled.
2778         */
2779        set_bit(__IGBVF_DOWN, &adapter->state);
2780        del_timer_sync(&adapter->watchdog_timer);
2781
2782        cancel_work_sync(&adapter->reset_task);
2783        cancel_work_sync(&adapter->watchdog_task);
2784
2785        unregister_netdev(netdev);
2786
2787        igbvf_reset_interrupt_capability(adapter);
2788
2789        /*
2790         * it is important to delete the napi struct prior to freeing the
2791         * rx ring so that you do not end up with null pointer refs
2792         */
2793        netif_napi_del(&adapter->rx_ring->napi);
2794        kfree(adapter->tx_ring);
2795        kfree(adapter->rx_ring);
2796
2797        iounmap(hw->hw_addr);
2798        if (hw->flash_address)
2799                iounmap(hw->flash_address);
2800        pci_release_regions(pdev);
2801
2802        free_netdev(netdev);
2803
2804        pci_disable_device(pdev);
2805}
2806
2807/* PCI Error Recovery (ERS) */
2808static struct pci_error_handlers igbvf_err_handler = {
2809        .error_detected = igbvf_io_error_detected,
2810        .slot_reset = igbvf_io_slot_reset,
2811        .resume = igbvf_io_resume,
2812};
2813
2814static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2815        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2816        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2817        { } /* terminate list */
2818};
2819MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2820
2821/* PCI Device API Driver */
2822static struct pci_driver igbvf_driver = {
2823        .name     = igbvf_driver_name,
2824        .id_table = igbvf_pci_tbl,
2825        .probe    = igbvf_probe,
2826        .remove   = __devexit_p(igbvf_remove),
2827#ifdef CONFIG_PM
2828        /* Power Management Hooks */
2829        .suspend  = igbvf_suspend,
2830        .resume   = igbvf_resume,
2831#endif
2832        .shutdown = igbvf_shutdown,
2833        .err_handler = &igbvf_err_handler
2834};
2835
2836/**
2837 * igbvf_init_module - Driver Registration Routine
2838 *
2839 * igbvf_init_module is the first routine called when the driver is
2840 * loaded. All it does is register with the PCI subsystem.
2841 **/
2842static int __init igbvf_init_module(void)
2843{
2844        int ret;
2845        printk(KERN_INFO "%s - version %s\n",
2846               igbvf_driver_string, igbvf_driver_version);
2847        printk(KERN_INFO "%s\n", igbvf_copyright);
2848
2849        ret = pci_register_driver(&igbvf_driver);
2850
2851        return ret;
2852}
2853module_init(igbvf_init_module);
2854
2855/**
2856 * igbvf_exit_module - Driver Exit Cleanup Routine
2857 *
2858 * igbvf_exit_module is called just before the driver is removed
2859 * from memory.
2860 **/
2861static void __exit igbvf_exit_module(void)
2862{
2863        pci_unregister_driver(&igbvf_driver);
2864}
2865module_exit(igbvf_exit_module);
2866
2867
2868MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2870MODULE_LICENSE("GPL");
2871MODULE_VERSION(DRV_VERSION);
2872
2873/* netdev.c */
2874