linux/drivers/staging/media/cxd2099/cxd2099.c
<<
>>
Prefs
   1/*
   2 * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
   3 *
   4 * Copyright (C) 2010-2011 Digital Devices GmbH
   5 *
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 only, as published by the Free Software Foundation.
  10 *
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21 * 02110-1301, USA
  22 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/init.h>
  30#include <linux/i2c.h>
  31#include <linux/wait.h>
  32#include <linux/delay.h>
  33#include <linux/mutex.h>
  34#include <linux/io.h>
  35
  36#include "cxd2099.h"
  37
  38#define MAX_BUFFER_SIZE 248
  39
  40struct cxd {
  41        struct dvb_ca_en50221 en;
  42
  43        struct i2c_adapter *i2c;
  44        struct cxd2099_cfg cfg;
  45
  46        u8     regs[0x23];
  47        u8     lastaddress;
  48        u8     clk_reg_f;
  49        u8     clk_reg_b;
  50        int    mode;
  51        int    ready;
  52        int    dr;
  53        int    slot_stat;
  54
  55        u8     amem[1024];
  56        int    amem_read;
  57
  58        int    cammode;
  59        struct mutex lock;
  60};
  61
  62static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
  63                         u8 reg, u8 data)
  64{
  65        u8 m[2] = {reg, data};
  66        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
  67
  68        if (i2c_transfer(adapter, &msg, 1) != 1) {
  69                printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n",
  70                       reg, adr);
  71                return -1;
  72        }
  73        return 0;
  74}
  75
  76static int i2c_write(struct i2c_adapter *adapter, u8 adr,
  77                     u8 *data, u8 len)
  78{
  79        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
  80
  81        if (i2c_transfer(adapter, &msg, 1) != 1) {
  82                printk(KERN_ERR "Failed to write to I2C!\n");
  83                return -1;
  84        }
  85        return 0;
  86}
  87
  88static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
  89                        u8 reg, u8 *val)
  90{
  91        struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  92                                   .buf = &reg, .len = 1},
  93                                  {.addr = adr, .flags = I2C_M_RD,
  94                                   .buf = val, .len = 1} };
  95
  96        if (i2c_transfer(adapter, msgs, 2) != 2) {
  97                printk(KERN_ERR "error in i2c_read_reg\n");
  98                return -1;
  99        }
 100        return 0;
 101}
 102
 103static int i2c_read(struct i2c_adapter *adapter, u8 adr,
 104                    u8 reg, u8 *data, u8 n)
 105{
 106        struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
 107                                 .buf = &reg, .len = 1},
 108                                {.addr = adr, .flags = I2C_M_RD,
 109                                 .buf = data, .len = n} };
 110
 111        if (i2c_transfer(adapter, msgs, 2) != 2) {
 112                printk(KERN_ERR "error in i2c_read\n");
 113                return -1;
 114        }
 115        return 0;
 116}
 117
 118static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n)
 119{
 120        int status;
 121
 122        status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
 123        if (!status) {
 124                ci->lastaddress = adr;
 125                status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
 126        }
 127        return status;
 128}
 129
 130static int read_reg(struct cxd *ci, u8 reg, u8 *val)
 131{
 132        return read_block(ci, reg, val, 1);
 133}
 134
 135
 136static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
 137{
 138        int status;
 139        u8 addr[3] = {2, address & 0xff, address >> 8};
 140
 141        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 142        if (!status)
 143                status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
 144        return status;
 145}
 146
 147static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
 148{
 149        int status;
 150        u8 addr[3] = {2, address & 0xff, address >> 8};
 151
 152        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 153        if (!status) {
 154                u8 buf[256] = {3};
 155                memcpy(buf+1, data, n);
 156                status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
 157        }
 158        return status;
 159}
 160
 161static int read_io(struct cxd *ci, u16 address, u8 *val)
 162{
 163        int status;
 164        u8 addr[3] = {2, address & 0xff, address >> 8};
 165
 166        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 167        if (!status)
 168                status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
 169        return status;
 170}
 171
 172static int write_io(struct cxd *ci, u16 address, u8 val)
 173{
 174        int status;
 175        u8 addr[3] = {2, address & 0xff, address >> 8};
 176        u8 buf[2] = {3, val};
 177
 178        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 179        if (!status)
 180                status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
 181        return status;
 182}
 183
 184#if 0
 185static int read_io_data(struct cxd *ci, u8 *data, u8 n)
 186{
 187        int status;
 188        u8 addr[3] = { 2, 0, 0 };
 189
 190        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 191        if (!status)
 192                status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
 193        return 0;
 194}
 195
 196static int write_io_data(struct cxd *ci, u8 *data, u8 n)
 197{
 198        int status;
 199        u8 addr[3] = {2, 0, 0};
 200
 201        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 202        if (!status) {
 203                u8 buf[256] = {3};
 204                memcpy(buf+1, data, n);
 205                status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
 206        }
 207        return 0;
 208}
 209#endif
 210
 211static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
 212{
 213        int status;
 214
 215        status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
 216        if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
 217                status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
 218        ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
 219        if (!status) {
 220                ci->lastaddress = reg;
 221                status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
 222        }
 223        if (reg == 0x20)
 224                ci->regs[reg] &= 0x7f;
 225        return status;
 226}
 227
 228static int write_reg(struct cxd *ci, u8 reg, u8 val)
 229{
 230        return write_regm(ci, reg, val, 0xff);
 231}
 232
 233#ifdef BUFFER_MODE
 234static int write_block(struct cxd *ci, u8 adr, u8 *data, int n)
 235{
 236        int status;
 237        u8 buf[256] = {1};
 238
 239        status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
 240        if (!status) {
 241                ci->lastaddress = adr;
 242                memcpy(buf + 1, data, n);
 243                status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
 244        }
 245        return status;
 246}
 247#endif
 248
 249static void set_mode(struct cxd *ci, int mode)
 250{
 251        if (mode == ci->mode)
 252                return;
 253
 254        switch (mode) {
 255        case 0x00: /* IO mem */
 256                write_regm(ci, 0x06, 0x00, 0x07);
 257                break;
 258        case 0x01: /* ATT mem */
 259                write_regm(ci, 0x06, 0x02, 0x07);
 260                break;
 261        default:
 262                break;
 263        }
 264        ci->mode = mode;
 265}
 266
 267static void cam_mode(struct cxd *ci, int mode)
 268{
 269        if (mode == ci->cammode)
 270                return;
 271
 272        switch (mode) {
 273        case 0x00:
 274                write_regm(ci, 0x20, 0x80, 0x80);
 275                break;
 276        case 0x01:
 277#ifdef BUFFER_MODE
 278                if (!ci->en.read_data)
 279                        return;
 280                printk(KERN_INFO "enable cam buffer mode\n");
 281                /* write_reg(ci, 0x0d, 0x00); */
 282                /* write_reg(ci, 0x0e, 0x01); */
 283                write_regm(ci, 0x08, 0x40, 0x40);
 284                /* read_reg(ci, 0x12, &dummy); */
 285                write_regm(ci, 0x08, 0x80, 0x80);
 286#endif
 287                break;
 288        default:
 289                break;
 290        }
 291        ci->cammode = mode;
 292}
 293
 294
 295
 296static int init(struct cxd *ci)
 297{
 298        int status;
 299
 300        mutex_lock(&ci->lock);
 301        ci->mode = -1;
 302        do {
 303                status = write_reg(ci, 0x00, 0x00);
 304                if (status < 0)
 305                        break;
 306                status = write_reg(ci, 0x01, 0x00);
 307                if (status < 0)
 308                        break;
 309                status = write_reg(ci, 0x02, 0x10);
 310                if (status < 0)
 311                        break;
 312                status = write_reg(ci, 0x03, 0x00);
 313                if (status < 0)
 314                        break;
 315                status = write_reg(ci, 0x05, 0xFF);
 316                if (status < 0)
 317                        break;
 318                status = write_reg(ci, 0x06, 0x1F);
 319                if (status < 0)
 320                        break;
 321                status = write_reg(ci, 0x07, 0x1F);
 322                if (status < 0)
 323                        break;
 324                status = write_reg(ci, 0x08, 0x28);
 325                if (status < 0)
 326                        break;
 327                status = write_reg(ci, 0x14, 0x20);
 328                if (status < 0)
 329                        break;
 330
 331#if 0
 332                status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
 333                if (status < 0)
 334                        break;
 335#endif
 336                status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
 337                if (status < 0)
 338                        break;
 339
 340                status = write_reg(ci, 0x0B, 0x33);
 341                if (status < 0)
 342                        break;
 343                status = write_reg(ci, 0x0C, 0x33);
 344                if (status < 0)
 345                        break;
 346
 347                status = write_regm(ci, 0x14, 0x00, 0x0F);
 348                if (status < 0)
 349                        break;
 350                status = write_reg(ci, 0x15, ci->clk_reg_b);
 351                if (status < 0)
 352                        break;
 353                status = write_regm(ci, 0x16, 0x00, 0x0F);
 354                if (status < 0)
 355                        break;
 356                status = write_reg(ci, 0x17, ci->clk_reg_f);
 357                if (status < 0)
 358                        break;
 359
 360                if (ci->cfg.clock_mode) {
 361                        if (ci->cfg.polarity) {
 362                                status = write_reg(ci, 0x09, 0x6f);
 363                                if (status < 0)
 364                                        break;
 365                        } else {
 366                                status = write_reg(ci, 0x09, 0x6d);
 367                                if (status < 0)
 368                                        break;
 369                        }
 370                        status = write_reg(ci, 0x20, 0x68);
 371                        if (status < 0)
 372                                break;
 373                        status = write_reg(ci, 0x21, 0x00);
 374                        if (status < 0)
 375                                break;
 376                        status = write_reg(ci, 0x22, 0x02);
 377                        if (status < 0)
 378                                break;
 379                } else {
 380                        if (ci->cfg.polarity) {
 381                                status = write_reg(ci, 0x09, 0x4f);
 382                                if (status < 0)
 383                                        break;
 384                        } else {
 385                                status = write_reg(ci, 0x09, 0x4d);
 386                                if (status < 0)
 387                                        break;
 388                        }
 389
 390                        status = write_reg(ci, 0x20, 0x28);
 391                        if (status < 0)
 392                                break;
 393                        status = write_reg(ci, 0x21, 0x00);
 394                        if (status < 0)
 395                                break;
 396                        status = write_reg(ci, 0x22, 0x07);
 397                        if (status < 0)
 398                                break;
 399                }
 400
 401                status = write_regm(ci, 0x20, 0x80, 0x80);
 402                if (status < 0)
 403                        break;
 404                status = write_regm(ci, 0x03, 0x02, 0x02);
 405                if (status < 0)
 406                        break;
 407                status = write_reg(ci, 0x01, 0x04);
 408                if (status < 0)
 409                        break;
 410                status = write_reg(ci, 0x00, 0x31);
 411                if (status < 0)
 412                        break;
 413
 414                /* Put TS in bypass */
 415                status = write_regm(ci, 0x09, 0x08, 0x08);
 416                if (status < 0)
 417                        break;
 418                ci->cammode = -1;
 419                cam_mode(ci, 0);
 420        } while (0);
 421        mutex_unlock(&ci->lock);
 422
 423        return 0;
 424}
 425
 426static int read_attribute_mem(struct dvb_ca_en50221 *ca,
 427                              int slot, int address)
 428{
 429        struct cxd *ci = ca->data;
 430#if 0
 431        if (ci->amem_read) {
 432                if (address <= 0 || address > 1024)
 433                        return -EIO;
 434                return ci->amem[address];
 435        }
 436
 437        mutex_lock(&ci->lock);
 438        write_regm(ci, 0x06, 0x00, 0x05);
 439        read_pccard(ci, 0, &ci->amem[0], 128);
 440        read_pccard(ci, 128, &ci->amem[0], 128);
 441        read_pccard(ci, 256, &ci->amem[0], 128);
 442        read_pccard(ci, 384, &ci->amem[0], 128);
 443        write_regm(ci, 0x06, 0x05, 0x05);
 444        mutex_unlock(&ci->lock);
 445        return ci->amem[address];
 446#else
 447        u8 val;
 448        mutex_lock(&ci->lock);
 449        set_mode(ci, 1);
 450        read_pccard(ci, address, &val, 1);
 451        mutex_unlock(&ci->lock);
 452        /* printk(KERN_INFO "%02x:%02x\n", address,val); */
 453        return val;
 454#endif
 455}
 456
 457static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
 458                               int address, u8 value)
 459{
 460        struct cxd *ci = ca->data;
 461
 462        mutex_lock(&ci->lock);
 463        set_mode(ci, 1);
 464        write_pccard(ci, address, &value, 1);
 465        mutex_unlock(&ci->lock);
 466        return 0;
 467}
 468
 469static int read_cam_control(struct dvb_ca_en50221 *ca,
 470                            int slot, u8 address)
 471{
 472        struct cxd *ci = ca->data;
 473        u8 val;
 474
 475        mutex_lock(&ci->lock);
 476        set_mode(ci, 0);
 477        read_io(ci, address, &val);
 478        mutex_unlock(&ci->lock);
 479        return val;
 480}
 481
 482static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
 483                             u8 address, u8 value)
 484{
 485        struct cxd *ci = ca->data;
 486
 487        mutex_lock(&ci->lock);
 488        set_mode(ci, 0);
 489        write_io(ci, address, value);
 490        mutex_unlock(&ci->lock);
 491        return 0;
 492}
 493
 494static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
 495{
 496        struct cxd *ci = ca->data;
 497
 498        mutex_lock(&ci->lock);
 499#if 0
 500        write_reg(ci, 0x00, 0x21);
 501        write_reg(ci, 0x06, 0x1F);
 502        write_reg(ci, 0x00, 0x31);
 503#else
 504#if 0
 505        write_reg(ci, 0x06, 0x1F);
 506        write_reg(ci, 0x06, 0x2F);
 507#else
 508        cam_mode(ci, 0);
 509        write_reg(ci, 0x00, 0x21);
 510        write_reg(ci, 0x06, 0x1F);
 511        write_reg(ci, 0x00, 0x31);
 512        write_regm(ci, 0x20, 0x80, 0x80);
 513        write_reg(ci, 0x03, 0x02);
 514        ci->ready = 0;
 515#endif
 516#endif
 517        ci->mode = -1;
 518        {
 519                int i;
 520#if 0
 521                u8 val;
 522#endif
 523                for (i = 0; i < 100; i++) {
 524                        msleep(10);
 525#if 0
 526                        read_reg(ci, 0x06, &val);
 527                        printk(KERN_INFO "%d:%02x\n", i, val);
 528                        if (!(val&0x10))
 529                                break;
 530#else
 531                        if (ci->ready)
 532                                break;
 533#endif
 534                }
 535        }
 536        mutex_unlock(&ci->lock);
 537        /* msleep(500); */
 538        return 0;
 539}
 540
 541static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
 542{
 543        struct cxd *ci = ca->data;
 544
 545        printk(KERN_INFO "slot_shutdown\n");
 546        mutex_lock(&ci->lock);
 547        write_regm(ci, 0x09, 0x08, 0x08);
 548        write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
 549        write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
 550        ci->mode = -1;
 551        mutex_unlock(&ci->lock);
 552        return 0;
 553}
 554
 555static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
 556{
 557        struct cxd *ci = ca->data;
 558
 559        mutex_lock(&ci->lock);
 560        write_regm(ci, 0x09, 0x00, 0x08);
 561        set_mode(ci, 0);
 562#ifdef BUFFER_MODE
 563        cam_mode(ci, 1);
 564#endif
 565        mutex_unlock(&ci->lock);
 566        return 0;
 567}
 568
 569
 570static int campoll(struct cxd *ci)
 571{
 572        u8 istat;
 573
 574        read_reg(ci, 0x04, &istat);
 575        if (!istat)
 576                return 0;
 577        write_reg(ci, 0x05, istat);
 578
 579        if (istat&0x40) {
 580                ci->dr = 1;
 581                printk(KERN_INFO "DR\n");
 582        }
 583        if (istat&0x20)
 584                printk(KERN_INFO "WC\n");
 585
 586        if (istat&2) {
 587                u8 slotstat;
 588
 589                read_reg(ci, 0x01, &slotstat);
 590                if (!(2&slotstat)) {
 591                        if (!ci->slot_stat) {
 592                                ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT;
 593                                write_regm(ci, 0x03, 0x08, 0x08);
 594                        }
 595
 596                } else {
 597                        if (ci->slot_stat) {
 598                                ci->slot_stat = 0;
 599                                write_regm(ci, 0x03, 0x00, 0x08);
 600                                printk(KERN_INFO "NO CAM\n");
 601                                ci->ready = 0;
 602                        }
 603                }
 604                if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
 605                        ci->ready = 1;
 606                        ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
 607                }
 608        }
 609        return 0;
 610}
 611
 612
 613static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
 614{
 615        struct cxd *ci = ca->data;
 616        u8 slotstat;
 617
 618        mutex_lock(&ci->lock);
 619        campoll(ci);
 620        read_reg(ci, 0x01, &slotstat);
 621        mutex_unlock(&ci->lock);
 622
 623        return ci->slot_stat;
 624}
 625
 626#ifdef BUFFER_MODE
 627static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
 628{
 629        struct cxd *ci = ca->data;
 630        u8 msb, lsb;
 631        u16 len;
 632
 633        mutex_lock(&ci->lock);
 634        campoll(ci);
 635        mutex_unlock(&ci->lock);
 636
 637        printk(KERN_INFO "read_data\n");
 638        if (!ci->dr)
 639                return 0;
 640
 641        mutex_lock(&ci->lock);
 642        read_reg(ci, 0x0f, &msb);
 643        read_reg(ci, 0x10, &lsb);
 644        len = (msb<<8)|lsb;
 645        read_block(ci, 0x12, ebuf, len);
 646        ci->dr = 0;
 647        mutex_unlock(&ci->lock);
 648
 649        return len;
 650}
 651
 652static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
 653{
 654        struct cxd *ci = ca->data;
 655
 656        mutex_lock(&ci->lock);
 657        printk(kern_INFO "write_data %d\n", ecount);
 658        write_reg(ci, 0x0d, ecount>>8);
 659        write_reg(ci, 0x0e, ecount&0xff);
 660        write_block(ci, 0x11, ebuf, ecount);
 661        mutex_unlock(&ci->lock);
 662        return ecount;
 663}
 664#endif
 665
 666static struct dvb_ca_en50221 en_templ = {
 667        .read_attribute_mem  = read_attribute_mem,
 668        .write_attribute_mem = write_attribute_mem,
 669        .read_cam_control    = read_cam_control,
 670        .write_cam_control   = write_cam_control,
 671        .slot_reset          = slot_reset,
 672        .slot_shutdown       = slot_shutdown,
 673        .slot_ts_enable      = slot_ts_enable,
 674        .poll_slot_status    = poll_slot_status,
 675#ifdef BUFFER_MODE
 676        .read_data           = read_data,
 677        .write_data          = write_data,
 678#endif
 679
 680};
 681
 682struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
 683                                      void *priv,
 684                                      struct i2c_adapter *i2c)
 685{
 686        struct cxd *ci = 0;
 687        u8 val;
 688
 689        if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
 690                printk(KERN_INFO "No CXD2099 detected at %02x\n", cfg->adr);
 691                return 0;
 692        }
 693
 694        ci = kmalloc(sizeof(struct cxd), GFP_KERNEL);
 695        if (!ci)
 696                return 0;
 697        memset(ci, 0, sizeof(*ci));
 698
 699        mutex_init(&ci->lock);
 700        memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg));
 701        ci->i2c = i2c;
 702        ci->lastaddress = 0xff;
 703        ci->clk_reg_b = 0x4a;
 704        ci->clk_reg_f = 0x1b;
 705
 706        memcpy(&ci->en, &en_templ, sizeof(en_templ));
 707        ci->en.data = ci;
 708        init(ci);
 709        printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr);
 710        return &ci->en;
 711}
 712EXPORT_SYMBOL(cxd2099_attach);
 713
 714MODULE_DESCRIPTION("cxd2099");
 715MODULE_AUTHOR("Ralph Metzler");
 716MODULE_LICENSE("GPL");
 717