linux/drivers/staging/et131x/et131x.c
<<
>>
Prefs
   1/*
   2 * Agere Systems Inc.
   3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   4 *
   5 * Copyright © 2005 Agere Systems Inc.
   6 * All rights reserved.
   7 *   http://www.agere.com
   8 *
   9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
  10 *
  11 *------------------------------------------------------------------------------
  12 *
  13 * SOFTWARE LICENSE
  14 *
  15 * This software is provided subject to the following terms and conditions,
  16 * which you should read carefully before using the software.  Using this
  17 * software indicates your acceptance of these terms and conditions.  If you do
  18 * not agree with these terms and conditions, do not use the software.
  19 *
  20 * Copyright © 2005 Agere Systems Inc.
  21 * All rights reserved.
  22 *
  23 * Redistribution and use in source or binary forms, with or without
  24 * modifications, are permitted provided that the following conditions are met:
  25 *
  26 * . Redistributions of source code must retain the above copyright notice, this
  27 *    list of conditions and the following Disclaimer as comments in the code as
  28 *    well as in the documentation and/or other materials provided with the
  29 *    distribution.
  30 *
  31 * . Redistributions in binary form must reproduce the above copyright notice,
  32 *    this list of conditions and the following Disclaimer in the documentation
  33 *    and/or other materials provided with the distribution.
  34 *
  35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  36 *    may be used to endorse or promote products derived from this software
  37 *    without specific prior written permission.
  38 *
  39 * Disclaimer
  40 *
  41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  52 * DAMAGE.
  53 *
  54 */
  55
  56#include <linux/pci.h>
  57#include <linux/init.h>
  58#include <linux/module.h>
  59#include <linux/types.h>
  60#include <linux/kernel.h>
  61
  62#include <linux/sched.h>
  63#include <linux/ptrace.h>
  64#include <linux/slab.h>
  65#include <linux/ctype.h>
  66#include <linux/string.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/in.h>
  70#include <linux/delay.h>
  71#include <linux/bitops.h>
  72#include <linux/io.h>
  73#include <asm/system.h>
  74
  75#include <linux/netdevice.h>
  76#include <linux/etherdevice.h>
  77#include <linux/skbuff.h>
  78#include <linux/if_arp.h>
  79#include <linux/ioport.h>
  80#include <linux/crc32.h>
  81#include <linux/random.h>
  82#include <linux/phy.h>
  83
  84#include "et131x.h"
  85
  86MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  87MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  88MODULE_LICENSE("Dual BSD/GPL");
  89MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
  90                   "for the ET1310 by Agere Systems");
  91
  92/* EEPROM defines */
  93#define MAX_NUM_REGISTER_POLLS          1000
  94#define MAX_NUM_WRITE_RETRIES           2
  95
  96/* MAC defines */
  97#define COUNTER_WRAP_16_BIT 0x10000
  98#define COUNTER_WRAP_12_BIT 0x1000
  99
 100/* PCI defines */
 101#define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
 102#define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
 103
 104/* ISR defines */
 105/*
 106 * For interrupts, normal running is:
 107 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 108 *       watchdog_interrupt & txdma_xfer_done
 109 *
 110 * In both cases, when flow control is enabled for either Tx or bi-direction,
 111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 112 * buffer rings are running low.
 113 */
 114#define INT_MASK_DISABLE            0xffffffff
 115
 116/* NOTE: Masking out MAC_STAT Interrupt for now...
 117 * #define INT_MASK_ENABLE             0xfff6bf17
 118 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 119 */
 120#define INT_MASK_ENABLE             0xfffebf17
 121#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 122
 123/* General defines */
 124/* Packet and header sizes */
 125#define NIC_MIN_PACKET_SIZE     60
 126
 127/* Multicast list size */
 128#define NIC_MAX_MCAST_LIST      128
 129
 130/* Supported Filters */
 131#define ET131X_PACKET_TYPE_DIRECTED             0x0001
 132#define ET131X_PACKET_TYPE_MULTICAST            0x0002
 133#define ET131X_PACKET_TYPE_BROADCAST            0x0004
 134#define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
 135#define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
 136
 137/* Tx Timeout */
 138#define ET131X_TX_TIMEOUT       (1 * HZ)
 139#define NIC_SEND_HANG_THRESHOLD 0
 140
 141/* MP_TCB flags */
 142#define fMP_DEST_MULTI                  0x00000001
 143#define fMP_DEST_BROAD                  0x00000002
 144
 145/* MP_ADAPTER flags */
 146#define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
 147#define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
 148
 149/* MP_SHARED flags */
 150#define fMP_ADAPTER_LOWER_POWER         0x00200000
 151
 152#define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
 153#define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
 154
 155#define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
 156
 157/* Some offsets in PCI config space that are actually used. */
 158#define ET1310_PCI_MAX_PYLD             0x4C
 159#define ET1310_PCI_MAC_ADDRESS          0xA4
 160#define ET1310_PCI_EEPROM_STATUS        0xB2
 161#define ET1310_PCI_ACK_NACK             0xC0
 162#define ET1310_PCI_REPLAY               0xC2
 163#define ET1310_PCI_L0L1LATENCY          0xCF
 164
 165/* PCI Product IDs */
 166#define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
 167#define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
 168
 169/* Define order of magnitude converter */
 170#define NANO_IN_A_MICRO 1000
 171
 172#define PARM_RX_NUM_BUFS_DEF    4
 173#define PARM_RX_TIME_INT_DEF    10
 174#define PARM_RX_MEM_END_DEF     0x2bc
 175#define PARM_TX_TIME_INT_DEF    40
 176#define PARM_TX_NUM_BUFS_DEF    4
 177#define PARM_DMA_CACHE_DEF      0
 178
 179/* RX defines */
 180#define USE_FBR0 1
 181
 182#define FBR_CHUNKS 32
 183
 184#define MAX_DESC_PER_RING_RX         1024
 185
 186/* number of RFDs - default and min */
 187#ifdef USE_FBR0
 188#define RFD_LOW_WATER_MARK      40
 189#define NIC_DEFAULT_NUM_RFD     1024
 190#define NUM_FBRS                2
 191#else
 192#define RFD_LOW_WATER_MARK      20
 193#define NIC_DEFAULT_NUM_RFD     256
 194#define NUM_FBRS                1
 195#endif
 196
 197#define NIC_MIN_NUM_RFD         64
 198
 199#define NUM_PACKETS_HANDLED     256
 200
 201#define ALCATEL_MULTICAST_PKT   0x01000000
 202#define ALCATEL_BROADCAST_PKT   0x02000000
 203
 204/* typedefs for Free Buffer Descriptors */
 205struct fbr_desc {
 206        u32 addr_lo;
 207        u32 addr_hi;
 208        u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
 209};
 210
 211/* Packet Status Ring Descriptors
 212 *
 213 * Word 0:
 214 *
 215 * top 16 bits are from the Alcatel Status Word as enumerated in
 216 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 217 *
 218 * 0: hp                        hash pass
 219 * 1: ipa                       IP checksum assist
 220 * 2: ipp                       IP checksum pass
 221 * 3: tcpa                      TCP checksum assist
 222 * 4: tcpp                      TCP checksum pass
 223 * 5: wol                       WOL Event
 224 * 6: rxmac_error               RXMAC Error Indicator
 225 * 7: drop                      Drop packet
 226 * 8: ft                        Frame Truncated
 227 * 9: jp                        Jumbo Packet
 228 * 10: vp                       VLAN Packet
 229 * 11-15: unused
 230 * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
 231 * 17: asw_RX_DV_event          short receive event detected
 232 * 18: asw_false_carrier_event  bad carrier since last good packet
 233 * 19: asw_code_err             one or more nibbles signalled as errors
 234 * 20: asw_CRC_err              CRC error
 235 * 21: asw_len_chk_err          frame length field incorrect
 236 * 22: asw_too_long             frame length > 1518 bytes
 237 * 23: asw_OK                   valid CRC + no code error
 238 * 24: asw_multicast            has a multicast address
 239 * 25: asw_broadcast            has a broadcast address
 240 * 26: asw_dribble_nibble       spurious bits after EOP
 241 * 27: asw_control_frame        is a control frame
 242 * 28: asw_pause_frame          is a pause frame
 243 * 29: asw_unsupported_op       unsupported OP code
 244 * 30: asw_VLAN_tag             VLAN tag detected
 245 * 31: asw_long_evt             Rx long event
 246 *
 247 * Word 1:
 248 * 0-15: length                 length in bytes
 249 * 16-25: bi                    Buffer Index
 250 * 26-27: ri                    Ring Index
 251 * 28-31: reserved
 252 */
 253
 254struct pkt_stat_desc {
 255        u32 word0;
 256        u32 word1;
 257};
 258
 259/* Typedefs for the RX DMA status word */
 260
 261/*
 262 * rx status word 0 holds part of the status bits of the Rx DMA engine
 263 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 264 * which contains the Free Buffer ring 0 and 1 available offset.
 265 *
 266 * bit 0-9 FBR1 offset
 267 * bit 10 Wrap flag for FBR1
 268 * bit 16-25 FBR0 offset
 269 * bit 26 Wrap flag for FBR0
 270 */
 271
 272/*
 273 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 274 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 275 * which contains the Packet Status Ring available offset.
 276 *
 277 * bit 0-15 reserved
 278 * bit 16-27 PSRoffset
 279 * bit 28 PSRwrap
 280 * bit 29-31 unused
 281 */
 282
 283/*
 284 * struct rx_status_block is a structure representing the status of the Rx
 285 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 286 */
 287struct rx_status_block {
 288        u32 word0;
 289        u32 word1;
 290};
 291
 292/*
 293 * Structure for look-up table holding free buffer ring pointers, addresses
 294 * and state.
 295 */
 296struct fbr_lookup {
 297        void            *virt[MAX_DESC_PER_RING_RX];
 298        void            *buffer1[MAX_DESC_PER_RING_RX];
 299        void            *buffer2[MAX_DESC_PER_RING_RX];
 300        u32              bus_high[MAX_DESC_PER_RING_RX];
 301        u32              bus_low[MAX_DESC_PER_RING_RX];
 302        void            *ring_virtaddr;
 303        dma_addr_t       ring_physaddr;
 304        void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 305        dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 306        uint64_t         real_physaddr;
 307        uint64_t         offset;
 308        u32              local_full;
 309        u32              num_entries;
 310        u32              buffsize;
 311};
 312
 313/*
 314 * struct rx_ring is the sructure representing the adaptor's local
 315 * reference(s) to the rings
 316 *
 317 ******************************************************************************
 318 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
 319 *                      and index 1 to refer to FRB0
 320 ******************************************************************************
 321 */
 322struct rx_ring {
 323        struct fbr_lookup *fbr[NUM_FBRS];
 324        void *ps_ring_virtaddr;
 325        dma_addr_t ps_ring_physaddr;
 326        u32 local_psr_full;
 327        u32 psr_num_entries;
 328
 329        struct rx_status_block *rx_status_block;
 330        dma_addr_t rx_status_bus;
 331
 332        /* RECV */
 333        struct list_head recv_list;
 334        u32 num_ready_recv;
 335
 336        u32 num_rfd;
 337
 338        bool unfinished_receives;
 339
 340        /* lookaside lists */
 341        struct kmem_cache *recv_lookaside;
 342};
 343
 344/* TX defines */
 345/*
 346 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 347 *
 348 * 0-15: length of packet
 349 * 16-27: VLAN tag
 350 * 28: VLAN CFI
 351 * 29-31: VLAN priority
 352 *
 353 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 354 *
 355 * 0: last packet in the sequence
 356 * 1: first packet in the sequence
 357 * 2: interrupt the processor when this pkt sent
 358 * 3: Control word - no packet data
 359 * 4: Issue half-duplex backpressure : XON/XOFF
 360 * 5: send pause frame
 361 * 6: Tx frame has error
 362 * 7: append CRC
 363 * 8: MAC override
 364 * 9: pad packet
 365 * 10: Packet is a Huge packet
 366 * 11: append VLAN tag
 367 * 12: IP checksum assist
 368 * 13: TCP checksum assist
 369 * 14: UDP checksum assist
 370 */
 371
 372/* struct tx_desc represents each descriptor on the ring */
 373struct tx_desc {
 374        u32 addr_hi;
 375        u32 addr_lo;
 376        u32 len_vlan;   /* control words how to xmit the */
 377        u32 flags;      /* data (detailed above) */
 378};
 379
 380/*
 381 * The status of the Tx DMA engine it sits in free memory, and is pointed to
 382 * by 0x101c / 0x1020. This is a DMA10 type
 383 */
 384
 385/* TCB (Transmit Control Block: Host Side) */
 386struct tcb {
 387        struct tcb *next;       /* Next entry in ring */
 388        u32 flags;              /* Our flags for the packet */
 389        u32 count;              /* Used to spot stuck/lost packets */
 390        u32 stale;              /* Used to spot stuck/lost packets */
 391        struct sk_buff *skb;    /* Network skb we are tied to */
 392        u32 index;              /* Ring indexes */
 393        u32 index_start;
 394};
 395
 396/* Structure representing our local reference(s) to the ring */
 397struct tx_ring {
 398        /* TCB (Transmit Control Block) memory and lists */
 399        struct tcb *tcb_ring;
 400
 401        /* List of TCBs that are ready to be used */
 402        struct tcb *tcb_qhead;
 403        struct tcb *tcb_qtail;
 404
 405        /* list of TCBs that are currently being sent.  NOTE that access to all
 406         * three of these (including used) are controlled via the
 407         * TCBSendQLock.  This lock should be secured prior to incementing /
 408         * decrementing used, or any queue manipulation on send_head /
 409         * tail
 410         */
 411        struct tcb *send_head;
 412        struct tcb *send_tail;
 413        int used;
 414
 415        /* The actual descriptor ring */
 416        struct tx_desc *tx_desc_ring;
 417        dma_addr_t tx_desc_ring_pa;
 418
 419        /* send_idx indicates where we last wrote to in the descriptor ring. */
 420        u32 send_idx;
 421
 422        /* The location of the write-back status block */
 423        u32 *tx_status;
 424        dma_addr_t tx_status_pa;
 425
 426        /* Packets since the last IRQ: used for interrupt coalescing */
 427        int since_irq;
 428};
 429
 430/* ADAPTER defines */
 431/*
 432 * Do not change these values: if changed, then change also in respective
 433 * TXdma and Rxdma engines
 434 */
 435#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 436#define NUM_TCB                      64
 437
 438/*
 439 * These values are all superseded by registry entries to facilitate tuning.
 440 * Once the desired performance has been achieved, the optimal registry values
 441 * should be re-populated to these #defines:
 442 */
 443#define TX_ERROR_PERIOD             1000
 444
 445#define LO_MARK_PERCENT_FOR_PSR     15
 446#define LO_MARK_PERCENT_FOR_RX      15
 447
 448/* RFD (Receive Frame Descriptor) */
 449struct rfd {
 450        struct list_head list_node;
 451        struct sk_buff *skb;
 452        u32 len;        /* total size of receive frame */
 453        u16 bufferindex;
 454        u8 ringindex;
 455};
 456
 457/* Flow Control */
 458#define FLOW_BOTH       0
 459#define FLOW_TXONLY     1
 460#define FLOW_RXONLY     2
 461#define FLOW_NONE       3
 462
 463/* Struct to define some device statistics */
 464struct ce_stats {
 465        /* MIB II variables
 466         *
 467         * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
 468         * MUST have 32, then we'll need another way to perform atomic
 469         * operations
 470         */
 471        u32             unicast_pkts_rcvd;
 472        atomic_t        unicast_pkts_xmtd;
 473        u32             multicast_pkts_rcvd;
 474        atomic_t        multicast_pkts_xmtd;
 475        u32             broadcast_pkts_rcvd;
 476        atomic_t        broadcast_pkts_xmtd;
 477        u32             rcvd_pkts_dropped;
 478
 479        /* Tx Statistics. */
 480        u32             tx_underflows;
 481
 482        u32             tx_collisions;
 483        u32             tx_excessive_collisions;
 484        u32             tx_first_collisions;
 485        u32             tx_late_collisions;
 486        u32             tx_max_pkt_errs;
 487        u32             tx_deferred;
 488
 489        /* Rx Statistics. */
 490        u32             rx_overflows;
 491
 492        u32             rx_length_errs;
 493        u32             rx_align_errs;
 494        u32             rx_crc_errs;
 495        u32             rx_code_violations;
 496        u32             rx_other_errs;
 497
 498        u32             synchronous_iterations;
 499        u32             interrupt_status;
 500};
 501
 502/* The private adapter structure */
 503struct et131x_adapter {
 504        struct net_device *netdev;
 505        struct pci_dev *pdev;
 506        struct mii_bus *mii_bus;
 507        struct phy_device *phydev;
 508        struct work_struct task;
 509
 510        /* Flags that indicate current state of the adapter */
 511        u32 flags;
 512
 513        /* local link state, to determine if a state change has occurred */
 514        int link;
 515
 516        /* Configuration  */
 517        u8 rom_addr[ETH_ALEN];
 518        u8 addr[ETH_ALEN];
 519        bool has_eeprom;
 520        u8 eeprom_data[2];
 521
 522        /* Spinlocks */
 523        spinlock_t lock;
 524
 525        spinlock_t tcb_send_qlock;
 526        spinlock_t tcb_ready_qlock;
 527        spinlock_t send_hw_lock;
 528
 529        spinlock_t rcv_lock;
 530        spinlock_t rcv_pend_lock;
 531        spinlock_t fbr_lock;
 532
 533        spinlock_t phy_lock;
 534
 535        /* Packet Filter and look ahead size */
 536        u32 packet_filter;
 537
 538        /* multicast list */
 539        u32 multicast_addr_count;
 540        u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 541
 542        /* Pointer to the device's PCI register space */
 543        struct address_map __iomem *regs;
 544
 545        /* Registry parameters */
 546        u8 wanted_flow;         /* Flow we want for 802.3x flow control */
 547        u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
 548
 549        /* Derived from the registry: */
 550        u8 flowcontrol;         /* flow control validated by the far-end */
 551
 552        /* Minimize init-time */
 553        struct timer_list error_timer;
 554
 555        /* variable putting the phy into coma mode when boot up with no cable
 556         * plugged in after 5 seconds
 557         */
 558        u8 boot_coma;
 559
 560        /* Next two used to save power information at power down. This
 561         * information will be used during power up to set up parts of Power
 562         * Management in JAGCore
 563         */
 564        u16 pdown_speed;
 565        u8 pdown_duplex;
 566
 567        /* Tx Memory Variables */
 568        struct tx_ring tx_ring;
 569
 570        /* Rx Memory Variables */
 571        struct rx_ring rx_ring;
 572
 573        /* Stats */
 574        struct ce_stats stats;
 575
 576        struct net_device_stats net_stats;
 577};
 578
 579/* EEPROM functions */
 580
 581static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 582{
 583        u32 reg;
 584        int i;
 585
 586        /*
 587         * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 588         *    bits 7,1:0 both equal to 1, at least once after reset.
 589         *    Subsequent operations need only to check that bits 1:0 are equal
 590         *    to 1 prior to starting a single byte read/write
 591         */
 592
 593        for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 594                /* Read registers grouped in DWORD1 */
 595                if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 596                        return -EIO;
 597
 598                /* I2C idle and Phy Queue Avail both true */
 599                if ((reg & 0x3000) == 0x3000) {
 600                        if (status)
 601                                *status = reg;
 602                        return reg & 0xFF;
 603                }
 604        }
 605        return -ETIMEDOUT;
 606}
 607
 608
 609/**
 610 * eeprom_write - Write a byte to the ET1310's EEPROM
 611 * @adapter: pointer to our private adapter structure
 612 * @addr: the address to write
 613 * @data: the value to write
 614 *
 615 * Returns 1 for a successful write.
 616 */
 617static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 618{
 619        struct pci_dev *pdev = adapter->pdev;
 620        int index = 0;
 621        int retries;
 622        int err = 0;
 623        int i2c_wack = 0;
 624        int writeok = 0;
 625        u32 status;
 626        u32 val = 0;
 627
 628        /*
 629         * For an EEPROM, an I2C single byte write is defined as a START
 630         * condition followed by the device address, EEPROM address, one byte
 631         * of data and a STOP condition.  The STOP condition will trigger the
 632         * EEPROM's internally timed write cycle to the nonvolatile memory.
 633         * All inputs are disabled during this write cycle and the EEPROM will
 634         * not respond to any access until the internal write is complete.
 635         */
 636
 637        err = eeprom_wait_ready(pdev, NULL);
 638        if (err)
 639                return err;
 640
 641         /*
 642         * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 643         *    and bits 1:0 both =0.  Bit 5 should be set according to the
 644         *    type of EEPROM being accessed (1=two byte addressing, 0=one
 645         *    byte addressing).
 646         */
 647        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 648                        LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
 649                return -EIO;
 650
 651        i2c_wack = 1;
 652
 653        /* Prepare EEPROM address for Step 3 */
 654
 655        for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 656                /* Write the address to the LBCIF Address Register */
 657                if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 658                        break;
 659                /*
 660                 * Write the data to the LBCIF Data Register (the I2C write
 661                 * will begin).
 662                 */
 663                if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 664                        break;
 665                /*
 666                 * Monitor bit 1:0 of the LBCIF Status Register.  When bits
 667                 * 1:0 are both equal to 1, the I2C write has completed and the
 668                 * internal write cycle of the EEPROM is about to start.
 669                 * (bits 1:0 = 01 is a legal state while waiting from both
 670                 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 671                 * something is broken).
 672                 */
 673                err = eeprom_wait_ready(pdev, &status);
 674                if (err < 0)
 675                        return 0;
 676
 677                /*
 678                 * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 679                 * an error has occurred.Don't break here if we are revision
 680                 * 1, this is so we do a blind write for load bug.
 681                 */
 682                if ((status & LBCIF_STATUS_GENERAL_ERROR)
 683                        && adapter->pdev->revision == 0)
 684                        break;
 685
 686                /*
 687                 * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 688                 * ACK error has occurred on the address phase of the write.
 689                 * This could be due to an actual hardware failure or the
 690                 * EEPROM may still be in its internal write cycle from a
 691                 * previous write. This write operation was ignored and must be
 692                  *repeated later.
 693                 */
 694                if (status & LBCIF_STATUS_ACK_ERROR) {
 695                        /*
 696                         * This could be due to an actual hardware failure
 697                         * or the EEPROM may still be in its internal write
 698                         * cycle from a previous write. This write operation
 699                         * was ignored and must be repeated later.
 700                         */
 701                        udelay(10);
 702                        continue;
 703                }
 704
 705                writeok = 1;
 706                break;
 707        }
 708
 709        /*
 710         * Set bit 6 of the LBCIF Control Register = 0.
 711         */
 712        udelay(10);
 713
 714        while (i2c_wack) {
 715                if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 716                        LBCIF_CONTROL_LBCIF_ENABLE))
 717                        writeok = 0;
 718
 719                /* Do read until internal ACK_ERROR goes away meaning write
 720                 * completed
 721                 */
 722                do {
 723                        pci_write_config_dword(pdev,
 724                                               LBCIF_ADDRESS_REGISTER,
 725                                               addr);
 726                        do {
 727                                pci_read_config_dword(pdev,
 728                                        LBCIF_DATA_REGISTER, &val);
 729                        } while ((val & 0x00010000) == 0);
 730                } while (val & 0x00040000);
 731
 732                if ((val & 0xFF00) != 0xC000 || index == 10000)
 733                        break;
 734                index++;
 735        }
 736        return writeok ? 0 : -EIO;
 737}
 738
 739/**
 740 * eeprom_read - Read a byte from the ET1310's EEPROM
 741 * @adapter: pointer to our private adapter structure
 742 * @addr: the address from which to read
 743 * @pdata: a pointer to a byte in which to store the value of the read
 744 * @eeprom_id: the ID of the EEPROM
 745 * @addrmode: how the EEPROM is to be accessed
 746 *
 747 * Returns 1 for a successful read
 748 */
 749static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 750{
 751        struct pci_dev *pdev = adapter->pdev;
 752        int err;
 753        u32 status;
 754
 755        /*
 756         * A single byte read is similar to the single byte write, with the
 757         * exception of the data flow:
 758         */
 759
 760        err = eeprom_wait_ready(pdev, NULL);
 761        if (err)
 762                return err;
 763        /*
 764         * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 765         * and bits 1:0 both =0.  Bit 5 should be set according to the type
 766         * of EEPROM being accessed (1=two byte addressing, 0=one byte
 767         * addressing).
 768         */
 769        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 770                                  LBCIF_CONTROL_LBCIF_ENABLE))
 771                return -EIO;
 772        /*
 773         * Write the address to the LBCIF Address Register (I2C read will
 774         * begin).
 775         */
 776        if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 777                return -EIO;
 778        /*
 779         * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 780         * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 781         * has occurred).
 782         */
 783        err = eeprom_wait_ready(pdev, &status);
 784        if (err < 0)
 785                return err;
 786        /*
 787         * Regardless of error status, read data byte from LBCIF Data
 788         * Register.
 789         */
 790        *pdata = err;
 791        /*
 792         * Check bit 2 of the LBCIF Status Register.  If = 1,
 793         * then an error has occurred.
 794         */
 795        return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 796}
 797
 798int et131x_init_eeprom(struct et131x_adapter *adapter)
 799{
 800        struct pci_dev *pdev = adapter->pdev;
 801        u8 eestatus;
 802
 803        /* We first need to check the EEPROM Status code located at offset
 804         * 0xB2 of config space
 805         */
 806        pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
 807                                      &eestatus);
 808
 809        /* THIS IS A WORKAROUND:
 810         * I need to call this function twice to get my card in a
 811         * LG M1 Express Dual running. I tried also a msleep before this
 812         * function, because I thougth there could be some time condidions
 813         * but it didn't work. Call the whole function twice also work.
 814         */
 815        if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 816                dev_err(&pdev->dev,
 817                       "Could not read PCI config space for EEPROM Status\n");
 818                return -EIO;
 819        }
 820
 821        /* Determine if the error(s) we care about are present. If they are
 822         * present we need to fail.
 823         */
 824        if (eestatus & 0x4C) {
 825                int write_failed = 0;
 826                if (pdev->revision == 0x01) {
 827                        int     i;
 828                        static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 829
 830                        /* Re-write the first 4 bytes if we have an eeprom
 831                         * present and the revision id is 1, this fixes the
 832                         * corruption seen with 1310 B Silicon
 833                         */
 834                        for (i = 0; i < 3; i++)
 835                                if (eeprom_write(adapter, i, eedata[i]) < 0)
 836                                        write_failed = 1;
 837                }
 838                if (pdev->revision  != 0x01 || write_failed) {
 839                        dev_err(&pdev->dev,
 840                            "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
 841
 842                        /* This error could mean that there was an error
 843                         * reading the eeprom or that the eeprom doesn't exist.
 844                         * We will treat each case the same and not try to
 845                         * gather additional information that normally would
 846                         * come from the eeprom, like MAC Address
 847                         */
 848                        adapter->has_eeprom = 0;
 849                        return -EIO;
 850                }
 851        }
 852        adapter->has_eeprom = 1;
 853
 854        /* Read the EEPROM for information regarding LED behavior. Refer to
 855         * ET1310_phy.c, et131x_xcvr_init(), for its use.
 856         */
 857        eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 858        eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 859
 860        if (adapter->eeprom_data[0] != 0xcd)
 861                /* Disable all optional features */
 862                adapter->eeprom_data[1] = 0x00;
 863
 864        return 0;
 865}
 866
 867/**
 868 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
 869 * @adapter: pointer to our adapter structure
 870 */
 871void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 872{
 873        /* Setup the receive dma configuration register for normal operation */
 874        u32 csr =  0x2000;      /* FBR1 enable */
 875
 876        if (adapter->rx_ring.fbr[0]->buffsize == 4096)
 877                csr |= 0x0800;
 878        else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
 879                csr |= 0x1000;
 880        else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
 881                csr |= 0x1800;
 882#ifdef USE_FBR0
 883        csr |= 0x0400;          /* FBR0 enable */
 884        if (adapter->rx_ring.fbr[1]->buffsize == 256)
 885                csr |= 0x0100;
 886        else if (adapter->rx_ring.fbr[1]->buffsize == 512)
 887                csr |= 0x0200;
 888        else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
 889                csr |= 0x0300;
 890#endif
 891        writel(csr, &adapter->regs->rxdma.csr);
 892
 893        csr = readl(&adapter->regs->rxdma.csr);
 894        if ((csr & 0x00020000) != 0) {
 895                udelay(5);
 896                csr = readl(&adapter->regs->rxdma.csr);
 897                if ((csr & 0x00020000) != 0) {
 898                        dev_err(&adapter->pdev->dev,
 899                            "RX Dma failed to exit halt state.  CSR 0x%08x\n",
 900                                csr);
 901                }
 902        }
 903}
 904
 905/**
 906 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
 907 * @adapter: pointer to our adapter structure
 908 */
 909void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 910{
 911        u32 csr;
 912        /* Setup the receive dma configuration register */
 913        writel(0x00002001, &adapter->regs->rxdma.csr);
 914        csr = readl(&adapter->regs->rxdma.csr);
 915        if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
 916                udelay(5);
 917                csr = readl(&adapter->regs->rxdma.csr);
 918                if ((csr & 0x00020000) == 0)
 919                        dev_err(&adapter->pdev->dev,
 920                        "RX Dma failed to enter halt state. CSR 0x%08x\n",
 921                                csr);
 922        }
 923}
 924
 925/**
 926 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
 927 * @adapter: pointer to our adapter structure
 928 *
 929 * Mainly used after a return to the D0 (full-power) state from a lower state.
 930 */
 931void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 932{
 933        /* Setup the transmit dma configuration register for normal
 934         * operation
 935         */
 936        writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 937                                        &adapter->regs->txdma.csr);
 938}
 939
 940static inline void add_10bit(u32 *v, int n)
 941{
 942        *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 943}
 944
 945static inline void add_12bit(u32 *v, int n)
 946{
 947        *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 948}
 949
 950/**
 951 * nic_rx_pkts - Checks the hardware for available packets
 952 * @adapter: pointer to our adapter
 953 *
 954 * Returns rfd, a pointer to our MPRFD.
 955 *
 956 * Checks the hardware for available packets, using completion ring
 957 * If packets are available, it gets an RFD from the recv_list, attaches
 958 * the packet to it, puts the RFD in the RecvPendList, and also returns
 959 * the pointer to the RFD.
 960 */
 961/* MAC functions */
 962
 963/**
 964 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
 965 * @adapter: pointer to our adapter structure
 966 */
 967void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 968{
 969        struct mac_regs __iomem *macregs = &adapter->regs->mac;
 970        u32 station1;
 971        u32 station2;
 972        u32 ipg;
 973
 974        /* First we need to reset everything.  Write to MAC configuration
 975         * register 1 to perform reset.
 976         */
 977        writel(0xC00F0000, &macregs->cfg1);
 978
 979        /* Next lets configure the MAC Inter-packet gap register */
 980        ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 981        ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
 982        writel(ipg, &macregs->ipg);
 983
 984        /* Next lets configure the MAC Half Duplex register */
 985        /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 986        writel(0x00A1F037, &macregs->hfdp);
 987
 988        /* Next lets configure the MAC Interface Control register */
 989        writel(0, &macregs->if_ctrl);
 990
 991        /* Let's move on to setting up the mii management configuration */
 992        writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
 993
 994        /* Next lets configure the MAC Station Address register.  These
 995         * values are read from the EEPROM during initialization and stored
 996         * in the adapter structure.  We write what is stored in the adapter
 997         * structure to the MAC Station Address registers high and low.  This
 998         * station address is used for generating and checking pause control
 999         * packets.
1000         */
1001        station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
1002                   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
1003        station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
1004                   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
1005                   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
1006                    adapter->addr[2];
1007        writel(station1, &macregs->station_addr_1);
1008        writel(station2, &macregs->station_addr_2);
1009
1010        /* Max ethernet packet in bytes that will passed by the mac without
1011         * being truncated.  Allow the MAC to pass 4 more than our max packet
1012         * size.  This is 4 for the Ethernet CRC.
1013         *
1014         * Packets larger than (registry_jumbo_packet) that do not contain a
1015         * VLAN ID will be dropped by the Rx function.
1016         */
1017        writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
1018
1019        /* clear out MAC config reset */
1020        writel(0, &macregs->cfg1);
1021}
1022
1023/**
1024 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1025 * @adapter: pointer to our adapter structure
1026 */
1027void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1028{
1029        int32_t delay = 0;
1030        struct mac_regs __iomem *mac = &adapter->regs->mac;
1031        struct phy_device *phydev = adapter->phydev;
1032        u32 cfg1;
1033        u32 cfg2;
1034        u32 ifctrl;
1035        u32 ctl;
1036
1037        ctl = readl(&adapter->regs->txmac.ctl);
1038        cfg1 = readl(&mac->cfg1);
1039        cfg2 = readl(&mac->cfg2);
1040        ifctrl = readl(&mac->if_ctrl);
1041
1042        /* Set up the if mode bits */
1043        cfg2 &= ~0x300;
1044        if (phydev && phydev->speed == SPEED_1000) {
1045                cfg2 |= 0x200;
1046                /* Phy mode bit */
1047                ifctrl &= ~(1 << 24);
1048        } else {
1049                cfg2 |= 0x100;
1050                ifctrl |= (1 << 24);
1051        }
1052
1053        /* We need to enable Rx/Tx */
1054        cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1055        /* Initialize loop back to off */
1056        cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1057        if (adapter->flowcontrol == FLOW_RXONLY ||
1058                                adapter->flowcontrol == FLOW_BOTH)
1059                cfg1 |= CFG1_RX_FLOW;
1060        writel(cfg1, &mac->cfg1);
1061
1062        /* Now we need to initialize the MAC Configuration 2 register */
1063        /* preamble 7, check length, huge frame off, pad crc, crc enable
1064           full duplex off */
1065        cfg2 |= 0x7016;
1066        cfg2 &= ~0x0021;
1067
1068        /* Turn on duplex if needed */
1069        if (phydev && phydev->duplex == DUPLEX_FULL)
1070                cfg2 |= 0x01;
1071
1072        ifctrl &= ~(1 << 26);
1073        if (phydev && phydev->duplex == DUPLEX_HALF)
1074                ifctrl |= (1<<26);      /* Enable ghd */
1075
1076        writel(ifctrl, &mac->if_ctrl);
1077        writel(cfg2, &mac->cfg2);
1078
1079        do {
1080                udelay(10);
1081                delay++;
1082                cfg1 = readl(&mac->cfg1);
1083        } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1084
1085        if (delay == 100) {
1086                dev_warn(&adapter->pdev->dev,
1087                    "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1088                        cfg1);
1089        }
1090
1091        /* Enable txmac */
1092        ctl |= 0x09;    /* TX mac enable, FC disable */
1093        writel(ctl, &adapter->regs->txmac.ctl);
1094
1095        /* Ready to start the RXDMA/TXDMA engine */
1096        if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1097                et131x_rx_dma_enable(adapter);
1098                et131x_tx_dma_enable(adapter);
1099        }
1100}
1101
1102/**
1103 * et1310_in_phy_coma - check if the device is in phy coma
1104 * @adapter: pointer to our adapter structure
1105 *
1106 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1107 */
1108int et1310_in_phy_coma(struct et131x_adapter *adapter)
1109{
1110        u32 pmcsr;
1111
1112        pmcsr = readl(&adapter->regs->global.pm_csr);
1113
1114        return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1115}
1116
1117void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1118{
1119        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1120        uint32_t nIndex;
1121        uint32_t result;
1122        uint32_t hash1 = 0;
1123        uint32_t hash2 = 0;
1124        uint32_t hash3 = 0;
1125        uint32_t hash4 = 0;
1126        u32 pm_csr;
1127
1128        /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1129         * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1130         * specified) then we should pass NO multi-cast addresses to the
1131         * driver.
1132         */
1133        if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1134                /* Loop through our multicast array and set up the device */
1135                for (nIndex = 0; nIndex < adapter->multicast_addr_count;
1136                     nIndex++) {
1137                        result = ether_crc(6, adapter->multicast_list[nIndex]);
1138
1139                        result = (result & 0x3F800000) >> 23;
1140
1141                        if (result < 32) {
1142                                hash1 |= (1 << result);
1143                        } else if ((31 < result) && (result < 64)) {
1144                                result -= 32;
1145                                hash2 |= (1 << result);
1146                        } else if ((63 < result) && (result < 96)) {
1147                                result -= 64;
1148                                hash3 |= (1 << result);
1149                        } else {
1150                                result -= 96;
1151                                hash4 |= (1 << result);
1152                        }
1153                }
1154        }
1155
1156        /* Write out the new hash to the device */
1157        pm_csr = readl(&adapter->regs->global.pm_csr);
1158        if (!et1310_in_phy_coma(adapter)) {
1159                writel(hash1, &rxmac->multi_hash1);
1160                writel(hash2, &rxmac->multi_hash2);
1161                writel(hash3, &rxmac->multi_hash3);
1162                writel(hash4, &rxmac->multi_hash4);
1163        }
1164}
1165
1166void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1167{
1168        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1169        u32 uni_pf1;
1170        u32 uni_pf2;
1171        u32 uni_pf3;
1172        u32 pm_csr;
1173
1174        /* Set up unicast packet filter reg 3 to be the first two octets of
1175         * the MAC address for both address
1176         *
1177         * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1178         * MAC address for second address
1179         *
1180         * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1181         * MAC address for first address
1182         */
1183        uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1184                  (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1185                  (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1186                   adapter->addr[1];
1187
1188        uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1189                  (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1190                  (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1191                   adapter->addr[5];
1192
1193        uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1194                  (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1195                  (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1196                   adapter->addr[5];
1197
1198        pm_csr = readl(&adapter->regs->global.pm_csr);
1199        if (!et1310_in_phy_coma(adapter)) {
1200                writel(uni_pf1, &rxmac->uni_pf_addr1);
1201                writel(uni_pf2, &rxmac->uni_pf_addr2);
1202                writel(uni_pf3, &rxmac->uni_pf_addr3);
1203        }
1204}
1205
1206void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1207{
1208        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1209        struct phy_device *phydev = adapter->phydev;
1210        u32 sa_lo;
1211        u32 sa_hi = 0;
1212        u32 pf_ctrl = 0;
1213
1214        /* Disable the MAC while it is being configured (also disable WOL) */
1215        writel(0x8, &rxmac->ctrl);
1216
1217        /* Initialize WOL to disabled. */
1218        writel(0, &rxmac->crc0);
1219        writel(0, &rxmac->crc12);
1220        writel(0, &rxmac->crc34);
1221
1222        /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1223         * its default Values of 0x00000000 because there are not WOL masks
1224         * as of this time.
1225         */
1226        writel(0, &rxmac->mask0_word0);
1227        writel(0, &rxmac->mask0_word1);
1228        writel(0, &rxmac->mask0_word2);
1229        writel(0, &rxmac->mask0_word3);
1230
1231        writel(0, &rxmac->mask1_word0);
1232        writel(0, &rxmac->mask1_word1);
1233        writel(0, &rxmac->mask1_word2);
1234        writel(0, &rxmac->mask1_word3);
1235
1236        writel(0, &rxmac->mask2_word0);
1237        writel(0, &rxmac->mask2_word1);
1238        writel(0, &rxmac->mask2_word2);
1239        writel(0, &rxmac->mask2_word3);
1240
1241        writel(0, &rxmac->mask3_word0);
1242        writel(0, &rxmac->mask3_word1);
1243        writel(0, &rxmac->mask3_word2);
1244        writel(0, &rxmac->mask3_word3);
1245
1246        writel(0, &rxmac->mask4_word0);
1247        writel(0, &rxmac->mask4_word1);
1248        writel(0, &rxmac->mask4_word2);
1249        writel(0, &rxmac->mask4_word3);
1250
1251        /* Lets setup the WOL Source Address */
1252        sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1253                (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1254                (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1255                 adapter->addr[5];
1256        writel(sa_lo, &rxmac->sa_lo);
1257
1258        sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1259                       adapter->addr[1];
1260        writel(sa_hi, &rxmac->sa_hi);
1261
1262        /* Disable all Packet Filtering */
1263        writel(0, &rxmac->pf_ctrl);
1264
1265        /* Let's initialize the Unicast Packet filtering address */
1266        if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1267                et1310_setup_device_for_unicast(adapter);
1268                pf_ctrl |= 4;   /* Unicast filter */
1269        } else {
1270                writel(0, &rxmac->uni_pf_addr1);
1271                writel(0, &rxmac->uni_pf_addr2);
1272                writel(0, &rxmac->uni_pf_addr3);
1273        }
1274
1275        /* Let's initialize the Multicast hash */
1276        if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1277                pf_ctrl |= 2;   /* Multicast filter */
1278                et1310_setup_device_for_multicast(adapter);
1279        }
1280
1281        /* Runt packet filtering.  Didn't work in version A silicon. */
1282        pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1283        pf_ctrl |= 8;   /* Fragment filter */
1284
1285        if (adapter->registry_jumbo_packet > 8192)
1286                /* In order to transmit jumbo packets greater than 8k, the
1287                 * FIFO between RxMAC and RxDMA needs to be reduced in size
1288                 * to (16k - Jumbo packet size).  In order to implement this,
1289                 * we must use "cut through" mode in the RxMAC, which chops
1290                 * packets down into segments which are (max_size * 16).  In
1291                 * this case we selected 256 bytes, since this is the size of
1292                 * the PCI-Express TLP's that the 1310 uses.
1293                 *
1294                 * seg_en on, fc_en off, size 0x10
1295                 */
1296                writel(0x41, &rxmac->mcif_ctrl_max_seg);
1297        else
1298                writel(0, &rxmac->mcif_ctrl_max_seg);
1299
1300        /* Initialize the MCIF water marks */
1301        writel(0, &rxmac->mcif_water_mark);
1302
1303        /*  Initialize the MIF control */
1304        writel(0, &rxmac->mif_ctrl);
1305
1306        /* Initialize the Space Available Register */
1307        writel(0, &rxmac->space_avail);
1308
1309        /* Initialize the the mif_ctrl register
1310         * bit 3:  Receive code error. One or more nibbles were signaled as
1311         *         errors  during the reception of the packet.  Clear this
1312         *         bit in Gigabit, set it in 100Mbit.  This was derived
1313         *         experimentally at UNH.
1314         * bit 4:  Receive CRC error. The packet's CRC did not match the
1315         *         internally generated CRC.
1316         * bit 5:  Receive length check error. Indicates that frame length
1317         *         field value in the packet does not match the actual data
1318         *         byte length and is not a type field.
1319         * bit 16: Receive frame truncated.
1320         * bit 17: Drop packet enable
1321         */
1322        if (phydev && phydev->speed == SPEED_100)
1323                writel(0x30038, &rxmac->mif_ctrl);
1324        else
1325                writel(0x30030, &rxmac->mif_ctrl);
1326
1327        /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1328         * filter is always enabled since it is where the runt packets are
1329         * supposed to be dropped.  For version A silicon, runt packet
1330         * dropping doesn't work, so it is disabled in the pf_ctrl register,
1331         * but we still leave the packet filter on.
1332         */
1333        writel(pf_ctrl, &rxmac->pf_ctrl);
1334        writel(0x9, &rxmac->ctrl);
1335}
1336
1337void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1338{
1339        struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1340
1341        /* We need to update the Control Frame Parameters
1342         * cfpt - control frame pause timer set to 64 (0x40)
1343         * cfep - control frame extended pause timer set to 0x0
1344         */
1345        if (adapter->flowcontrol == FLOW_NONE)
1346                writel(0, &txmac->cf_param);
1347        else
1348                writel(0x40, &txmac->cf_param);
1349}
1350
1351void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1352{
1353        struct macstat_regs __iomem *macstat =
1354                &adapter->regs->macstat;
1355
1356        /* Next we need to initialize all the macstat registers to zero on
1357         * the device.
1358         */
1359        writel(0, &macstat->txrx_0_64_byte_frames);
1360        writel(0, &macstat->txrx_65_127_byte_frames);
1361        writel(0, &macstat->txrx_128_255_byte_frames);
1362        writel(0, &macstat->txrx_256_511_byte_frames);
1363        writel(0, &macstat->txrx_512_1023_byte_frames);
1364        writel(0, &macstat->txrx_1024_1518_byte_frames);
1365        writel(0, &macstat->txrx_1519_1522_gvln_frames);
1366
1367        writel(0, &macstat->rx_bytes);
1368        writel(0, &macstat->rx_packets);
1369        writel(0, &macstat->rx_fcs_errs);
1370        writel(0, &macstat->rx_multicast_packets);
1371        writel(0, &macstat->rx_broadcast_packets);
1372        writel(0, &macstat->rx_control_frames);
1373        writel(0, &macstat->rx_pause_frames);
1374        writel(0, &macstat->rx_unknown_opcodes);
1375        writel(0, &macstat->rx_align_errs);
1376        writel(0, &macstat->rx_frame_len_errs);
1377        writel(0, &macstat->rx_code_errs);
1378        writel(0, &macstat->rx_carrier_sense_errs);
1379        writel(0, &macstat->rx_undersize_packets);
1380        writel(0, &macstat->rx_oversize_packets);
1381        writel(0, &macstat->rx_fragment_packets);
1382        writel(0, &macstat->rx_jabbers);
1383        writel(0, &macstat->rx_drops);
1384
1385        writel(0, &macstat->tx_bytes);
1386        writel(0, &macstat->tx_packets);
1387        writel(0, &macstat->tx_multicast_packets);
1388        writel(0, &macstat->tx_broadcast_packets);
1389        writel(0, &macstat->tx_pause_frames);
1390        writel(0, &macstat->tx_deferred);
1391        writel(0, &macstat->tx_excessive_deferred);
1392        writel(0, &macstat->tx_single_collisions);
1393        writel(0, &macstat->tx_multiple_collisions);
1394        writel(0, &macstat->tx_late_collisions);
1395        writel(0, &macstat->tx_excessive_collisions);
1396        writel(0, &macstat->tx_total_collisions);
1397        writel(0, &macstat->tx_pause_honored_frames);
1398        writel(0, &macstat->tx_drops);
1399        writel(0, &macstat->tx_jabbers);
1400        writel(0, &macstat->tx_fcs_errs);
1401        writel(0, &macstat->tx_control_frames);
1402        writel(0, &macstat->tx_oversize_frames);
1403        writel(0, &macstat->tx_undersize_frames);
1404        writel(0, &macstat->tx_fragments);
1405        writel(0, &macstat->carry_reg1);
1406        writel(0, &macstat->carry_reg2);
1407
1408        /* Unmask any counters that we want to track the overflow of.
1409         * Initially this will be all counters.  It may become clear later
1410         * that we do not need to track all counters.
1411         */
1412        writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1413        writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1414}
1415
1416/**
1417 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1418 * @adapter: pointer to our private adapter structure
1419 * @addr: the address of the transceiver
1420 * @reg: the register to read
1421 * @value: pointer to a 16-bit value in which the value will be stored
1422 *
1423 * Returns 0 on success, errno on failure (as defined in errno.h)
1424 */
1425int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1426              u8 reg, u16 *value)
1427{
1428        struct mac_regs __iomem *mac = &adapter->regs->mac;
1429        int status = 0;
1430        u32 delay = 0;
1431        u32 mii_addr;
1432        u32 mii_cmd;
1433        u32 mii_indicator;
1434
1435        /* Save a local copy of the registers we are dealing with so we can
1436         * set them back
1437         */
1438        mii_addr = readl(&mac->mii_mgmt_addr);
1439        mii_cmd = readl(&mac->mii_mgmt_cmd);
1440
1441        /* Stop the current operation */
1442        writel(0, &mac->mii_mgmt_cmd);
1443
1444        /* Set up the register we need to read from on the correct PHY */
1445        writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1446
1447        writel(0x1, &mac->mii_mgmt_cmd);
1448
1449        do {
1450                udelay(50);
1451                delay++;
1452                mii_indicator = readl(&mac->mii_mgmt_indicator);
1453        } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1454
1455        /* If we hit the max delay, we could not read the register */
1456        if (delay == 50) {
1457                dev_warn(&adapter->pdev->dev,
1458                            "reg 0x%08x could not be read\n", reg);
1459                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1460                            mii_indicator);
1461
1462                status = -EIO;
1463        }
1464
1465        /* If we hit here we were able to read the register and we need to
1466         * return the value to the caller */
1467        *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1468
1469        /* Stop the read operation */
1470        writel(0, &mac->mii_mgmt_cmd);
1471
1472        /* set the registers we touched back to the state at which we entered
1473         * this function
1474         */
1475        writel(mii_addr, &mac->mii_mgmt_addr);
1476        writel(mii_cmd, &mac->mii_mgmt_cmd);
1477
1478        return status;
1479}
1480
1481int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1482{
1483        struct phy_device *phydev = adapter->phydev;
1484
1485        if (!phydev)
1486                return -EIO;
1487
1488        return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1489}
1490
1491/**
1492 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1493 * @adapter: pointer to our private adapter structure
1494 * @reg: the register to read
1495 * @value: 16-bit value to write
1496 *
1497 * FIXME: one caller in netdev still
1498 *
1499 * Return 0 on success, errno on failure (as defined in errno.h)
1500 */
1501int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1502{
1503        struct mac_regs __iomem *mac = &adapter->regs->mac;
1504        struct phy_device *phydev = adapter->phydev;
1505        int status = 0;
1506        u8 addr;
1507        u32 delay = 0;
1508        u32 mii_addr;
1509        u32 mii_cmd;
1510        u32 mii_indicator;
1511
1512        if (!phydev)
1513                return -EIO;
1514
1515        addr = phydev->addr;
1516
1517        /* Save a local copy of the registers we are dealing with so we can
1518         * set them back
1519         */
1520        mii_addr = readl(&mac->mii_mgmt_addr);
1521        mii_cmd = readl(&mac->mii_mgmt_cmd);
1522
1523        /* Stop the current operation */
1524        writel(0, &mac->mii_mgmt_cmd);
1525
1526        /* Set up the register we need to write to on the correct PHY */
1527        writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1528
1529        /* Add the value to write to the registers to the mac */
1530        writel(value, &mac->mii_mgmt_ctrl);
1531
1532        do {
1533                udelay(50);
1534                delay++;
1535                mii_indicator = readl(&mac->mii_mgmt_indicator);
1536        } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1537
1538        /* If we hit the max delay, we could not write the register */
1539        if (delay == 100) {
1540                u16 tmp;
1541
1542                dev_warn(&adapter->pdev->dev,
1543                    "reg 0x%08x could not be written", reg);
1544                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1545                            mii_indicator);
1546                dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1547                            readl(&mac->mii_mgmt_cmd));
1548
1549                et131x_mii_read(adapter, reg, &tmp);
1550
1551                status = -EIO;
1552        }
1553        /* Stop the write operation */
1554        writel(0, &mac->mii_mgmt_cmd);
1555
1556        /*
1557         * set the registers we touched back to the state at which we entered
1558         * this function
1559         */
1560        writel(mii_addr, &mac->mii_mgmt_addr);
1561        writel(mii_cmd, &mac->mii_mgmt_cmd);
1562
1563        return status;
1564}
1565
1566/* Still used from _mac for BIT_READ */
1567void et1310_phy_access_mii_bit(struct et131x_adapter *adapter, u16 action,
1568                               u16 regnum, u16 bitnum, u8 *value)
1569{
1570        u16 reg;
1571        u16 mask = 0x0001 << bitnum;
1572
1573        /* Read the requested register */
1574        et131x_mii_read(adapter, regnum, &reg);
1575
1576        switch (action) {
1577        case TRUEPHY_BIT_READ:
1578                *value = (reg & mask) >> bitnum;
1579                break;
1580
1581        case TRUEPHY_BIT_SET:
1582                et131x_mii_write(adapter, regnum, reg | mask);
1583                break;
1584
1585        case TRUEPHY_BIT_CLEAR:
1586                et131x_mii_write(adapter, regnum, reg & ~mask);
1587                break;
1588
1589        default:
1590                break;
1591        }
1592}
1593
1594void et1310_config_flow_control(struct et131x_adapter *adapter)
1595{
1596        struct phy_device *phydev = adapter->phydev;
1597
1598        if (phydev->duplex == DUPLEX_HALF) {
1599                adapter->flowcontrol = FLOW_NONE;
1600        } else {
1601                char remote_pause, remote_async_pause;
1602
1603                et1310_phy_access_mii_bit(adapter,
1604                                TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1605                et1310_phy_access_mii_bit(adapter,
1606                                TRUEPHY_BIT_READ, 5, 11,
1607                                &remote_async_pause);
1608
1609                if ((remote_pause == TRUEPHY_BIT_SET) &&
1610                    (remote_async_pause == TRUEPHY_BIT_SET)) {
1611                        adapter->flowcontrol = adapter->wanted_flow;
1612                } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1613                           (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1614                        if (adapter->wanted_flow == FLOW_BOTH)
1615                                adapter->flowcontrol = FLOW_BOTH;
1616                        else
1617                                adapter->flowcontrol = FLOW_NONE;
1618                } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1619                           (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1620                        adapter->flowcontrol = FLOW_NONE;
1621                } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1622                               remote_async_pause == TRUEPHY_SET_BIT) */
1623                        if (adapter->wanted_flow == FLOW_BOTH)
1624                                adapter->flowcontrol = FLOW_RXONLY;
1625                        else
1626                                adapter->flowcontrol = FLOW_NONE;
1627                }
1628        }
1629}
1630
1631/**
1632 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1633 * @adapter: pointer to the adapter structure
1634 */
1635void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1636{
1637        struct ce_stats *stats = &adapter->stats;
1638        struct macstat_regs __iomem *macstat =
1639                &adapter->regs->macstat;
1640
1641        stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1642        stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1643        stats->tx_deferred             += readl(&macstat->tx_deferred);
1644        stats->tx_excessive_collisions +=
1645                                readl(&macstat->tx_multiple_collisions);
1646        stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1647        stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1648        stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1649
1650        stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1651        stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1652        stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1653        stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1654        stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1655        stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1656        stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1657}
1658
1659/**
1660 * et1310_handle_macstat_interrupt
1661 * @adapter: pointer to the adapter structure
1662 *
1663 * One of the MACSTAT counters has wrapped.  Update the local copy of
1664 * the statistics held in the adapter structure, checking the "wrap"
1665 * bit for each counter.
1666 */
1667void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1668{
1669        u32 carry_reg1;
1670        u32 carry_reg2;
1671
1672        /* Read the interrupt bits from the register(s).  These are Clear On
1673         * Write.
1674         */
1675        carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1676        carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1677
1678        writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1679        writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1680
1681        /* We need to do update the host copy of all the MAC_STAT counters.
1682         * For each counter, check it's overflow bit.  If the overflow bit is
1683         * set, then increment the host version of the count by one complete
1684         * revolution of the counter.  This routine is called when the counter
1685         * block indicates that one of the counters has wrapped.
1686         */
1687        if (carry_reg1 & (1 << 14))
1688                adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1689        if (carry_reg1 & (1 << 8))
1690                adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1691        if (carry_reg1 & (1 << 7))
1692                adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1693        if (carry_reg1 & (1 << 2))
1694                adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1695        if (carry_reg1 & (1 << 6))
1696                adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1697        if (carry_reg1 & (1 << 3))
1698                adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1699        if (carry_reg1 & (1 << 0))
1700                adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1701        if (carry_reg2 & (1 << 16))
1702                adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1703        if (carry_reg2 & (1 << 15))
1704                adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1705        if (carry_reg2 & (1 << 6))
1706                adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1707        if (carry_reg2 & (1 << 8))
1708                adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1709        if (carry_reg2 & (1 << 5))
1710                adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1711        if (carry_reg2 & (1 << 4))
1712                adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1713        if (carry_reg2 & (1 << 2))
1714                adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1715}
1716
1717/* PHY functions */
1718
1719int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1720{
1721        struct net_device *netdev = bus->priv;
1722        struct et131x_adapter *adapter = netdev_priv(netdev);
1723        u16 value;
1724        int ret;
1725
1726        ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1727
1728        if (ret < 0)
1729                return ret;
1730        else
1731                return value;
1732}
1733
1734int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1735{
1736        struct net_device *netdev = bus->priv;
1737        struct et131x_adapter *adapter = netdev_priv(netdev);
1738
1739        return et131x_mii_write(adapter, reg, value);
1740}
1741
1742int et131x_mdio_reset(struct mii_bus *bus)
1743{
1744        struct net_device *netdev = bus->priv;
1745        struct et131x_adapter *adapter = netdev_priv(netdev);
1746
1747        et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1748
1749        return 0;
1750}
1751
1752/**
1753 *      et1310_phy_power_down   -       PHY power control
1754 *      @adapter: device to control
1755 *      @down: true for off/false for back on
1756 *
1757 *      one hundred, ten, one thousand megs
1758 *      How would you like to have your LAN accessed
1759 *      Can't you see that this code processed
1760 *      Phy power, phy power..
1761 */
1762void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1763{
1764        u16 data;
1765
1766        et131x_mii_read(adapter, MII_BMCR, &data);
1767        data &= ~BMCR_PDOWN;
1768        if (down)
1769                data |= BMCR_PDOWN;
1770        et131x_mii_write(adapter, MII_BMCR, data);
1771}
1772
1773/**
1774 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1775 * @adapter: pointer to our private adapter structure
1776 *
1777 */
1778void et131x_xcvr_init(struct et131x_adapter *adapter)
1779{
1780        u16 imr;
1781        u16 isr;
1782        u16 lcr2;
1783
1784        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1785        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1786
1787        /* Set the link status interrupt only.  Bad behavior when link status
1788         * and auto neg are set, we run into a nested interrupt problem
1789         */
1790        imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1791                ET_PHY_INT_MASK_LINKSTAT &
1792                ET_PHY_INT_MASK_ENABLE);
1793
1794        et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1795
1796        /* Set the LED behavior such that LED 1 indicates speed (off =
1797         * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1798         * link and activity (on for link, blink off for activity).
1799         *
1800         * NOTE: Some customizations have been added here for specific
1801         * vendors; The LED behavior is now determined by vendor data in the
1802         * EEPROM. However, the above description is the default.
1803         */
1804        if ((adapter->eeprom_data[1] & 0x4) == 0) {
1805                et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1806
1807                lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1808                lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1809
1810                if ((adapter->eeprom_data[1] & 0x8) == 0)
1811                        lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1812                else
1813                        lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1814
1815                et131x_mii_write(adapter, PHY_LED_2, lcr2);
1816        }
1817}
1818
1819/**
1820 * et131x_configure_global_regs -       configure JAGCore global regs
1821 * @adapter: pointer to our adapter structure
1822 *
1823 * Used to configure the global registers on the JAGCore
1824 */
1825void et131x_configure_global_regs(struct et131x_adapter *adapter)
1826{
1827        struct global_regs __iomem *regs = &adapter->regs->global;
1828
1829        writel(0, &regs->rxq_start_addr);
1830        writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1831
1832        if (adapter->registry_jumbo_packet < 2048) {
1833                /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1834                 * block of RAM that the driver can split between Tx
1835                 * and Rx as it desires.  Our default is to split it
1836                 * 50/50:
1837                 */
1838                writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1839                writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1840        } else if (adapter->registry_jumbo_packet < 8192) {
1841                /* For jumbo packets > 2k but < 8k, split 50-50. */
1842                writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1843                writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1844        } else {
1845                /* 9216 is the only packet size greater than 8k that
1846                 * is available. The Tx buffer has to be big enough
1847                 * for one whole packet on the Tx side. We'll make
1848                 * the Tx 9408, and give the rest to Rx
1849                 */
1850                writel(0x01b3, &regs->rxq_end_addr);
1851                writel(0x01b4, &regs->txq_start_addr);
1852        }
1853
1854        /* Initialize the loopback register. Disable all loopbacks. */
1855        writel(0, &regs->loopback);
1856
1857        /* MSI Register */
1858        writel(0, &regs->msi_config);
1859
1860        /* By default, disable the watchdog timer.  It will be enabled when
1861         * a packet is queued.
1862         */
1863        writel(0, &regs->watchdog_timer);
1864}
1865
1866/* PM functions */
1867
1868/**
1869 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1870 * @adapter: pointer to our adapter structure
1871 */
1872void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1873{
1874        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1875        struct rx_ring *rx_local = &adapter->rx_ring;
1876        struct fbr_desc *fbr_entry;
1877        u32 entry;
1878        u32 psr_num_des;
1879        unsigned long flags;
1880
1881        /* Halt RXDMA to perform the reconfigure.  */
1882        et131x_rx_dma_disable(adapter);
1883
1884        /* Load the completion writeback physical address
1885         *
1886         * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1887         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1888         * are ever returned, make sure the high part is retrieved here
1889         * before storing the adjusted address.
1890         */
1891        writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1892               &rx_dma->dma_wb_base_hi);
1893        writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1894
1895        memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1896
1897        /* Set the address and parameters of the packet status ring into the
1898         * 1310's registers
1899         */
1900        writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1901               &rx_dma->psr_base_hi);
1902        writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1903        writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1904        writel(0, &rx_dma->psr_full_offset);
1905
1906        psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1907        writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1908               &rx_dma->psr_min_des);
1909
1910        spin_lock_irqsave(&adapter->rcv_lock, flags);
1911
1912        /* These local variables track the PSR in the adapter structure */
1913        rx_local->local_psr_full = 0;
1914
1915        /* Now's the best time to initialize FBR1 contents */
1916        fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1917        for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1918                fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1919                fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1920                fbr_entry->word2 = entry;
1921                fbr_entry++;
1922        }
1923
1924        /* Set the address and parameters of Free buffer ring 1 (and 0 if
1925         * required) into the 1310's registers
1926         */
1927        writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1928               &rx_dma->fbr1_base_hi);
1929        writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1930        writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1931        writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1932
1933        /* This variable tracks the free buffer ring 1 full position, so it
1934         * has to match the above.
1935         */
1936        rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1937        writel(
1938           ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1939           &rx_dma->fbr1_min_des);
1940
1941#ifdef USE_FBR0
1942        /* Now's the best time to initialize FBR0 contents */
1943        fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1944        for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1945                fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1946                fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1947                fbr_entry->word2 = entry;
1948                fbr_entry++;
1949        }
1950
1951        writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1952               &rx_dma->fbr0_base_hi);
1953        writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1954        writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1955        writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1956
1957        /* This variable tracks the free buffer ring 0 full position, so it
1958         * has to match the above.
1959         */
1960        rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1961        writel(
1962           ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1963           &rx_dma->fbr0_min_des);
1964#endif
1965
1966        /* Program the number of packets we will receive before generating an
1967         * interrupt.
1968         * For version B silicon, this value gets updated once autoneg is
1969         *complete.
1970         */
1971        writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1972
1973        /* The "time_done" is not working correctly to coalesce interrupts
1974         * after a given time period, but rather is giving us an interrupt
1975         * regardless of whether we have received packets.
1976         * This value gets updated once autoneg is complete.
1977         */
1978        writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1979
1980        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1981}
1982
1983/**
1984 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1985 * @adapter: pointer to our private adapter structure
1986 *
1987 * Configure the transmit engine with the ring buffers we have created
1988 * and prepare it for use.
1989 */
1990void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1991{
1992        struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1993
1994        /* Load the hardware with the start of the transmit descriptor ring. */
1995        writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1996               &txdma->pr_base_hi);
1997        writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1998               &txdma->pr_base_lo);
1999
2000        /* Initialise the transmit DMA engine */
2001        writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
2002
2003        /* Load the completion writeback physical address */
2004        writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
2005                                                &txdma->dma_wb_base_hi);
2006        writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
2007
2008        *adapter->tx_ring.tx_status = 0;
2009
2010        writel(0, &txdma->service_request);
2011        adapter->tx_ring.send_idx = 0;
2012}
2013
2014/**
2015 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
2016 * @adapter: pointer to our private adapter structure
2017 *
2018 * Returns 0 on success, errno on failure (as defined in errno.h)
2019 */
2020void et131x_adapter_setup(struct et131x_adapter *adapter)
2021{
2022        /* Configure the JAGCore */
2023        et131x_configure_global_regs(adapter);
2024
2025        et1310_config_mac_regs1(adapter);
2026
2027        /* Configure the MMC registers */
2028        /* All we need to do is initialize the Memory Control Register */
2029        writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2030
2031        et1310_config_rxmac_regs(adapter);
2032        et1310_config_txmac_regs(adapter);
2033
2034        et131x_config_rx_dma_regs(adapter);
2035        et131x_config_tx_dma_regs(adapter);
2036
2037        et1310_config_macstat_regs(adapter);
2038
2039        et1310_phy_power_down(adapter, 0);
2040        et131x_xcvr_init(adapter);
2041}
2042
2043/**
2044 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2045 * @adapter: pointer to our private adapter structure
2046 */
2047void et131x_soft_reset(struct et131x_adapter *adapter)
2048{
2049        /* Disable MAC Core */
2050        writel(0xc00f0000, &adapter->regs->mac.cfg1);
2051
2052        /* Set everything to a reset value */
2053        writel(0x7F, &adapter->regs->global.sw_reset);
2054        writel(0x000f0000, &adapter->regs->mac.cfg1);
2055        writel(0x00000000, &adapter->regs->mac.cfg1);
2056}
2057
2058/**
2059 *      et131x_enable_interrupts        -       enable interrupt
2060 *      @adapter: et131x device
2061 *
2062 *      Enable the appropriate interrupts on the ET131x according to our
2063 *      configuration
2064 */
2065void et131x_enable_interrupts(struct et131x_adapter *adapter)
2066{
2067        u32 mask;
2068
2069        /* Enable all global interrupts */
2070        if (adapter->flowcontrol == FLOW_TXONLY ||
2071                            adapter->flowcontrol == FLOW_BOTH)
2072                mask = INT_MASK_ENABLE;
2073        else
2074                mask = INT_MASK_ENABLE_NO_FLOW;
2075
2076        writel(mask, &adapter->regs->global.int_mask);
2077}
2078
2079/**
2080 *      et131x_disable_interrupts       -       interrupt disable
2081 *      @adapter: et131x device
2082 *
2083 *      Block all interrupts from the et131x device at the device itself
2084 */
2085void et131x_disable_interrupts(struct et131x_adapter *adapter)
2086{
2087        /* Disable all global interrupts */
2088        writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2089}
2090
2091/**
2092 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2093 * @adapter: pointer to our adapter structure
2094 */
2095void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2096{
2097        /* Setup the tramsmit dma configuration register */
2098        writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2099                                        &adapter->regs->txdma.csr);
2100}
2101
2102/**
2103 * et131x_enable_txrx - Enable tx/rx queues
2104 * @netdev: device to be enabled
2105 */
2106void et131x_enable_txrx(struct net_device *netdev)
2107{
2108        struct et131x_adapter *adapter = netdev_priv(netdev);
2109
2110        /* Enable the Tx and Rx DMA engines (if not already enabled) */
2111        et131x_rx_dma_enable(adapter);
2112        et131x_tx_dma_enable(adapter);
2113
2114        /* Enable device interrupts */
2115        if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2116                et131x_enable_interrupts(adapter);
2117
2118        /* We're ready to move some data, so start the queue */
2119        netif_start_queue(netdev);
2120}
2121
2122/**
2123 * et131x_disable_txrx - Disable tx/rx queues
2124 * @netdev: device to be disabled
2125 */
2126void et131x_disable_txrx(struct net_device *netdev)
2127{
2128        struct et131x_adapter *adapter = netdev_priv(netdev);
2129
2130        /* First thing is to stop the queue */
2131        netif_stop_queue(netdev);
2132
2133        /* Stop the Tx and Rx DMA engines */
2134        et131x_rx_dma_disable(adapter);
2135        et131x_tx_dma_disable(adapter);
2136
2137        /* Disable device interrupts */
2138        et131x_disable_interrupts(adapter);
2139}
2140
2141/**
2142 * et131x_init_send - Initialize send data structures
2143 * @adapter: pointer to our private adapter structure
2144 */
2145void et131x_init_send(struct et131x_adapter *adapter)
2146{
2147        struct tcb *tcb;
2148        u32 ct;
2149        struct tx_ring *tx_ring;
2150
2151        /* Setup some convenience pointers */
2152        tx_ring = &adapter->tx_ring;
2153        tcb = adapter->tx_ring.tcb_ring;
2154
2155        tx_ring->tcb_qhead = tcb;
2156
2157        memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2158
2159        /* Go through and set up each TCB */
2160        for (ct = 0; ct++ < NUM_TCB; tcb++)
2161                /* Set the link pointer in HW TCB to the next TCB in the
2162                 * chain
2163                 */
2164                tcb->next = tcb + 1;
2165
2166        /* Set the  tail pointer */
2167        tcb--;
2168        tx_ring->tcb_qtail = tcb;
2169        tcb->next = NULL;
2170        /* Curr send queue should now be empty */
2171        tx_ring->send_head = NULL;
2172        tx_ring->send_tail = NULL;
2173}
2174
2175/**
2176 * et1310_enable_phy_coma - called when network cable is unplugged
2177 * @adapter: pointer to our adapter structure
2178 *
2179 * driver receive an phy status change interrupt while in D0 and check that
2180 * phy_status is down.
2181 *
2182 *          -- gate off JAGCore;
2183 *          -- set gigE PHY in Coma mode
2184 *          -- wake on phy_interrupt; Perform software reset JAGCore,
2185 *             re-initialize jagcore and gigE PHY
2186 *
2187 *      Add D0-ASPM-PhyLinkDown Support:
2188 *          -- while in D0, when there is a phy_interrupt indicating phy link
2189 *             down status, call the MPSetPhyComa routine to enter this active
2190 *             state power saving mode
2191 *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2192 *       indicating linkup status, call the MPDisablePhyComa routine to
2193 *             restore JAGCore and gigE PHY
2194 */
2195void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2196{
2197        unsigned long flags;
2198        u32 pmcsr;
2199
2200        pmcsr = readl(&adapter->regs->global.pm_csr);
2201
2202        /* Save the GbE PHY speed and duplex modes. Need to restore this
2203         * when cable is plugged back in
2204         */
2205        /*
2206         * TODO - when PM is re-enabled, check if we need to
2207         * perform a similar task as this -
2208         * adapter->pdown_speed = adapter->ai_force_speed;
2209         * adapter->pdown_duplex = adapter->ai_force_duplex;
2210         */
2211
2212        /* Stop sending packets. */
2213        spin_lock_irqsave(&adapter->send_hw_lock, flags);
2214        adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2215        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2216
2217        /* Wait for outstanding Receive packets */
2218
2219        et131x_disable_txrx(adapter->netdev);
2220
2221        /* Gate off JAGCore 3 clock domains */
2222        pmcsr &= ~ET_PMCSR_INIT;
2223        writel(pmcsr, &adapter->regs->global.pm_csr);
2224
2225        /* Program gigE PHY in to Coma mode */
2226        pmcsr |= ET_PM_PHY_SW_COMA;
2227        writel(pmcsr, &adapter->regs->global.pm_csr);
2228}
2229
2230/**
2231 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2232 * @adapter: pointer to our adapter structure
2233 */
2234void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2235{
2236        u32 pmcsr;
2237
2238        pmcsr = readl(&adapter->regs->global.pm_csr);
2239
2240        /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2241        pmcsr |= ET_PMCSR_INIT;
2242        pmcsr &= ~ET_PM_PHY_SW_COMA;
2243        writel(pmcsr, &adapter->regs->global.pm_csr);
2244
2245        /* Restore the GbE PHY speed and duplex modes;
2246         * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2247         */
2248        /* TODO - when PM is re-enabled, check if we need to
2249         * perform a similar task as this -
2250         * adapter->ai_force_speed = adapter->pdown_speed;
2251         * adapter->ai_force_duplex = adapter->pdown_duplex;
2252         */
2253
2254        /* Re-initialize the send structures */
2255        et131x_init_send(adapter);
2256
2257        /* Bring the device back to the state it was during init prior to
2258         * autonegotiation being complete.  This way, when we get the auto-neg
2259         * complete interrupt, we can complete init by calling ConfigMacREGS2.
2260         */
2261        et131x_soft_reset(adapter);
2262
2263        /* setup et1310 as per the documentation ?? */
2264        et131x_adapter_setup(adapter);
2265
2266        /* Allow Tx to restart */
2267        adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2268
2269        et131x_enable_txrx(adapter->netdev);
2270}
2271
2272/* RX functions */
2273
2274static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2275{
2276        u32 tmp_free_buff_ring = *free_buff_ring;
2277        tmp_free_buff_ring++;
2278        /* This works for all cases where limit < 1024. The 1023 case
2279           works because 1023++ is 1024 which means the if condition is not
2280           taken but the carry of the bit into the wrap bit toggles the wrap
2281           value correctly */
2282        if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2283                tmp_free_buff_ring &= ~ET_DMA10_MASK;
2284                tmp_free_buff_ring ^= ET_DMA10_WRAP;
2285        }
2286        /* For the 1023 case */
2287        tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2288        *free_buff_ring = tmp_free_buff_ring;
2289        return tmp_free_buff_ring;
2290}
2291
2292/**
2293 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2294 * @adapter: pointer to our adapter structure
2295 * @phys_addr: pointer to Physical address
2296 * @offset: pointer to the offset variable
2297 * @mask: correct mask
2298 */
2299void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2300                                   uint64_t *phys_addr,
2301                                   uint64_t *offset, uint64_t mask)
2302{
2303        uint64_t new_addr;
2304
2305        *offset = 0;
2306
2307        new_addr = *phys_addr & ~mask;
2308
2309        if (new_addr != *phys_addr) {
2310                /* Move to next aligned block */
2311                new_addr += mask + 1;
2312                /* Return offset for adjusting virt addr */
2313                *offset = new_addr - *phys_addr;
2314                /* Return new physical address */
2315                *phys_addr = new_addr;
2316        }
2317}
2318
2319/**
2320 * et131x_rx_dma_memory_alloc
2321 * @adapter: pointer to our private adapter structure
2322 *
2323 * Returns 0 on success and errno on failure (as defined in errno.h)
2324 *
2325 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2326 * and the Packet Status Ring.
2327 */
2328int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2329{
2330        u32 i, j;
2331        u32 bufsize;
2332        u32 pktstat_ringsize, fbr_chunksize;
2333        struct rx_ring *rx_ring;
2334
2335        /* Setup some convenience pointers */
2336        rx_ring = &adapter->rx_ring;
2337
2338        /* Alloc memory for the lookup table */
2339#ifdef USE_FBR0
2340        rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2341#endif
2342        rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2343
2344        /* The first thing we will do is configure the sizes of the buffer
2345         * rings. These will change based on jumbo packet support.  Larger
2346         * jumbo packets increases the size of each entry in FBR0, and the
2347         * number of entries in FBR0, while at the same time decreasing the
2348         * number of entries in FBR1.
2349         *
2350         * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2351         * entries are huge in order to accommodate a "jumbo" frame, then it
2352         * will have less entries.  Conversely, FBR1 will now be relied upon
2353         * to carry more "normal" frames, thus it's entry size also increases
2354         * and the number of entries goes up too (since it now carries
2355         * "small" + "regular" packets.
2356         *
2357         * In this scheme, we try to maintain 512 entries between the two
2358         * rings. Also, FBR1 remains a constant size - when it's size doubles
2359         * the number of entries halves.  FBR0 increases in size, however.
2360         */
2361
2362        if (adapter->registry_jumbo_packet < 2048) {
2363#ifdef USE_FBR0
2364                rx_ring->fbr[1]->buffsize = 256;
2365                rx_ring->fbr[1]->num_entries = 512;
2366#endif
2367                rx_ring->fbr[0]->buffsize = 2048;
2368                rx_ring->fbr[0]->num_entries = 512;
2369        } else if (adapter->registry_jumbo_packet < 4096) {
2370#ifdef USE_FBR0
2371                rx_ring->fbr[1]->buffsize = 512;
2372                rx_ring->fbr[1]->num_entries = 1024;
2373#endif
2374                rx_ring->fbr[0]->buffsize = 4096;
2375                rx_ring->fbr[0]->num_entries = 512;
2376        } else {
2377#ifdef USE_FBR0
2378                rx_ring->fbr[1]->buffsize = 1024;
2379                rx_ring->fbr[1]->num_entries = 768;
2380#endif
2381                rx_ring->fbr[0]->buffsize = 16384;
2382                rx_ring->fbr[0]->num_entries = 128;
2383        }
2384
2385#ifdef USE_FBR0
2386        adapter->rx_ring.psr_num_entries =
2387                                adapter->rx_ring.fbr[1]->num_entries +
2388                                adapter->rx_ring.fbr[0]->num_entries;
2389#else
2390        adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2391#endif
2392
2393        /* Allocate an area of memory for Free Buffer Ring 1 */
2394        bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2395                                                                        0xfff;
2396        rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2397                                        bufsize,
2398                                        &rx_ring->fbr[0]->ring_physaddr,
2399                                        GFP_KERNEL);
2400        if (!rx_ring->fbr[0]->ring_virtaddr) {
2401                dev_err(&adapter->pdev->dev,
2402                          "Cannot alloc memory for Free Buffer Ring 1\n");
2403                return -ENOMEM;
2404        }
2405
2406        /* Save physical address
2407         *
2408         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2409         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2410         * are ever returned, make sure the high part is retrieved here
2411         * before storing the adjusted address.
2412         */
2413        rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2414
2415        /* Align Free Buffer Ring 1 on a 4K boundary */
2416        et131x_align_allocated_memory(adapter,
2417                                      &rx_ring->fbr[0]->real_physaddr,
2418                                      &rx_ring->fbr[0]->offset, 0x0FFF);
2419
2420        rx_ring->fbr[0]->ring_virtaddr =
2421                        (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2422                        rx_ring->fbr[0]->offset);
2423
2424#ifdef USE_FBR0
2425        /* Allocate an area of memory for Free Buffer Ring 0 */
2426        bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2427                                                                        0xfff;
2428        rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2429                                                bufsize,
2430                                                &rx_ring->fbr[1]->ring_physaddr,
2431                                                GFP_KERNEL);
2432        if (!rx_ring->fbr[1]->ring_virtaddr) {
2433                dev_err(&adapter->pdev->dev,
2434                          "Cannot alloc memory for Free Buffer Ring 0\n");
2435                return -ENOMEM;
2436        }
2437
2438        /* Save physical address
2439         *
2440         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2441         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2442         * are ever returned, make sure the high part is retrieved here before
2443         * storing the adjusted address.
2444         */
2445        rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2446
2447        /* Align Free Buffer Ring 0 on a 4K boundary */
2448        et131x_align_allocated_memory(adapter,
2449                                      &rx_ring->fbr[1]->real_physaddr,
2450                                      &rx_ring->fbr[1]->offset, 0x0FFF);
2451
2452        rx_ring->fbr[1]->ring_virtaddr =
2453                        (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2454                        rx_ring->fbr[1]->offset);
2455#endif
2456        for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2457                u64 fbr1_offset;
2458                u64 fbr1_tmp_physaddr;
2459                u32 fbr1_align;
2460
2461                /* This code allocates an area of memory big enough for N
2462                 * free buffers + (buffer_size - 1) so that the buffers can
2463                 * be aligned on 4k boundaries.  If each buffer were aligned
2464                 * to a buffer_size boundary, the effect would be to double
2465                 * the size of FBR0.  By allocating N buffers at once, we
2466                 * reduce this overhead.
2467                 */
2468                if (rx_ring->fbr[0]->buffsize > 4096)
2469                        fbr1_align = 4096;
2470                else
2471                        fbr1_align = rx_ring->fbr[0]->buffsize;
2472
2473                fbr_chunksize =
2474                    (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2475                rx_ring->fbr[0]->mem_virtaddrs[i] =
2476                    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2477                                       &rx_ring->fbr[0]->mem_physaddrs[i],
2478                                       GFP_KERNEL);
2479
2480                if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2481                        dev_err(&adapter->pdev->dev,
2482                                "Could not alloc memory\n");
2483                        return -ENOMEM;
2484                }
2485
2486                /* See NOTE in "Save Physical Address" comment above */
2487                fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2488
2489                et131x_align_allocated_memory(adapter,
2490                                              &fbr1_tmp_physaddr,
2491                                              &fbr1_offset, (fbr1_align - 1));
2492
2493                for (j = 0; j < FBR_CHUNKS; j++) {
2494                        u32 index = (i * FBR_CHUNKS) + j;
2495
2496                        /* Save the Virtual address of this index for quick
2497                         * access later
2498                         */
2499                        rx_ring->fbr[0]->virt[index] =
2500                            (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2501                            (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2502
2503                        /* now store the physical address in the descriptor
2504                         * so the device can access it
2505                         */
2506                        rx_ring->fbr[0]->bus_high[index] =
2507                            (u32) (fbr1_tmp_physaddr >> 32);
2508                        rx_ring->fbr[0]->bus_low[index] =
2509                            (u32) fbr1_tmp_physaddr;
2510
2511                        fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2512
2513                        rx_ring->fbr[0]->buffer1[index] =
2514                            rx_ring->fbr[0]->virt[index];
2515                        rx_ring->fbr[0]->buffer2[index] =
2516                            rx_ring->fbr[0]->virt[index] - 4;
2517                }
2518        }
2519
2520#ifdef USE_FBR0
2521        /* Same for FBR0 (if in use) */
2522        for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2523                u64 fbr0_offset;
2524                u64 fbr0_tmp_physaddr;
2525
2526                fbr_chunksize =
2527                    ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2528                rx_ring->fbr[1]->mem_virtaddrs[i] =
2529                    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2530                                       &rx_ring->fbr[1]->mem_physaddrs[i],
2531                                       GFP_KERNEL);
2532
2533                if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2534                        dev_err(&adapter->pdev->dev,
2535                                "Could not alloc memory\n");
2536                        return -ENOMEM;
2537                }
2538
2539                /* See NOTE in "Save Physical Address" comment above */
2540                fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2541
2542                et131x_align_allocated_memory(adapter,
2543                                              &fbr0_tmp_physaddr,
2544                                              &fbr0_offset,
2545                                              rx_ring->fbr[1]->buffsize - 1);
2546
2547                for (j = 0; j < FBR_CHUNKS; j++) {
2548                        u32 index = (i * FBR_CHUNKS) + j;
2549
2550                        rx_ring->fbr[1]->virt[index] =
2551                            (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2552                            (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2553
2554                        rx_ring->fbr[1]->bus_high[index] =
2555                            (u32) (fbr0_tmp_physaddr >> 32);
2556                        rx_ring->fbr[1]->bus_low[index] =
2557                            (u32) fbr0_tmp_physaddr;
2558
2559                        fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2560
2561                        rx_ring->fbr[1]->buffer1[index] =
2562                            rx_ring->fbr[1]->virt[index];
2563                        rx_ring->fbr[1]->buffer2[index] =
2564                            rx_ring->fbr[1]->virt[index] - 4;
2565                }
2566        }
2567#endif
2568
2569        /* Allocate an area of memory for FIFO of Packet Status ring entries */
2570        pktstat_ringsize =
2571            sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2572
2573        rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2574                                                  pktstat_ringsize,
2575                                                  &rx_ring->ps_ring_physaddr,
2576                                                  GFP_KERNEL);
2577
2578        if (!rx_ring->ps_ring_virtaddr) {
2579                dev_err(&adapter->pdev->dev,
2580                          "Cannot alloc memory for Packet Status Ring\n");
2581                return -ENOMEM;
2582        }
2583        printk(KERN_INFO "Packet Status Ring %lx\n",
2584            (unsigned long) rx_ring->ps_ring_physaddr);
2585
2586        /*
2587         * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2588         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2589         * are ever returned, make sure the high part is retrieved here before
2590         * storing the adjusted address.
2591         */
2592
2593        /* Allocate an area of memory for writeback of status information */
2594        rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2595                                            sizeof(struct rx_status_block),
2596                                            &rx_ring->rx_status_bus,
2597                                            GFP_KERNEL);
2598        if (!rx_ring->rx_status_block) {
2599                dev_err(&adapter->pdev->dev,
2600                          "Cannot alloc memory for Status Block\n");
2601                return -ENOMEM;
2602        }
2603        rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2604        printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2605
2606        /* Recv
2607         * kmem_cache_create initializes a lookaside list. After successful
2608         * creation, nonpaged fixed-size blocks can be allocated from and
2609         * freed to the lookaside list.
2610         * RFDs will be allocated from this pool.
2611         */
2612        rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2613                                                   sizeof(struct rfd),
2614                                                   0,
2615                                                   SLAB_CACHE_DMA |
2616                                                   SLAB_HWCACHE_ALIGN,
2617                                                   NULL);
2618
2619        adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2620
2621        /* The RFDs are going to be put on lists later on, so initialize the
2622         * lists now.
2623         */
2624        INIT_LIST_HEAD(&rx_ring->recv_list);
2625        return 0;
2626}
2627
2628/**
2629 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2630 * @adapter: pointer to our private adapter structure
2631 */
2632void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2633{
2634        u32 index;
2635        u32 bufsize;
2636        u32 pktstat_ringsize;
2637        struct rfd *rfd;
2638        struct rx_ring *rx_ring;
2639
2640        /* Setup some convenience pointers */
2641        rx_ring = &adapter->rx_ring;
2642
2643        /* Free RFDs and associated packet descriptors */
2644        WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2645
2646        while (!list_empty(&rx_ring->recv_list)) {
2647                rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2648                                struct rfd, list_node);
2649
2650                list_del(&rfd->list_node);
2651                rfd->skb = NULL;
2652                kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2653        }
2654
2655        /* Free Free Buffer Ring 1 */
2656        if (rx_ring->fbr[0]->ring_virtaddr) {
2657                /* First the packet memory */
2658                for (index = 0; index <
2659                     (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2660                        if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2661                                u32 fbr1_align;
2662
2663                                if (rx_ring->fbr[0]->buffsize > 4096)
2664                                        fbr1_align = 4096;
2665                                else
2666                                        fbr1_align = rx_ring->fbr[0]->buffsize;
2667
2668                                bufsize =
2669                                    (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2670                                    fbr1_align - 1;
2671
2672                                dma_free_coherent(&adapter->pdev->dev,
2673                                        bufsize,
2674                                        rx_ring->fbr[0]->mem_virtaddrs[index],
2675                                        rx_ring->fbr[0]->mem_physaddrs[index]);
2676
2677                                rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2678                        }
2679                }
2680
2681                /* Now the FIFO itself */
2682                rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2683                    rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2684
2685                bufsize =
2686                    (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2687                                                                        0xfff;
2688
2689                dma_free_coherent(&adapter->pdev->dev, bufsize,
2690                                    rx_ring->fbr[0]->ring_virtaddr,
2691                                    rx_ring->fbr[0]->ring_physaddr);
2692
2693                rx_ring->fbr[0]->ring_virtaddr = NULL;
2694        }
2695
2696#ifdef USE_FBR0
2697        /* Now the same for Free Buffer Ring 0 */
2698        if (rx_ring->fbr[1]->ring_virtaddr) {
2699                /* First the packet memory */
2700                for (index = 0; index <
2701                     (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2702                        if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2703                                bufsize =
2704                                    (rx_ring->fbr[1]->buffsize *
2705                                     (FBR_CHUNKS + 1)) - 1;
2706
2707                                dma_free_coherent(&adapter->pdev->dev,
2708                                        bufsize,
2709                                        rx_ring->fbr[1]->mem_virtaddrs[index],
2710                                        rx_ring->fbr[1]->mem_physaddrs[index]);
2711
2712                                rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2713                        }
2714                }
2715
2716                /* Now the FIFO itself */
2717                rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2718                    rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2719
2720                bufsize =
2721                    (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2722                                                                        0xfff;
2723
2724                dma_free_coherent(&adapter->pdev->dev,
2725                                  bufsize,
2726                                  rx_ring->fbr[1]->ring_virtaddr,
2727                                  rx_ring->fbr[1]->ring_physaddr);
2728
2729                rx_ring->fbr[1]->ring_virtaddr = NULL;
2730        }
2731#endif
2732
2733        /* Free Packet Status Ring */
2734        if (rx_ring->ps_ring_virtaddr) {
2735                pktstat_ringsize =
2736                    sizeof(struct pkt_stat_desc) *
2737                    adapter->rx_ring.psr_num_entries;
2738
2739                dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2740                                    rx_ring->ps_ring_virtaddr,
2741                                    rx_ring->ps_ring_physaddr);
2742
2743                rx_ring->ps_ring_virtaddr = NULL;
2744        }
2745
2746        /* Free area of memory for the writeback of status information */
2747        if (rx_ring->rx_status_block) {
2748                dma_free_coherent(&adapter->pdev->dev,
2749                        sizeof(struct rx_status_block),
2750                        rx_ring->rx_status_block, rx_ring->rx_status_bus);
2751                rx_ring->rx_status_block = NULL;
2752        }
2753
2754        /* Destroy the lookaside (RFD) pool */
2755        if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2756                kmem_cache_destroy(rx_ring->recv_lookaside);
2757                adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2758        }
2759
2760        /* Free the FBR Lookup Table */
2761#ifdef USE_FBR0
2762        kfree(rx_ring->fbr[1]);
2763#endif
2764
2765        kfree(rx_ring->fbr[0]);
2766
2767        /* Reset Counters */
2768        rx_ring->num_ready_recv = 0;
2769}
2770
2771/**
2772 * et131x_init_recv - Initialize receive data structures.
2773 * @adapter: pointer to our private adapter structure
2774 *
2775 * Returns 0 on success and errno on failure (as defined in errno.h)
2776 */
2777int et131x_init_recv(struct et131x_adapter *adapter)
2778{
2779        int status = -ENOMEM;
2780        struct rfd *rfd = NULL;
2781        u32 rfdct;
2782        u32 numrfd = 0;
2783        struct rx_ring *rx_ring;
2784
2785        /* Setup some convenience pointers */
2786        rx_ring = &adapter->rx_ring;
2787
2788        /* Setup each RFD */
2789        for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2790                rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2791                                                     GFP_ATOMIC | GFP_DMA);
2792
2793                if (!rfd) {
2794                        dev_err(&adapter->pdev->dev,
2795                                  "Couldn't alloc RFD out of kmem_cache\n");
2796                        status = -ENOMEM;
2797                        continue;
2798                }
2799
2800                rfd->skb = NULL;
2801
2802                /* Add this RFD to the recv_list */
2803                list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2804
2805                /* Increment both the available RFD's, and the total RFD's. */
2806                rx_ring->num_ready_recv++;
2807                numrfd++;
2808        }
2809
2810        if (numrfd > NIC_MIN_NUM_RFD)
2811                status = 0;
2812
2813        rx_ring->num_rfd = numrfd;
2814
2815        if (status != 0) {
2816                kmem_cache_free(rx_ring->recv_lookaside, rfd);
2817                dev_err(&adapter->pdev->dev,
2818                          "Allocation problems in et131x_init_recv\n");
2819        }
2820        return status;
2821}
2822
2823/**
2824 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2825 * @adapter: pointer to our adapter structure
2826 */
2827void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2828{
2829        struct phy_device *phydev = adapter->phydev;
2830
2831        if (!phydev)
2832                return;
2833
2834        /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2835         * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2836         */
2837        if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2838                writel(0, &adapter->regs->rxdma.max_pkt_time);
2839                writel(1, &adapter->regs->rxdma.num_pkt_done);
2840        }
2841}
2842
2843/**
2844 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2845 * @adapter: pointer to our adapter
2846 * @rfd: pointer to the RFD
2847 */
2848static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2849{
2850        struct rx_ring *rx_local = &adapter->rx_ring;
2851        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2852        u16 buff_index = rfd->bufferindex;
2853        u8 ring_index = rfd->ringindex;
2854        unsigned long flags;
2855
2856        /* We don't use any of the OOB data besides status. Otherwise, we
2857         * need to clean up OOB data
2858         */
2859        if (
2860#ifdef USE_FBR0
2861            (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2862#endif
2863            (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2864                spin_lock_irqsave(&adapter->fbr_lock, flags);
2865
2866                if (ring_index == 1) {
2867                        struct fbr_desc *next = (struct fbr_desc *)
2868                                        (rx_local->fbr[0]->ring_virtaddr) +
2869                                        INDEX10(rx_local->fbr[0]->local_full);
2870
2871                        /* Handle the Free Buffer Ring advancement here. Write
2872                         * the PA / Buffer Index for the returned buffer into
2873                         * the oldest (next to be freed)FBR entry
2874                         */
2875                        next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2876                        next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2877                        next->word2 = buff_index;
2878
2879                        writel(bump_free_buff_ring(
2880                                        &rx_local->fbr[0]->local_full,
2881                                        rx_local->fbr[0]->num_entries - 1),
2882                                        &rx_dma->fbr1_full_offset);
2883                }
2884#ifdef USE_FBR0
2885                else {
2886                        struct fbr_desc *next = (struct fbr_desc *)
2887                                rx_local->fbr[1]->ring_virtaddr +
2888                                    INDEX10(rx_local->fbr[1]->local_full);
2889
2890                        /* Handle the Free Buffer Ring advancement here. Write
2891                         * the PA / Buffer Index for the returned buffer into
2892                         * the oldest (next to be freed) FBR entry
2893                         */
2894                        next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2895                        next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2896                        next->word2 = buff_index;
2897
2898                        writel(bump_free_buff_ring(
2899                                        &rx_local->fbr[1]->local_full,
2900                                        rx_local->fbr[1]->num_entries - 1),
2901                               &rx_dma->fbr0_full_offset);
2902                }
2903#endif
2904                spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2905        } else {
2906                dev_err(&adapter->pdev->dev,
2907                          "%s illegal Buffer Index returned\n", __func__);
2908        }
2909
2910        /* The processing on this RFD is done, so put it back on the tail of
2911         * our list
2912         */
2913        spin_lock_irqsave(&adapter->rcv_lock, flags);
2914        list_add_tail(&rfd->list_node, &rx_local->recv_list);
2915        rx_local->num_ready_recv++;
2916        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2917
2918        WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2919}
2920
2921static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2922{
2923        struct rx_ring *rx_local = &adapter->rx_ring;
2924        struct rx_status_block *status;
2925        struct pkt_stat_desc *psr;
2926        struct rfd *rfd;
2927        u32 i;
2928        u8 *buf;
2929        unsigned long flags;
2930        struct list_head *element;
2931        u8 ring_index;
2932        u16 buff_index;
2933        u32 len;
2934        u32 word0;
2935        u32 word1;
2936
2937        /* RX Status block is written by the DMA engine prior to every
2938         * interrupt. It contains the next to be used entry in the Packet
2939         * Status Ring, and also the two Free Buffer rings.
2940         */
2941        status = rx_local->rx_status_block;
2942        word1 = status->word1 >> 16;    /* Get the useful bits */
2943
2944        /* Check the PSR and wrap bits do not match */
2945        if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2946                /* Looks like this ring is not updated yet */
2947                return NULL;
2948
2949        /* The packet status ring indicates that data is available. */
2950        psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2951                        (rx_local->local_psr_full & 0xFFF);
2952
2953        /* Grab any information that is required once the PSR is
2954         * advanced, since we can no longer rely on the memory being
2955         * accurate
2956         */
2957        len = psr->word1 & 0xFFFF;
2958        ring_index = (psr->word1 >> 26) & 0x03;
2959        buff_index = (psr->word1 >> 16) & 0x3FF;
2960        word0 = psr->word0;
2961
2962        /* Indicate that we have used this PSR entry. */
2963        /* FIXME wrap 12 */
2964        add_12bit(&rx_local->local_psr_full, 1);
2965        if (
2966          (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2967                /* Clear psr full and toggle the wrap bit */
2968                rx_local->local_psr_full &=  ~0xFFF;
2969                rx_local->local_psr_full ^= 0x1000;
2970        }
2971
2972        writel(rx_local->local_psr_full,
2973               &adapter->regs->rxdma.psr_full_offset);
2974
2975#ifndef USE_FBR0
2976        if (ring_index != 1)
2977                return NULL;
2978#endif
2979
2980#ifdef USE_FBR0
2981        if (ring_index > 1 ||
2982                (ring_index == 0 &&
2983                buff_index > rx_local->fbr[1]->num_entries - 1) ||
2984                (ring_index == 1 &&
2985                buff_index > rx_local->fbr[0]->num_entries - 1))
2986#else
2987        if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2988#endif
2989        {
2990                /* Illegal buffer or ring index cannot be used by S/W*/
2991                dev_err(&adapter->pdev->dev,
2992                          "NICRxPkts PSR Entry %d indicates "
2993                          "length of %d and/or bad bi(%d)\n",
2994                          rx_local->local_psr_full & 0xFFF,
2995                          len, buff_index);
2996                return NULL;
2997        }
2998
2999        /* Get and fill the RFD. */
3000        spin_lock_irqsave(&adapter->rcv_lock, flags);
3001
3002        rfd = NULL;
3003        element = rx_local->recv_list.next;
3004        rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
3005
3006        if (rfd == NULL) {
3007                spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3008                return NULL;
3009        }
3010
3011        list_del(&rfd->list_node);
3012        rx_local->num_ready_recv--;
3013
3014        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3015
3016        rfd->bufferindex = buff_index;
3017        rfd->ringindex = ring_index;
3018
3019        /* In V1 silicon, there is a bug which screws up filtering of
3020         * runt packets.  Therefore runt packet filtering is disabled
3021         * in the MAC and the packets are dropped here.  They are
3022         * also counted here.
3023         */
3024        if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3025                adapter->stats.rx_other_errs++;
3026                len = 0;
3027        }
3028
3029        if (len) {
3030                /* Determine if this is a multicast packet coming in */
3031                if ((word0 & ALCATEL_MULTICAST_PKT) &&
3032                    !(word0 & ALCATEL_BROADCAST_PKT)) {
3033                        /* Promiscuous mode and Multicast mode are
3034                         * not mutually exclusive as was first
3035                         * thought.  I guess Promiscuous is just
3036                         * considered a super-set of the other
3037                         * filters. Generally filter is 0x2b when in
3038                         * promiscuous mode.
3039                         */
3040                        if ((adapter->packet_filter &
3041                                        ET131X_PACKET_TYPE_MULTICAST)
3042                            && !(adapter->packet_filter &
3043                                        ET131X_PACKET_TYPE_PROMISCUOUS)
3044                            && !(adapter->packet_filter &
3045                                        ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3046                                /*
3047                                 * Note - ring_index for fbr[] array is reversed
3048                                 * 1 for FBR0 etc
3049                                 */
3050                                buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3051                                                virt[buff_index];
3052
3053                                /* Loop through our list to see if the
3054                                 * destination address of this packet
3055                                 * matches one in our list.
3056                                 */
3057                                for (i = 0; i < adapter->multicast_addr_count;
3058                                     i++) {
3059                                        if (buf[0] ==
3060                                                adapter->multicast_list[i][0]
3061                                            && buf[1] ==
3062                                                adapter->multicast_list[i][1]
3063                                            && buf[2] ==
3064                                                adapter->multicast_list[i][2]
3065                                            && buf[3] ==
3066                                                adapter->multicast_list[i][3]
3067                                            && buf[4] ==
3068                                                adapter->multicast_list[i][4]
3069                                            && buf[5] ==
3070                                                adapter->multicast_list[i][5]) {
3071                                                break;
3072                                        }
3073                                }
3074
3075                                /* If our index is equal to the number
3076                                 * of Multicast address we have, then
3077                                 * this means we did not find this
3078                                 * packet's matching address in our
3079                                 * list.  Set the len to zero,
3080                                 * so we free our RFD when we return
3081                                 * from this function.
3082                                 */
3083                                if (i == adapter->multicast_addr_count)
3084                                        len = 0;
3085                        }
3086
3087                        if (len > 0)
3088                                adapter->stats.multicast_pkts_rcvd++;
3089                } else if (word0 & ALCATEL_BROADCAST_PKT)
3090                        adapter->stats.broadcast_pkts_rcvd++;
3091                else
3092                        /* Not sure what this counter measures in
3093                         * promiscuous mode. Perhaps we should check
3094                         * the MAC address to see if it is directed
3095                         * to us in promiscuous mode.
3096                         */
3097                        adapter->stats.unicast_pkts_rcvd++;
3098        }
3099
3100        if (len > 0) {
3101                struct sk_buff *skb = NULL;
3102
3103                /*rfd->len = len - 4; */
3104                rfd->len = len;
3105
3106                skb = dev_alloc_skb(rfd->len + 2);
3107                if (!skb) {
3108                        dev_err(&adapter->pdev->dev,
3109                                  "Couldn't alloc an SKB for Rx\n");
3110                        return NULL;
3111                }
3112
3113                adapter->net_stats.rx_bytes += rfd->len;
3114
3115                /*
3116                 * Note - ring_index for fbr[] array is reversed,
3117                 * 1 for FBR0 etc
3118                 */
3119                memcpy(skb_put(skb, rfd->len),
3120                    rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3121                    rfd->len);
3122
3123                skb->dev = adapter->netdev;
3124                skb->protocol = eth_type_trans(skb, adapter->netdev);
3125                skb->ip_summed = CHECKSUM_NONE;
3126
3127                netif_rx(skb);
3128        } else {
3129                rfd->len = 0;
3130        }
3131
3132        nic_return_rfd(adapter, rfd);
3133        return rfd;
3134}
3135
3136/**
3137 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3138 * @adapter: pointer to our adapter
3139 *
3140 * Assumption, Rcv spinlock has been acquired.
3141 */
3142void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3143{
3144        struct rfd *rfd = NULL;
3145        u32 count = 0;
3146        bool done = true;
3147
3148        /* Process up to available RFD's */
3149        while (count < NUM_PACKETS_HANDLED) {
3150                if (list_empty(&adapter->rx_ring.recv_list)) {
3151                        WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3152                        done = false;
3153                        break;
3154                }
3155
3156                rfd = nic_rx_pkts(adapter);
3157
3158                if (rfd == NULL)
3159                        break;
3160
3161                /* Do not receive any packets until a filter has been set.
3162                 * Do not receive any packets until we have link.
3163                 * If length is zero, return the RFD in order to advance the
3164                 * Free buffer ring.
3165                 */
3166                if (!adapter->packet_filter ||
3167                    !netif_carrier_ok(adapter->netdev) ||
3168                    rfd->len == 0)
3169                        continue;
3170
3171                /* Increment the number of packets we received */
3172                adapter->net_stats.rx_packets++;
3173
3174                /* Set the status on the packet, either resources or success */
3175                if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3176                        dev_warn(&adapter->pdev->dev,
3177                                    "RFD's are running out\n");
3178                }
3179                count++;
3180        }
3181
3182        if (count == NUM_PACKETS_HANDLED || !done) {
3183                adapter->rx_ring.unfinished_receives = true;
3184                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3185                       &adapter->regs->global.watchdog_timer);
3186        } else
3187                /* Watchdog timer will disable itself if appropriate. */
3188                adapter->rx_ring.unfinished_receives = false;
3189}
3190
3191/* TX functions */
3192
3193/**
3194 * et131x_tx_dma_memory_alloc
3195 * @adapter: pointer to our private adapter structure
3196 *
3197 * Returns 0 on success and errno on failure (as defined in errno.h).
3198 *
3199 * Allocates memory that will be visible both to the device and to the CPU.
3200 * The OS will pass us packets, pointers to which we will insert in the Tx
3201 * Descriptor queue. The device will read this queue to find the packets in
3202 * memory. The device will update the "status" in memory each time it xmits a
3203 * packet.
3204 */
3205int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3206{
3207        int desc_size = 0;
3208        struct tx_ring *tx_ring = &adapter->tx_ring;
3209
3210        /* Allocate memory for the TCB's (Transmit Control Block) */
3211        adapter->tx_ring.tcb_ring =
3212                kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3213        if (!adapter->tx_ring.tcb_ring) {
3214                dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3215                return -ENOMEM;
3216        }
3217
3218        /* Allocate enough memory for the Tx descriptor ring, and allocate
3219         * some extra so that the ring can be aligned on a 4k boundary.
3220         */
3221        desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3222        tx_ring->tx_desc_ring =
3223            (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3224                                                  desc_size,
3225                                                  &tx_ring->tx_desc_ring_pa,
3226                                                  GFP_KERNEL);
3227        if (!adapter->tx_ring.tx_desc_ring) {
3228                dev_err(&adapter->pdev->dev,
3229                        "Cannot alloc memory for Tx Ring\n");
3230                return -ENOMEM;
3231        }
3232
3233        /* Save physical address
3234         *
3235         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3236         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3237         * are ever returned, make sure the high part is retrieved here before
3238         * storing the adjusted address.
3239         */
3240        /* Allocate memory for the Tx status block */
3241        tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3242                                                    sizeof(u32),
3243                                                    &tx_ring->tx_status_pa,
3244                                                    GFP_KERNEL);
3245        if (!adapter->tx_ring.tx_status_pa) {
3246                dev_err(&adapter->pdev->dev,
3247                                  "Cannot alloc memory for Tx status block\n");
3248                return -ENOMEM;
3249        }
3250        return 0;
3251}
3252
3253/**
3254 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3255 * @adapter: pointer to our private adapter structure
3256 *
3257 * Returns 0 on success and errno on failure (as defined in errno.h).
3258 */
3259void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3260{
3261        int desc_size = 0;
3262
3263        if (adapter->tx_ring.tx_desc_ring) {
3264                /* Free memory relating to Tx rings here */
3265                desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3266                                                                + 4096 - 1;
3267                dma_free_coherent(&adapter->pdev->dev,
3268                                    desc_size,
3269                                    adapter->tx_ring.tx_desc_ring,
3270                                    adapter->tx_ring.tx_desc_ring_pa);
3271                adapter->tx_ring.tx_desc_ring = NULL;
3272        }
3273
3274        /* Free memory for the Tx status block */
3275        if (adapter->tx_ring.tx_status) {
3276                dma_free_coherent(&adapter->pdev->dev,
3277                                    sizeof(u32),
3278                                    adapter->tx_ring.tx_status,
3279                                    adapter->tx_ring.tx_status_pa);
3280
3281                adapter->tx_ring.tx_status = NULL;
3282        }
3283        /* Free the memory for the tcb structures */
3284        kfree(adapter->tx_ring.tcb_ring);
3285}
3286
3287/**
3288 * nic_send_packet - NIC specific send handler for version B silicon.
3289 * @adapter: pointer to our adapter
3290 * @tcb: pointer to struct tcb
3291 *
3292 * Returns 0 or errno.
3293 */
3294static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3295{
3296        u32 i;
3297        struct tx_desc desc[24];        /* 24 x 16 byte */
3298        u32 frag = 0;
3299        u32 thiscopy, remainder;
3300        struct sk_buff *skb = tcb->skb;
3301        u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3302        struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3303        unsigned long flags;
3304        struct phy_device *phydev = adapter->phydev;
3305
3306        /* Part of the optimizations of this send routine restrict us to
3307         * sending 24 fragments at a pass.  In practice we should never see
3308         * more than 5 fragments.
3309         *
3310         * NOTE: The older version of this function (below) can handle any
3311         * number of fragments. If needed, we can call this function,
3312         * although it is less efficient.
3313         */
3314        if (nr_frags > 23)
3315                return -EIO;
3316
3317        memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3318
3319        for (i = 0; i < nr_frags; i++) {
3320                /* If there is something in this element, lets get a
3321                 * descriptor from the ring and get the necessary data
3322                 */
3323                if (i == 0) {
3324                        /* If the fragments are smaller than a standard MTU,
3325                         * then map them to a single descriptor in the Tx
3326                         * Desc ring. However, if they're larger, as is
3327                         * possible with support for jumbo packets, then
3328                         * split them each across 2 descriptors.
3329                         *
3330                         * This will work until we determine why the hardware
3331                         * doesn't seem to like large fragments.
3332                         */
3333                        if ((skb->len - skb->data_len) <= 1514) {
3334                                desc[frag].addr_hi = 0;
3335                                /* Low 16bits are length, high is vlan and
3336                                   unused currently so zero */
3337                                desc[frag].len_vlan =
3338                                        skb->len - skb->data_len;
3339
3340                                /* NOTE: Here, the dma_addr_t returned from
3341                                 * dma_map_single() is implicitly cast as a
3342                                 * u32. Although dma_addr_t can be
3343                                 * 64-bit, the address returned by
3344                                 * dma_map_single() is always 32-bit
3345                                 * addressable (as defined by the pci/dma
3346                                 * subsystem)
3347                                 */
3348                                desc[frag++].addr_lo =
3349                                    dma_map_single(&adapter->pdev->dev,
3350                                                   skb->data,
3351                                                   skb->len -
3352                                                   skb->data_len,
3353                                                   DMA_TO_DEVICE);
3354                        } else {
3355                                desc[frag].addr_hi = 0;
3356                                desc[frag].len_vlan =
3357                                    (skb->len - skb->data_len) / 2;
3358
3359                                /* NOTE: Here, the dma_addr_t returned from
3360                                 * dma_map_single() is implicitly cast as a
3361                                 * u32. Although dma_addr_t can be
3362                                 * 64-bit, the address returned by
3363                                 * dma_map_single() is always 32-bit
3364                                 * addressable (as defined by the pci/dma
3365                                 * subsystem)
3366                                 */
3367                                desc[frag++].addr_lo =
3368                                    dma_map_single(&adapter->pdev->dev,
3369                                                   skb->data,
3370                                                   ((skb->len -
3371                                                     skb->data_len) / 2),
3372                                                   DMA_TO_DEVICE);
3373                                desc[frag].addr_hi = 0;
3374
3375                                desc[frag].len_vlan =
3376                                    (skb->len - skb->data_len) / 2;
3377
3378                                /* NOTE: Here, the dma_addr_t returned from
3379                                 * dma_map_single() is implicitly cast as a
3380                                 * u32. Although dma_addr_t can be
3381                                 * 64-bit, the address returned by
3382                                 * dma_map_single() is always 32-bit
3383                                 * addressable (as defined by the pci/dma
3384                                 * subsystem)
3385                                 */
3386                                desc[frag++].addr_lo =
3387                                    dma_map_single(&adapter->pdev->dev,
3388                                                   skb->data +
3389                                                   ((skb->len -
3390                                                     skb->data_len) / 2),
3391                                                   ((skb->len -
3392                                                     skb->data_len) / 2),
3393                                                   DMA_TO_DEVICE);
3394                        }
3395                } else {
3396                        desc[frag].addr_hi = 0;
3397                        desc[frag].len_vlan =
3398                                        frags[i - 1].size;
3399
3400                        /* NOTE: Here, the dma_addr_t returned from
3401                         * dma_map_page() is implicitly cast as a u32.
3402                         * Although dma_addr_t can be 64-bit, the address
3403                         * returned by dma_map_page() is always 32-bit
3404                         * addressable (as defined by the pci/dma subsystem)
3405                         */
3406                        desc[frag++].addr_lo = skb_frag_dma_map(
3407                                                        &adapter->pdev->dev,
3408                                                        &frags[i - 1],
3409                                                        0,
3410                                                        frags[i - 1].size,
3411                                                        DMA_TO_DEVICE);
3412                }
3413        }
3414
3415        if (phydev && phydev->speed == SPEED_1000) {
3416                if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3417                        /* Last element & Interrupt flag */
3418                        desc[frag - 1].flags = 0x5;
3419                        adapter->tx_ring.since_irq = 0;
3420                } else { /* Last element */
3421                        desc[frag - 1].flags = 0x1;
3422                }
3423        } else
3424                desc[frag - 1].flags = 0x5;
3425
3426        desc[0].flags |= 2;     /* First element flag */
3427
3428        tcb->index_start = adapter->tx_ring.send_idx;
3429        tcb->stale = 0;
3430
3431        spin_lock_irqsave(&adapter->send_hw_lock, flags);
3432
3433        thiscopy = NUM_DESC_PER_RING_TX -
3434                                INDEX10(adapter->tx_ring.send_idx);
3435
3436        if (thiscopy >= frag) {
3437                remainder = 0;
3438                thiscopy = frag;
3439        } else {
3440                remainder = frag - thiscopy;
3441        }
3442
3443        memcpy(adapter->tx_ring.tx_desc_ring +
3444               INDEX10(adapter->tx_ring.send_idx), desc,
3445               sizeof(struct tx_desc) * thiscopy);
3446
3447        add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3448
3449        if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3450                  INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3451                adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3452                adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3453        }
3454
3455        if (remainder) {
3456                memcpy(adapter->tx_ring.tx_desc_ring,
3457                       desc + thiscopy,
3458                       sizeof(struct tx_desc) * remainder);
3459
3460                add_10bit(&adapter->tx_ring.send_idx, remainder);
3461        }
3462
3463        if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3464                if (adapter->tx_ring.send_idx)
3465                        tcb->index = NUM_DESC_PER_RING_TX - 1;
3466                else
3467                        tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3468        } else
3469                tcb->index = adapter->tx_ring.send_idx - 1;
3470
3471        spin_lock(&adapter->tcb_send_qlock);
3472
3473        if (adapter->tx_ring.send_tail)
3474                adapter->tx_ring.send_tail->next = tcb;
3475        else
3476                adapter->tx_ring.send_head = tcb;
3477
3478        adapter->tx_ring.send_tail = tcb;
3479
3480        WARN_ON(tcb->next != NULL);
3481
3482        adapter->tx_ring.used++;
3483
3484        spin_unlock(&adapter->tcb_send_qlock);
3485
3486        /* Write the new write pointer back to the device. */
3487        writel(adapter->tx_ring.send_idx,
3488               &adapter->regs->txdma.service_request);
3489
3490        /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3491         * timer to wake us up if this packet isn't followed by N more.
3492         */
3493        if (phydev && phydev->speed == SPEED_1000) {
3494                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3495                       &adapter->regs->global.watchdog_timer);
3496        }
3497        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3498
3499        return 0;
3500}
3501
3502/**
3503 * send_packet - Do the work to send a packet
3504 * @skb: the packet(s) to send
3505 * @adapter: a pointer to the device's private adapter structure
3506 *
3507 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3508 *
3509 * Assumption: Send spinlock has been acquired
3510 */
3511static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3512{
3513        int status;
3514        struct tcb *tcb = NULL;
3515        u16 *shbufva;
3516        unsigned long flags;
3517
3518        /* All packets must have at least a MAC address and a protocol type */
3519        if (skb->len < ETH_HLEN)
3520                return -EIO;
3521
3522        /* Get a TCB for this packet */
3523        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3524
3525        tcb = adapter->tx_ring.tcb_qhead;
3526
3527        if (tcb == NULL) {
3528                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3529                return -ENOMEM;
3530        }
3531
3532        adapter->tx_ring.tcb_qhead = tcb->next;
3533
3534        if (adapter->tx_ring.tcb_qhead == NULL)
3535                adapter->tx_ring.tcb_qtail = NULL;
3536
3537        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3538
3539        tcb->skb = skb;
3540
3541        if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3542                shbufva = (u16 *) skb->data;
3543
3544                if ((shbufva[0] == 0xffff) &&
3545                    (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3546                        tcb->flags |= fMP_DEST_BROAD;
3547                } else if ((shbufva[0] & 0x3) == 0x0001) {
3548                        tcb->flags |=  fMP_DEST_MULTI;
3549                }
3550        }
3551
3552        tcb->next = NULL;
3553
3554        /* Call the NIC specific send handler. */
3555        status = nic_send_packet(adapter, tcb);
3556
3557        if (status != 0) {
3558                spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3559
3560                if (adapter->tx_ring.tcb_qtail)
3561                        adapter->tx_ring.tcb_qtail->next = tcb;
3562                else
3563                        /* Apparently ready Q is empty. */
3564                        adapter->tx_ring.tcb_qhead = tcb;
3565
3566                adapter->tx_ring.tcb_qtail = tcb;
3567                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3568                return status;
3569        }
3570        WARN_ON(adapter->tx_ring.used > NUM_TCB);
3571        return 0;
3572}
3573
3574/**
3575 * et131x_send_packets - This function is called by the OS to send packets
3576 * @skb: the packet(s) to send
3577 * @netdev:device on which to TX the above packet(s)
3578 *
3579 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3580 */
3581int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3582{
3583        int status = 0;
3584        struct et131x_adapter *adapter = netdev_priv(netdev);
3585
3586        /* Send these packets
3587         *
3588         * NOTE: The Linux Tx entry point is only given one packet at a time
3589         * to Tx, so the PacketCount and it's array used makes no sense here
3590         */
3591
3592        /* TCB is not available */
3593        if (adapter->tx_ring.used >= NUM_TCB) {
3594                /* NOTE: If there's an error on send, no need to queue the
3595                 * packet under Linux; if we just send an error up to the
3596                 * netif layer, it will resend the skb to us.
3597                 */
3598                status = -ENOMEM;
3599        } else {
3600                /* We need to see if the link is up; if it's not, make the
3601                 * netif layer think we're good and drop the packet
3602                 */
3603                if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3604                                        !netif_carrier_ok(netdev)) {
3605                        dev_kfree_skb_any(skb);
3606                        skb = NULL;
3607
3608                        adapter->net_stats.tx_dropped++;
3609                } else {
3610                        status = send_packet(skb, adapter);
3611                        if (status != 0 && status != -ENOMEM) {
3612                                /* On any other error, make netif think we're
3613                                 * OK and drop the packet
3614                                 */
3615                                dev_kfree_skb_any(skb);
3616                                skb = NULL;
3617                                adapter->net_stats.tx_dropped++;
3618                        }
3619                }
3620        }
3621        return status;
3622}
3623
3624/**
3625 * free_send_packet - Recycle a struct tcb
3626 * @adapter: pointer to our adapter
3627 * @tcb: pointer to struct tcb
3628 *
3629 * Complete the packet if necessary
3630 * Assumption - Send spinlock has been acquired
3631 */
3632static inline void free_send_packet(struct et131x_adapter *adapter,
3633                                                struct tcb *tcb)
3634{
3635        unsigned long flags;
3636        struct tx_desc *desc = NULL;
3637        struct net_device_stats *stats = &adapter->net_stats;
3638
3639        if (tcb->flags & fMP_DEST_BROAD)
3640                atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3641        else if (tcb->flags & fMP_DEST_MULTI)
3642                atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3643        else
3644                atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3645
3646        if (tcb->skb) {
3647                stats->tx_bytes += tcb->skb->len;
3648
3649                /* Iterate through the TX descriptors on the ring
3650                 * corresponding to this packet and umap the fragments
3651                 * they point to
3652                 */
3653                do {
3654                        desc = (struct tx_desc *)
3655                                    (adapter->tx_ring.tx_desc_ring +
3656                                                INDEX10(tcb->index_start));
3657
3658                        dma_unmap_single(&adapter->pdev->dev,
3659                                         desc->addr_lo,
3660                                         desc->len_vlan, DMA_TO_DEVICE);
3661
3662                        add_10bit(&tcb->index_start, 1);
3663                        if (INDEX10(tcb->index_start) >=
3664                                                        NUM_DESC_PER_RING_TX) {
3665                                tcb->index_start &= ~ET_DMA10_MASK;
3666                                tcb->index_start ^= ET_DMA10_WRAP;
3667                        }
3668                } while (desc != (adapter->tx_ring.tx_desc_ring +
3669                                INDEX10(tcb->index)));
3670
3671                dev_kfree_skb_any(tcb->skb);
3672        }
3673
3674        memset(tcb, 0, sizeof(struct tcb));
3675
3676        /* Add the TCB to the Ready Q */
3677        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3678
3679        adapter->net_stats.tx_packets++;
3680
3681        if (adapter->tx_ring.tcb_qtail)
3682                adapter->tx_ring.tcb_qtail->next = tcb;
3683        else
3684                /* Apparently ready Q is empty. */
3685                adapter->tx_ring.tcb_qhead = tcb;
3686
3687        adapter->tx_ring.tcb_qtail = tcb;
3688
3689        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3690        WARN_ON(adapter->tx_ring.used < 0);
3691}
3692
3693/**
3694 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3695 * @adapter: pointer to our adapter
3696 *
3697 * Assumption - Send spinlock has been acquired
3698 */
3699void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3700{
3701        struct tcb *tcb;
3702        unsigned long flags;
3703        u32 freed = 0;
3704
3705        /* Any packets being sent? Check the first TCB on the send list */
3706        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3707
3708        tcb = adapter->tx_ring.send_head;
3709
3710        while (tcb != NULL && freed < NUM_TCB) {
3711                struct tcb *next = tcb->next;
3712
3713                adapter->tx_ring.send_head = next;
3714
3715                if (next == NULL)
3716                        adapter->tx_ring.send_tail = NULL;
3717
3718                adapter->tx_ring.used--;
3719
3720                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3721
3722                freed++;
3723                free_send_packet(adapter, tcb);
3724
3725                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3726
3727                tcb = adapter->tx_ring.send_head;
3728        }
3729
3730        WARN_ON(freed == NUM_TCB);
3731
3732        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3733
3734        adapter->tx_ring.used = 0;
3735}
3736
3737/**
3738 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3739 * @adapter: pointer to our adapter
3740 *
3741 * Re-claim the send resources, complete sends and get more to send from
3742 * the send wait queue.
3743 *
3744 * Assumption - Send spinlock has been acquired
3745 */
3746void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3747{
3748        unsigned long flags;
3749        u32 serviced;
3750        struct tcb *tcb;
3751        u32 index;
3752
3753        serviced = readl(&adapter->regs->txdma.new_service_complete);
3754        index = INDEX10(serviced);
3755
3756        /* Has the ring wrapped?  Process any descriptors that do not have
3757         * the same "wrap" indicator as the current completion indicator
3758         */
3759        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3760
3761        tcb = adapter->tx_ring.send_head;
3762
3763        while (tcb &&
3764               ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3765               index < INDEX10(tcb->index)) {
3766                adapter->tx_ring.used--;
3767                adapter->tx_ring.send_head = tcb->next;
3768                if (tcb->next == NULL)
3769                        adapter->tx_ring.send_tail = NULL;
3770
3771                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3772                free_send_packet(adapter, tcb);
3773                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3774
3775                /* Goto the next packet */
3776                tcb = adapter->tx_ring.send_head;
3777        }
3778        while (tcb &&
3779               !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3780               && index > (tcb->index & ET_DMA10_MASK)) {
3781                adapter->tx_ring.used--;
3782                adapter->tx_ring.send_head = tcb->next;
3783                if (tcb->next == NULL)
3784                        adapter->tx_ring.send_tail = NULL;
3785
3786                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3787                free_send_packet(adapter, tcb);
3788                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3789
3790                /* Goto the next packet */
3791                tcb = adapter->tx_ring.send_head;
3792        }
3793
3794        /* Wake up the queue when we hit a low-water mark */
3795        if (adapter->tx_ring.used <= NUM_TCB / 3)
3796                netif_wake_queue(adapter->netdev);
3797
3798        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3799}
3800
3801/* ETHTOOL functions */
3802
3803static int et131x_get_settings(struct net_device *netdev,
3804                               struct ethtool_cmd *cmd)
3805{
3806        struct et131x_adapter *adapter = netdev_priv(netdev);
3807
3808        return phy_ethtool_gset(adapter->phydev, cmd);
3809}
3810
3811static int et131x_set_settings(struct net_device *netdev,
3812                               struct ethtool_cmd *cmd)
3813{
3814        struct et131x_adapter *adapter = netdev_priv(netdev);
3815
3816        return phy_ethtool_sset(adapter->phydev, cmd);
3817}
3818
3819static int et131x_get_regs_len(struct net_device *netdev)
3820{
3821#define ET131X_REGS_LEN 256
3822        return ET131X_REGS_LEN * sizeof(u32);
3823}
3824
3825static void et131x_get_regs(struct net_device *netdev,
3826                            struct ethtool_regs *regs, void *regs_data)
3827{
3828        struct et131x_adapter *adapter = netdev_priv(netdev);
3829        struct address_map __iomem *aregs = adapter->regs;
3830        u32 *regs_buff = regs_data;
3831        u32 num = 0;
3832
3833        memset(regs_data, 0, et131x_get_regs_len(netdev));
3834
3835        regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3836                        adapter->pdev->device;
3837
3838        /* PHY regs */
3839        et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3840        et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3841        et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3842        et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3843        et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3844        et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3845        et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3846        /* Autoneg next page transmit reg */
3847        et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3848        /* Link partner next page reg */
3849        et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3850        et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3851        et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3852        et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3853        et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3854        et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3855        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3856                        (u16 *)&regs_buff[num++]);
3857        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3858                        (u16 *)&regs_buff[num++]);
3859        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3860                        (u16 *)&regs_buff[num++]);
3861        et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3862                        (u16 *)&regs_buff[num++]);
3863        et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3864        et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3865        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3866        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3867                        (u16 *)&regs_buff[num++]);
3868        et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3869        et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3870        et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3871
3872        /* Global regs */
3873        regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3874        regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3875        regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3876        regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3877        regs_buff[num++] = readl(&aregs->global.pm_csr);
3878        regs_buff[num++] = adapter->stats.interrupt_status;
3879        regs_buff[num++] = readl(&aregs->global.int_mask);
3880        regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3881        regs_buff[num++] = readl(&aregs->global.int_status_alias);
3882        regs_buff[num++] = readl(&aregs->global.sw_reset);
3883        regs_buff[num++] = readl(&aregs->global.slv_timer);
3884        regs_buff[num++] = readl(&aregs->global.msi_config);
3885        regs_buff[num++] = readl(&aregs->global.loopback);
3886        regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3887
3888        /* TXDMA regs */
3889        regs_buff[num++] = readl(&aregs->txdma.csr);
3890        regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3891        regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3892        regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3893        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3894        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3895        regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3896        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3897        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3898        regs_buff[num++] = readl(&aregs->txdma.service_request);
3899        regs_buff[num++] = readl(&aregs->txdma.service_complete);
3900        regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3901        regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3902        regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3903        regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3904        regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3905        regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3906        regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3907        regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3908        regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3909        regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3910        regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3911        regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3912        regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3913        regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3914        regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3915
3916        /* RXDMA regs */
3917        regs_buff[num++] = readl(&aregs->rxdma.csr);
3918        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3919        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3920        regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3921        regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3922        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3923        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3924        regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3925        regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3926        regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3927        regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3928        regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3929        regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3930        regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3931        regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3932        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3933        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3934        regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3935        regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3936        regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3937        regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3938        regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3939        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3940        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3941        regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3942        regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3943        regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3944        regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3945        regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3946}
3947
3948#define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3949static void et131x_get_drvinfo(struct net_device *netdev,
3950                               struct ethtool_drvinfo *info)
3951{
3952        struct et131x_adapter *adapter = netdev_priv(netdev);
3953
3954        strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3955        strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3956        strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3957}
3958
3959static struct ethtool_ops et131x_ethtool_ops = {
3960        .get_settings   = et131x_get_settings,
3961        .set_settings   = et131x_set_settings,
3962        .get_drvinfo    = et131x_get_drvinfo,
3963        .get_regs_len   = et131x_get_regs_len,
3964        .get_regs       = et131x_get_regs,
3965        .get_link = ethtool_op_get_link,
3966};
3967
3968void et131x_set_ethtool_ops(struct net_device *netdev)
3969{
3970        SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3971}
3972
3973/* PCI functions */
3974
3975/**
3976 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3977 * @adapter: pointer to our private adapter structure
3978 */
3979void et131x_hwaddr_init(struct et131x_adapter *adapter)
3980{
3981        /* If have our default mac from init and no mac address from
3982         * EEPROM then we need to generate the last octet and set it on the
3983         * device
3984         */
3985        if (adapter->rom_addr[0] == 0x00 &&
3986            adapter->rom_addr[1] == 0x00 &&
3987            adapter->rom_addr[2] == 0x00 &&
3988            adapter->rom_addr[3] == 0x00 &&
3989            adapter->rom_addr[4] == 0x00 &&
3990            adapter->rom_addr[5] == 0x00) {
3991                /*
3992                 * We need to randomly generate the last octet so we
3993                 * decrease our chances of setting the mac address to
3994                 * same as another one of our cards in the system
3995                 */
3996                get_random_bytes(&adapter->addr[5], 1);
3997                /*
3998                 * We have the default value in the register we are
3999                 * working with so we need to copy the current
4000                 * address into the permanent address
4001                 */
4002                memcpy(adapter->rom_addr,
4003                        adapter->addr, ETH_ALEN);
4004        } else {
4005                /* We do not have an override address, so set the
4006                 * current address to the permanent address and add
4007                 * it to the device
4008                 */
4009                memcpy(adapter->addr,
4010                       adapter->rom_addr, ETH_ALEN);
4011        }
4012}
4013
4014/**
4015 * et131x_pci_init       - initial PCI setup
4016 * @adapter: pointer to our private adapter structure
4017 * @pdev: our PCI device
4018 *
4019 * Perform the initial setup of PCI registers and if possible initialise
4020 * the MAC address. At this point the I/O registers have yet to be mapped
4021 */
4022static int et131x_pci_init(struct et131x_adapter *adapter,
4023                                                struct pci_dev *pdev)
4024{
4025        int i;
4026        u8 max_payload;
4027        u8 read_size_reg;
4028
4029        if (et131x_init_eeprom(adapter) < 0)
4030                return -EIO;
4031
4032        /* Let's set up the PORT LOGIC Register.  First we need to know what
4033         * the max_payload_size is
4034         */
4035        if (pci_read_config_byte(pdev, ET1310_PCI_MAX_PYLD, &max_payload)) {
4036                dev_err(&pdev->dev,
4037                    "Could not read PCI config space for Max Payload Size\n");
4038                return -EIO;
4039        }
4040
4041        /* Program the Ack/Nak latency and replay timers */
4042        max_payload &= 0x07;    /* Only the lower 3 bits are valid */
4043
4044        if (max_payload < 2) {
4045                static const u16 acknak[2] = { 0x76, 0xD0 };
4046                static const u16 replay[2] = { 0x1E0, 0x2ED };
4047
4048                if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4049                                               acknak[max_payload])) {
4050                        dev_err(&pdev->dev,
4051                          "Could not write PCI config space for ACK/NAK\n");
4052                        return -EIO;
4053                }
4054                if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4055                                               replay[max_payload])) {
4056                        dev_err(&pdev->dev,
4057                          "Could not write PCI config space for Replay Timer\n");
4058                        return -EIO;
4059                }
4060        }
4061
4062        /* l0s and l1 latency timers.  We are using default values.
4063         * Representing 001 for L0s and 010 for L1
4064         */
4065        if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4066                dev_err(&pdev->dev,
4067                  "Could not write PCI config space for Latency Timers\n");
4068                return -EIO;
4069        }
4070
4071        /* Change the max read size to 2k */
4072        if (pci_read_config_byte(pdev, 0x51, &read_size_reg)) {
4073                dev_err(&pdev->dev,
4074                        "Could not read PCI config space for Max read size\n");
4075                return -EIO;
4076        }
4077
4078        read_size_reg &= 0x8f;
4079        read_size_reg |= 0x40;
4080
4081        if (pci_write_config_byte(pdev, 0x51, read_size_reg)) {
4082                dev_err(&pdev->dev,
4083                      "Could not write PCI config space for Max read size\n");
4084                return -EIO;
4085        }
4086
4087        /* Get MAC address from config space if an eeprom exists, otherwise
4088         * the MAC address there will not be valid
4089         */
4090        if (!adapter->has_eeprom) {
4091                et131x_hwaddr_init(adapter);
4092                return 0;
4093        }
4094
4095        for (i = 0; i < ETH_ALEN; i++) {
4096                if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4097                                        adapter->rom_addr + i)) {
4098                        dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4099                        return -EIO;
4100                }
4101        }
4102        memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4103        return 0;
4104}
4105
4106/**
4107 * et131x_error_timer_handler
4108 * @data: timer-specific variable; here a pointer to our adapter structure
4109 *
4110 * The routine called when the error timer expires, to track the number of
4111 * recurring errors.
4112 */
4113void et131x_error_timer_handler(unsigned long data)
4114{
4115        struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4116        struct phy_device *phydev = adapter->phydev;
4117
4118        if (et1310_in_phy_coma(adapter)) {
4119                /* Bring the device immediately out of coma, to
4120                 * prevent it from sleeping indefinitely, this
4121                 * mechanism could be improved! */
4122                et1310_disable_phy_coma(adapter);
4123                adapter->boot_coma = 20;
4124        } else {
4125                et1310_update_macstat_host_counters(adapter);
4126        }
4127
4128        if (!phydev->link && adapter->boot_coma < 11)
4129                adapter->boot_coma++;
4130
4131        if (adapter->boot_coma == 10) {
4132                if (!phydev->link) {
4133                        if (!et1310_in_phy_coma(adapter)) {
4134                                /* NOTE - This was originally a 'sync with
4135                                 *  interrupt'. How to do that under Linux?
4136                                 */
4137                                et131x_enable_interrupts(adapter);
4138                                et1310_enable_phy_coma(adapter);
4139                        }
4140                }
4141        }
4142
4143        /* This is a periodic timer, so reschedule */
4144        mod_timer(&adapter->error_timer, jiffies +
4145                                          TX_ERROR_PERIOD * HZ / 1000);
4146}
4147
4148/**
4149 * et131x_adapter_memory_alloc
4150 * @adapter: pointer to our private adapter structure
4151 *
4152 * Returns 0 on success, errno on failure (as defined in errno.h).
4153 *
4154 * Allocate all the memory blocks for send, receive and others.
4155 */
4156int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4157{
4158        int status;
4159
4160        /* Allocate memory for the Tx Ring */
4161        status = et131x_tx_dma_memory_alloc(adapter);
4162        if (status != 0) {
4163                dev_err(&adapter->pdev->dev,
4164                          "et131x_tx_dma_memory_alloc FAILED\n");
4165                return status;
4166        }
4167        /* Receive buffer memory allocation */
4168        status = et131x_rx_dma_memory_alloc(adapter);
4169        if (status != 0) {
4170                dev_err(&adapter->pdev->dev,
4171                          "et131x_rx_dma_memory_alloc FAILED\n");
4172                et131x_tx_dma_memory_free(adapter);
4173                return status;
4174        }
4175
4176        /* Init receive data structures */
4177        status = et131x_init_recv(adapter);
4178        if (status != 0) {
4179                dev_err(&adapter->pdev->dev,
4180                        "et131x_init_recv FAILED\n");
4181                et131x_tx_dma_memory_free(adapter);
4182                et131x_rx_dma_memory_free(adapter);
4183        }
4184        return status;
4185}
4186
4187/**
4188 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4189 * @adapter: pointer to our private adapter structure
4190 */
4191void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4192{
4193        /* Free DMA memory */
4194        et131x_tx_dma_memory_free(adapter);
4195        et131x_rx_dma_memory_free(adapter);
4196}
4197
4198static void et131x_adjust_link(struct net_device *netdev)
4199{
4200        struct et131x_adapter *adapter = netdev_priv(netdev);
4201        struct  phy_device *phydev = adapter->phydev;
4202
4203        if (netif_carrier_ok(netdev)) {
4204                adapter->boot_coma = 20;
4205
4206                if (phydev && phydev->speed == SPEED_10) {
4207                        /*
4208                         * NOTE - Is there a way to query this without
4209                         * TruePHY?
4210                         * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4211                         * EMI_TRUEPHY_A13O) {
4212                         */
4213                        u16 register18;
4214
4215                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4216                                         &register18);
4217                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4218                                         register18 | 0x4);
4219                        et131x_mii_write(adapter, PHY_INDEX_REG,
4220                                         register18 | 0x8402);
4221                        et131x_mii_write(adapter, PHY_DATA_REG,
4222                                         register18 | 511);
4223                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4224                                         register18);
4225                }
4226
4227                et1310_config_flow_control(adapter);
4228
4229                if (phydev && phydev->speed == SPEED_1000 &&
4230                                adapter->registry_jumbo_packet > 2048) {
4231                        u16 reg;
4232
4233                        et131x_mii_read(adapter, PHY_CONFIG, &reg);
4234                        reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4235                        reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4236                        et131x_mii_write(adapter, PHY_CONFIG, reg);
4237                }
4238
4239                et131x_set_rx_dma_timer(adapter);
4240                et1310_config_mac_regs2(adapter);
4241        }
4242
4243        if (phydev && phydev->link != adapter->link) {
4244                /*
4245                 * Check to see if we are in coma mode and if
4246                 * so, disable it because we will not be able
4247                 * to read PHY values until we are out.
4248                 */
4249                if (et1310_in_phy_coma(adapter))
4250                        et1310_disable_phy_coma(adapter);
4251
4252                if (phydev->link) {
4253                        adapter->boot_coma = 20;
4254                } else {
4255                        dev_warn(&adapter->pdev->dev,
4256                            "Link down - cable problem ?\n");
4257                        adapter->boot_coma = 0;
4258
4259                        if (phydev->speed == SPEED_10) {
4260                                /* NOTE - Is there a way to query this without
4261                                 * TruePHY?
4262                                 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4263                                 * EMI_TRUEPHY_A13O)
4264                                 */
4265                                u16 register18;
4266
4267                                et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4268                                                 &register18);
4269                                et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4270                                                 register18 | 0x4);
4271                                et131x_mii_write(adapter, PHY_INDEX_REG,
4272                                                 register18 | 0x8402);
4273                                et131x_mii_write(adapter, PHY_DATA_REG,
4274                                                 register18 | 511);
4275                                et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4276                                                 register18);
4277                        }
4278
4279                        /* Free the packets being actively sent & stopped */
4280                        et131x_free_busy_send_packets(adapter);
4281
4282                        /* Re-initialize the send structures */
4283                        et131x_init_send(adapter);
4284
4285                        /*
4286                         * Bring the device back to the state it was during
4287                         * init prior to autonegotiation being complete. This
4288                         * way, when we get the auto-neg complete interrupt,
4289                         * we can complete init by calling config_mac_regs2.
4290                         */
4291                        et131x_soft_reset(adapter);
4292
4293                        /* Setup ET1310 as per the documentation */
4294                        et131x_adapter_setup(adapter);
4295
4296                        /* perform reset of tx/rx */
4297                        et131x_disable_txrx(netdev);
4298                        et131x_enable_txrx(netdev);
4299                }
4300
4301                adapter->link = phydev->link;
4302
4303                phy_print_status(phydev);
4304        }
4305}
4306
4307static int et131x_mii_probe(struct net_device *netdev)
4308{
4309        struct et131x_adapter *adapter = netdev_priv(netdev);
4310        struct  phy_device *phydev = NULL;
4311
4312        phydev = phy_find_first(adapter->mii_bus);
4313        if (!phydev) {
4314                dev_err(&adapter->pdev->dev, "no PHY found\n");
4315                return -ENODEV;
4316        }
4317
4318        phydev = phy_connect(netdev, dev_name(&phydev->dev),
4319                        &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4320
4321        if (IS_ERR(phydev)) {
4322                dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4323                return PTR_ERR(phydev);
4324        }
4325
4326        phydev->supported &= (SUPPORTED_10baseT_Half
4327                                | SUPPORTED_10baseT_Full
4328                                | SUPPORTED_100baseT_Half
4329                                | SUPPORTED_100baseT_Full
4330                                | SUPPORTED_Autoneg
4331                                | SUPPORTED_MII
4332                                | SUPPORTED_TP);
4333
4334        if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4335                phydev->supported |= SUPPORTED_1000baseT_Full;
4336
4337        phydev->advertising = phydev->supported;
4338        adapter->phydev = phydev;
4339
4340        dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4341                 "(mii_bus:phy_addr=%s)\n",
4342                 phydev->drv->name, dev_name(&phydev->dev));
4343
4344        return 0;
4345}
4346
4347/**
4348 * et131x_adapter_init
4349 * @adapter: pointer to the private adapter struct
4350 * @pdev: pointer to the PCI device
4351 *
4352 * Initialize the data structures for the et131x_adapter object and link
4353 * them together with the platform provided device structures.
4354 */
4355static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4356                struct pci_dev *pdev)
4357{
4358        static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4359
4360        struct et131x_adapter *adapter;
4361
4362        /* Allocate private adapter struct and copy in relevant information */
4363        adapter = netdev_priv(netdev);
4364        adapter->pdev = pci_dev_get(pdev);
4365        adapter->netdev = netdev;
4366
4367        /* Do the same for the netdev struct */
4368        netdev->irq = pdev->irq;
4369        netdev->base_addr = pci_resource_start(pdev, 0);
4370
4371        /* Initialize spinlocks here */
4372        spin_lock_init(&adapter->lock);
4373        spin_lock_init(&adapter->tcb_send_qlock);
4374        spin_lock_init(&adapter->tcb_ready_qlock);
4375        spin_lock_init(&adapter->send_hw_lock);
4376        spin_lock_init(&adapter->rcv_lock);
4377        spin_lock_init(&adapter->rcv_pend_lock);
4378        spin_lock_init(&adapter->fbr_lock);
4379        spin_lock_init(&adapter->phy_lock);
4380
4381        adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4382
4383        /* Set the MAC address to a default */
4384        memcpy(adapter->addr, default_mac, ETH_ALEN);
4385
4386        return adapter;
4387}
4388
4389/**
4390 * et131x_pci_remove
4391 * @pdev: a pointer to the device's pci_dev structure
4392 *
4393 * Registered in the pci_driver structure, this function is called when the
4394 * PCI subsystem detects that a PCI device which matches the information
4395 * contained in the pci_device_id table has been removed.
4396 */
4397static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4398{
4399        struct net_device *netdev = pci_get_drvdata(pdev);
4400        struct et131x_adapter *adapter = netdev_priv(netdev);
4401
4402        unregister_netdev(netdev);
4403        mdiobus_unregister(adapter->mii_bus);
4404        kfree(adapter->mii_bus->irq);
4405        mdiobus_free(adapter->mii_bus);
4406
4407        et131x_adapter_memory_free(adapter);
4408        iounmap(adapter->regs);
4409        pci_dev_put(pdev);
4410
4411        free_netdev(netdev);
4412        pci_release_regions(pdev);
4413        pci_disable_device(pdev);
4414}
4415
4416/**
4417 * et131x_up - Bring up a device for use.
4418 * @netdev: device to be opened
4419 */
4420void et131x_up(struct net_device *netdev)
4421{
4422        struct et131x_adapter *adapter = netdev_priv(netdev);
4423
4424        et131x_enable_txrx(netdev);
4425        phy_start(adapter->phydev);
4426}
4427
4428/**
4429 * et131x_down - Bring down the device
4430 * @netdev: device to be broght down
4431 */
4432void et131x_down(struct net_device *netdev)
4433{
4434        struct et131x_adapter *adapter = netdev_priv(netdev);
4435
4436        /* Save the timestamp for the TX watchdog, prevent a timeout */
4437        netdev->trans_start = jiffies;
4438
4439        phy_stop(adapter->phydev);
4440        et131x_disable_txrx(netdev);
4441}
4442
4443#ifdef CONFIG_PM_SLEEP
4444static int et131x_suspend(struct device *dev)
4445{
4446        struct pci_dev *pdev = to_pci_dev(dev);
4447        struct net_device *netdev = pci_get_drvdata(pdev);
4448
4449        if (netif_running(netdev)) {
4450                netif_device_detach(netdev);
4451                et131x_down(netdev);
4452                pci_save_state(pdev);
4453        }
4454
4455        return 0;
4456}
4457
4458static int et131x_resume(struct device *dev)
4459{
4460        struct pci_dev *pdev = to_pci_dev(dev);
4461        struct net_device *netdev = pci_get_drvdata(pdev);
4462
4463        if (netif_running(netdev)) {
4464                pci_restore_state(pdev);
4465                et131x_up(netdev);
4466                netif_device_attach(netdev);
4467        }
4468
4469        return 0;
4470}
4471
4472static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4473#define ET131X_PM_OPS (&et131x_pm_ops)
4474#else
4475#define ET131X_PM_OPS NULL
4476#endif
4477
4478/* ISR functions */
4479
4480/**
4481 * et131x_isr - The Interrupt Service Routine for the driver.
4482 * @irq: the IRQ on which the interrupt was received.
4483 * @dev_id: device-specific info (here a pointer to a net_device struct)
4484 *
4485 * Returns a value indicating if the interrupt was handled.
4486 */
4487irqreturn_t et131x_isr(int irq, void *dev_id)
4488{
4489        bool handled = true;
4490        struct net_device *netdev = (struct net_device *)dev_id;
4491        struct et131x_adapter *adapter = NULL;
4492        u32 status;
4493
4494        if (!netif_device_present(netdev)) {
4495                handled = false;
4496                goto out;
4497        }
4498
4499        adapter = netdev_priv(netdev);
4500
4501        /* If the adapter is in low power state, then it should not
4502         * recognize any interrupt
4503         */
4504
4505        /* Disable Device Interrupts */
4506        et131x_disable_interrupts(adapter);
4507
4508        /* Get a copy of the value in the interrupt status register
4509         * so we can process the interrupting section
4510         */
4511        status = readl(&adapter->regs->global.int_status);
4512
4513        if (adapter->flowcontrol == FLOW_TXONLY ||
4514            adapter->flowcontrol == FLOW_BOTH) {
4515                status &= ~INT_MASK_ENABLE;
4516        } else {
4517                status &= ~INT_MASK_ENABLE_NO_FLOW;
4518        }
4519
4520        /* Make sure this is our interrupt */
4521        if (!status) {
4522                handled = false;
4523                et131x_enable_interrupts(adapter);
4524                goto out;
4525        }
4526
4527        /* This is our interrupt, so process accordingly */
4528
4529        if (status & ET_INTR_WATCHDOG) {
4530                struct tcb *tcb = adapter->tx_ring.send_head;
4531
4532                if (tcb)
4533                        if (++tcb->stale > 1)
4534                                status |= ET_INTR_TXDMA_ISR;
4535
4536                if (adapter->rx_ring.unfinished_receives)
4537                        status |= ET_INTR_RXDMA_XFR_DONE;
4538                else if (tcb == NULL)
4539                        writel(0, &adapter->regs->global.watchdog_timer);
4540
4541                status &= ~ET_INTR_WATCHDOG;
4542        }
4543
4544        if (status == 0) {
4545                /* This interrupt has in some way been "handled" by
4546                 * the ISR. Either it was a spurious Rx interrupt, or
4547                 * it was a Tx interrupt that has been filtered by
4548                 * the ISR.
4549                 */
4550                et131x_enable_interrupts(adapter);
4551                goto out;
4552        }
4553
4554        /* We need to save the interrupt status value for use in our
4555         * DPC. We will clear the software copy of that in that
4556         * routine.
4557         */
4558        adapter->stats.interrupt_status = status;
4559
4560        /* Schedule the ISR handler as a bottom-half task in the
4561         * kernel's tq_immediate queue, and mark the queue for
4562         * execution
4563         */
4564        schedule_work(&adapter->task);
4565out:
4566        return IRQ_RETVAL(handled);
4567}
4568
4569/**
4570 * et131x_isr_handler - The ISR handler
4571 * @p_adapter, a pointer to the device's private adapter structure
4572 *
4573 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4574 * work actually gets done.
4575 */
4576void et131x_isr_handler(struct work_struct *work)
4577{
4578        struct et131x_adapter *adapter =
4579                container_of(work, struct et131x_adapter, task);
4580        u32 status = adapter->stats.interrupt_status;
4581        struct address_map __iomem *iomem = adapter->regs;
4582
4583        /*
4584         * These first two are by far the most common.  Once handled, we clear
4585         * their two bits in the status word.  If the word is now zero, we
4586         * exit.
4587         */
4588        /* Handle all the completed Transmit interrupts */
4589        if (status & ET_INTR_TXDMA_ISR)
4590                et131x_handle_send_interrupt(adapter);
4591
4592        /* Handle all the completed Receives interrupts */
4593        if (status & ET_INTR_RXDMA_XFR_DONE)
4594                et131x_handle_recv_interrupt(adapter);
4595
4596        status &= 0xffffffd7;
4597
4598        if (status) {
4599                /* Handle the TXDMA Error interrupt */
4600                if (status & ET_INTR_TXDMA_ERR) {
4601                        u32 txdma_err;
4602
4603                        /* Following read also clears the register (COR) */
4604                        txdma_err = readl(&iomem->txdma.tx_dma_error);
4605
4606                        dev_warn(&adapter->pdev->dev,
4607                                    "TXDMA_ERR interrupt, error = %d\n",
4608                                    txdma_err);
4609                }
4610
4611                /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4612                if (status &
4613                    (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4614                        /*
4615                         * This indicates the number of unused buffers in
4616                         * RXDMA free buffer ring 0 is <= the limit you
4617                         * programmed. Free buffer resources need to be
4618                         * returned.  Free buffers are consumed as packets
4619                         * are passed from the network to the host. The host
4620                         * becomes aware of the packets from the contents of
4621                         * the packet status ring. This ring is queried when
4622                         * the packet done interrupt occurs. Packets are then
4623                         * passed to the OS. When the OS is done with the
4624                         * packets the resources can be returned to the
4625                         * ET1310 for re-use. This interrupt is one method of
4626                         * returning resources.
4627                         */
4628
4629                        /* If the user has flow control on, then we will
4630                         * send a pause packet, otherwise just exit
4631                         */
4632                        if (adapter->flowcontrol == FLOW_TXONLY ||
4633                            adapter->flowcontrol == FLOW_BOTH) {
4634                                u32 pm_csr;
4635
4636                                /* Tell the device to send a pause packet via
4637                                 * the back pressure register (bp req  and
4638                                 * bp xon/xoff)
4639                                 */
4640                                pm_csr = readl(&iomem->global.pm_csr);
4641                                if (!et1310_in_phy_coma(adapter))
4642                                        writel(3, &iomem->txmac.bp_ctrl);
4643                        }
4644                }
4645
4646                /* Handle Packet Status Ring Low Interrupt */
4647                if (status & ET_INTR_RXDMA_STAT_LOW) {
4648
4649                        /*
4650                         * Same idea as with the two Free Buffer Rings.
4651                         * Packets going from the network to the host each
4652                         * consume a free buffer resource and a packet status
4653                         * resource.  These resoures are passed to the OS.
4654                         * When the OS is done with the resources, they need
4655                         * to be returned to the ET1310. This is one method
4656                         * of returning the resources.
4657                         */
4658                }
4659
4660                /* Handle RXDMA Error Interrupt */
4661                if (status & ET_INTR_RXDMA_ERR) {
4662                        /*
4663                         * The rxdma_error interrupt is sent when a time-out
4664                         * on a request issued by the JAGCore has occurred or
4665                         * a completion is returned with an un-successful
4666                         * status.  In both cases the request is considered
4667                         * complete. The JAGCore will automatically re-try the
4668                         * request in question. Normally information on events
4669                         * like these are sent to the host using the "Advanced
4670                         * Error Reporting" capability. This interrupt is
4671                         * another way of getting similar information. The
4672                         * only thing required is to clear the interrupt by
4673                         * reading the ISR in the global resources. The
4674                         * JAGCore will do a re-try on the request.  Normally
4675                         * you should never see this interrupt. If you start
4676                         * to see this interrupt occurring frequently then
4677                         * something bad has occurred. A reset might be the
4678                         * thing to do.
4679                         */
4680                        /* TRAP();*/
4681
4682                        dev_warn(&adapter->pdev->dev,
4683                                    "RxDMA_ERR interrupt, error %x\n",
4684                                    readl(&iomem->txmac.tx_test));
4685                }
4686
4687                /* Handle the Wake on LAN Event */
4688                if (status & ET_INTR_WOL) {
4689                        /*
4690                         * This is a secondary interrupt for wake on LAN.
4691                         * The driver should never see this, if it does,
4692                         * something serious is wrong. We will TRAP the
4693                         * message when we are in DBG mode, otherwise we
4694                         * will ignore it.
4695                         */
4696                        dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4697                }
4698
4699                /* Let's move on to the TxMac */
4700                if (status & ET_INTR_TXMAC) {
4701                        u32 err = readl(&iomem->txmac.err);
4702
4703                        /*
4704                         * When any of the errors occur and TXMAC generates
4705                         * an interrupt to report these errors, it usually
4706                         * means that TXMAC has detected an error in the data
4707                         * stream retrieved from the on-chip Tx Q. All of
4708                         * these errors are catastrophic and TXMAC won't be
4709                         * able to recover data when these errors occur.  In
4710                         * a nutshell, the whole Tx path will have to be reset
4711                         * and re-configured afterwards.
4712                         */
4713                        dev_warn(&adapter->pdev->dev,
4714                                    "TXMAC interrupt, error 0x%08x\n",
4715                                    err);
4716
4717                        /* If we are debugging, we want to see this error,
4718                         * otherwise we just want the device to be reset and
4719                         * continue
4720                         */
4721                }
4722
4723                /* Handle RXMAC Interrupt */
4724                if (status & ET_INTR_RXMAC) {
4725                        /*
4726                         * These interrupts are catastrophic to the device,
4727                         * what we need to do is disable the interrupts and
4728                         * set the flag to cause us to reset so we can solve
4729                         * this issue.
4730                         */
4731                        /* MP_SET_FLAG( adapter,
4732                                                fMP_ADAPTER_HARDWARE_ERROR); */
4733
4734                        dev_warn(&adapter->pdev->dev,
4735                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4736                                    readl(&iomem->rxmac.err_reg));
4737
4738                        dev_warn(&adapter->pdev->dev,
4739                                    "Enable 0x%08x, Diag 0x%08x\n",
4740                                    readl(&iomem->rxmac.ctrl),
4741                                    readl(&iomem->rxmac.rxq_diag));
4742
4743                        /*
4744                         * If we are debugging, we want to see this error,
4745                         * otherwise we just want the device to be reset and
4746                         * continue
4747                         */
4748                }
4749
4750                /* Handle MAC_STAT Interrupt */
4751                if (status & ET_INTR_MAC_STAT) {
4752                        /*
4753                         * This means at least one of the un-masked counters
4754                         * in the MAC_STAT block has rolled over.  Use this
4755                         * to maintain the top, software managed bits of the
4756                         * counter(s).
4757                         */
4758                        et1310_handle_macstat_interrupt(adapter);
4759                }
4760
4761                /* Handle SLV Timeout Interrupt */
4762                if (status & ET_INTR_SLV_TIMEOUT) {
4763                        /*
4764                         * This means a timeout has occurred on a read or
4765                         * write request to one of the JAGCore registers. The
4766                         * Global Resources block has terminated the request
4767                         * and on a read request, returned a "fake" value.
4768                         * The most likely reasons are: Bad Address or the
4769                         * addressed module is in a power-down state and
4770                         * can't respond.
4771                         */
4772                }
4773        }
4774        et131x_enable_interrupts(adapter);
4775}
4776
4777/* NETDEV functions */
4778
4779/**
4780 * et131x_stats - Return the current device statistics.
4781 * @netdev: device whose stats are being queried
4782 *
4783 * Returns 0 on success, errno on failure (as defined in errno.h)
4784 */
4785static struct net_device_stats *et131x_stats(struct net_device *netdev)
4786{
4787        struct et131x_adapter *adapter = netdev_priv(netdev);
4788        struct net_device_stats *stats = &adapter->net_stats;
4789        struct ce_stats *devstat = &adapter->stats;
4790
4791        stats->rx_errors = devstat->rx_length_errs +
4792                           devstat->rx_align_errs +
4793                           devstat->rx_crc_errs +
4794                           devstat->rx_code_violations +
4795                           devstat->rx_other_errs;
4796        stats->tx_errors = devstat->tx_max_pkt_errs;
4797        stats->multicast = devstat->multicast_pkts_rcvd;
4798        stats->collisions = devstat->tx_collisions;
4799
4800        stats->rx_length_errors = devstat->rx_length_errs;
4801        stats->rx_over_errors = devstat->rx_overflows;
4802        stats->rx_crc_errors = devstat->rx_crc_errs;
4803
4804        /* NOTE: These stats don't have corresponding values in CE_STATS,
4805         * so we're going to have to update these directly from within the
4806         * TX/RX code
4807         */
4808        /* stats->rx_bytes            = 20; devstat->; */
4809        /* stats->tx_bytes            = 20;  devstat->; */
4810        /* stats->rx_dropped          = devstat->; */
4811        /* stats->tx_dropped          = devstat->; */
4812
4813        /*  NOTE: Not used, can't find analogous statistics */
4814        /* stats->rx_frame_errors     = devstat->; */
4815        /* stats->rx_fifo_errors      = devstat->; */
4816        /* stats->rx_missed_errors    = devstat->; */
4817
4818        /* stats->tx_aborted_errors   = devstat->; */
4819        /* stats->tx_carrier_errors   = devstat->; */
4820        /* stats->tx_fifo_errors      = devstat->; */
4821        /* stats->tx_heartbeat_errors = devstat->; */
4822        /* stats->tx_window_errors    = devstat->; */
4823        return stats;
4824}
4825
4826/**
4827 * et131x_open - Open the device for use.
4828 * @netdev: device to be opened
4829 *
4830 * Returns 0 on success, errno on failure (as defined in errno.h)
4831 */
4832int et131x_open(struct net_device *netdev)
4833{
4834        int result = 0;
4835        struct et131x_adapter *adapter = netdev_priv(netdev);
4836
4837        /* Start the timer to track NIC errors */
4838        init_timer(&adapter->error_timer);
4839        adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4840        adapter->error_timer.function = et131x_error_timer_handler;
4841        adapter->error_timer.data = (unsigned long)adapter;
4842        add_timer(&adapter->error_timer);
4843
4844        /* Register our IRQ */
4845        result = request_irq(netdev->irq, et131x_isr, IRQF_SHARED,
4846                                        netdev->name, netdev);
4847        if (result) {
4848                dev_err(&adapter->pdev->dev, "could not register IRQ %d\n",
4849                        netdev->irq);
4850                return result;
4851        }
4852
4853        adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4854
4855        et131x_up(netdev);
4856
4857        return result;
4858}
4859
4860/**
4861 * et131x_close - Close the device
4862 * @netdev: device to be closed
4863 *
4864 * Returns 0 on success, errno on failure (as defined in errno.h)
4865 */
4866int et131x_close(struct net_device *netdev)
4867{
4868        struct et131x_adapter *adapter = netdev_priv(netdev);
4869
4870        et131x_down(netdev);
4871
4872        adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4873        free_irq(netdev->irq, netdev);
4874
4875        /* Stop the error timer */
4876        return del_timer_sync(&adapter->error_timer);
4877}
4878
4879/**
4880 * et131x_ioctl - The I/O Control handler for the driver
4881 * @netdev: device on which the control request is being made
4882 * @reqbuf: a pointer to the IOCTL request buffer
4883 * @cmd: the IOCTL command code
4884 *
4885 * Returns 0 on success, errno on failure (as defined in errno.h)
4886 */
4887static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4888                        int cmd)
4889{
4890        struct et131x_adapter *adapter = netdev_priv(netdev);
4891
4892        if (!adapter->phydev)
4893                return -EINVAL;
4894
4895        return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4896}
4897
4898/**
4899 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4900 * @adapter: pointer to our private adapter structure
4901 *
4902 * FIXME: lot of dups with MAC code
4903 *
4904 * Returns 0 on success, errno on failure
4905 */
4906static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4907{
4908        int status = 0;
4909        uint32_t filter = adapter->packet_filter;
4910        u32 ctrl;
4911        u32 pf_ctrl;
4912
4913        ctrl = readl(&adapter->regs->rxmac.ctrl);
4914        pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4915
4916        /* Default to disabled packet filtering.  Enable it in the individual
4917         * case statements that require the device to filter something
4918         */
4919        ctrl |= 0x04;
4920
4921        /* Set us to be in promiscuous mode so we receive everything, this
4922         * is also true when we get a packet filter of 0
4923         */
4924        if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4925                pf_ctrl &= ~7;  /* Clear filter bits */
4926        else {
4927                /*
4928                 * Set us up with Multicast packet filtering.  Three cases are
4929                 * possible - (1) we have a multi-cast list, (2) we receive ALL
4930                 * multicast entries or (3) we receive none.
4931                 */
4932                if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4933                        pf_ctrl &= ~2;  /* Multicast filter bit */
4934                else {
4935                        et1310_setup_device_for_multicast(adapter);
4936                        pf_ctrl |= 2;
4937                        ctrl &= ~0x04;
4938                }
4939
4940                /* Set us up with Unicast packet filtering */
4941                if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4942                        et1310_setup_device_for_unicast(adapter);
4943                        pf_ctrl |= 4;
4944                        ctrl &= ~0x04;
4945                }
4946
4947                /* Set us up with Broadcast packet filtering */
4948                if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4949                        pf_ctrl |= 1;   /* Broadcast filter bit */
4950                        ctrl &= ~0x04;
4951                } else
4952                        pf_ctrl &= ~1;
4953
4954                /* Setup the receive mac configuration registers - Packet
4955                 * Filter control + the enable / disable for packet filter
4956                 * in the control reg.
4957                 */
4958                writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4959                writel(ctrl, &adapter->regs->rxmac.ctrl);
4960        }
4961        return status;
4962}
4963
4964/**
4965 * et131x_multicast - The handler to configure multicasting on the interface
4966 * @netdev: a pointer to a net_device struct representing the device
4967 */
4968static void et131x_multicast(struct net_device *netdev)
4969{
4970        struct et131x_adapter *adapter = netdev_priv(netdev);
4971        uint32_t packet_filter = 0;
4972        unsigned long flags;
4973        struct netdev_hw_addr *ha;
4974        int i;
4975
4976        spin_lock_irqsave(&adapter->lock, flags);
4977
4978        /* Before we modify the platform-independent filter flags, store them
4979         * locally. This allows us to determine if anything's changed and if
4980         * we even need to bother the hardware
4981         */
4982        packet_filter = adapter->packet_filter;
4983
4984        /* Clear the 'multicast' flag locally; because we only have a single
4985         * flag to check multicast, and multiple multicast addresses can be
4986         * set, this is the easiest way to determine if more than one
4987         * multicast address is being set.
4988         */
4989        packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4990
4991        /* Check the net_device flags and set the device independent flags
4992         * accordingly
4993         */
4994
4995        if (netdev->flags & IFF_PROMISC)
4996                adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4997        else
4998                adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4999
5000        if (netdev->flags & IFF_ALLMULTI)
5001                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
5002
5003        if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
5004                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
5005
5006        if (netdev_mc_count(netdev) < 1) {
5007                adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
5008                adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
5009        } else
5010                adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
5011
5012        /* Set values in the private adapter struct */
5013        i = 0;
5014        netdev_for_each_mc_addr(ha, netdev) {
5015                if (i == NIC_MAX_MCAST_LIST)
5016                        break;
5017                memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5018        }
5019        adapter->multicast_addr_count = i;
5020
5021        /* Are the new flags different from the previous ones? If not, then no
5022         * action is required
5023         *
5024         * NOTE - This block will always update the multicast_list with the
5025         *        hardware, even if the addresses aren't the same.
5026         */
5027        if (packet_filter != adapter->packet_filter) {
5028                /* Call the device's filter function */
5029                et131x_set_packet_filter(adapter);
5030        }
5031        spin_unlock_irqrestore(&adapter->lock, flags);
5032}
5033
5034/**
5035 * et131x_tx - The handler to tx a packet on the device
5036 * @skb: data to be Tx'd
5037 * @netdev: device on which data is to be Tx'd
5038 *
5039 * Returns 0 on success, errno on failure (as defined in errno.h)
5040 */
5041static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5042{
5043        int status = 0;
5044        struct et131x_adapter *adapter = netdev_priv(netdev);
5045
5046        /* stop the queue if it's getting full */
5047        if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5048            !netif_queue_stopped(netdev))
5049                netif_stop_queue(netdev);
5050
5051        /* Save the timestamp for the TX timeout watchdog */
5052        netdev->trans_start = jiffies;
5053
5054        /* Call the device-specific data Tx routine */
5055        status = et131x_send_packets(skb, netdev);
5056
5057        /* Check status and manage the netif queue if necessary */
5058        if (status != 0) {
5059                if (status == -ENOMEM)
5060                        status = NETDEV_TX_BUSY;
5061                else
5062                        status = NETDEV_TX_OK;
5063        }
5064        return status;
5065}
5066
5067/**
5068 * et131x_tx_timeout - Timeout handler
5069 * @netdev: a pointer to a net_device struct representing the device
5070 *
5071 * The handler called when a Tx request times out. The timeout period is
5072 * specified by the 'tx_timeo" element in the net_device structure (see
5073 * et131x_alloc_device() to see how this value is set).
5074 */
5075static void et131x_tx_timeout(struct net_device *netdev)
5076{
5077        struct et131x_adapter *adapter = netdev_priv(netdev);
5078        struct tcb *tcb;
5079        unsigned long flags;
5080
5081        /* If the device is closed, ignore the timeout */
5082        if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5083                return;
5084
5085        /* Any nonrecoverable hardware error?
5086         * Checks adapter->flags for any failure in phy reading
5087         */
5088        if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5089                return;
5090
5091        /* Hardware failure? */
5092        if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5093                dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5094                return;
5095        }
5096
5097        /* Is send stuck? */
5098        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5099
5100        tcb = adapter->tx_ring.send_head;
5101
5102        if (tcb != NULL) {
5103                tcb->count++;
5104
5105                if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5106                        spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5107                                               flags);
5108
5109                        dev_warn(&adapter->pdev->dev,
5110                                "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5111                                tcb->index,
5112                                tcb->flags);
5113
5114                        adapter->net_stats.tx_errors++;
5115
5116                        /* perform reset of tx/rx */
5117                        et131x_disable_txrx(netdev);
5118                        et131x_enable_txrx(netdev);
5119                        return;
5120                }
5121        }
5122
5123        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5124}
5125
5126/**
5127 * et131x_change_mtu - The handler called to change the MTU for the device
5128 * @netdev: device whose MTU is to be changed
5129 * @new_mtu: the desired MTU
5130 *
5131 * Returns 0 on success, errno on failure (as defined in errno.h)
5132 */
5133static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5134{
5135        int result = 0;
5136        struct et131x_adapter *adapter = netdev_priv(netdev);
5137
5138        /* Make sure the requested MTU is valid */
5139        if (new_mtu < 64 || new_mtu > 9216)
5140                return -EINVAL;
5141
5142        et131x_disable_txrx(netdev);
5143        et131x_handle_send_interrupt(adapter);
5144        et131x_handle_recv_interrupt(adapter);
5145
5146        /* Set the new MTU */
5147        netdev->mtu = new_mtu;
5148
5149        /* Free Rx DMA memory */
5150        et131x_adapter_memory_free(adapter);
5151
5152        /* Set the config parameter for Jumbo Packet support */
5153        adapter->registry_jumbo_packet = new_mtu + 14;
5154        et131x_soft_reset(adapter);
5155
5156        /* Alloc and init Rx DMA memory */
5157        result = et131x_adapter_memory_alloc(adapter);
5158        if (result != 0) {
5159                dev_warn(&adapter->pdev->dev,
5160                        "Change MTU failed; couldn't re-alloc DMA memory\n");
5161                return result;
5162        }
5163
5164        et131x_init_send(adapter);
5165
5166        et131x_hwaddr_init(adapter);
5167        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5168
5169        /* Init the device with the new settings */
5170        et131x_adapter_setup(adapter);
5171
5172        et131x_enable_txrx(netdev);
5173
5174        return result;
5175}
5176
5177/**
5178 * et131x_set_mac_addr - handler to change the MAC address for the device
5179 * @netdev: device whose MAC is to be changed
5180 * @new_mac: the desired MAC address
5181 *
5182 * Returns 0 on success, errno on failure (as defined in errno.h)
5183 *
5184 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5185 */
5186static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5187{
5188        int result = 0;
5189        struct et131x_adapter *adapter = netdev_priv(netdev);
5190        struct sockaddr *address = new_mac;
5191
5192        /* begin blux */
5193
5194        if (adapter == NULL)
5195                return -ENODEV;
5196
5197        /* Make sure the requested MAC is valid */
5198        if (!is_valid_ether_addr(address->sa_data))
5199                return -EINVAL;
5200
5201        et131x_disable_txrx(netdev);
5202        et131x_handle_send_interrupt(adapter);
5203        et131x_handle_recv_interrupt(adapter);
5204
5205        /* Set the new MAC */
5206        /* netdev->set_mac_address  = &new_mac; */
5207
5208        memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5209
5210        printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5211                        netdev->name, netdev->dev_addr);
5212
5213        /* Free Rx DMA memory */
5214        et131x_adapter_memory_free(adapter);
5215
5216        et131x_soft_reset(adapter);
5217
5218        /* Alloc and init Rx DMA memory */
5219        result = et131x_adapter_memory_alloc(adapter);
5220        if (result != 0) {
5221                dev_err(&adapter->pdev->dev,
5222                        "Change MAC failed; couldn't re-alloc DMA memory\n");
5223                return result;
5224        }
5225
5226        et131x_init_send(adapter);
5227
5228        et131x_hwaddr_init(adapter);
5229
5230        /* Init the device with the new settings */
5231        et131x_adapter_setup(adapter);
5232
5233        et131x_enable_txrx(netdev);
5234
5235        return result;
5236}
5237
5238static const struct net_device_ops et131x_netdev_ops = {
5239        .ndo_open               = et131x_open,
5240        .ndo_stop               = et131x_close,
5241        .ndo_start_xmit         = et131x_tx,
5242        .ndo_set_rx_mode        = et131x_multicast,
5243        .ndo_tx_timeout         = et131x_tx_timeout,
5244        .ndo_change_mtu         = et131x_change_mtu,
5245        .ndo_set_mac_address    = et131x_set_mac_addr,
5246        .ndo_validate_addr      = eth_validate_addr,
5247        .ndo_get_stats          = et131x_stats,
5248        .ndo_do_ioctl           = et131x_ioctl,
5249};
5250
5251/**
5252 * et131x_device_alloc
5253 *
5254 * Returns pointer to the allocated and initialized net_device struct for
5255 * this device.
5256 *
5257 * Create instances of net_device and wl_private for the new adapter and
5258 * register the device's entry points in the net_device structure.
5259 */
5260struct net_device *et131x_device_alloc(void)
5261{
5262        struct net_device *netdev;
5263
5264        /* Alloc net_device and adapter structs */
5265        netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5266
5267        if (!netdev) {
5268                printk(KERN_ERR "et131x: Alloc of net_device struct failed\n");
5269                return NULL;
5270        }
5271
5272        /*
5273         * Setup the function registration table (and other data) for a
5274         * net_device
5275         */
5276        netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5277        netdev->netdev_ops     = &et131x_netdev_ops;
5278
5279        /* Poll? */
5280        /* netdev->poll               = &et131x_poll; */
5281        /* netdev->poll_controller    = &et131x_poll_controller; */
5282        return netdev;
5283}
5284
5285/**
5286 * et131x_pci_setup - Perform device initialization
5287 * @pdev: a pointer to the device's pci_dev structure
5288 * @ent: this device's entry in the pci_device_id table
5289 *
5290 * Returns 0 on success, errno on failure (as defined in errno.h)
5291 *
5292 * Registered in the pci_driver structure, this function is called when the
5293 * PCI subsystem finds a new PCI device which matches the information
5294 * contained in the pci_device_id table. This routine is the equivalent to
5295 * a device insertion routine.
5296 */
5297static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5298                               const struct pci_device_id *ent)
5299{
5300        int result;
5301        struct net_device *netdev;
5302        struct et131x_adapter *adapter;
5303        int ii;
5304
5305        result = pci_enable_device(pdev);
5306        if (result) {
5307                dev_err(&pdev->dev, "pci_enable_device() failed\n");
5308                goto err_out;
5309        }
5310
5311        /* Perform some basic PCI checks */
5312        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5313                dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5314                goto err_disable;
5315        }
5316
5317        if (pci_request_regions(pdev, DRIVER_NAME)) {
5318                dev_err(&pdev->dev, "Can't get PCI resources\n");
5319                goto err_disable;
5320        }
5321
5322        pci_set_master(pdev);
5323
5324        /* Check the DMA addressing support of this device */
5325        if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5326                result = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5327                if (result) {
5328                        dev_err(&pdev->dev,
5329                          "Unable to obtain 64 bit DMA for consistent allocations\n");
5330                        goto err_release_res;
5331                }
5332        } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5333                result = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5334                if (result) {
5335                        dev_err(&pdev->dev,
5336                          "Unable to obtain 32 bit DMA for consistent allocations\n");
5337                        goto err_release_res;
5338                }
5339        } else {
5340                dev_err(&pdev->dev, "No usable DMA addressing method\n");
5341                result = -EIO;
5342                goto err_release_res;
5343        }
5344
5345        /* Allocate netdev and private adapter structs */
5346        netdev = et131x_device_alloc();
5347        if (!netdev) {
5348                dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5349                result = -ENOMEM;
5350                goto err_release_res;
5351        }
5352
5353        SET_NETDEV_DEV(netdev, &pdev->dev);
5354        et131x_set_ethtool_ops(netdev);
5355
5356        adapter = et131x_adapter_init(netdev, pdev);
5357
5358        /* Initialise the PCI setup for the device */
5359        et131x_pci_init(adapter, pdev);
5360
5361        /* Map the bus-relative registers to system virtual memory */
5362        adapter->regs = pci_ioremap_bar(pdev, 0);
5363        if (!adapter->regs) {
5364                dev_err(&pdev->dev, "Cannot map device registers\n");
5365                result = -ENOMEM;
5366                goto err_free_dev;
5367        }
5368
5369        /* If Phy COMA mode was enabled when we went down, disable it here. */
5370        writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5371
5372        /* Issue a global reset to the et1310 */
5373        et131x_soft_reset(adapter);
5374
5375        /* Disable all interrupts (paranoid) */
5376        et131x_disable_interrupts(adapter);
5377
5378        /* Allocate DMA memory */
5379        result = et131x_adapter_memory_alloc(adapter);
5380        if (result) {
5381                dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5382                goto err_iounmap;
5383        }
5384
5385        /* Init send data structures */
5386        et131x_init_send(adapter);
5387
5388        /* Set up the task structure for the ISR's deferred handler */
5389        INIT_WORK(&adapter->task, et131x_isr_handler);
5390
5391        /* Copy address into the net_device struct */
5392        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5393
5394        /* Init variable for counting how long we do not have link status */
5395        adapter->boot_coma = 0;
5396        et1310_disable_phy_coma(adapter);
5397
5398        /* Setup the mii_bus struct */
5399        adapter->mii_bus = mdiobus_alloc();
5400        if (!adapter->mii_bus) {
5401                dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5402                goto err_mem_free;
5403        }
5404
5405        adapter->mii_bus->name = "et131x_eth_mii";
5406        snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5407                (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5408        adapter->mii_bus->priv = netdev;
5409        adapter->mii_bus->read = et131x_mdio_read;
5410        adapter->mii_bus->write = et131x_mdio_write;
5411        adapter->mii_bus->reset = et131x_mdio_reset;
5412        adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5413        if (!adapter->mii_bus->irq) {
5414                dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5415                goto err_mdio_free;
5416        }
5417
5418        for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5419                adapter->mii_bus->irq[ii] = PHY_POLL;
5420
5421        if (mdiobus_register(adapter->mii_bus)) {
5422                dev_err(&pdev->dev, "failed to register MII bus\n");
5423                mdiobus_free(adapter->mii_bus);
5424                goto err_mdio_free_irq;
5425        }
5426
5427        if (et131x_mii_probe(netdev)) {
5428                dev_err(&pdev->dev, "failed to probe MII bus\n");
5429                goto err_mdio_unregister;
5430        }
5431
5432        /* Setup et1310 as per the documentation */
5433        et131x_adapter_setup(adapter);
5434
5435        /* We can enable interrupts now
5436         *
5437         *  NOTE - Because registration of interrupt handler is done in the
5438         *         device's open(), defer enabling device interrupts to that
5439         *         point
5440         */
5441
5442        /* Register the net_device struct with the Linux network layer */
5443        result = register_netdev(netdev);
5444        if (result != 0) {
5445                dev_err(&pdev->dev, "register_netdev() failed\n");
5446                goto err_mdio_unregister;
5447        }
5448
5449        /* Register the net_device struct with the PCI subsystem. Save a copy
5450         * of the PCI config space for this device now that the device has
5451         * been initialized, just in case it needs to be quickly restored.
5452         */
5453        pci_set_drvdata(pdev, netdev);
5454        pci_save_state(adapter->pdev);
5455
5456        return result;
5457
5458err_mdio_unregister:
5459        mdiobus_unregister(adapter->mii_bus);
5460err_mdio_free_irq:
5461        kfree(adapter->mii_bus->irq);
5462err_mdio_free:
5463        mdiobus_free(adapter->mii_bus);
5464err_mem_free:
5465        et131x_adapter_memory_free(adapter);
5466err_iounmap:
5467        iounmap(adapter->regs);
5468err_free_dev:
5469        pci_dev_put(pdev);
5470        free_netdev(netdev);
5471err_release_res:
5472        pci_release_regions(pdev);
5473err_disable:
5474        pci_disable_device(pdev);
5475err_out:
5476        return result;
5477}
5478
5479static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5480        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5481        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5482        {0,}
5483};
5484MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5485
5486static struct pci_driver et131x_driver = {
5487        .name           = DRIVER_NAME,
5488        .id_table       = et131x_pci_table,
5489        .probe          = et131x_pci_setup,
5490        .remove         = __devexit_p(et131x_pci_remove),
5491        .driver.pm      = ET131X_PM_OPS,
5492};
5493
5494/**
5495 * et131x_init_module - The "main" entry point called on driver initialization
5496 *
5497 * Returns 0 on success, errno on failure (as defined in errno.h)
5498 */
5499static int __init et131x_init_module(void)
5500{
5501        return pci_register_driver(&et131x_driver);
5502}
5503
5504/**
5505 * et131x_cleanup_module - The entry point called on driver cleanup
5506 */
5507static void __exit et131x_cleanup_module(void)
5508{
5509        pci_unregister_driver(&et131x_driver);
5510}
5511
5512module_init(et131x_init_module);
5513module_exit(et131x_cleanup_module);
5514
5515