linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
  28#include <linux/regulator/consumer.h>
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
  31#include <linux/module.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/regulator.h>
  35
  36#include "dummy.h"
  37
  38#define rdev_crit(rdev, fmt, ...)                                       \
  39        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_err(rdev, fmt, ...)                                        \
  41        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_warn(rdev, fmt, ...)                                       \
  43        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_info(rdev, fmt, ...)                                       \
  45        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_dbg(rdev, fmt, ...)                                        \
  47        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_list);
  51static LIST_HEAD(regulator_map_list);
  52static bool has_full_constraints;
  53static bool board_wants_dummy_regulator;
  54
  55#ifdef CONFIG_DEBUG_FS
  56static struct dentry *debugfs_root;
  57#endif
  58
  59/*
  60 * struct regulator_map
  61 *
  62 * Used to provide symbolic supply names to devices.
  63 */
  64struct regulator_map {
  65        struct list_head list;
  66        const char *dev_name;   /* The dev_name() for the consumer */
  67        const char *supply;
  68        struct regulator_dev *regulator;
  69};
  70
  71/*
  72 * struct regulator
  73 *
  74 * One for each consumer device.
  75 */
  76struct regulator {
  77        struct device *dev;
  78        struct list_head list;
  79        int uA_load;
  80        int min_uV;
  81        int max_uV;
  82        char *supply_name;
  83        struct device_attribute dev_attr;
  84        struct regulator_dev *rdev;
  85#ifdef CONFIG_DEBUG_FS
  86        struct dentry *debugfs;
  87#endif
  88};
  89
  90static int _regulator_is_enabled(struct regulator_dev *rdev);
  91static int _regulator_disable(struct regulator_dev *rdev);
  92static int _regulator_get_voltage(struct regulator_dev *rdev);
  93static int _regulator_get_current_limit(struct regulator_dev *rdev);
  94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  95static void _notifier_call_chain(struct regulator_dev *rdev,
  96                                  unsigned long event, void *data);
  97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  98                                     int min_uV, int max_uV);
  99static struct regulator *create_regulator(struct regulator_dev *rdev,
 100                                          struct device *dev,
 101                                          const char *supply_name);
 102
 103static const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105        if (rdev->constraints && rdev->constraints->name)
 106                return rdev->constraints->name;
 107        else if (rdev->desc->name)
 108                return rdev->desc->name;
 109        else
 110                return "";
 111}
 112
 113/* gets the regulator for a given consumer device */
 114static struct regulator *get_device_regulator(struct device *dev)
 115{
 116        struct regulator *regulator = NULL;
 117        struct regulator_dev *rdev;
 118
 119        mutex_lock(&regulator_list_mutex);
 120        list_for_each_entry(rdev, &regulator_list, list) {
 121                mutex_lock(&rdev->mutex);
 122                list_for_each_entry(regulator, &rdev->consumer_list, list) {
 123                        if (regulator->dev == dev) {
 124                                mutex_unlock(&rdev->mutex);
 125                                mutex_unlock(&regulator_list_mutex);
 126                                return regulator;
 127                        }
 128                }
 129                mutex_unlock(&rdev->mutex);
 130        }
 131        mutex_unlock(&regulator_list_mutex);
 132        return NULL;
 133}
 134
 135/* Platform voltage constraint check */
 136static int regulator_check_voltage(struct regulator_dev *rdev,
 137                                   int *min_uV, int *max_uV)
 138{
 139        BUG_ON(*min_uV > *max_uV);
 140
 141        if (!rdev->constraints) {
 142                rdev_err(rdev, "no constraints\n");
 143                return -ENODEV;
 144        }
 145        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 146                rdev_err(rdev, "operation not allowed\n");
 147                return -EPERM;
 148        }
 149
 150        if (*max_uV > rdev->constraints->max_uV)
 151                *max_uV = rdev->constraints->max_uV;
 152        if (*min_uV < rdev->constraints->min_uV)
 153                *min_uV = rdev->constraints->min_uV;
 154
 155        if (*min_uV > *max_uV) {
 156                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 157                         *min_uV, *max_uV);
 158                return -EINVAL;
 159        }
 160
 161        return 0;
 162}
 163
 164/* Make sure we select a voltage that suits the needs of all
 165 * regulator consumers
 166 */
 167static int regulator_check_consumers(struct regulator_dev *rdev,
 168                                     int *min_uV, int *max_uV)
 169{
 170        struct regulator *regulator;
 171
 172        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 173                /*
 174                 * Assume consumers that didn't say anything are OK
 175                 * with anything in the constraint range.
 176                 */
 177                if (!regulator->min_uV && !regulator->max_uV)
 178                        continue;
 179
 180                if (*max_uV > regulator->max_uV)
 181                        *max_uV = regulator->max_uV;
 182                if (*min_uV < regulator->min_uV)
 183                        *min_uV = regulator->min_uV;
 184        }
 185
 186        if (*min_uV > *max_uV)
 187                return -EINVAL;
 188
 189        return 0;
 190}
 191
 192/* current constraint check */
 193static int regulator_check_current_limit(struct regulator_dev *rdev,
 194                                        int *min_uA, int *max_uA)
 195{
 196        BUG_ON(*min_uA > *max_uA);
 197
 198        if (!rdev->constraints) {
 199                rdev_err(rdev, "no constraints\n");
 200                return -ENODEV;
 201        }
 202        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 203                rdev_err(rdev, "operation not allowed\n");
 204                return -EPERM;
 205        }
 206
 207        if (*max_uA > rdev->constraints->max_uA)
 208                *max_uA = rdev->constraints->max_uA;
 209        if (*min_uA < rdev->constraints->min_uA)
 210                *min_uA = rdev->constraints->min_uA;
 211
 212        if (*min_uA > *max_uA) {
 213                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 214                         *min_uA, *max_uA);
 215                return -EINVAL;
 216        }
 217
 218        return 0;
 219}
 220
 221/* operating mode constraint check */
 222static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 223{
 224        switch (*mode) {
 225        case REGULATOR_MODE_FAST:
 226        case REGULATOR_MODE_NORMAL:
 227        case REGULATOR_MODE_IDLE:
 228        case REGULATOR_MODE_STANDBY:
 229                break;
 230        default:
 231                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 232                return -EINVAL;
 233        }
 234
 235        if (!rdev->constraints) {
 236                rdev_err(rdev, "no constraints\n");
 237                return -ENODEV;
 238        }
 239        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 240                rdev_err(rdev, "operation not allowed\n");
 241                return -EPERM;
 242        }
 243
 244        /* The modes are bitmasks, the most power hungry modes having
 245         * the lowest values. If the requested mode isn't supported
 246         * try higher modes. */
 247        while (*mode) {
 248                if (rdev->constraints->valid_modes_mask & *mode)
 249                        return 0;
 250                *mode /= 2;
 251        }
 252
 253        return -EINVAL;
 254}
 255
 256/* dynamic regulator mode switching constraint check */
 257static int regulator_check_drms(struct regulator_dev *rdev)
 258{
 259        if (!rdev->constraints) {
 260                rdev_err(rdev, "no constraints\n");
 261                return -ENODEV;
 262        }
 263        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 264                rdev_err(rdev, "operation not allowed\n");
 265                return -EPERM;
 266        }
 267        return 0;
 268}
 269
 270static ssize_t device_requested_uA_show(struct device *dev,
 271                             struct device_attribute *attr, char *buf)
 272{
 273        struct regulator *regulator;
 274
 275        regulator = get_device_regulator(dev);
 276        if (regulator == NULL)
 277                return 0;
 278
 279        return sprintf(buf, "%d\n", regulator->uA_load);
 280}
 281
 282static ssize_t regulator_uV_show(struct device *dev,
 283                                struct device_attribute *attr, char *buf)
 284{
 285        struct regulator_dev *rdev = dev_get_drvdata(dev);
 286        ssize_t ret;
 287
 288        mutex_lock(&rdev->mutex);
 289        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 290        mutex_unlock(&rdev->mutex);
 291
 292        return ret;
 293}
 294static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 295
 296static ssize_t regulator_uA_show(struct device *dev,
 297                                struct device_attribute *attr, char *buf)
 298{
 299        struct regulator_dev *rdev = dev_get_drvdata(dev);
 300
 301        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 302}
 303static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 304
 305static ssize_t regulator_name_show(struct device *dev,
 306                             struct device_attribute *attr, char *buf)
 307{
 308        struct regulator_dev *rdev = dev_get_drvdata(dev);
 309
 310        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 311}
 312
 313static ssize_t regulator_print_opmode(char *buf, int mode)
 314{
 315        switch (mode) {
 316        case REGULATOR_MODE_FAST:
 317                return sprintf(buf, "fast\n");
 318        case REGULATOR_MODE_NORMAL:
 319                return sprintf(buf, "normal\n");
 320        case REGULATOR_MODE_IDLE:
 321                return sprintf(buf, "idle\n");
 322        case REGULATOR_MODE_STANDBY:
 323                return sprintf(buf, "standby\n");
 324        }
 325        return sprintf(buf, "unknown\n");
 326}
 327
 328static ssize_t regulator_opmode_show(struct device *dev,
 329                                    struct device_attribute *attr, char *buf)
 330{
 331        struct regulator_dev *rdev = dev_get_drvdata(dev);
 332
 333        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 334}
 335static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 336
 337static ssize_t regulator_print_state(char *buf, int state)
 338{
 339        if (state > 0)
 340                return sprintf(buf, "enabled\n");
 341        else if (state == 0)
 342                return sprintf(buf, "disabled\n");
 343        else
 344                return sprintf(buf, "unknown\n");
 345}
 346
 347static ssize_t regulator_state_show(struct device *dev,
 348                                   struct device_attribute *attr, char *buf)
 349{
 350        struct regulator_dev *rdev = dev_get_drvdata(dev);
 351        ssize_t ret;
 352
 353        mutex_lock(&rdev->mutex);
 354        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 355        mutex_unlock(&rdev->mutex);
 356
 357        return ret;
 358}
 359static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 360
 361static ssize_t regulator_status_show(struct device *dev,
 362                                   struct device_attribute *attr, char *buf)
 363{
 364        struct regulator_dev *rdev = dev_get_drvdata(dev);
 365        int status;
 366        char *label;
 367
 368        status = rdev->desc->ops->get_status(rdev);
 369        if (status < 0)
 370                return status;
 371
 372        switch (status) {
 373        case REGULATOR_STATUS_OFF:
 374                label = "off";
 375                break;
 376        case REGULATOR_STATUS_ON:
 377                label = "on";
 378                break;
 379        case REGULATOR_STATUS_ERROR:
 380                label = "error";
 381                break;
 382        case REGULATOR_STATUS_FAST:
 383                label = "fast";
 384                break;
 385        case REGULATOR_STATUS_NORMAL:
 386                label = "normal";
 387                break;
 388        case REGULATOR_STATUS_IDLE:
 389                label = "idle";
 390                break;
 391        case REGULATOR_STATUS_STANDBY:
 392                label = "standby";
 393                break;
 394        default:
 395                return -ERANGE;
 396        }
 397
 398        return sprintf(buf, "%s\n", label);
 399}
 400static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 401
 402static ssize_t regulator_min_uA_show(struct device *dev,
 403                                    struct device_attribute *attr, char *buf)
 404{
 405        struct regulator_dev *rdev = dev_get_drvdata(dev);
 406
 407        if (!rdev->constraints)
 408                return sprintf(buf, "constraint not defined\n");
 409
 410        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 411}
 412static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 413
 414static ssize_t regulator_max_uA_show(struct device *dev,
 415                                    struct device_attribute *attr, char *buf)
 416{
 417        struct regulator_dev *rdev = dev_get_drvdata(dev);
 418
 419        if (!rdev->constraints)
 420                return sprintf(buf, "constraint not defined\n");
 421
 422        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 423}
 424static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 425
 426static ssize_t regulator_min_uV_show(struct device *dev,
 427                                    struct device_attribute *attr, char *buf)
 428{
 429        struct regulator_dev *rdev = dev_get_drvdata(dev);
 430
 431        if (!rdev->constraints)
 432                return sprintf(buf, "constraint not defined\n");
 433
 434        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 435}
 436static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 437
 438static ssize_t regulator_max_uV_show(struct device *dev,
 439                                    struct device_attribute *attr, char *buf)
 440{
 441        struct regulator_dev *rdev = dev_get_drvdata(dev);
 442
 443        if (!rdev->constraints)
 444                return sprintf(buf, "constraint not defined\n");
 445
 446        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 447}
 448static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 449
 450static ssize_t regulator_total_uA_show(struct device *dev,
 451                                      struct device_attribute *attr, char *buf)
 452{
 453        struct regulator_dev *rdev = dev_get_drvdata(dev);
 454        struct regulator *regulator;
 455        int uA = 0;
 456
 457        mutex_lock(&rdev->mutex);
 458        list_for_each_entry(regulator, &rdev->consumer_list, list)
 459                uA += regulator->uA_load;
 460        mutex_unlock(&rdev->mutex);
 461        return sprintf(buf, "%d\n", uA);
 462}
 463static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 464
 465static ssize_t regulator_num_users_show(struct device *dev,
 466                                      struct device_attribute *attr, char *buf)
 467{
 468        struct regulator_dev *rdev = dev_get_drvdata(dev);
 469        return sprintf(buf, "%d\n", rdev->use_count);
 470}
 471
 472static ssize_t regulator_type_show(struct device *dev,
 473                                  struct device_attribute *attr, char *buf)
 474{
 475        struct regulator_dev *rdev = dev_get_drvdata(dev);
 476
 477        switch (rdev->desc->type) {
 478        case REGULATOR_VOLTAGE:
 479                return sprintf(buf, "voltage\n");
 480        case REGULATOR_CURRENT:
 481                return sprintf(buf, "current\n");
 482        }
 483        return sprintf(buf, "unknown\n");
 484}
 485
 486static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 487                                struct device_attribute *attr, char *buf)
 488{
 489        struct regulator_dev *rdev = dev_get_drvdata(dev);
 490
 491        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 492}
 493static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 494                regulator_suspend_mem_uV_show, NULL);
 495
 496static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 497                                struct device_attribute *attr, char *buf)
 498{
 499        struct regulator_dev *rdev = dev_get_drvdata(dev);
 500
 501        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 502}
 503static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 504                regulator_suspend_disk_uV_show, NULL);
 505
 506static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 507                                struct device_attribute *attr, char *buf)
 508{
 509        struct regulator_dev *rdev = dev_get_drvdata(dev);
 510
 511        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 512}
 513static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 514                regulator_suspend_standby_uV_show, NULL);
 515
 516static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 517                                struct device_attribute *attr, char *buf)
 518{
 519        struct regulator_dev *rdev = dev_get_drvdata(dev);
 520
 521        return regulator_print_opmode(buf,
 522                rdev->constraints->state_mem.mode);
 523}
 524static DEVICE_ATTR(suspend_mem_mode, 0444,
 525                regulator_suspend_mem_mode_show, NULL);
 526
 527static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 528                                struct device_attribute *attr, char *buf)
 529{
 530        struct regulator_dev *rdev = dev_get_drvdata(dev);
 531
 532        return regulator_print_opmode(buf,
 533                rdev->constraints->state_disk.mode);
 534}
 535static DEVICE_ATTR(suspend_disk_mode, 0444,
 536                regulator_suspend_disk_mode_show, NULL);
 537
 538static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 539                                struct device_attribute *attr, char *buf)
 540{
 541        struct regulator_dev *rdev = dev_get_drvdata(dev);
 542
 543        return regulator_print_opmode(buf,
 544                rdev->constraints->state_standby.mode);
 545}
 546static DEVICE_ATTR(suspend_standby_mode, 0444,
 547                regulator_suspend_standby_mode_show, NULL);
 548
 549static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 550                                   struct device_attribute *attr, char *buf)
 551{
 552        struct regulator_dev *rdev = dev_get_drvdata(dev);
 553
 554        return regulator_print_state(buf,
 555                        rdev->constraints->state_mem.enabled);
 556}
 557static DEVICE_ATTR(suspend_mem_state, 0444,
 558                regulator_suspend_mem_state_show, NULL);
 559
 560static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 561                                   struct device_attribute *attr, char *buf)
 562{
 563        struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565        return regulator_print_state(buf,
 566                        rdev->constraints->state_disk.enabled);
 567}
 568static DEVICE_ATTR(suspend_disk_state, 0444,
 569                regulator_suspend_disk_state_show, NULL);
 570
 571static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 572                                   struct device_attribute *attr, char *buf)
 573{
 574        struct regulator_dev *rdev = dev_get_drvdata(dev);
 575
 576        return regulator_print_state(buf,
 577                        rdev->constraints->state_standby.enabled);
 578}
 579static DEVICE_ATTR(suspend_standby_state, 0444,
 580                regulator_suspend_standby_state_show, NULL);
 581
 582
 583/*
 584 * These are the only attributes are present for all regulators.
 585 * Other attributes are a function of regulator functionality.
 586 */
 587static struct device_attribute regulator_dev_attrs[] = {
 588        __ATTR(name, 0444, regulator_name_show, NULL),
 589        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 590        __ATTR(type, 0444, regulator_type_show, NULL),
 591        __ATTR_NULL,
 592};
 593
 594static void regulator_dev_release(struct device *dev)
 595{
 596        struct regulator_dev *rdev = dev_get_drvdata(dev);
 597        kfree(rdev);
 598}
 599
 600static struct class regulator_class = {
 601        .name = "regulator",
 602        .dev_release = regulator_dev_release,
 603        .dev_attrs = regulator_dev_attrs,
 604};
 605
 606/* Calculate the new optimum regulator operating mode based on the new total
 607 * consumer load. All locks held by caller */
 608static void drms_uA_update(struct regulator_dev *rdev)
 609{
 610        struct regulator *sibling;
 611        int current_uA = 0, output_uV, input_uV, err;
 612        unsigned int mode;
 613
 614        err = regulator_check_drms(rdev);
 615        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 616            (!rdev->desc->ops->get_voltage &&
 617             !rdev->desc->ops->get_voltage_sel) ||
 618            !rdev->desc->ops->set_mode)
 619                return;
 620
 621        /* get output voltage */
 622        output_uV = _regulator_get_voltage(rdev);
 623        if (output_uV <= 0)
 624                return;
 625
 626        /* get input voltage */
 627        input_uV = 0;
 628        if (rdev->supply)
 629                input_uV = _regulator_get_voltage(rdev);
 630        if (input_uV <= 0)
 631                input_uV = rdev->constraints->input_uV;
 632        if (input_uV <= 0)
 633                return;
 634
 635        /* calc total requested load */
 636        list_for_each_entry(sibling, &rdev->consumer_list, list)
 637                current_uA += sibling->uA_load;
 638
 639        /* now get the optimum mode for our new total regulator load */
 640        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 641                                                  output_uV, current_uA);
 642
 643        /* check the new mode is allowed */
 644        err = regulator_mode_constrain(rdev, &mode);
 645        if (err == 0)
 646                rdev->desc->ops->set_mode(rdev, mode);
 647}
 648
 649static int suspend_set_state(struct regulator_dev *rdev,
 650        struct regulator_state *rstate)
 651{
 652        int ret = 0;
 653        bool can_set_state;
 654
 655        can_set_state = rdev->desc->ops->set_suspend_enable &&
 656                rdev->desc->ops->set_suspend_disable;
 657
 658        /* If we have no suspend mode configration don't set anything;
 659         * only warn if the driver actually makes the suspend mode
 660         * configurable.
 661         */
 662        if (!rstate->enabled && !rstate->disabled) {
 663                if (can_set_state)
 664                        rdev_warn(rdev, "No configuration\n");
 665                return 0;
 666        }
 667
 668        if (rstate->enabled && rstate->disabled) {
 669                rdev_err(rdev, "invalid configuration\n");
 670                return -EINVAL;
 671        }
 672
 673        if (!can_set_state) {
 674                rdev_err(rdev, "no way to set suspend state\n");
 675                return -EINVAL;
 676        }
 677
 678        if (rstate->enabled)
 679                ret = rdev->desc->ops->set_suspend_enable(rdev);
 680        else
 681                ret = rdev->desc->ops->set_suspend_disable(rdev);
 682        if (ret < 0) {
 683                rdev_err(rdev, "failed to enabled/disable\n");
 684                return ret;
 685        }
 686
 687        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 688                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 689                if (ret < 0) {
 690                        rdev_err(rdev, "failed to set voltage\n");
 691                        return ret;
 692                }
 693        }
 694
 695        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 696                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 697                if (ret < 0) {
 698                        rdev_err(rdev, "failed to set mode\n");
 699                        return ret;
 700                }
 701        }
 702        return ret;
 703}
 704
 705/* locks held by caller */
 706static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 707{
 708        if (!rdev->constraints)
 709                return -EINVAL;
 710
 711        switch (state) {
 712        case PM_SUSPEND_STANDBY:
 713                return suspend_set_state(rdev,
 714                        &rdev->constraints->state_standby);
 715        case PM_SUSPEND_MEM:
 716                return suspend_set_state(rdev,
 717                        &rdev->constraints->state_mem);
 718        case PM_SUSPEND_MAX:
 719                return suspend_set_state(rdev,
 720                        &rdev->constraints->state_disk);
 721        default:
 722                return -EINVAL;
 723        }
 724}
 725
 726static void print_constraints(struct regulator_dev *rdev)
 727{
 728        struct regulation_constraints *constraints = rdev->constraints;
 729        char buf[80] = "";
 730        int count = 0;
 731        int ret;
 732
 733        if (constraints->min_uV && constraints->max_uV) {
 734                if (constraints->min_uV == constraints->max_uV)
 735                        count += sprintf(buf + count, "%d mV ",
 736                                         constraints->min_uV / 1000);
 737                else
 738                        count += sprintf(buf + count, "%d <--> %d mV ",
 739                                         constraints->min_uV / 1000,
 740                                         constraints->max_uV / 1000);
 741        }
 742
 743        if (!constraints->min_uV ||
 744            constraints->min_uV != constraints->max_uV) {
 745                ret = _regulator_get_voltage(rdev);
 746                if (ret > 0)
 747                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 748        }
 749
 750        if (constraints->uV_offset)
 751                count += sprintf(buf, "%dmV offset ",
 752                                 constraints->uV_offset / 1000);
 753
 754        if (constraints->min_uA && constraints->max_uA) {
 755                if (constraints->min_uA == constraints->max_uA)
 756                        count += sprintf(buf + count, "%d mA ",
 757                                         constraints->min_uA / 1000);
 758                else
 759                        count += sprintf(buf + count, "%d <--> %d mA ",
 760                                         constraints->min_uA / 1000,
 761                                         constraints->max_uA / 1000);
 762        }
 763
 764        if (!constraints->min_uA ||
 765            constraints->min_uA != constraints->max_uA) {
 766                ret = _regulator_get_current_limit(rdev);
 767                if (ret > 0)
 768                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 769        }
 770
 771        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 772                count += sprintf(buf + count, "fast ");
 773        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 774                count += sprintf(buf + count, "normal ");
 775        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 776                count += sprintf(buf + count, "idle ");
 777        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 778                count += sprintf(buf + count, "standby");
 779
 780        rdev_info(rdev, "%s\n", buf);
 781}
 782
 783static int machine_constraints_voltage(struct regulator_dev *rdev,
 784        struct regulation_constraints *constraints)
 785{
 786        struct regulator_ops *ops = rdev->desc->ops;
 787        int ret;
 788
 789        /* do we need to apply the constraint voltage */
 790        if (rdev->constraints->apply_uV &&
 791            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 792                ret = _regulator_do_set_voltage(rdev,
 793                                                rdev->constraints->min_uV,
 794                                                rdev->constraints->max_uV);
 795                if (ret < 0) {
 796                        rdev_err(rdev, "failed to apply %duV constraint\n",
 797                                 rdev->constraints->min_uV);
 798                        return ret;
 799                }
 800        }
 801
 802        /* constrain machine-level voltage specs to fit
 803         * the actual range supported by this regulator.
 804         */
 805        if (ops->list_voltage && rdev->desc->n_voltages) {
 806                int     count = rdev->desc->n_voltages;
 807                int     i;
 808                int     min_uV = INT_MAX;
 809                int     max_uV = INT_MIN;
 810                int     cmin = constraints->min_uV;
 811                int     cmax = constraints->max_uV;
 812
 813                /* it's safe to autoconfigure fixed-voltage supplies
 814                   and the constraints are used by list_voltage. */
 815                if (count == 1 && !cmin) {
 816                        cmin = 1;
 817                        cmax = INT_MAX;
 818                        constraints->min_uV = cmin;
 819                        constraints->max_uV = cmax;
 820                }
 821
 822                /* voltage constraints are optional */
 823                if ((cmin == 0) && (cmax == 0))
 824                        return 0;
 825
 826                /* else require explicit machine-level constraints */
 827                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 828                        rdev_err(rdev, "invalid voltage constraints\n");
 829                        return -EINVAL;
 830                }
 831
 832                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 833                for (i = 0; i < count; i++) {
 834                        int     value;
 835
 836                        value = ops->list_voltage(rdev, i);
 837                        if (value <= 0)
 838                                continue;
 839
 840                        /* maybe adjust [min_uV..max_uV] */
 841                        if (value >= cmin && value < min_uV)
 842                                min_uV = value;
 843                        if (value <= cmax && value > max_uV)
 844                                max_uV = value;
 845                }
 846
 847                /* final: [min_uV..max_uV] valid iff constraints valid */
 848                if (max_uV < min_uV) {
 849                        rdev_err(rdev, "unsupportable voltage constraints\n");
 850                        return -EINVAL;
 851                }
 852
 853                /* use regulator's subset of machine constraints */
 854                if (constraints->min_uV < min_uV) {
 855                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 856                                 constraints->min_uV, min_uV);
 857                        constraints->min_uV = min_uV;
 858                }
 859                if (constraints->max_uV > max_uV) {
 860                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 861                                 constraints->max_uV, max_uV);
 862                        constraints->max_uV = max_uV;
 863                }
 864        }
 865
 866        return 0;
 867}
 868
 869/**
 870 * set_machine_constraints - sets regulator constraints
 871 * @rdev: regulator source
 872 * @constraints: constraints to apply
 873 *
 874 * Allows platform initialisation code to define and constrain
 875 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 876 * Constraints *must* be set by platform code in order for some
 877 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 878 * set_mode.
 879 */
 880static int set_machine_constraints(struct regulator_dev *rdev,
 881        const struct regulation_constraints *constraints)
 882{
 883        int ret = 0;
 884        struct regulator_ops *ops = rdev->desc->ops;
 885
 886        rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 887                                    GFP_KERNEL);
 888        if (!rdev->constraints)
 889                return -ENOMEM;
 890
 891        ret = machine_constraints_voltage(rdev, rdev->constraints);
 892        if (ret != 0)
 893                goto out;
 894
 895        /* do we need to setup our suspend state */
 896        if (constraints->initial_state) {
 897                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 898                if (ret < 0) {
 899                        rdev_err(rdev, "failed to set suspend state\n");
 900                        goto out;
 901                }
 902        }
 903
 904        if (constraints->initial_mode) {
 905                if (!ops->set_mode) {
 906                        rdev_err(rdev, "no set_mode operation\n");
 907                        ret = -EINVAL;
 908                        goto out;
 909                }
 910
 911                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 912                if (ret < 0) {
 913                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 914                        goto out;
 915                }
 916        }
 917
 918        /* If the constraints say the regulator should be on at this point
 919         * and we have control then make sure it is enabled.
 920         */
 921        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 922            ops->enable) {
 923                ret = ops->enable(rdev);
 924                if (ret < 0) {
 925                        rdev_err(rdev, "failed to enable\n");
 926                        goto out;
 927                }
 928        }
 929
 930        print_constraints(rdev);
 931        return 0;
 932out:
 933        kfree(rdev->constraints);
 934        rdev->constraints = NULL;
 935        return ret;
 936}
 937
 938/**
 939 * set_supply - set regulator supply regulator
 940 * @rdev: regulator name
 941 * @supply_rdev: supply regulator name
 942 *
 943 * Called by platform initialisation code to set the supply regulator for this
 944 * regulator. This ensures that a regulators supply will also be enabled by the
 945 * core if it's child is enabled.
 946 */
 947static int set_supply(struct regulator_dev *rdev,
 948                      struct regulator_dev *supply_rdev)
 949{
 950        int err;
 951
 952        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 953
 954        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 955        if (IS_ERR(rdev->supply)) {
 956                err = PTR_ERR(rdev->supply);
 957                rdev->supply = NULL;
 958                return err;
 959        }
 960
 961        return 0;
 962}
 963
 964/**
 965 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 966 * @rdev:         regulator source
 967 * @consumer_dev: device the supply applies to
 968 * @consumer_dev_name: dev_name() string for device supply applies to
 969 * @supply:       symbolic name for supply
 970 *
 971 * Allows platform initialisation code to map physical regulator
 972 * sources to symbolic names for supplies for use by devices.  Devices
 973 * should use these symbolic names to request regulators, avoiding the
 974 * need to provide board-specific regulator names as platform data.
 975 *
 976 * Only one of consumer_dev and consumer_dev_name may be specified.
 977 */
 978static int set_consumer_device_supply(struct regulator_dev *rdev,
 979        struct device *consumer_dev, const char *consumer_dev_name,
 980        const char *supply)
 981{
 982        struct regulator_map *node;
 983        int has_dev;
 984
 985        if (consumer_dev && consumer_dev_name)
 986                return -EINVAL;
 987
 988        if (!consumer_dev_name && consumer_dev)
 989                consumer_dev_name = dev_name(consumer_dev);
 990
 991        if (supply == NULL)
 992                return -EINVAL;
 993
 994        if (consumer_dev_name != NULL)
 995                has_dev = 1;
 996        else
 997                has_dev = 0;
 998
 999        list_for_each_entry(node, &regulator_map_list, list) {
1000                if (node->dev_name && consumer_dev_name) {
1001                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1002                                continue;
1003                } else if (node->dev_name || consumer_dev_name) {
1004                        continue;
1005                }
1006
1007                if (strcmp(node->supply, supply) != 0)
1008                        continue;
1009
1010                dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1011                        dev_name(&node->regulator->dev),
1012                        node->regulator->desc->name,
1013                        supply,
1014                        dev_name(&rdev->dev), rdev_get_name(rdev));
1015                return -EBUSY;
1016        }
1017
1018        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1019        if (node == NULL)
1020                return -ENOMEM;
1021
1022        node->regulator = rdev;
1023        node->supply = supply;
1024
1025        if (has_dev) {
1026                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1027                if (node->dev_name == NULL) {
1028                        kfree(node);
1029                        return -ENOMEM;
1030                }
1031        }
1032
1033        list_add(&node->list, &regulator_map_list);
1034        return 0;
1035}
1036
1037static void unset_regulator_supplies(struct regulator_dev *rdev)
1038{
1039        struct regulator_map *node, *n;
1040
1041        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1042                if (rdev == node->regulator) {
1043                        list_del(&node->list);
1044                        kfree(node->dev_name);
1045                        kfree(node);
1046                }
1047        }
1048}
1049
1050#define REG_STR_SIZE    64
1051
1052static struct regulator *create_regulator(struct regulator_dev *rdev,
1053                                          struct device *dev,
1054                                          const char *supply_name)
1055{
1056        struct regulator *regulator;
1057        char buf[REG_STR_SIZE];
1058        int err, size;
1059
1060        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1061        if (regulator == NULL)
1062                return NULL;
1063
1064        mutex_lock(&rdev->mutex);
1065        regulator->rdev = rdev;
1066        list_add(&regulator->list, &rdev->consumer_list);
1067
1068        if (dev) {
1069                /* create a 'requested_microamps_name' sysfs entry */
1070                size = scnprintf(buf, REG_STR_SIZE,
1071                                 "microamps_requested_%s-%s",
1072                                 dev_name(dev), supply_name);
1073                if (size >= REG_STR_SIZE)
1074                        goto overflow_err;
1075
1076                regulator->dev = dev;
1077                sysfs_attr_init(&regulator->dev_attr.attr);
1078                regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1079                if (regulator->dev_attr.attr.name == NULL)
1080                        goto attr_name_err;
1081
1082                regulator->dev_attr.attr.mode = 0444;
1083                regulator->dev_attr.show = device_requested_uA_show;
1084                err = device_create_file(dev, &regulator->dev_attr);
1085                if (err < 0) {
1086                        rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1087                        goto attr_name_err;
1088                }
1089
1090                /* also add a link to the device sysfs entry */
1091                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1092                                 dev->kobj.name, supply_name);
1093                if (size >= REG_STR_SIZE)
1094                        goto attr_err;
1095
1096                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1097                if (regulator->supply_name == NULL)
1098                        goto attr_err;
1099
1100                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1101                                        buf);
1102                if (err) {
1103                        rdev_warn(rdev, "could not add device link %s err %d\n",
1104                                  dev->kobj.name, err);
1105                        goto link_name_err;
1106                }
1107        } else {
1108                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1109                if (regulator->supply_name == NULL)
1110                        goto attr_err;
1111        }
1112
1113#ifdef CONFIG_DEBUG_FS
1114        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1115                                                rdev->debugfs);
1116        if (IS_ERR_OR_NULL(regulator->debugfs)) {
1117                rdev_warn(rdev, "Failed to create debugfs directory\n");
1118                regulator->debugfs = NULL;
1119        } else {
1120                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1121                                   &regulator->uA_load);
1122                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1123                                   &regulator->min_uV);
1124                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1125                                   &regulator->max_uV);
1126        }
1127#endif
1128
1129        mutex_unlock(&rdev->mutex);
1130        return regulator;
1131link_name_err:
1132        kfree(regulator->supply_name);
1133attr_err:
1134        device_remove_file(regulator->dev, &regulator->dev_attr);
1135attr_name_err:
1136        kfree(regulator->dev_attr.attr.name);
1137overflow_err:
1138        list_del(&regulator->list);
1139        kfree(regulator);
1140        mutex_unlock(&rdev->mutex);
1141        return NULL;
1142}
1143
1144static int _regulator_get_enable_time(struct regulator_dev *rdev)
1145{
1146        if (!rdev->desc->ops->enable_time)
1147                return 0;
1148        return rdev->desc->ops->enable_time(rdev);
1149}
1150
1151/* Internal regulator request function */
1152static struct regulator *_regulator_get(struct device *dev, const char *id,
1153                                        int exclusive)
1154{
1155        struct regulator_dev *rdev;
1156        struct regulator_map *map;
1157        struct regulator *regulator = ERR_PTR(-ENODEV);
1158        const char *devname = NULL;
1159        int ret;
1160
1161        if (id == NULL) {
1162                pr_err("get() with no identifier\n");
1163                return regulator;
1164        }
1165
1166        if (dev)
1167                devname = dev_name(dev);
1168
1169        mutex_lock(&regulator_list_mutex);
1170
1171        list_for_each_entry(map, &regulator_map_list, list) {
1172                /* If the mapping has a device set up it must match */
1173                if (map->dev_name &&
1174                    (!devname || strcmp(map->dev_name, devname)))
1175                        continue;
1176
1177                if (strcmp(map->supply, id) == 0) {
1178                        rdev = map->regulator;
1179                        goto found;
1180                }
1181        }
1182
1183        if (board_wants_dummy_regulator) {
1184                rdev = dummy_regulator_rdev;
1185                goto found;
1186        }
1187
1188#ifdef CONFIG_REGULATOR_DUMMY
1189        if (!devname)
1190                devname = "deviceless";
1191
1192        /* If the board didn't flag that it was fully constrained then
1193         * substitute in a dummy regulator so consumers can continue.
1194         */
1195        if (!has_full_constraints) {
1196                pr_warn("%s supply %s not found, using dummy regulator\n",
1197                        devname, id);
1198                rdev = dummy_regulator_rdev;
1199                goto found;
1200        }
1201#endif
1202
1203        mutex_unlock(&regulator_list_mutex);
1204        return regulator;
1205
1206found:
1207        if (rdev->exclusive) {
1208                regulator = ERR_PTR(-EPERM);
1209                goto out;
1210        }
1211
1212        if (exclusive && rdev->open_count) {
1213                regulator = ERR_PTR(-EBUSY);
1214                goto out;
1215        }
1216
1217        if (!try_module_get(rdev->owner))
1218                goto out;
1219
1220        regulator = create_regulator(rdev, dev, id);
1221        if (regulator == NULL) {
1222                regulator = ERR_PTR(-ENOMEM);
1223                module_put(rdev->owner);
1224        }
1225
1226        rdev->open_count++;
1227        if (exclusive) {
1228                rdev->exclusive = 1;
1229
1230                ret = _regulator_is_enabled(rdev);
1231                if (ret > 0)
1232                        rdev->use_count = 1;
1233                else
1234                        rdev->use_count = 0;
1235        }
1236
1237out:
1238        mutex_unlock(&regulator_list_mutex);
1239
1240        return regulator;
1241}
1242
1243/**
1244 * regulator_get - lookup and obtain a reference to a regulator.
1245 * @dev: device for regulator "consumer"
1246 * @id: Supply name or regulator ID.
1247 *
1248 * Returns a struct regulator corresponding to the regulator producer,
1249 * or IS_ERR() condition containing errno.
1250 *
1251 * Use of supply names configured via regulator_set_device_supply() is
1252 * strongly encouraged.  It is recommended that the supply name used
1253 * should match the name used for the supply and/or the relevant
1254 * device pins in the datasheet.
1255 */
1256struct regulator *regulator_get(struct device *dev, const char *id)
1257{
1258        return _regulator_get(dev, id, 0);
1259}
1260EXPORT_SYMBOL_GPL(regulator_get);
1261
1262/**
1263 * regulator_get_exclusive - obtain exclusive access to a regulator.
1264 * @dev: device for regulator "consumer"
1265 * @id: Supply name or regulator ID.
1266 *
1267 * Returns a struct regulator corresponding to the regulator producer,
1268 * or IS_ERR() condition containing errno.  Other consumers will be
1269 * unable to obtain this reference is held and the use count for the
1270 * regulator will be initialised to reflect the current state of the
1271 * regulator.
1272 *
1273 * This is intended for use by consumers which cannot tolerate shared
1274 * use of the regulator such as those which need to force the
1275 * regulator off for correct operation of the hardware they are
1276 * controlling.
1277 *
1278 * Use of supply names configured via regulator_set_device_supply() is
1279 * strongly encouraged.  It is recommended that the supply name used
1280 * should match the name used for the supply and/or the relevant
1281 * device pins in the datasheet.
1282 */
1283struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1284{
1285        return _regulator_get(dev, id, 1);
1286}
1287EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1288
1289/**
1290 * regulator_put - "free" the regulator source
1291 * @regulator: regulator source
1292 *
1293 * Note: drivers must ensure that all regulator_enable calls made on this
1294 * regulator source are balanced by regulator_disable calls prior to calling
1295 * this function.
1296 */
1297void regulator_put(struct regulator *regulator)
1298{
1299        struct regulator_dev *rdev;
1300
1301        if (regulator == NULL || IS_ERR(regulator))
1302                return;
1303
1304        mutex_lock(&regulator_list_mutex);
1305        rdev = regulator->rdev;
1306
1307#ifdef CONFIG_DEBUG_FS
1308        debugfs_remove_recursive(regulator->debugfs);
1309#endif
1310
1311        /* remove any sysfs entries */
1312        if (regulator->dev) {
1313                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1314                device_remove_file(regulator->dev, &regulator->dev_attr);
1315                kfree(regulator->dev_attr.attr.name);
1316        }
1317        kfree(regulator->supply_name);
1318        list_del(&regulator->list);
1319        kfree(regulator);
1320
1321        rdev->open_count--;
1322        rdev->exclusive = 0;
1323
1324        module_put(rdev->owner);
1325        mutex_unlock(&regulator_list_mutex);
1326}
1327EXPORT_SYMBOL_GPL(regulator_put);
1328
1329static int _regulator_can_change_status(struct regulator_dev *rdev)
1330{
1331        if (!rdev->constraints)
1332                return 0;
1333
1334        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1335                return 1;
1336        else
1337                return 0;
1338}
1339
1340/* locks held by regulator_enable() */
1341static int _regulator_enable(struct regulator_dev *rdev)
1342{
1343        int ret, delay;
1344
1345        /* check voltage and requested load before enabling */
1346        if (rdev->constraints &&
1347            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1348                drms_uA_update(rdev);
1349
1350        if (rdev->use_count == 0) {
1351                /* The regulator may on if it's not switchable or left on */
1352                ret = _regulator_is_enabled(rdev);
1353                if (ret == -EINVAL || ret == 0) {
1354                        if (!_regulator_can_change_status(rdev))
1355                                return -EPERM;
1356
1357                        if (!rdev->desc->ops->enable)
1358                                return -EINVAL;
1359
1360                        /* Query before enabling in case configuration
1361                         * dependent.  */
1362                        ret = _regulator_get_enable_time(rdev);
1363                        if (ret >= 0) {
1364                                delay = ret;
1365                        } else {
1366                                rdev_warn(rdev, "enable_time() failed: %d\n",
1367                                           ret);
1368                                delay = 0;
1369                        }
1370
1371                        trace_regulator_enable(rdev_get_name(rdev));
1372
1373                        /* Allow the regulator to ramp; it would be useful
1374                         * to extend this for bulk operations so that the
1375                         * regulators can ramp together.  */
1376                        ret = rdev->desc->ops->enable(rdev);
1377                        if (ret < 0)
1378                                return ret;
1379
1380                        trace_regulator_enable_delay(rdev_get_name(rdev));
1381
1382                        if (delay >= 1000) {
1383                                mdelay(delay / 1000);
1384                                udelay(delay % 1000);
1385                        } else if (delay) {
1386                                udelay(delay);
1387                        }
1388
1389                        trace_regulator_enable_complete(rdev_get_name(rdev));
1390
1391                } else if (ret < 0) {
1392                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1393                        return ret;
1394                }
1395                /* Fallthrough on positive return values - already enabled */
1396        }
1397
1398        rdev->use_count++;
1399
1400        return 0;
1401}
1402
1403/**
1404 * regulator_enable - enable regulator output
1405 * @regulator: regulator source
1406 *
1407 * Request that the regulator be enabled with the regulator output at
1408 * the predefined voltage or current value.  Calls to regulator_enable()
1409 * must be balanced with calls to regulator_disable().
1410 *
1411 * NOTE: the output value can be set by other drivers, boot loader or may be
1412 * hardwired in the regulator.
1413 */
1414int regulator_enable(struct regulator *regulator)
1415{
1416        struct regulator_dev *rdev = regulator->rdev;
1417        int ret = 0;
1418
1419        if (rdev->supply) {
1420                ret = regulator_enable(rdev->supply);
1421                if (ret != 0)
1422                        return ret;
1423        }
1424
1425        mutex_lock(&rdev->mutex);
1426        ret = _regulator_enable(rdev);
1427        mutex_unlock(&rdev->mutex);
1428
1429        if (ret != 0 && rdev->supply)
1430                regulator_disable(rdev->supply);
1431
1432        return ret;
1433}
1434EXPORT_SYMBOL_GPL(regulator_enable);
1435
1436/* locks held by regulator_disable() */
1437static int _regulator_disable(struct regulator_dev *rdev)
1438{
1439        int ret = 0;
1440
1441        if (WARN(rdev->use_count <= 0,
1442                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1443                return -EIO;
1444
1445        /* are we the last user and permitted to disable ? */
1446        if (rdev->use_count == 1 &&
1447            (rdev->constraints && !rdev->constraints->always_on)) {
1448
1449                /* we are last user */
1450                if (_regulator_can_change_status(rdev) &&
1451                    rdev->desc->ops->disable) {
1452                        trace_regulator_disable(rdev_get_name(rdev));
1453
1454                        ret = rdev->desc->ops->disable(rdev);
1455                        if (ret < 0) {
1456                                rdev_err(rdev, "failed to disable\n");
1457                                return ret;
1458                        }
1459
1460                        trace_regulator_disable_complete(rdev_get_name(rdev));
1461
1462                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1463                                             NULL);
1464                }
1465
1466                rdev->use_count = 0;
1467        } else if (rdev->use_count > 1) {
1468
1469                if (rdev->constraints &&
1470                        (rdev->constraints->valid_ops_mask &
1471                        REGULATOR_CHANGE_DRMS))
1472                        drms_uA_update(rdev);
1473
1474                rdev->use_count--;
1475        }
1476
1477        return ret;
1478}
1479
1480/**
1481 * regulator_disable - disable regulator output
1482 * @regulator: regulator source
1483 *
1484 * Disable the regulator output voltage or current.  Calls to
1485 * regulator_enable() must be balanced with calls to
1486 * regulator_disable().
1487 *
1488 * NOTE: this will only disable the regulator output if no other consumer
1489 * devices have it enabled, the regulator device supports disabling and
1490 * machine constraints permit this operation.
1491 */
1492int regulator_disable(struct regulator *regulator)
1493{
1494        struct regulator_dev *rdev = regulator->rdev;
1495        int ret = 0;
1496
1497        mutex_lock(&rdev->mutex);
1498        ret = _regulator_disable(rdev);
1499        mutex_unlock(&rdev->mutex);
1500
1501        if (ret == 0 && rdev->supply)
1502                regulator_disable(rdev->supply);
1503
1504        return ret;
1505}
1506EXPORT_SYMBOL_GPL(regulator_disable);
1507
1508/* locks held by regulator_force_disable() */
1509static int _regulator_force_disable(struct regulator_dev *rdev)
1510{
1511        int ret = 0;
1512
1513        /* force disable */
1514        if (rdev->desc->ops->disable) {
1515                /* ah well, who wants to live forever... */
1516                ret = rdev->desc->ops->disable(rdev);
1517                if (ret < 0) {
1518                        rdev_err(rdev, "failed to force disable\n");
1519                        return ret;
1520                }
1521                /* notify other consumers that power has been forced off */
1522                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1523                        REGULATOR_EVENT_DISABLE, NULL);
1524        }
1525
1526        return ret;
1527}
1528
1529/**
1530 * regulator_force_disable - force disable regulator output
1531 * @regulator: regulator source
1532 *
1533 * Forcibly disable the regulator output voltage or current.
1534 * NOTE: this *will* disable the regulator output even if other consumer
1535 * devices have it enabled. This should be used for situations when device
1536 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1537 */
1538int regulator_force_disable(struct regulator *regulator)
1539{
1540        struct regulator_dev *rdev = regulator->rdev;
1541        int ret;
1542
1543        mutex_lock(&rdev->mutex);
1544        regulator->uA_load = 0;
1545        ret = _regulator_force_disable(regulator->rdev);
1546        mutex_unlock(&rdev->mutex);
1547
1548        if (rdev->supply)
1549                while (rdev->open_count--)
1550                        regulator_disable(rdev->supply);
1551
1552        return ret;
1553}
1554EXPORT_SYMBOL_GPL(regulator_force_disable);
1555
1556static void regulator_disable_work(struct work_struct *work)
1557{
1558        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1559                                                  disable_work.work);
1560        int count, i, ret;
1561
1562        mutex_lock(&rdev->mutex);
1563
1564        BUG_ON(!rdev->deferred_disables);
1565
1566        count = rdev->deferred_disables;
1567        rdev->deferred_disables = 0;
1568
1569        for (i = 0; i < count; i++) {
1570                ret = _regulator_disable(rdev);
1571                if (ret != 0)
1572                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1573        }
1574
1575        mutex_unlock(&rdev->mutex);
1576
1577        if (rdev->supply) {
1578                for (i = 0; i < count; i++) {
1579                        ret = regulator_disable(rdev->supply);
1580                        if (ret != 0) {
1581                                rdev_err(rdev,
1582                                         "Supply disable failed: %d\n", ret);
1583                        }
1584                }
1585        }
1586}
1587
1588/**
1589 * regulator_disable_deferred - disable regulator output with delay
1590 * @regulator: regulator source
1591 * @ms: miliseconds until the regulator is disabled
1592 *
1593 * Execute regulator_disable() on the regulator after a delay.  This
1594 * is intended for use with devices that require some time to quiesce.
1595 *
1596 * NOTE: this will only disable the regulator output if no other consumer
1597 * devices have it enabled, the regulator device supports disabling and
1598 * machine constraints permit this operation.
1599 */
1600int regulator_disable_deferred(struct regulator *regulator, int ms)
1601{
1602        struct regulator_dev *rdev = regulator->rdev;
1603        int ret;
1604
1605        mutex_lock(&rdev->mutex);
1606        rdev->deferred_disables++;
1607        mutex_unlock(&rdev->mutex);
1608
1609        ret = schedule_delayed_work(&rdev->disable_work,
1610                                    msecs_to_jiffies(ms));
1611        if (ret < 0)
1612                return ret;
1613        else
1614                return 0;
1615}
1616EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1617
1618static int _regulator_is_enabled(struct regulator_dev *rdev)
1619{
1620        /* If we don't know then assume that the regulator is always on */
1621        if (!rdev->desc->ops->is_enabled)
1622                return 1;
1623
1624        return rdev->desc->ops->is_enabled(rdev);
1625}
1626
1627/**
1628 * regulator_is_enabled - is the regulator output enabled
1629 * @regulator: regulator source
1630 *
1631 * Returns positive if the regulator driver backing the source/client
1632 * has requested that the device be enabled, zero if it hasn't, else a
1633 * negative errno code.
1634 *
1635 * Note that the device backing this regulator handle can have multiple
1636 * users, so it might be enabled even if regulator_enable() was never
1637 * called for this particular source.
1638 */
1639int regulator_is_enabled(struct regulator *regulator)
1640{
1641        int ret;
1642
1643        mutex_lock(&regulator->rdev->mutex);
1644        ret = _regulator_is_enabled(regulator->rdev);
1645        mutex_unlock(&regulator->rdev->mutex);
1646
1647        return ret;
1648}
1649EXPORT_SYMBOL_GPL(regulator_is_enabled);
1650
1651/**
1652 * regulator_count_voltages - count regulator_list_voltage() selectors
1653 * @regulator: regulator source
1654 *
1655 * Returns number of selectors, or negative errno.  Selectors are
1656 * numbered starting at zero, and typically correspond to bitfields
1657 * in hardware registers.
1658 */
1659int regulator_count_voltages(struct regulator *regulator)
1660{
1661        struct regulator_dev    *rdev = regulator->rdev;
1662
1663        return rdev->desc->n_voltages ? : -EINVAL;
1664}
1665EXPORT_SYMBOL_GPL(regulator_count_voltages);
1666
1667/**
1668 * regulator_list_voltage - enumerate supported voltages
1669 * @regulator: regulator source
1670 * @selector: identify voltage to list
1671 * Context: can sleep
1672 *
1673 * Returns a voltage that can be passed to @regulator_set_voltage(),
1674 * zero if this selector code can't be used on this system, or a
1675 * negative errno.
1676 */
1677int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1678{
1679        struct regulator_dev    *rdev = regulator->rdev;
1680        struct regulator_ops    *ops = rdev->desc->ops;
1681        int                     ret;
1682
1683        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1684                return -EINVAL;
1685
1686        mutex_lock(&rdev->mutex);
1687        ret = ops->list_voltage(rdev, selector);
1688        mutex_unlock(&rdev->mutex);
1689
1690        if (ret > 0) {
1691                if (ret < rdev->constraints->min_uV)
1692                        ret = 0;
1693                else if (ret > rdev->constraints->max_uV)
1694                        ret = 0;
1695        }
1696
1697        return ret;
1698}
1699EXPORT_SYMBOL_GPL(regulator_list_voltage);
1700
1701/**
1702 * regulator_is_supported_voltage - check if a voltage range can be supported
1703 *
1704 * @regulator: Regulator to check.
1705 * @min_uV: Minimum required voltage in uV.
1706 * @max_uV: Maximum required voltage in uV.
1707 *
1708 * Returns a boolean or a negative error code.
1709 */
1710int regulator_is_supported_voltage(struct regulator *regulator,
1711                                   int min_uV, int max_uV)
1712{
1713        int i, voltages, ret;
1714
1715        ret = regulator_count_voltages(regulator);
1716        if (ret < 0)
1717                return ret;
1718        voltages = ret;
1719
1720        for (i = 0; i < voltages; i++) {
1721                ret = regulator_list_voltage(regulator, i);
1722
1723                if (ret >= min_uV && ret <= max_uV)
1724                        return 1;
1725        }
1726
1727        return 0;
1728}
1729
1730static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1731                                     int min_uV, int max_uV)
1732{
1733        int ret;
1734        int delay = 0;
1735        unsigned int selector;
1736
1737        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1738
1739        min_uV += rdev->constraints->uV_offset;
1740        max_uV += rdev->constraints->uV_offset;
1741
1742        if (rdev->desc->ops->set_voltage) {
1743                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1744                                                   &selector);
1745
1746                if (rdev->desc->ops->list_voltage)
1747                        selector = rdev->desc->ops->list_voltage(rdev,
1748                                                                 selector);
1749                else
1750                        selector = -1;
1751        } else if (rdev->desc->ops->set_voltage_sel) {
1752                int best_val = INT_MAX;
1753                int i;
1754
1755                selector = 0;
1756
1757                /* Find the smallest voltage that falls within the specified
1758                 * range.
1759                 */
1760                for (i = 0; i < rdev->desc->n_voltages; i++) {
1761                        ret = rdev->desc->ops->list_voltage(rdev, i);
1762                        if (ret < 0)
1763                                continue;
1764
1765                        if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1766                                best_val = ret;
1767                                selector = i;
1768                        }
1769                }
1770
1771                /*
1772                 * If we can't obtain the old selector there is not enough
1773                 * info to call set_voltage_time_sel().
1774                 */
1775                if (rdev->desc->ops->set_voltage_time_sel &&
1776                    rdev->desc->ops->get_voltage_sel) {
1777                        unsigned int old_selector = 0;
1778
1779                        ret = rdev->desc->ops->get_voltage_sel(rdev);
1780                        if (ret < 0)
1781                                return ret;
1782                        old_selector = ret;
1783                        delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1784                                                old_selector, selector);
1785                }
1786
1787                if (best_val != INT_MAX) {
1788                        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1789                        selector = best_val;
1790                } else {
1791                        ret = -EINVAL;
1792                }
1793        } else {
1794                ret = -EINVAL;
1795        }
1796
1797        /* Insert any necessary delays */
1798        if (delay >= 1000) {
1799                mdelay(delay / 1000);
1800                udelay(delay % 1000);
1801        } else if (delay) {
1802                udelay(delay);
1803        }
1804
1805        if (ret == 0)
1806                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1807                                     NULL);
1808
1809        trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1810
1811        return ret;
1812}
1813
1814/**
1815 * regulator_set_voltage - set regulator output voltage
1816 * @regulator: regulator source
1817 * @min_uV: Minimum required voltage in uV
1818 * @max_uV: Maximum acceptable voltage in uV
1819 *
1820 * Sets a voltage regulator to the desired output voltage. This can be set
1821 * during any regulator state. IOW, regulator can be disabled or enabled.
1822 *
1823 * If the regulator is enabled then the voltage will change to the new value
1824 * immediately otherwise if the regulator is disabled the regulator will
1825 * output at the new voltage when enabled.
1826 *
1827 * NOTE: If the regulator is shared between several devices then the lowest
1828 * request voltage that meets the system constraints will be used.
1829 * Regulator system constraints must be set for this regulator before
1830 * calling this function otherwise this call will fail.
1831 */
1832int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1833{
1834        struct regulator_dev *rdev = regulator->rdev;
1835        int ret = 0;
1836
1837        mutex_lock(&rdev->mutex);
1838
1839        /* If we're setting the same range as last time the change
1840         * should be a noop (some cpufreq implementations use the same
1841         * voltage for multiple frequencies, for example).
1842         */
1843        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1844                goto out;
1845
1846        /* sanity check */
1847        if (!rdev->desc->ops->set_voltage &&
1848            !rdev->desc->ops->set_voltage_sel) {
1849                ret = -EINVAL;
1850                goto out;
1851        }
1852
1853        /* constraints check */
1854        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1855        if (ret < 0)
1856                goto out;
1857        regulator->min_uV = min_uV;
1858        regulator->max_uV = max_uV;
1859
1860        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1861        if (ret < 0)
1862                goto out;
1863
1864        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1865
1866out:
1867        mutex_unlock(&rdev->mutex);
1868        return ret;
1869}
1870EXPORT_SYMBOL_GPL(regulator_set_voltage);
1871
1872/**
1873 * regulator_set_voltage_time - get raise/fall time
1874 * @regulator: regulator source
1875 * @old_uV: starting voltage in microvolts
1876 * @new_uV: target voltage in microvolts
1877 *
1878 * Provided with the starting and ending voltage, this function attempts to
1879 * calculate the time in microseconds required to rise or fall to this new
1880 * voltage.
1881 */
1882int regulator_set_voltage_time(struct regulator *regulator,
1883                               int old_uV, int new_uV)
1884{
1885        struct regulator_dev    *rdev = regulator->rdev;
1886        struct regulator_ops    *ops = rdev->desc->ops;
1887        int old_sel = -1;
1888        int new_sel = -1;
1889        int voltage;
1890        int i;
1891
1892        /* Currently requires operations to do this */
1893        if (!ops->list_voltage || !ops->set_voltage_time_sel
1894            || !rdev->desc->n_voltages)
1895                return -EINVAL;
1896
1897        for (i = 0; i < rdev->desc->n_voltages; i++) {
1898                /* We only look for exact voltage matches here */
1899                voltage = regulator_list_voltage(regulator, i);
1900                if (voltage < 0)
1901                        return -EINVAL;
1902                if (voltage == 0)
1903                        continue;
1904                if (voltage == old_uV)
1905                        old_sel = i;
1906                if (voltage == new_uV)
1907                        new_sel = i;
1908        }
1909
1910        if (old_sel < 0 || new_sel < 0)
1911                return -EINVAL;
1912
1913        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1914}
1915EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1916
1917/**
1918 * regulator_sync_voltage - re-apply last regulator output voltage
1919 * @regulator: regulator source
1920 *
1921 * Re-apply the last configured voltage.  This is intended to be used
1922 * where some external control source the consumer is cooperating with
1923 * has caused the configured voltage to change.
1924 */
1925int regulator_sync_voltage(struct regulator *regulator)
1926{
1927        struct regulator_dev *rdev = regulator->rdev;
1928        int ret, min_uV, max_uV;
1929
1930        mutex_lock(&rdev->mutex);
1931
1932        if (!rdev->desc->ops->set_voltage &&
1933            !rdev->desc->ops->set_voltage_sel) {
1934                ret = -EINVAL;
1935                goto out;
1936        }
1937
1938        /* This is only going to work if we've had a voltage configured. */
1939        if (!regulator->min_uV && !regulator->max_uV) {
1940                ret = -EINVAL;
1941                goto out;
1942        }
1943
1944        min_uV = regulator->min_uV;
1945        max_uV = regulator->max_uV;
1946
1947        /* This should be a paranoia check... */
1948        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1949        if (ret < 0)
1950                goto out;
1951
1952        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1953        if (ret < 0)
1954                goto out;
1955
1956        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1957
1958out:
1959        mutex_unlock(&rdev->mutex);
1960        return ret;
1961}
1962EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1963
1964static int _regulator_get_voltage(struct regulator_dev *rdev)
1965{
1966        int sel, ret;
1967
1968        if (rdev->desc->ops->get_voltage_sel) {
1969                sel = rdev->desc->ops->get_voltage_sel(rdev);
1970                if (sel < 0)
1971                        return sel;
1972                ret = rdev->desc->ops->list_voltage(rdev, sel);
1973        } else if (rdev->desc->ops->get_voltage) {
1974                ret = rdev->desc->ops->get_voltage(rdev);
1975        } else {
1976                return -EINVAL;
1977        }
1978
1979        if (ret < 0)
1980                return ret;
1981        return ret - rdev->constraints->uV_offset;
1982}
1983
1984/**
1985 * regulator_get_voltage - get regulator output voltage
1986 * @regulator: regulator source
1987 *
1988 * This returns the current regulator voltage in uV.
1989 *
1990 * NOTE: If the regulator is disabled it will return the voltage value. This
1991 * function should not be used to determine regulator state.
1992 */
1993int regulator_get_voltage(struct regulator *regulator)
1994{
1995        int ret;
1996
1997        mutex_lock(&regulator->rdev->mutex);
1998
1999        ret = _regulator_get_voltage(regulator->rdev);
2000
2001        mutex_unlock(&regulator->rdev->mutex);
2002
2003        return ret;
2004}
2005EXPORT_SYMBOL_GPL(regulator_get_voltage);
2006
2007/**
2008 * regulator_set_current_limit - set regulator output current limit
2009 * @regulator: regulator source
2010 * @min_uA: Minimuum supported current in uA
2011 * @max_uA: Maximum supported current in uA
2012 *
2013 * Sets current sink to the desired output current. This can be set during
2014 * any regulator state. IOW, regulator can be disabled or enabled.
2015 *
2016 * If the regulator is enabled then the current will change to the new value
2017 * immediately otherwise if the regulator is disabled the regulator will
2018 * output at the new current when enabled.
2019 *
2020 * NOTE: Regulator system constraints must be set for this regulator before
2021 * calling this function otherwise this call will fail.
2022 */
2023int regulator_set_current_limit(struct regulator *regulator,
2024                               int min_uA, int max_uA)
2025{
2026        struct regulator_dev *rdev = regulator->rdev;
2027        int ret;
2028
2029        mutex_lock(&rdev->mutex);
2030
2031        /* sanity check */
2032        if (!rdev->desc->ops->set_current_limit) {
2033                ret = -EINVAL;
2034                goto out;
2035        }
2036
2037        /* constraints check */
2038        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2039        if (ret < 0)
2040                goto out;
2041
2042        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2043out:
2044        mutex_unlock(&rdev->mutex);
2045        return ret;
2046}
2047EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2048
2049static int _regulator_get_current_limit(struct regulator_dev *rdev)
2050{
2051        int ret;
2052
2053        mutex_lock(&rdev->mutex);
2054
2055        /* sanity check */
2056        if (!rdev->desc->ops->get_current_limit) {
2057                ret = -EINVAL;
2058                goto out;
2059        }
2060
2061        ret = rdev->desc->ops->get_current_limit(rdev);
2062out:
2063        mutex_unlock(&rdev->mutex);
2064        return ret;
2065}
2066
2067/**
2068 * regulator_get_current_limit - get regulator output current
2069 * @regulator: regulator source
2070 *
2071 * This returns the current supplied by the specified current sink in uA.
2072 *
2073 * NOTE: If the regulator is disabled it will return the current value. This
2074 * function should not be used to determine regulator state.
2075 */
2076int regulator_get_current_limit(struct regulator *regulator)
2077{
2078        return _regulator_get_current_limit(regulator->rdev);
2079}
2080EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2081
2082/**
2083 * regulator_set_mode - set regulator operating mode
2084 * @regulator: regulator source
2085 * @mode: operating mode - one of the REGULATOR_MODE constants
2086 *
2087 * Set regulator operating mode to increase regulator efficiency or improve
2088 * regulation performance.
2089 *
2090 * NOTE: Regulator system constraints must be set for this regulator before
2091 * calling this function otherwise this call will fail.
2092 */
2093int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2094{
2095        struct regulator_dev *rdev = regulator->rdev;
2096        int ret;
2097        int regulator_curr_mode;
2098
2099        mutex_lock(&rdev->mutex);
2100
2101        /* sanity check */
2102        if (!rdev->desc->ops->set_mode) {
2103                ret = -EINVAL;
2104                goto out;
2105        }
2106
2107        /* return if the same mode is requested */
2108        if (rdev->desc->ops->get_mode) {
2109                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2110                if (regulator_curr_mode == mode) {
2111                        ret = 0;
2112                        goto out;
2113                }
2114        }
2115
2116        /* constraints check */
2117        ret = regulator_mode_constrain(rdev, &mode);
2118        if (ret < 0)
2119                goto out;
2120
2121        ret = rdev->desc->ops->set_mode(rdev, mode);
2122out:
2123        mutex_unlock(&rdev->mutex);
2124        return ret;
2125}
2126EXPORT_SYMBOL_GPL(regulator_set_mode);
2127
2128static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2129{
2130        int ret;
2131
2132        mutex_lock(&rdev->mutex);
2133
2134        /* sanity check */
2135        if (!rdev->desc->ops->get_mode) {
2136                ret = -EINVAL;
2137                goto out;
2138        }
2139
2140        ret = rdev->desc->ops->get_mode(rdev);
2141out:
2142        mutex_unlock(&rdev->mutex);
2143        return ret;
2144}
2145
2146/**
2147 * regulator_get_mode - get regulator operating mode
2148 * @regulator: regulator source
2149 *
2150 * Get the current regulator operating mode.
2151 */
2152unsigned int regulator_get_mode(struct regulator *regulator)
2153{
2154        return _regulator_get_mode(regulator->rdev);
2155}
2156EXPORT_SYMBOL_GPL(regulator_get_mode);
2157
2158/**
2159 * regulator_set_optimum_mode - set regulator optimum operating mode
2160 * @regulator: regulator source
2161 * @uA_load: load current
2162 *
2163 * Notifies the regulator core of a new device load. This is then used by
2164 * DRMS (if enabled by constraints) to set the most efficient regulator
2165 * operating mode for the new regulator loading.
2166 *
2167 * Consumer devices notify their supply regulator of the maximum power
2168 * they will require (can be taken from device datasheet in the power
2169 * consumption tables) when they change operational status and hence power
2170 * state. Examples of operational state changes that can affect power
2171 * consumption are :-
2172 *
2173 *    o Device is opened / closed.
2174 *    o Device I/O is about to begin or has just finished.
2175 *    o Device is idling in between work.
2176 *
2177 * This information is also exported via sysfs to userspace.
2178 *
2179 * DRMS will sum the total requested load on the regulator and change
2180 * to the most efficient operating mode if platform constraints allow.
2181 *
2182 * Returns the new regulator mode or error.
2183 */
2184int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2185{
2186        struct regulator_dev *rdev = regulator->rdev;
2187        struct regulator *consumer;
2188        int ret, output_uV, input_uV, total_uA_load = 0;
2189        unsigned int mode;
2190
2191        mutex_lock(&rdev->mutex);
2192
2193        /*
2194         * first check to see if we can set modes at all, otherwise just
2195         * tell the consumer everything is OK.
2196         */
2197        regulator->uA_load = uA_load;
2198        ret = regulator_check_drms(rdev);
2199        if (ret < 0) {
2200                ret = 0;
2201                goto out;
2202        }
2203
2204        if (!rdev->desc->ops->get_optimum_mode)
2205                goto out;
2206
2207        /*
2208         * we can actually do this so any errors are indicators of
2209         * potential real failure.
2210         */
2211        ret = -EINVAL;
2212
2213        /* get output voltage */
2214        output_uV = _regulator_get_voltage(rdev);
2215        if (output_uV <= 0) {
2216                rdev_err(rdev, "invalid output voltage found\n");
2217                goto out;
2218        }
2219
2220        /* get input voltage */
2221        input_uV = 0;
2222        if (rdev->supply)
2223                input_uV = regulator_get_voltage(rdev->supply);
2224        if (input_uV <= 0)
2225                input_uV = rdev->constraints->input_uV;
2226        if (input_uV <= 0) {
2227                rdev_err(rdev, "invalid input voltage found\n");
2228                goto out;
2229        }
2230
2231        /* calc total requested load for this regulator */
2232        list_for_each_entry(consumer, &rdev->consumer_list, list)
2233                total_uA_load += consumer->uA_load;
2234
2235        mode = rdev->desc->ops->get_optimum_mode(rdev,
2236                                                 input_uV, output_uV,
2237                                                 total_uA_load);
2238        ret = regulator_mode_constrain(rdev, &mode);
2239        if (ret < 0) {
2240                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2241                         total_uA_load, input_uV, output_uV);
2242                goto out;
2243        }
2244
2245        ret = rdev->desc->ops->set_mode(rdev, mode);
2246        if (ret < 0) {
2247                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2248                goto out;
2249        }
2250        ret = mode;
2251out:
2252        mutex_unlock(&rdev->mutex);
2253        return ret;
2254}
2255EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2256
2257/**
2258 * regulator_register_notifier - register regulator event notifier
2259 * @regulator: regulator source
2260 * @nb: notifier block
2261 *
2262 * Register notifier block to receive regulator events.
2263 */
2264int regulator_register_notifier(struct regulator *regulator,
2265                              struct notifier_block *nb)
2266{
2267        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2268                                                nb);
2269}
2270EXPORT_SYMBOL_GPL(regulator_register_notifier);
2271
2272/**
2273 * regulator_unregister_notifier - unregister regulator event notifier
2274 * @regulator: regulator source
2275 * @nb: notifier block
2276 *
2277 * Unregister regulator event notifier block.
2278 */
2279int regulator_unregister_notifier(struct regulator *regulator,
2280                                struct notifier_block *nb)
2281{
2282        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2283                                                  nb);
2284}
2285EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2286
2287/* notify regulator consumers and downstream regulator consumers.
2288 * Note mutex must be held by caller.
2289 */
2290static void _notifier_call_chain(struct regulator_dev *rdev,
2291                                  unsigned long event, void *data)
2292{
2293        /* call rdev chain first */
2294        blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2295}
2296
2297/**
2298 * regulator_bulk_get - get multiple regulator consumers
2299 *
2300 * @dev:           Device to supply
2301 * @num_consumers: Number of consumers to register
2302 * @consumers:     Configuration of consumers; clients are stored here.
2303 *
2304 * @return 0 on success, an errno on failure.
2305 *
2306 * This helper function allows drivers to get several regulator
2307 * consumers in one operation.  If any of the regulators cannot be
2308 * acquired then any regulators that were allocated will be freed
2309 * before returning to the caller.
2310 */
2311int regulator_bulk_get(struct device *dev, int num_consumers,
2312                       struct regulator_bulk_data *consumers)
2313{
2314        int i;
2315        int ret;
2316
2317        for (i = 0; i < num_consumers; i++)
2318                consumers[i].consumer = NULL;
2319
2320        for (i = 0; i < num_consumers; i++) {
2321                consumers[i].consumer = regulator_get(dev,
2322                                                      consumers[i].supply);
2323                if (IS_ERR(consumers[i].consumer)) {
2324                        ret = PTR_ERR(consumers[i].consumer);
2325                        dev_err(dev, "Failed to get supply '%s': %d\n",
2326                                consumers[i].supply, ret);
2327                        consumers[i].consumer = NULL;
2328                        goto err;
2329                }
2330        }
2331
2332        return 0;
2333
2334err:
2335        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2336                regulator_put(consumers[i].consumer);
2337
2338        return ret;
2339}
2340EXPORT_SYMBOL_GPL(regulator_bulk_get);
2341
2342static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2343{
2344        struct regulator_bulk_data *bulk = data;
2345
2346        bulk->ret = regulator_enable(bulk->consumer);
2347}
2348
2349/**
2350 * regulator_bulk_enable - enable multiple regulator consumers
2351 *
2352 * @num_consumers: Number of consumers
2353 * @consumers:     Consumer data; clients are stored here.
2354 * @return         0 on success, an errno on failure
2355 *
2356 * This convenience API allows consumers to enable multiple regulator
2357 * clients in a single API call.  If any consumers cannot be enabled
2358 * then any others that were enabled will be disabled again prior to
2359 * return.
2360 */
2361int regulator_bulk_enable(int num_consumers,
2362                          struct regulator_bulk_data *consumers)
2363{
2364        LIST_HEAD(async_domain);
2365        int i;
2366        int ret = 0;
2367
2368        for (i = 0; i < num_consumers; i++)
2369                async_schedule_domain(regulator_bulk_enable_async,
2370                                      &consumers[i], &async_domain);
2371
2372        async_synchronize_full_domain(&async_domain);
2373
2374        /* If any consumer failed we need to unwind any that succeeded */
2375        for (i = 0; i < num_consumers; i++) {
2376                if (consumers[i].ret != 0) {
2377                        ret = consumers[i].ret;
2378                        goto err;
2379                }
2380        }
2381
2382        return 0;
2383
2384err:
2385        for (i = 0; i < num_consumers; i++)
2386                if (consumers[i].ret == 0)
2387                        regulator_disable(consumers[i].consumer);
2388                else
2389                        pr_err("Failed to enable %s: %d\n",
2390                               consumers[i].supply, consumers[i].ret);
2391
2392        return ret;
2393}
2394EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2395
2396/**
2397 * regulator_bulk_disable - disable multiple regulator consumers
2398 *
2399 * @num_consumers: Number of consumers
2400 * @consumers:     Consumer data; clients are stored here.
2401 * @return         0 on success, an errno on failure
2402 *
2403 * This convenience API allows consumers to disable multiple regulator
2404 * clients in a single API call.  If any consumers cannot be enabled
2405 * then any others that were disabled will be disabled again prior to
2406 * return.
2407 */
2408int regulator_bulk_disable(int num_consumers,
2409                           struct regulator_bulk_data *consumers)
2410{
2411        int i;
2412        int ret;
2413
2414        for (i = 0; i < num_consumers; i++) {
2415                ret = regulator_disable(consumers[i].consumer);
2416                if (ret != 0)
2417                        goto err;
2418        }
2419
2420        return 0;
2421
2422err:
2423        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2424        for (--i; i >= 0; --i)
2425                regulator_enable(consumers[i].consumer);
2426
2427        return ret;
2428}
2429EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2430
2431/**
2432 * regulator_bulk_free - free multiple regulator consumers
2433 *
2434 * @num_consumers: Number of consumers
2435 * @consumers:     Consumer data; clients are stored here.
2436 *
2437 * This convenience API allows consumers to free multiple regulator
2438 * clients in a single API call.
2439 */
2440void regulator_bulk_free(int num_consumers,
2441                         struct regulator_bulk_data *consumers)
2442{
2443        int i;
2444
2445        for (i = 0; i < num_consumers; i++) {
2446                regulator_put(consumers[i].consumer);
2447                consumers[i].consumer = NULL;
2448        }
2449}
2450EXPORT_SYMBOL_GPL(regulator_bulk_free);
2451
2452/**
2453 * regulator_notifier_call_chain - call regulator event notifier
2454 * @rdev: regulator source
2455 * @event: notifier block
2456 * @data: callback-specific data.
2457 *
2458 * Called by regulator drivers to notify clients a regulator event has
2459 * occurred. We also notify regulator clients downstream.
2460 * Note lock must be held by caller.
2461 */
2462int regulator_notifier_call_chain(struct regulator_dev *rdev,
2463                                  unsigned long event, void *data)
2464{
2465        _notifier_call_chain(rdev, event, data);
2466        return NOTIFY_DONE;
2467
2468}
2469EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2470
2471/**
2472 * regulator_mode_to_status - convert a regulator mode into a status
2473 *
2474 * @mode: Mode to convert
2475 *
2476 * Convert a regulator mode into a status.
2477 */
2478int regulator_mode_to_status(unsigned int mode)
2479{
2480        switch (mode) {
2481        case REGULATOR_MODE_FAST:
2482                return REGULATOR_STATUS_FAST;
2483        case REGULATOR_MODE_NORMAL:
2484                return REGULATOR_STATUS_NORMAL;
2485        case REGULATOR_MODE_IDLE:
2486                return REGULATOR_STATUS_IDLE;
2487        case REGULATOR_STATUS_STANDBY:
2488                return REGULATOR_STATUS_STANDBY;
2489        default:
2490                return 0;
2491        }
2492}
2493EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2494
2495/*
2496 * To avoid cluttering sysfs (and memory) with useless state, only
2497 * create attributes that can be meaningfully displayed.
2498 */
2499static int add_regulator_attributes(struct regulator_dev *rdev)
2500{
2501        struct device           *dev = &rdev->dev;
2502        struct regulator_ops    *ops = rdev->desc->ops;
2503        int                     status = 0;
2504
2505        /* some attributes need specific methods to be displayed */
2506        if (ops->get_voltage || ops->get_voltage_sel) {
2507                status = device_create_file(dev, &dev_attr_microvolts);
2508                if (status < 0)
2509                        return status;
2510        }
2511        if (ops->get_current_limit) {
2512                status = device_create_file(dev, &dev_attr_microamps);
2513                if (status < 0)
2514                        return status;
2515        }
2516        if (ops->get_mode) {
2517                status = device_create_file(dev, &dev_attr_opmode);
2518                if (status < 0)
2519                        return status;
2520        }
2521        if (ops->is_enabled) {
2522                status = device_create_file(dev, &dev_attr_state);
2523                if (status < 0)
2524                        return status;
2525        }
2526        if (ops->get_status) {
2527                status = device_create_file(dev, &dev_attr_status);
2528                if (status < 0)
2529                        return status;
2530        }
2531
2532        /* some attributes are type-specific */
2533        if (rdev->desc->type == REGULATOR_CURRENT) {
2534                status = device_create_file(dev, &dev_attr_requested_microamps);
2535                if (status < 0)
2536                        return status;
2537        }
2538
2539        /* all the other attributes exist to support constraints;
2540         * don't show them if there are no constraints, or if the
2541         * relevant supporting methods are missing.
2542         */
2543        if (!rdev->constraints)
2544                return status;
2545
2546        /* constraints need specific supporting methods */
2547        if (ops->set_voltage || ops->set_voltage_sel) {
2548                status = device_create_file(dev, &dev_attr_min_microvolts);
2549                if (status < 0)
2550                        return status;
2551                status = device_create_file(dev, &dev_attr_max_microvolts);
2552                if (status < 0)
2553                        return status;
2554        }
2555        if (ops->set_current_limit) {
2556                status = device_create_file(dev, &dev_attr_min_microamps);
2557                if (status < 0)
2558                        return status;
2559                status = device_create_file(dev, &dev_attr_max_microamps);
2560                if (status < 0)
2561                        return status;
2562        }
2563
2564        /* suspend mode constraints need multiple supporting methods */
2565        if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2566                return status;
2567
2568        status = device_create_file(dev, &dev_attr_suspend_standby_state);
2569        if (status < 0)
2570                return status;
2571        status = device_create_file(dev, &dev_attr_suspend_mem_state);
2572        if (status < 0)
2573                return status;
2574        status = device_create_file(dev, &dev_attr_suspend_disk_state);
2575        if (status < 0)
2576                return status;
2577
2578        if (ops->set_suspend_voltage) {
2579                status = device_create_file(dev,
2580                                &dev_attr_suspend_standby_microvolts);
2581                if (status < 0)
2582                        return status;
2583                status = device_create_file(dev,
2584                                &dev_attr_suspend_mem_microvolts);
2585                if (status < 0)
2586                        return status;
2587                status = device_create_file(dev,
2588                                &dev_attr_suspend_disk_microvolts);
2589                if (status < 0)
2590                        return status;
2591        }
2592
2593        if (ops->set_suspend_mode) {
2594                status = device_create_file(dev,
2595                                &dev_attr_suspend_standby_mode);
2596                if (status < 0)
2597                        return status;
2598                status = device_create_file(dev,
2599                                &dev_attr_suspend_mem_mode);
2600                if (status < 0)
2601                        return status;
2602                status = device_create_file(dev,
2603                                &dev_attr_suspend_disk_mode);
2604                if (status < 0)
2605                        return status;
2606        }
2607
2608        return status;
2609}
2610
2611static void rdev_init_debugfs(struct regulator_dev *rdev)
2612{
2613#ifdef CONFIG_DEBUG_FS
2614        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2615        if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2616                rdev_warn(rdev, "Failed to create debugfs directory\n");
2617                rdev->debugfs = NULL;
2618                return;
2619        }
2620
2621        debugfs_create_u32("use_count", 0444, rdev->debugfs,
2622                           &rdev->use_count);
2623        debugfs_create_u32("open_count", 0444, rdev->debugfs,
2624                           &rdev->open_count);
2625#endif
2626}
2627
2628/**
2629 * regulator_register - register regulator
2630 * @regulator_desc: regulator to register
2631 * @dev: struct device for the regulator
2632 * @init_data: platform provided init data, passed through by driver
2633 * @driver_data: private regulator data
2634 *
2635 * Called by regulator drivers to register a regulator.
2636 * Returns 0 on success.
2637 */
2638struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2639        struct device *dev, const struct regulator_init_data *init_data,
2640        void *driver_data)
2641{
2642        static atomic_t regulator_no = ATOMIC_INIT(0);
2643        struct regulator_dev *rdev;
2644        int ret, i;
2645
2646        if (regulator_desc == NULL)
2647                return ERR_PTR(-EINVAL);
2648
2649        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2650                return ERR_PTR(-EINVAL);
2651
2652        if (regulator_desc->type != REGULATOR_VOLTAGE &&
2653            regulator_desc->type != REGULATOR_CURRENT)
2654                return ERR_PTR(-EINVAL);
2655
2656        if (!init_data)
2657                return ERR_PTR(-EINVAL);
2658
2659        /* Only one of each should be implemented */
2660        WARN_ON(regulator_desc->ops->get_voltage &&
2661                regulator_desc->ops->get_voltage_sel);
2662        WARN_ON(regulator_desc->ops->set_voltage &&
2663                regulator_desc->ops->set_voltage_sel);
2664
2665        /* If we're using selectors we must implement list_voltage. */
2666        if (regulator_desc->ops->get_voltage_sel &&
2667            !regulator_desc->ops->list_voltage) {
2668                return ERR_PTR(-EINVAL);
2669        }
2670        if (regulator_desc->ops->set_voltage_sel &&
2671            !regulator_desc->ops->list_voltage) {
2672                return ERR_PTR(-EINVAL);
2673        }
2674
2675        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2676        if (rdev == NULL)
2677                return ERR_PTR(-ENOMEM);
2678
2679        mutex_lock(&regulator_list_mutex);
2680
2681        mutex_init(&rdev->mutex);
2682        rdev->reg_data = driver_data;
2683        rdev->owner = regulator_desc->owner;
2684        rdev->desc = regulator_desc;
2685        INIT_LIST_HEAD(&rdev->consumer_list);
2686        INIT_LIST_HEAD(&rdev->list);
2687        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2688        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2689
2690        /* preform any regulator specific init */
2691        if (init_data->regulator_init) {
2692                ret = init_data->regulator_init(rdev->reg_data);
2693                if (ret < 0)
2694                        goto clean;
2695        }
2696
2697        /* register with sysfs */
2698        rdev->dev.class = &regulator_class;
2699        rdev->dev.parent = dev;
2700        dev_set_name(&rdev->dev, "regulator.%d",
2701                     atomic_inc_return(&regulator_no) - 1);
2702        ret = device_register(&rdev->dev);
2703        if (ret != 0) {
2704                put_device(&rdev->dev);
2705                goto clean;
2706        }
2707
2708        dev_set_drvdata(&rdev->dev, rdev);
2709
2710        /* set regulator constraints */
2711        ret = set_machine_constraints(rdev, &init_data->constraints);
2712        if (ret < 0)
2713                goto scrub;
2714
2715        /* add attributes supported by this regulator */
2716        ret = add_regulator_attributes(rdev);
2717        if (ret < 0)
2718                goto scrub;
2719
2720        if (init_data->supply_regulator) {
2721                struct regulator_dev *r;
2722                int found = 0;
2723
2724                list_for_each_entry(r, &regulator_list, list) {
2725                        if (strcmp(rdev_get_name(r),
2726                                   init_data->supply_regulator) == 0) {
2727                                found = 1;
2728                                break;
2729                        }
2730                }
2731
2732                if (!found) {
2733                        dev_err(dev, "Failed to find supply %s\n",
2734                                init_data->supply_regulator);
2735                        ret = -ENODEV;
2736                        goto scrub;
2737                }
2738
2739                ret = set_supply(rdev, r);
2740                if (ret < 0)
2741                        goto scrub;
2742        }
2743
2744        /* add consumers devices */
2745        for (i = 0; i < init_data->num_consumer_supplies; i++) {
2746                ret = set_consumer_device_supply(rdev,
2747                        init_data->consumer_supplies[i].dev,
2748                        init_data->consumer_supplies[i].dev_name,
2749                        init_data->consumer_supplies[i].supply);
2750                if (ret < 0) {
2751                        dev_err(dev, "Failed to set supply %s\n",
2752                                init_data->consumer_supplies[i].supply);
2753                        goto unset_supplies;
2754                }
2755        }
2756
2757        list_add(&rdev->list, &regulator_list);
2758
2759        rdev_init_debugfs(rdev);
2760out:
2761        mutex_unlock(&regulator_list_mutex);
2762        return rdev;
2763
2764unset_supplies:
2765        unset_regulator_supplies(rdev);
2766
2767scrub:
2768        kfree(rdev->constraints);
2769        device_unregister(&rdev->dev);
2770        /* device core frees rdev */
2771        rdev = ERR_PTR(ret);
2772        goto out;
2773
2774clean:
2775        kfree(rdev);
2776        rdev = ERR_PTR(ret);
2777        goto out;
2778}
2779EXPORT_SYMBOL_GPL(regulator_register);
2780
2781/**
2782 * regulator_unregister - unregister regulator
2783 * @rdev: regulator to unregister
2784 *
2785 * Called by regulator drivers to unregister a regulator.
2786 */
2787void regulator_unregister(struct regulator_dev *rdev)
2788{
2789        if (rdev == NULL)
2790                return;
2791
2792        mutex_lock(&regulator_list_mutex);
2793#ifdef CONFIG_DEBUG_FS
2794        debugfs_remove_recursive(rdev->debugfs);
2795#endif
2796        flush_work_sync(&rdev->disable_work.work);
2797        WARN_ON(rdev->open_count);
2798        unset_regulator_supplies(rdev);
2799        list_del(&rdev->list);
2800        if (rdev->supply)
2801                regulator_put(rdev->supply);
2802        kfree(rdev->constraints);
2803        device_unregister(&rdev->dev);
2804        mutex_unlock(&regulator_list_mutex);
2805}
2806EXPORT_SYMBOL_GPL(regulator_unregister);
2807
2808/**
2809 * regulator_suspend_prepare - prepare regulators for system wide suspend
2810 * @state: system suspend state
2811 *
2812 * Configure each regulator with it's suspend operating parameters for state.
2813 * This will usually be called by machine suspend code prior to supending.
2814 */
2815int regulator_suspend_prepare(suspend_state_t state)
2816{
2817        struct regulator_dev *rdev;
2818        int ret = 0;
2819
2820        /* ON is handled by regulator active state */
2821        if (state == PM_SUSPEND_ON)
2822                return -EINVAL;
2823
2824        mutex_lock(&regulator_list_mutex);
2825        list_for_each_entry(rdev, &regulator_list, list) {
2826
2827                mutex_lock(&rdev->mutex);
2828                ret = suspend_prepare(rdev, state);
2829                mutex_unlock(&rdev->mutex);
2830
2831                if (ret < 0) {
2832                        rdev_err(rdev, "failed to prepare\n");
2833                        goto out;
2834                }
2835        }
2836out:
2837        mutex_unlock(&regulator_list_mutex);
2838        return ret;
2839}
2840EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2841
2842/**
2843 * regulator_suspend_finish - resume regulators from system wide suspend
2844 *
2845 * Turn on regulators that might be turned off by regulator_suspend_prepare
2846 * and that should be turned on according to the regulators properties.
2847 */
2848int regulator_suspend_finish(void)
2849{
2850        struct regulator_dev *rdev;
2851        int ret = 0, error;
2852
2853        mutex_lock(&regulator_list_mutex);
2854        list_for_each_entry(rdev, &regulator_list, list) {
2855                struct regulator_ops *ops = rdev->desc->ops;
2856
2857                mutex_lock(&rdev->mutex);
2858                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2859                                ops->enable) {
2860                        error = ops->enable(rdev);
2861                        if (error)
2862                                ret = error;
2863                } else {
2864                        if (!has_full_constraints)
2865                                goto unlock;
2866                        if (!ops->disable)
2867                                goto unlock;
2868                        if (ops->is_enabled && !ops->is_enabled(rdev))
2869                                goto unlock;
2870
2871                        error = ops->disable(rdev);
2872                        if (error)
2873                                ret = error;
2874                }
2875unlock:
2876                mutex_unlock(&rdev->mutex);
2877        }
2878        mutex_unlock(&regulator_list_mutex);
2879        return ret;
2880}
2881EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2882
2883/**
2884 * regulator_has_full_constraints - the system has fully specified constraints
2885 *
2886 * Calling this function will cause the regulator API to disable all
2887 * regulators which have a zero use count and don't have an always_on
2888 * constraint in a late_initcall.
2889 *
2890 * The intention is that this will become the default behaviour in a
2891 * future kernel release so users are encouraged to use this facility
2892 * now.
2893 */
2894void regulator_has_full_constraints(void)
2895{
2896        has_full_constraints = 1;
2897}
2898EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2899
2900/**
2901 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2902 *
2903 * Calling this function will cause the regulator API to provide a
2904 * dummy regulator to consumers if no physical regulator is found,
2905 * allowing most consumers to proceed as though a regulator were
2906 * configured.  This allows systems such as those with software
2907 * controllable regulators for the CPU core only to be brought up more
2908 * readily.
2909 */
2910void regulator_use_dummy_regulator(void)
2911{
2912        board_wants_dummy_regulator = true;
2913}
2914EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2915
2916/**
2917 * rdev_get_drvdata - get rdev regulator driver data
2918 * @rdev: regulator
2919 *
2920 * Get rdev regulator driver private data. This call can be used in the
2921 * regulator driver context.
2922 */
2923void *rdev_get_drvdata(struct regulator_dev *rdev)
2924{
2925        return rdev->reg_data;
2926}
2927EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2928
2929/**
2930 * regulator_get_drvdata - get regulator driver data
2931 * @regulator: regulator
2932 *
2933 * Get regulator driver private data. This call can be used in the consumer
2934 * driver context when non API regulator specific functions need to be called.
2935 */
2936void *regulator_get_drvdata(struct regulator *regulator)
2937{
2938        return regulator->rdev->reg_data;
2939}
2940EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2941
2942/**
2943 * regulator_set_drvdata - set regulator driver data
2944 * @regulator: regulator
2945 * @data: data
2946 */
2947void regulator_set_drvdata(struct regulator *regulator, void *data)
2948{
2949        regulator->rdev->reg_data = data;
2950}
2951EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2952
2953/**
2954 * regulator_get_id - get regulator ID
2955 * @rdev: regulator
2956 */
2957int rdev_get_id(struct regulator_dev *rdev)
2958{
2959        return rdev->desc->id;
2960}
2961EXPORT_SYMBOL_GPL(rdev_get_id);
2962
2963struct device *rdev_get_dev(struct regulator_dev *rdev)
2964{
2965        return &rdev->dev;
2966}
2967EXPORT_SYMBOL_GPL(rdev_get_dev);
2968
2969void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2970{
2971        return reg_init_data->driver_data;
2972}
2973EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2974
2975#ifdef CONFIG_DEBUG_FS
2976static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
2977                                    size_t count, loff_t *ppos)
2978{
2979        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2980        ssize_t len, ret = 0;
2981        struct regulator_map *map;
2982
2983        if (!buf)
2984                return -ENOMEM;
2985
2986        list_for_each_entry(map, &regulator_map_list, list) {
2987                len = snprintf(buf + ret, PAGE_SIZE - ret,
2988                               "%s -> %s.%s\n",
2989                               rdev_get_name(map->regulator), map->dev_name,
2990                               map->supply);
2991                if (len >= 0)
2992                        ret += len;
2993                if (ret > PAGE_SIZE) {
2994                        ret = PAGE_SIZE;
2995                        break;
2996                }
2997        }
2998
2999        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3000
3001        kfree(buf);
3002
3003        return ret;
3004}
3005
3006static const struct file_operations supply_map_fops = {
3007        .read = supply_map_read_file,
3008        .llseek = default_llseek,
3009};
3010#endif
3011
3012static int __init regulator_init(void)
3013{
3014        int ret;
3015
3016        ret = class_register(&regulator_class);
3017
3018#ifdef CONFIG_DEBUG_FS
3019        debugfs_root = debugfs_create_dir("regulator", NULL);
3020        if (IS_ERR(debugfs_root) || !debugfs_root) {
3021                pr_warn("regulator: Failed to create debugfs directory\n");
3022                debugfs_root = NULL;
3023        }
3024
3025        if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3026                                       NULL, &supply_map_fops)))
3027                pr_warn("regulator: Failed to create supplies debugfs\n");
3028#endif
3029
3030        regulator_dummy_init();
3031
3032        return ret;
3033}
3034
3035/* init early to allow our consumers to complete system booting */
3036core_initcall(regulator_init);
3037
3038static int __init regulator_init_complete(void)
3039{
3040        struct regulator_dev *rdev;
3041        struct regulator_ops *ops;
3042        struct regulation_constraints *c;
3043        int enabled, ret;
3044
3045        mutex_lock(&regulator_list_mutex);
3046
3047        /* If we have a full configuration then disable any regulators
3048         * which are not in use or always_on.  This will become the
3049         * default behaviour in the future.
3050         */
3051        list_for_each_entry(rdev, &regulator_list, list) {
3052                ops = rdev->desc->ops;
3053                c = rdev->constraints;
3054
3055                if (!ops->disable || (c && c->always_on))
3056                        continue;
3057
3058                mutex_lock(&rdev->mutex);
3059
3060                if (rdev->use_count)
3061                        goto unlock;
3062
3063                /* If we can't read the status assume it's on. */
3064                if (ops->is_enabled)
3065                        enabled = ops->is_enabled(rdev);
3066                else
3067                        enabled = 1;
3068
3069                if (!enabled)
3070                        goto unlock;
3071
3072                if (has_full_constraints) {
3073                        /* We log since this may kill the system if it
3074                         * goes wrong. */
3075                        rdev_info(rdev, "disabling\n");
3076                        ret = ops->disable(rdev);
3077                        if (ret != 0) {
3078                                rdev_err(rdev, "couldn't disable: %d\n", ret);
3079                        }
3080                } else {
3081                        /* The intention is that in future we will
3082                         * assume that full constraints are provided
3083                         * so warn even if we aren't going to do
3084                         * anything here.
3085                         */
3086                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
3087                }
3088
3089unlock:
3090                mutex_unlock(&rdev->mutex);
3091        }
3092
3093        mutex_unlock(&regulator_list_mutex);
3094
3095        return 0;
3096}
3097late_initcall(regulator_init_complete);
3098