linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include "ctree.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "print-tree.h"
  25#include "locking.h"
  26
  27static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  28                      *root, struct btrfs_path *path, int level);
  29static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  30                      *root, struct btrfs_key *ins_key,
  31                      struct btrfs_path *path, int data_size, int extend);
  32static int push_node_left(struct btrfs_trans_handle *trans,
  33                          struct btrfs_root *root, struct extent_buffer *dst,
  34                          struct extent_buffer *src, int empty);
  35static int balance_node_right(struct btrfs_trans_handle *trans,
  36                              struct btrfs_root *root,
  37                              struct extent_buffer *dst_buf,
  38                              struct extent_buffer *src_buf);
  39static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  40                   struct btrfs_path *path, int level, int slot);
  41
  42struct btrfs_path *btrfs_alloc_path(void)
  43{
  44        struct btrfs_path *path;
  45        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  46        return path;
  47}
  48
  49/*
  50 * set all locked nodes in the path to blocking locks.  This should
  51 * be done before scheduling
  52 */
  53noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  54{
  55        int i;
  56        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  57                if (!p->nodes[i] || !p->locks[i])
  58                        continue;
  59                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  60                if (p->locks[i] == BTRFS_READ_LOCK)
  61                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  62                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  63                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  64        }
  65}
  66
  67/*
  68 * reset all the locked nodes in the patch to spinning locks.
  69 *
  70 * held is used to keep lockdep happy, when lockdep is enabled
  71 * we set held to a blocking lock before we go around and
  72 * retake all the spinlocks in the path.  You can safely use NULL
  73 * for held
  74 */
  75noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  76                                        struct extent_buffer *held, int held_rw)
  77{
  78        int i;
  79
  80#ifdef CONFIG_DEBUG_LOCK_ALLOC
  81        /* lockdep really cares that we take all of these spinlocks
  82         * in the right order.  If any of the locks in the path are not
  83         * currently blocking, it is going to complain.  So, make really
  84         * really sure by forcing the path to blocking before we clear
  85         * the path blocking.
  86         */
  87        if (held) {
  88                btrfs_set_lock_blocking_rw(held, held_rw);
  89                if (held_rw == BTRFS_WRITE_LOCK)
  90                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  91                else if (held_rw == BTRFS_READ_LOCK)
  92                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  93        }
  94        btrfs_set_path_blocking(p);
  95#endif
  96
  97        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  98                if (p->nodes[i] && p->locks[i]) {
  99                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 100                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 101                                p->locks[i] = BTRFS_WRITE_LOCK;
 102                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 103                                p->locks[i] = BTRFS_READ_LOCK;
 104                }
 105        }
 106
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108        if (held)
 109                btrfs_clear_lock_blocking_rw(held, held_rw);
 110#endif
 111}
 112
 113/* this also releases the path */
 114void btrfs_free_path(struct btrfs_path *p)
 115{
 116        if (!p)
 117                return;
 118        btrfs_release_path(p);
 119        kmem_cache_free(btrfs_path_cachep, p);
 120}
 121
 122/*
 123 * path release drops references on the extent buffers in the path
 124 * and it drops any locks held by this path
 125 *
 126 * It is safe to call this on paths that no locks or extent buffers held.
 127 */
 128noinline void btrfs_release_path(struct btrfs_path *p)
 129{
 130        int i;
 131
 132        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 133                p->slots[i] = 0;
 134                if (!p->nodes[i])
 135                        continue;
 136                if (p->locks[i]) {
 137                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 138                        p->locks[i] = 0;
 139                }
 140                free_extent_buffer(p->nodes[i]);
 141                p->nodes[i] = NULL;
 142        }
 143}
 144
 145/*
 146 * safely gets a reference on the root node of a tree.  A lock
 147 * is not taken, so a concurrent writer may put a different node
 148 * at the root of the tree.  See btrfs_lock_root_node for the
 149 * looping required.
 150 *
 151 * The extent buffer returned by this has a reference taken, so
 152 * it won't disappear.  It may stop being the root of the tree
 153 * at any time because there are no locks held.
 154 */
 155struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 156{
 157        struct extent_buffer *eb;
 158
 159        rcu_read_lock();
 160        eb = rcu_dereference(root->node);
 161        extent_buffer_get(eb);
 162        rcu_read_unlock();
 163        return eb;
 164}
 165
 166/* loop around taking references on and locking the root node of the
 167 * tree until you end up with a lock on the root.  A locked buffer
 168 * is returned, with a reference held.
 169 */
 170struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 171{
 172        struct extent_buffer *eb;
 173
 174        while (1) {
 175                eb = btrfs_root_node(root);
 176                btrfs_tree_lock(eb);
 177                if (eb == root->node)
 178                        break;
 179                btrfs_tree_unlock(eb);
 180                free_extent_buffer(eb);
 181        }
 182        return eb;
 183}
 184
 185/* loop around taking references on and locking the root node of the
 186 * tree until you end up with a lock on the root.  A locked buffer
 187 * is returned, with a reference held.
 188 */
 189struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 190{
 191        struct extent_buffer *eb;
 192
 193        while (1) {
 194                eb = btrfs_root_node(root);
 195                btrfs_tree_read_lock(eb);
 196                if (eb == root->node)
 197                        break;
 198                btrfs_tree_read_unlock(eb);
 199                free_extent_buffer(eb);
 200        }
 201        return eb;
 202}
 203
 204/* cowonly root (everything not a reference counted cow subvolume), just get
 205 * put onto a simple dirty list.  transaction.c walks this to make sure they
 206 * get properly updated on disk.
 207 */
 208static void add_root_to_dirty_list(struct btrfs_root *root)
 209{
 210        if (root->track_dirty && list_empty(&root->dirty_list)) {
 211                list_add(&root->dirty_list,
 212                         &root->fs_info->dirty_cowonly_roots);
 213        }
 214}
 215
 216/*
 217 * used by snapshot creation to make a copy of a root for a tree with
 218 * a given objectid.  The buffer with the new root node is returned in
 219 * cow_ret, and this func returns zero on success or a negative error code.
 220 */
 221int btrfs_copy_root(struct btrfs_trans_handle *trans,
 222                      struct btrfs_root *root,
 223                      struct extent_buffer *buf,
 224                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 225{
 226        struct extent_buffer *cow;
 227        int ret = 0;
 228        int level;
 229        struct btrfs_disk_key disk_key;
 230
 231        WARN_ON(root->ref_cows && trans->transid !=
 232                root->fs_info->running_transaction->transid);
 233        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 234
 235        level = btrfs_header_level(buf);
 236        if (level == 0)
 237                btrfs_item_key(buf, &disk_key, 0);
 238        else
 239                btrfs_node_key(buf, &disk_key, 0);
 240
 241        cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 242                                     new_root_objectid, &disk_key, level,
 243                                     buf->start, 0);
 244        if (IS_ERR(cow))
 245                return PTR_ERR(cow);
 246
 247        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 248        btrfs_set_header_bytenr(cow, cow->start);
 249        btrfs_set_header_generation(cow, trans->transid);
 250        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 251        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 252                                     BTRFS_HEADER_FLAG_RELOC);
 253        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 254                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 255        else
 256                btrfs_set_header_owner(cow, new_root_objectid);
 257
 258        write_extent_buffer(cow, root->fs_info->fsid,
 259                            (unsigned long)btrfs_header_fsid(cow),
 260                            BTRFS_FSID_SIZE);
 261
 262        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 263        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 264                ret = btrfs_inc_ref(trans, root, cow, 1);
 265        else
 266                ret = btrfs_inc_ref(trans, root, cow, 0);
 267
 268        if (ret)
 269                return ret;
 270
 271        btrfs_mark_buffer_dirty(cow);
 272        *cow_ret = cow;
 273        return 0;
 274}
 275
 276/*
 277 * check if the tree block can be shared by multiple trees
 278 */
 279int btrfs_block_can_be_shared(struct btrfs_root *root,
 280                              struct extent_buffer *buf)
 281{
 282        /*
 283         * Tree blocks not in refernece counted trees and tree roots
 284         * are never shared. If a block was allocated after the last
 285         * snapshot and the block was not allocated by tree relocation,
 286         * we know the block is not shared.
 287         */
 288        if (root->ref_cows &&
 289            buf != root->node && buf != root->commit_root &&
 290            (btrfs_header_generation(buf) <=
 291             btrfs_root_last_snapshot(&root->root_item) ||
 292             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 293                return 1;
 294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 295        if (root->ref_cows &&
 296            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 297                return 1;
 298#endif
 299        return 0;
 300}
 301
 302static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 303                                       struct btrfs_root *root,
 304                                       struct extent_buffer *buf,
 305                                       struct extent_buffer *cow,
 306                                       int *last_ref)
 307{
 308        u64 refs;
 309        u64 owner;
 310        u64 flags;
 311        u64 new_flags = 0;
 312        int ret;
 313
 314        /*
 315         * Backrefs update rules:
 316         *
 317         * Always use full backrefs for extent pointers in tree block
 318         * allocated by tree relocation.
 319         *
 320         * If a shared tree block is no longer referenced by its owner
 321         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 322         * use full backrefs for extent pointers in tree block.
 323         *
 324         * If a tree block is been relocating
 325         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 326         * use full backrefs for extent pointers in tree block.
 327         * The reason for this is some operations (such as drop tree)
 328         * are only allowed for blocks use full backrefs.
 329         */
 330
 331        if (btrfs_block_can_be_shared(root, buf)) {
 332                ret = btrfs_lookup_extent_info(trans, root, buf->start,
 333                                               buf->len, &refs, &flags);
 334                BUG_ON(ret);
 335                BUG_ON(refs == 0);
 336        } else {
 337                refs = 1;
 338                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 339                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 340                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 341                else
 342                        flags = 0;
 343        }
 344
 345        owner = btrfs_header_owner(buf);
 346        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 347               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 348
 349        if (refs > 1) {
 350                if ((owner == root->root_key.objectid ||
 351                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 352                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 353                        ret = btrfs_inc_ref(trans, root, buf, 1);
 354                        BUG_ON(ret);
 355
 356                        if (root->root_key.objectid ==
 357                            BTRFS_TREE_RELOC_OBJECTID) {
 358                                ret = btrfs_dec_ref(trans, root, buf, 0);
 359                                BUG_ON(ret);
 360                                ret = btrfs_inc_ref(trans, root, cow, 1);
 361                                BUG_ON(ret);
 362                        }
 363                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 364                } else {
 365
 366                        if (root->root_key.objectid ==
 367                            BTRFS_TREE_RELOC_OBJECTID)
 368                                ret = btrfs_inc_ref(trans, root, cow, 1);
 369                        else
 370                                ret = btrfs_inc_ref(trans, root, cow, 0);
 371                        BUG_ON(ret);
 372                }
 373                if (new_flags != 0) {
 374                        ret = btrfs_set_disk_extent_flags(trans, root,
 375                                                          buf->start,
 376                                                          buf->len,
 377                                                          new_flags, 0);
 378                        BUG_ON(ret);
 379                }
 380        } else {
 381                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 382                        if (root->root_key.objectid ==
 383                            BTRFS_TREE_RELOC_OBJECTID)
 384                                ret = btrfs_inc_ref(trans, root, cow, 1);
 385                        else
 386                                ret = btrfs_inc_ref(trans, root, cow, 0);
 387                        BUG_ON(ret);
 388                        ret = btrfs_dec_ref(trans, root, buf, 1);
 389                        BUG_ON(ret);
 390                }
 391                clean_tree_block(trans, root, buf);
 392                *last_ref = 1;
 393        }
 394        return 0;
 395}
 396
 397/*
 398 * does the dirty work in cow of a single block.  The parent block (if
 399 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 400 * dirty and returned locked.  If you modify the block it needs to be marked
 401 * dirty again.
 402 *
 403 * search_start -- an allocation hint for the new block
 404 *
 405 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 406 * bytes the allocator should try to find free next to the block it returns.
 407 * This is just a hint and may be ignored by the allocator.
 408 */
 409static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 410                             struct btrfs_root *root,
 411                             struct extent_buffer *buf,
 412                             struct extent_buffer *parent, int parent_slot,
 413                             struct extent_buffer **cow_ret,
 414                             u64 search_start, u64 empty_size)
 415{
 416        struct btrfs_disk_key disk_key;
 417        struct extent_buffer *cow;
 418        int level;
 419        int last_ref = 0;
 420        int unlock_orig = 0;
 421        u64 parent_start;
 422
 423        if (*cow_ret == buf)
 424                unlock_orig = 1;
 425
 426        btrfs_assert_tree_locked(buf);
 427
 428        WARN_ON(root->ref_cows && trans->transid !=
 429                root->fs_info->running_transaction->transid);
 430        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 431
 432        level = btrfs_header_level(buf);
 433
 434        if (level == 0)
 435                btrfs_item_key(buf, &disk_key, 0);
 436        else
 437                btrfs_node_key(buf, &disk_key, 0);
 438
 439        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 440                if (parent)
 441                        parent_start = parent->start;
 442                else
 443                        parent_start = 0;
 444        } else
 445                parent_start = 0;
 446
 447        cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
 448                                     root->root_key.objectid, &disk_key,
 449                                     level, search_start, empty_size);
 450        if (IS_ERR(cow))
 451                return PTR_ERR(cow);
 452
 453        /* cow is set to blocking by btrfs_init_new_buffer */
 454
 455        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 456        btrfs_set_header_bytenr(cow, cow->start);
 457        btrfs_set_header_generation(cow, trans->transid);
 458        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 459        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 460                                     BTRFS_HEADER_FLAG_RELOC);
 461        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 462                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 463        else
 464                btrfs_set_header_owner(cow, root->root_key.objectid);
 465
 466        write_extent_buffer(cow, root->fs_info->fsid,
 467                            (unsigned long)btrfs_header_fsid(cow),
 468                            BTRFS_FSID_SIZE);
 469
 470        update_ref_for_cow(trans, root, buf, cow, &last_ref);
 471
 472        if (root->ref_cows)
 473                btrfs_reloc_cow_block(trans, root, buf, cow);
 474
 475        if (buf == root->node) {
 476                WARN_ON(parent && parent != buf);
 477                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 478                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 479                        parent_start = buf->start;
 480                else
 481                        parent_start = 0;
 482
 483                extent_buffer_get(cow);
 484                rcu_assign_pointer(root->node, cow);
 485
 486                btrfs_free_tree_block(trans, root, buf, parent_start,
 487                                      last_ref);
 488                free_extent_buffer(buf);
 489                add_root_to_dirty_list(root);
 490        } else {
 491                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 492                        parent_start = parent->start;
 493                else
 494                        parent_start = 0;
 495
 496                WARN_ON(trans->transid != btrfs_header_generation(parent));
 497                btrfs_set_node_blockptr(parent, parent_slot,
 498                                        cow->start);
 499                btrfs_set_node_ptr_generation(parent, parent_slot,
 500                                              trans->transid);
 501                btrfs_mark_buffer_dirty(parent);
 502                btrfs_free_tree_block(trans, root, buf, parent_start,
 503                                      last_ref);
 504        }
 505        if (unlock_orig)
 506                btrfs_tree_unlock(buf);
 507        free_extent_buffer(buf);
 508        btrfs_mark_buffer_dirty(cow);
 509        *cow_ret = cow;
 510        return 0;
 511}
 512
 513static inline int should_cow_block(struct btrfs_trans_handle *trans,
 514                                   struct btrfs_root *root,
 515                                   struct extent_buffer *buf)
 516{
 517        /* ensure we can see the force_cow */
 518        smp_rmb();
 519
 520        /*
 521         * We do not need to cow a block if
 522         * 1) this block is not created or changed in this transaction;
 523         * 2) this block does not belong to TREE_RELOC tree;
 524         * 3) the root is not forced COW.
 525         *
 526         * What is forced COW:
 527         *    when we create snapshot during commiting the transaction,
 528         *    after we've finished coping src root, we must COW the shared
 529         *    block to ensure the metadata consistency.
 530         */
 531        if (btrfs_header_generation(buf) == trans->transid &&
 532            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 533            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 534              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 535            !root->force_cow)
 536                return 0;
 537        return 1;
 538}
 539
 540/*
 541 * cows a single block, see __btrfs_cow_block for the real work.
 542 * This version of it has extra checks so that a block isn't cow'd more than
 543 * once per transaction, as long as it hasn't been written yet
 544 */
 545noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 546                    struct btrfs_root *root, struct extent_buffer *buf,
 547                    struct extent_buffer *parent, int parent_slot,
 548                    struct extent_buffer **cow_ret)
 549{
 550        u64 search_start;
 551        int ret;
 552
 553        if (trans->transaction != root->fs_info->running_transaction) {
 554                printk(KERN_CRIT "trans %llu running %llu\n",
 555                       (unsigned long long)trans->transid,
 556                       (unsigned long long)
 557                       root->fs_info->running_transaction->transid);
 558                WARN_ON(1);
 559        }
 560        if (trans->transid != root->fs_info->generation) {
 561                printk(KERN_CRIT "trans %llu running %llu\n",
 562                       (unsigned long long)trans->transid,
 563                       (unsigned long long)root->fs_info->generation);
 564                WARN_ON(1);
 565        }
 566
 567        if (!should_cow_block(trans, root, buf)) {
 568                *cow_ret = buf;
 569                return 0;
 570        }
 571
 572        search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
 573
 574        if (parent)
 575                btrfs_set_lock_blocking(parent);
 576        btrfs_set_lock_blocking(buf);
 577
 578        ret = __btrfs_cow_block(trans, root, buf, parent,
 579                                 parent_slot, cow_ret, search_start, 0);
 580
 581        trace_btrfs_cow_block(root, buf, *cow_ret);
 582
 583        return ret;
 584}
 585
 586/*
 587 * helper function for defrag to decide if two blocks pointed to by a
 588 * node are actually close by
 589 */
 590static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 591{
 592        if (blocknr < other && other - (blocknr + blocksize) < 32768)
 593                return 1;
 594        if (blocknr > other && blocknr - (other + blocksize) < 32768)
 595                return 1;
 596        return 0;
 597}
 598
 599/*
 600 * compare two keys in a memcmp fashion
 601 */
 602static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 603{
 604        struct btrfs_key k1;
 605
 606        btrfs_disk_key_to_cpu(&k1, disk);
 607
 608        return btrfs_comp_cpu_keys(&k1, k2);
 609}
 610
 611/*
 612 * same as comp_keys only with two btrfs_key's
 613 */
 614int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
 615{
 616        if (k1->objectid > k2->objectid)
 617                return 1;
 618        if (k1->objectid < k2->objectid)
 619                return -1;
 620        if (k1->type > k2->type)
 621                return 1;
 622        if (k1->type < k2->type)
 623                return -1;
 624        if (k1->offset > k2->offset)
 625                return 1;
 626        if (k1->offset < k2->offset)
 627                return -1;
 628        return 0;
 629}
 630
 631/*
 632 * this is used by the defrag code to go through all the
 633 * leaves pointed to by a node and reallocate them so that
 634 * disk order is close to key order
 635 */
 636int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 637                       struct btrfs_root *root, struct extent_buffer *parent,
 638                       int start_slot, int cache_only, u64 *last_ret,
 639                       struct btrfs_key *progress)
 640{
 641        struct extent_buffer *cur;
 642        u64 blocknr;
 643        u64 gen;
 644        u64 search_start = *last_ret;
 645        u64 last_block = 0;
 646        u64 other;
 647        u32 parent_nritems;
 648        int end_slot;
 649        int i;
 650        int err = 0;
 651        int parent_level;
 652        int uptodate;
 653        u32 blocksize;
 654        int progress_passed = 0;
 655        struct btrfs_disk_key disk_key;
 656
 657        parent_level = btrfs_header_level(parent);
 658        if (cache_only && parent_level != 1)
 659                return 0;
 660
 661        if (trans->transaction != root->fs_info->running_transaction)
 662                WARN_ON(1);
 663        if (trans->transid != root->fs_info->generation)
 664                WARN_ON(1);
 665
 666        parent_nritems = btrfs_header_nritems(parent);
 667        blocksize = btrfs_level_size(root, parent_level - 1);
 668        end_slot = parent_nritems;
 669
 670        if (parent_nritems == 1)
 671                return 0;
 672
 673        btrfs_set_lock_blocking(parent);
 674
 675        for (i = start_slot; i < end_slot; i++) {
 676                int close = 1;
 677
 678                btrfs_node_key(parent, &disk_key, i);
 679                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 680                        continue;
 681
 682                progress_passed = 1;
 683                blocknr = btrfs_node_blockptr(parent, i);
 684                gen = btrfs_node_ptr_generation(parent, i);
 685                if (last_block == 0)
 686                        last_block = blocknr;
 687
 688                if (i > 0) {
 689                        other = btrfs_node_blockptr(parent, i - 1);
 690                        close = close_blocks(blocknr, other, blocksize);
 691                }
 692                if (!close && i < end_slot - 2) {
 693                        other = btrfs_node_blockptr(parent, i + 1);
 694                        close = close_blocks(blocknr, other, blocksize);
 695                }
 696                if (close) {
 697                        last_block = blocknr;
 698                        continue;
 699                }
 700
 701                cur = btrfs_find_tree_block(root, blocknr, blocksize);
 702                if (cur)
 703                        uptodate = btrfs_buffer_uptodate(cur, gen);
 704                else
 705                        uptodate = 0;
 706                if (!cur || !uptodate) {
 707                        if (cache_only) {
 708                                free_extent_buffer(cur);
 709                                continue;
 710                        }
 711                        if (!cur) {
 712                                cur = read_tree_block(root, blocknr,
 713                                                         blocksize, gen);
 714                                if (!cur)
 715                                        return -EIO;
 716                        } else if (!uptodate) {
 717                                btrfs_read_buffer(cur, gen);
 718                        }
 719                }
 720                if (search_start == 0)
 721                        search_start = last_block;
 722
 723                btrfs_tree_lock(cur);
 724                btrfs_set_lock_blocking(cur);
 725                err = __btrfs_cow_block(trans, root, cur, parent, i,
 726                                        &cur, search_start,
 727                                        min(16 * blocksize,
 728                                            (end_slot - i) * blocksize));
 729                if (err) {
 730                        btrfs_tree_unlock(cur);
 731                        free_extent_buffer(cur);
 732                        break;
 733                }
 734                search_start = cur->start;
 735                last_block = cur->start;
 736                *last_ret = search_start;
 737                btrfs_tree_unlock(cur);
 738                free_extent_buffer(cur);
 739        }
 740        return err;
 741}
 742
 743/*
 744 * The leaf data grows from end-to-front in the node.
 745 * this returns the address of the start of the last item,
 746 * which is the stop of the leaf data stack
 747 */
 748static inline unsigned int leaf_data_end(struct btrfs_root *root,
 749                                         struct extent_buffer *leaf)
 750{
 751        u32 nr = btrfs_header_nritems(leaf);
 752        if (nr == 0)
 753                return BTRFS_LEAF_DATA_SIZE(root);
 754        return btrfs_item_offset_nr(leaf, nr - 1);
 755}
 756
 757
 758/*
 759 * search for key in the extent_buffer.  The items start at offset p,
 760 * and they are item_size apart.  There are 'max' items in p.
 761 *
 762 * the slot in the array is returned via slot, and it points to
 763 * the place where you would insert key if it is not found in
 764 * the array.
 765 *
 766 * slot may point to max if the key is bigger than all of the keys
 767 */
 768static noinline int generic_bin_search(struct extent_buffer *eb,
 769                                       unsigned long p,
 770                                       int item_size, struct btrfs_key *key,
 771                                       int max, int *slot)
 772{
 773        int low = 0;
 774        int high = max;
 775        int mid;
 776        int ret;
 777        struct btrfs_disk_key *tmp = NULL;
 778        struct btrfs_disk_key unaligned;
 779        unsigned long offset;
 780        char *kaddr = NULL;
 781        unsigned long map_start = 0;
 782        unsigned long map_len = 0;
 783        int err;
 784
 785        while (low < high) {
 786                mid = (low + high) / 2;
 787                offset = p + mid * item_size;
 788
 789                if (!kaddr || offset < map_start ||
 790                    (offset + sizeof(struct btrfs_disk_key)) >
 791                    map_start + map_len) {
 792
 793                        err = map_private_extent_buffer(eb, offset,
 794                                                sizeof(struct btrfs_disk_key),
 795                                                &kaddr, &map_start, &map_len);
 796
 797                        if (!err) {
 798                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
 799                                                        map_start);
 800                        } else {
 801                                read_extent_buffer(eb, &unaligned,
 802                                                   offset, sizeof(unaligned));
 803                                tmp = &unaligned;
 804                        }
 805
 806                } else {
 807                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
 808                                                        map_start);
 809                }
 810                ret = comp_keys(tmp, key);
 811
 812                if (ret < 0)
 813                        low = mid + 1;
 814                else if (ret > 0)
 815                        high = mid;
 816                else {
 817                        *slot = mid;
 818                        return 0;
 819                }
 820        }
 821        *slot = low;
 822        return 1;
 823}
 824
 825/*
 826 * simple bin_search frontend that does the right thing for
 827 * leaves vs nodes
 828 */
 829static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 830                      int level, int *slot)
 831{
 832        if (level == 0) {
 833                return generic_bin_search(eb,
 834                                          offsetof(struct btrfs_leaf, items),
 835                                          sizeof(struct btrfs_item),
 836                                          key, btrfs_header_nritems(eb),
 837                                          slot);
 838        } else {
 839                return generic_bin_search(eb,
 840                                          offsetof(struct btrfs_node, ptrs),
 841                                          sizeof(struct btrfs_key_ptr),
 842                                          key, btrfs_header_nritems(eb),
 843                                          slot);
 844        }
 845        return -1;
 846}
 847
 848int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 849                     int level, int *slot)
 850{
 851        return bin_search(eb, key, level, slot);
 852}
 853
 854static void root_add_used(struct btrfs_root *root, u32 size)
 855{
 856        spin_lock(&root->accounting_lock);
 857        btrfs_set_root_used(&root->root_item,
 858                            btrfs_root_used(&root->root_item) + size);
 859        spin_unlock(&root->accounting_lock);
 860}
 861
 862static void root_sub_used(struct btrfs_root *root, u32 size)
 863{
 864        spin_lock(&root->accounting_lock);
 865        btrfs_set_root_used(&root->root_item,
 866                            btrfs_root_used(&root->root_item) - size);
 867        spin_unlock(&root->accounting_lock);
 868}
 869
 870/* given a node and slot number, this reads the blocks it points to.  The
 871 * extent buffer is returned with a reference taken (but unlocked).
 872 * NULL is returned on error.
 873 */
 874static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
 875                                   struct extent_buffer *parent, int slot)
 876{
 877        int level = btrfs_header_level(parent);
 878        if (slot < 0)
 879                return NULL;
 880        if (slot >= btrfs_header_nritems(parent))
 881                return NULL;
 882
 883        BUG_ON(level == 0);
 884
 885        return read_tree_block(root, btrfs_node_blockptr(parent, slot),
 886                       btrfs_level_size(root, level - 1),
 887                       btrfs_node_ptr_generation(parent, slot));
 888}
 889
 890/*
 891 * node level balancing, used to make sure nodes are in proper order for
 892 * item deletion.  We balance from the top down, so we have to make sure
 893 * that a deletion won't leave an node completely empty later on.
 894 */
 895static noinline int balance_level(struct btrfs_trans_handle *trans,
 896                         struct btrfs_root *root,
 897                         struct btrfs_path *path, int level)
 898{
 899        struct extent_buffer *right = NULL;
 900        struct extent_buffer *mid;
 901        struct extent_buffer *left = NULL;
 902        struct extent_buffer *parent = NULL;
 903        int ret = 0;
 904        int wret;
 905        int pslot;
 906        int orig_slot = path->slots[level];
 907        u64 orig_ptr;
 908
 909        if (level == 0)
 910                return 0;
 911
 912        mid = path->nodes[level];
 913
 914        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
 915                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
 916        WARN_ON(btrfs_header_generation(mid) != trans->transid);
 917
 918        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 919
 920        if (level < BTRFS_MAX_LEVEL - 1) {
 921                parent = path->nodes[level + 1];
 922                pslot = path->slots[level + 1];
 923        }
 924
 925        /*
 926         * deal with the case where there is only one pointer in the root
 927         * by promoting the node below to a root
 928         */
 929        if (!parent) {
 930                struct extent_buffer *child;
 931
 932                if (btrfs_header_nritems(mid) != 1)
 933                        return 0;
 934
 935                /* promote the child to a root */
 936                child = read_node_slot(root, mid, 0);
 937                BUG_ON(!child);
 938                btrfs_tree_lock(child);
 939                btrfs_set_lock_blocking(child);
 940                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
 941                if (ret) {
 942                        btrfs_tree_unlock(child);
 943                        free_extent_buffer(child);
 944                        goto enospc;
 945                }
 946
 947                rcu_assign_pointer(root->node, child);
 948
 949                add_root_to_dirty_list(root);
 950                btrfs_tree_unlock(child);
 951
 952                path->locks[level] = 0;
 953                path->nodes[level] = NULL;
 954                clean_tree_block(trans, root, mid);
 955                btrfs_tree_unlock(mid);
 956                /* once for the path */
 957                free_extent_buffer(mid);
 958
 959                root_sub_used(root, mid->len);
 960                btrfs_free_tree_block(trans, root, mid, 0, 1);
 961                /* once for the root ptr */
 962                free_extent_buffer(mid);
 963                return 0;
 964        }
 965        if (btrfs_header_nritems(mid) >
 966            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
 967                return 0;
 968
 969        btrfs_header_nritems(mid);
 970
 971        left = read_node_slot(root, parent, pslot - 1);
 972        if (left) {
 973                btrfs_tree_lock(left);
 974                btrfs_set_lock_blocking(left);
 975                wret = btrfs_cow_block(trans, root, left,
 976                                       parent, pslot - 1, &left);
 977                if (wret) {
 978                        ret = wret;
 979                        goto enospc;
 980                }
 981        }
 982        right = read_node_slot(root, parent, pslot + 1);
 983        if (right) {
 984                btrfs_tree_lock(right);
 985                btrfs_set_lock_blocking(right);
 986                wret = btrfs_cow_block(trans, root, right,
 987                                       parent, pslot + 1, &right);
 988                if (wret) {
 989                        ret = wret;
 990                        goto enospc;
 991                }
 992        }
 993
 994        /* first, try to make some room in the middle buffer */
 995        if (left) {
 996                orig_slot += btrfs_header_nritems(left);
 997                wret = push_node_left(trans, root, left, mid, 1);
 998                if (wret < 0)
 999                        ret = wret;
1000                btrfs_header_nritems(mid);
1001        }
1002
1003        /*
1004         * then try to empty the right most buffer into the middle
1005         */
1006        if (right) {
1007                wret = push_node_left(trans, root, mid, right, 1);
1008                if (wret < 0 && wret != -ENOSPC)
1009                        ret = wret;
1010                if (btrfs_header_nritems(right) == 0) {
1011                        clean_tree_block(trans, root, right);
1012                        btrfs_tree_unlock(right);
1013                        wret = del_ptr(trans, root, path, level + 1, pslot +
1014                                       1);
1015                        if (wret)
1016                                ret = wret;
1017                        root_sub_used(root, right->len);
1018                        btrfs_free_tree_block(trans, root, right, 0, 1);
1019                        free_extent_buffer(right);
1020                        right = NULL;
1021                } else {
1022                        struct btrfs_disk_key right_key;
1023                        btrfs_node_key(right, &right_key, 0);
1024                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1025                        btrfs_mark_buffer_dirty(parent);
1026                }
1027        }
1028        if (btrfs_header_nritems(mid) == 1) {
1029                /*
1030                 * we're not allowed to leave a node with one item in the
1031                 * tree during a delete.  A deletion from lower in the tree
1032                 * could try to delete the only pointer in this node.
1033                 * So, pull some keys from the left.
1034                 * There has to be a left pointer at this point because
1035                 * otherwise we would have pulled some pointers from the
1036                 * right
1037                 */
1038                BUG_ON(!left);
1039                wret = balance_node_right(trans, root, mid, left);
1040                if (wret < 0) {
1041                        ret = wret;
1042                        goto enospc;
1043                }
1044                if (wret == 1) {
1045                        wret = push_node_left(trans, root, left, mid, 1);
1046                        if (wret < 0)
1047                                ret = wret;
1048                }
1049                BUG_ON(wret == 1);
1050        }
1051        if (btrfs_header_nritems(mid) == 0) {
1052                clean_tree_block(trans, root, mid);
1053                btrfs_tree_unlock(mid);
1054                wret = del_ptr(trans, root, path, level + 1, pslot);
1055                if (wret)
1056                        ret = wret;
1057                root_sub_used(root, mid->len);
1058                btrfs_free_tree_block(trans, root, mid, 0, 1);
1059                free_extent_buffer(mid);
1060                mid = NULL;
1061        } else {
1062                /* update the parent key to reflect our changes */
1063                struct btrfs_disk_key mid_key;
1064                btrfs_node_key(mid, &mid_key, 0);
1065                btrfs_set_node_key(parent, &mid_key, pslot);
1066                btrfs_mark_buffer_dirty(parent);
1067        }
1068
1069        /* update the path */
1070        if (left) {
1071                if (btrfs_header_nritems(left) > orig_slot) {
1072                        extent_buffer_get(left);
1073                        /* left was locked after cow */
1074                        path->nodes[level] = left;
1075                        path->slots[level + 1] -= 1;
1076                        path->slots[level] = orig_slot;
1077                        if (mid) {
1078                                btrfs_tree_unlock(mid);
1079                                free_extent_buffer(mid);
1080                        }
1081                } else {
1082                        orig_slot -= btrfs_header_nritems(left);
1083                        path->slots[level] = orig_slot;
1084                }
1085        }
1086        /* double check we haven't messed things up */
1087        if (orig_ptr !=
1088            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1089                BUG();
1090enospc:
1091        if (right) {
1092                btrfs_tree_unlock(right);
1093                free_extent_buffer(right);
1094        }
1095        if (left) {
1096                if (path->nodes[level] != left)
1097                        btrfs_tree_unlock(left);
1098                free_extent_buffer(left);
1099        }
1100        return ret;
1101}
1102
1103/* Node balancing for insertion.  Here we only split or push nodes around
1104 * when they are completely full.  This is also done top down, so we
1105 * have to be pessimistic.
1106 */
1107static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1108                                          struct btrfs_root *root,
1109                                          struct btrfs_path *path, int level)
1110{
1111        struct extent_buffer *right = NULL;
1112        struct extent_buffer *mid;
1113        struct extent_buffer *left = NULL;
1114        struct extent_buffer *parent = NULL;
1115        int ret = 0;
1116        int wret;
1117        int pslot;
1118        int orig_slot = path->slots[level];
1119
1120        if (level == 0)
1121                return 1;
1122
1123        mid = path->nodes[level];
1124        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1125
1126        if (level < BTRFS_MAX_LEVEL - 1) {
1127                parent = path->nodes[level + 1];
1128                pslot = path->slots[level + 1];
1129        }
1130
1131        if (!parent)
1132                return 1;
1133
1134        left = read_node_slot(root, parent, pslot - 1);
1135
1136        /* first, try to make some room in the middle buffer */
1137        if (left) {
1138                u32 left_nr;
1139
1140                btrfs_tree_lock(left);
1141                btrfs_set_lock_blocking(left);
1142
1143                left_nr = btrfs_header_nritems(left);
1144                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1145                        wret = 1;
1146                } else {
1147                        ret = btrfs_cow_block(trans, root, left, parent,
1148                                              pslot - 1, &left);
1149                        if (ret)
1150                                wret = 1;
1151                        else {
1152                                wret = push_node_left(trans, root,
1153                                                      left, mid, 0);
1154                        }
1155                }
1156                if (wret < 0)
1157                        ret = wret;
1158                if (wret == 0) {
1159                        struct btrfs_disk_key disk_key;
1160                        orig_slot += left_nr;
1161                        btrfs_node_key(mid, &disk_key, 0);
1162                        btrfs_set_node_key(parent, &disk_key, pslot);
1163                        btrfs_mark_buffer_dirty(parent);
1164                        if (btrfs_header_nritems(left) > orig_slot) {
1165                                path->nodes[level] = left;
1166                                path->slots[level + 1] -= 1;
1167                                path->slots[level] = orig_slot;
1168                                btrfs_tree_unlock(mid);
1169                                free_extent_buffer(mid);
1170                        } else {
1171                                orig_slot -=
1172                                        btrfs_header_nritems(left);
1173                                path->slots[level] = orig_slot;
1174                                btrfs_tree_unlock(left);
1175                                free_extent_buffer(left);
1176                        }
1177                        return 0;
1178                }
1179                btrfs_tree_unlock(left);
1180                free_extent_buffer(left);
1181        }
1182        right = read_node_slot(root, parent, pslot + 1);
1183
1184        /*
1185         * then try to empty the right most buffer into the middle
1186         */
1187        if (right) {
1188                u32 right_nr;
1189
1190                btrfs_tree_lock(right);
1191                btrfs_set_lock_blocking(right);
1192
1193                right_nr = btrfs_header_nritems(right);
1194                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1195                        wret = 1;
1196                } else {
1197                        ret = btrfs_cow_block(trans, root, right,
1198                                              parent, pslot + 1,
1199                                              &right);
1200                        if (ret)
1201                                wret = 1;
1202                        else {
1203                                wret = balance_node_right(trans, root,
1204                                                          right, mid);
1205                        }
1206                }
1207                if (wret < 0)
1208                        ret = wret;
1209                if (wret == 0) {
1210                        struct btrfs_disk_key disk_key;
1211
1212                        btrfs_node_key(right, &disk_key, 0);
1213                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
1214                        btrfs_mark_buffer_dirty(parent);
1215
1216                        if (btrfs_header_nritems(mid) <= orig_slot) {
1217                                path->nodes[level] = right;
1218                                path->slots[level + 1] += 1;
1219                                path->slots[level] = orig_slot -
1220                                        btrfs_header_nritems(mid);
1221                                btrfs_tree_unlock(mid);
1222                                free_extent_buffer(mid);
1223                        } else {
1224                                btrfs_tree_unlock(right);
1225                                free_extent_buffer(right);
1226                        }
1227                        return 0;
1228                }
1229                btrfs_tree_unlock(right);
1230                free_extent_buffer(right);
1231        }
1232        return 1;
1233}
1234
1235/*
1236 * readahead one full node of leaves, finding things that are close
1237 * to the block in 'slot', and triggering ra on them.
1238 */
1239static void reada_for_search(struct btrfs_root *root,
1240                             struct btrfs_path *path,
1241                             int level, int slot, u64 objectid)
1242{
1243        struct extent_buffer *node;
1244        struct btrfs_disk_key disk_key;
1245        u32 nritems;
1246        u64 search;
1247        u64 target;
1248        u64 nread = 0;
1249        u64 gen;
1250        int direction = path->reada;
1251        struct extent_buffer *eb;
1252        u32 nr;
1253        u32 blocksize;
1254        u32 nscan = 0;
1255
1256        if (level != 1)
1257                return;
1258
1259        if (!path->nodes[level])
1260                return;
1261
1262        node = path->nodes[level];
1263
1264        search = btrfs_node_blockptr(node, slot);
1265        blocksize = btrfs_level_size(root, level - 1);
1266        eb = btrfs_find_tree_block(root, search, blocksize);
1267        if (eb) {
1268                free_extent_buffer(eb);
1269                return;
1270        }
1271
1272        target = search;
1273
1274        nritems = btrfs_header_nritems(node);
1275        nr = slot;
1276
1277        while (1) {
1278                if (direction < 0) {
1279                        if (nr == 0)
1280                                break;
1281                        nr--;
1282                } else if (direction > 0) {
1283                        nr++;
1284                        if (nr >= nritems)
1285                                break;
1286                }
1287                if (path->reada < 0 && objectid) {
1288                        btrfs_node_key(node, &disk_key, nr);
1289                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
1290                                break;
1291                }
1292                search = btrfs_node_blockptr(node, nr);
1293                if ((search <= target && target - search <= 65536) ||
1294                    (search > target && search - target <= 65536)) {
1295                        gen = btrfs_node_ptr_generation(node, nr);
1296                        readahead_tree_block(root, search, blocksize, gen);
1297                        nread += blocksize;
1298                }
1299                nscan++;
1300                if ((nread > 65536 || nscan > 32))
1301                        break;
1302        }
1303}
1304
1305/*
1306 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1307 * cache
1308 */
1309static noinline int reada_for_balance(struct btrfs_root *root,
1310                                      struct btrfs_path *path, int level)
1311{
1312        int slot;
1313        int nritems;
1314        struct extent_buffer *parent;
1315        struct extent_buffer *eb;
1316        u64 gen;
1317        u64 block1 = 0;
1318        u64 block2 = 0;
1319        int ret = 0;
1320        int blocksize;
1321
1322        parent = path->nodes[level + 1];
1323        if (!parent)
1324                return 0;
1325
1326        nritems = btrfs_header_nritems(parent);
1327        slot = path->slots[level + 1];
1328        blocksize = btrfs_level_size(root, level);
1329
1330        if (slot > 0) {
1331                block1 = btrfs_node_blockptr(parent, slot - 1);
1332                gen = btrfs_node_ptr_generation(parent, slot - 1);
1333                eb = btrfs_find_tree_block(root, block1, blocksize);
1334                if (eb && btrfs_buffer_uptodate(eb, gen))
1335                        block1 = 0;
1336                free_extent_buffer(eb);
1337        }
1338        if (slot + 1 < nritems) {
1339                block2 = btrfs_node_blockptr(parent, slot + 1);
1340                gen = btrfs_node_ptr_generation(parent, slot + 1);
1341                eb = btrfs_find_tree_block(root, block2, blocksize);
1342                if (eb && btrfs_buffer_uptodate(eb, gen))
1343                        block2 = 0;
1344                free_extent_buffer(eb);
1345        }
1346        if (block1 || block2) {
1347                ret = -EAGAIN;
1348
1349                /* release the whole path */
1350                btrfs_release_path(path);
1351
1352                /* read the blocks */
1353                if (block1)
1354                        readahead_tree_block(root, block1, blocksize, 0);
1355                if (block2)
1356                        readahead_tree_block(root, block2, blocksize, 0);
1357
1358                if (block1) {
1359                        eb = read_tree_block(root, block1, blocksize, 0);
1360                        free_extent_buffer(eb);
1361                }
1362                if (block2) {
1363                        eb = read_tree_block(root, block2, blocksize, 0);
1364                        free_extent_buffer(eb);
1365                }
1366        }
1367        return ret;
1368}
1369
1370
1371/*
1372 * when we walk down the tree, it is usually safe to unlock the higher layers
1373 * in the tree.  The exceptions are when our path goes through slot 0, because
1374 * operations on the tree might require changing key pointers higher up in the
1375 * tree.
1376 *
1377 * callers might also have set path->keep_locks, which tells this code to keep
1378 * the lock if the path points to the last slot in the block.  This is part of
1379 * walking through the tree, and selecting the next slot in the higher block.
1380 *
1381 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1382 * if lowest_unlock is 1, level 0 won't be unlocked
1383 */
1384static noinline void unlock_up(struct btrfs_path *path, int level,
1385                               int lowest_unlock)
1386{
1387        int i;
1388        int skip_level = level;
1389        int no_skips = 0;
1390        struct extent_buffer *t;
1391
1392        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1393                if (!path->nodes[i])
1394                        break;
1395                if (!path->locks[i])
1396                        break;
1397                if (!no_skips && path->slots[i] == 0) {
1398                        skip_level = i + 1;
1399                        continue;
1400                }
1401                if (!no_skips && path->keep_locks) {
1402                        u32 nritems;
1403                        t = path->nodes[i];
1404                        nritems = btrfs_header_nritems(t);
1405                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
1406                                skip_level = i + 1;
1407                                continue;
1408                        }
1409                }
1410                if (skip_level < i && i >= lowest_unlock)
1411                        no_skips = 1;
1412
1413                t = path->nodes[i];
1414                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1415                        btrfs_tree_unlock_rw(t, path->locks[i]);
1416                        path->locks[i] = 0;
1417                }
1418        }
1419}
1420
1421/*
1422 * This releases any locks held in the path starting at level and
1423 * going all the way up to the root.
1424 *
1425 * btrfs_search_slot will keep the lock held on higher nodes in a few
1426 * corner cases, such as COW of the block at slot zero in the node.  This
1427 * ignores those rules, and it should only be called when there are no
1428 * more updates to be done higher up in the tree.
1429 */
1430noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1431{
1432        int i;
1433
1434        if (path->keep_locks)
1435                return;
1436
1437        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1438                if (!path->nodes[i])
1439                        continue;
1440                if (!path->locks[i])
1441                        continue;
1442                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1443                path->locks[i] = 0;
1444        }
1445}
1446
1447/*
1448 * helper function for btrfs_search_slot.  The goal is to find a block
1449 * in cache without setting the path to blocking.  If we find the block
1450 * we return zero and the path is unchanged.
1451 *
1452 * If we can't find the block, we set the path blocking and do some
1453 * reada.  -EAGAIN is returned and the search must be repeated.
1454 */
1455static int
1456read_block_for_search(struct btrfs_trans_handle *trans,
1457                       struct btrfs_root *root, struct btrfs_path *p,
1458                       struct extent_buffer **eb_ret, int level, int slot,
1459                       struct btrfs_key *key)
1460{
1461        u64 blocknr;
1462        u64 gen;
1463        u32 blocksize;
1464        struct extent_buffer *b = *eb_ret;
1465        struct extent_buffer *tmp;
1466        int ret;
1467
1468        blocknr = btrfs_node_blockptr(b, slot);
1469        gen = btrfs_node_ptr_generation(b, slot);
1470        blocksize = btrfs_level_size(root, level - 1);
1471
1472        tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1473        if (tmp) {
1474                if (btrfs_buffer_uptodate(tmp, 0)) {
1475                        if (btrfs_buffer_uptodate(tmp, gen)) {
1476                                /*
1477                                 * we found an up to date block without
1478                                 * sleeping, return
1479                                 * right away
1480                                 */
1481                                *eb_ret = tmp;
1482                                return 0;
1483                        }
1484                        /* the pages were up to date, but we failed
1485                         * the generation number check.  Do a full
1486                         * read for the generation number that is correct.
1487                         * We must do this without dropping locks so
1488                         * we can trust our generation number
1489                         */
1490                        free_extent_buffer(tmp);
1491                        btrfs_set_path_blocking(p);
1492
1493                        tmp = read_tree_block(root, blocknr, blocksize, gen);
1494                        if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1495                                *eb_ret = tmp;
1496                                return 0;
1497                        }
1498                        free_extent_buffer(tmp);
1499                        btrfs_release_path(p);
1500                        return -EIO;
1501                }
1502        }
1503
1504        /*
1505         * reduce lock contention at high levels
1506         * of the btree by dropping locks before
1507         * we read.  Don't release the lock on the current
1508         * level because we need to walk this node to figure
1509         * out which blocks to read.
1510         */
1511        btrfs_unlock_up_safe(p, level + 1);
1512        btrfs_set_path_blocking(p);
1513
1514        free_extent_buffer(tmp);
1515        if (p->reada)
1516                reada_for_search(root, p, level, slot, key->objectid);
1517
1518        btrfs_release_path(p);
1519
1520        ret = -EAGAIN;
1521        tmp = read_tree_block(root, blocknr, blocksize, 0);
1522        if (tmp) {
1523                /*
1524                 * If the read above didn't mark this buffer up to date,
1525                 * it will never end up being up to date.  Set ret to EIO now
1526                 * and give up so that our caller doesn't loop forever
1527                 * on our EAGAINs.
1528                 */
1529                if (!btrfs_buffer_uptodate(tmp, 0))
1530                        ret = -EIO;
1531                free_extent_buffer(tmp);
1532        }
1533        return ret;
1534}
1535
1536/*
1537 * helper function for btrfs_search_slot.  This does all of the checks
1538 * for node-level blocks and does any balancing required based on
1539 * the ins_len.
1540 *
1541 * If no extra work was required, zero is returned.  If we had to
1542 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1543 * start over
1544 */
1545static int
1546setup_nodes_for_search(struct btrfs_trans_handle *trans,
1547                       struct btrfs_root *root, struct btrfs_path *p,
1548                       struct extent_buffer *b, int level, int ins_len,
1549                       int *write_lock_level)
1550{
1551        int ret;
1552        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1553            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1554                int sret;
1555
1556                if (*write_lock_level < level + 1) {
1557                        *write_lock_level = level + 1;
1558                        btrfs_release_path(p);
1559                        goto again;
1560                }
1561
1562                sret = reada_for_balance(root, p, level);
1563                if (sret)
1564                        goto again;
1565
1566                btrfs_set_path_blocking(p);
1567                sret = split_node(trans, root, p, level);
1568                btrfs_clear_path_blocking(p, NULL, 0);
1569
1570                BUG_ON(sret > 0);
1571                if (sret) {
1572                        ret = sret;
1573                        goto done;
1574                }
1575                b = p->nodes[level];
1576        } else if (ins_len < 0 && btrfs_header_nritems(b) <
1577                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1578                int sret;
1579
1580                if (*write_lock_level < level + 1) {
1581                        *write_lock_level = level + 1;
1582                        btrfs_release_path(p);
1583                        goto again;
1584                }
1585
1586                sret = reada_for_balance(root, p, level);
1587                if (sret)
1588                        goto again;
1589
1590                btrfs_set_path_blocking(p);
1591                sret = balance_level(trans, root, p, level);
1592                btrfs_clear_path_blocking(p, NULL, 0);
1593
1594                if (sret) {
1595                        ret = sret;
1596                        goto done;
1597                }
1598                b = p->nodes[level];
1599                if (!b) {
1600                        btrfs_release_path(p);
1601                        goto again;
1602                }
1603                BUG_ON(btrfs_header_nritems(b) == 1);
1604        }
1605        return 0;
1606
1607again:
1608        ret = -EAGAIN;
1609done:
1610        return ret;
1611}
1612
1613/*
1614 * look for key in the tree.  path is filled in with nodes along the way
1615 * if key is found, we return zero and you can find the item in the leaf
1616 * level of the path (level 0)
1617 *
1618 * If the key isn't found, the path points to the slot where it should
1619 * be inserted, and 1 is returned.  If there are other errors during the
1620 * search a negative error number is returned.
1621 *
1622 * if ins_len > 0, nodes and leaves will be split as we walk down the
1623 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1624 * possible)
1625 */
1626int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1627                      *root, struct btrfs_key *key, struct btrfs_path *p, int
1628                      ins_len, int cow)
1629{
1630        struct extent_buffer *b;
1631        int slot;
1632        int ret;
1633        int err;
1634        int level;
1635        int lowest_unlock = 1;
1636        int root_lock;
1637        /* everything at write_lock_level or lower must be write locked */
1638        int write_lock_level = 0;
1639        u8 lowest_level = 0;
1640
1641        lowest_level = p->lowest_level;
1642        WARN_ON(lowest_level && ins_len > 0);
1643        WARN_ON(p->nodes[0] != NULL);
1644
1645        if (ins_len < 0) {
1646                lowest_unlock = 2;
1647
1648                /* when we are removing items, we might have to go up to level
1649                 * two as we update tree pointers  Make sure we keep write
1650                 * for those levels as well
1651                 */
1652                write_lock_level = 2;
1653        } else if (ins_len > 0) {
1654                /*
1655                 * for inserting items, make sure we have a write lock on
1656                 * level 1 so we can update keys
1657                 */
1658                write_lock_level = 1;
1659        }
1660
1661        if (!cow)
1662                write_lock_level = -1;
1663
1664        if (cow && (p->keep_locks || p->lowest_level))
1665                write_lock_level = BTRFS_MAX_LEVEL;
1666
1667again:
1668        /*
1669         * we try very hard to do read locks on the root
1670         */
1671        root_lock = BTRFS_READ_LOCK;
1672        level = 0;
1673        if (p->search_commit_root) {
1674                /*
1675                 * the commit roots are read only
1676                 * so we always do read locks
1677                 */
1678                b = root->commit_root;
1679                extent_buffer_get(b);
1680                level = btrfs_header_level(b);
1681                if (!p->skip_locking)
1682                        btrfs_tree_read_lock(b);
1683        } else {
1684                if (p->skip_locking) {
1685                        b = btrfs_root_node(root);
1686                        level = btrfs_header_level(b);
1687                } else {
1688                        /* we don't know the level of the root node
1689                         * until we actually have it read locked
1690                         */
1691                        b = btrfs_read_lock_root_node(root);
1692                        level = btrfs_header_level(b);
1693                        if (level <= write_lock_level) {
1694                                /* whoops, must trade for write lock */
1695                                btrfs_tree_read_unlock(b);
1696                                free_extent_buffer(b);
1697                                b = btrfs_lock_root_node(root);
1698                                root_lock = BTRFS_WRITE_LOCK;
1699
1700                                /* the level might have changed, check again */
1701                                level = btrfs_header_level(b);
1702                        }
1703                }
1704        }
1705        p->nodes[level] = b;
1706        if (!p->skip_locking)
1707                p->locks[level] = root_lock;
1708
1709        while (b) {
1710                level = btrfs_header_level(b);
1711
1712                /*
1713                 * setup the path here so we can release it under lock
1714                 * contention with the cow code
1715                 */
1716                if (cow) {
1717                        /*
1718                         * if we don't really need to cow this block
1719                         * then we don't want to set the path blocking,
1720                         * so we test it here
1721                         */
1722                        if (!should_cow_block(trans, root, b))
1723                                goto cow_done;
1724
1725                        btrfs_set_path_blocking(p);
1726
1727                        /*
1728                         * must have write locks on this node and the
1729                         * parent
1730                         */
1731                        if (level + 1 > write_lock_level) {
1732                                write_lock_level = level + 1;
1733                                btrfs_release_path(p);
1734                                goto again;
1735                        }
1736
1737                        err = btrfs_cow_block(trans, root, b,
1738                                              p->nodes[level + 1],
1739                                              p->slots[level + 1], &b);
1740                        if (err) {
1741                                ret = err;
1742                                goto done;
1743                        }
1744                }
1745cow_done:
1746                BUG_ON(!cow && ins_len);
1747
1748                p->nodes[level] = b;
1749                btrfs_clear_path_blocking(p, NULL, 0);
1750
1751                /*
1752                 * we have a lock on b and as long as we aren't changing
1753                 * the tree, there is no way to for the items in b to change.
1754                 * It is safe to drop the lock on our parent before we
1755                 * go through the expensive btree search on b.
1756                 *
1757                 * If cow is true, then we might be changing slot zero,
1758                 * which may require changing the parent.  So, we can't
1759                 * drop the lock until after we know which slot we're
1760                 * operating on.
1761                 */
1762                if (!cow)
1763                        btrfs_unlock_up_safe(p, level + 1);
1764
1765                ret = bin_search(b, key, level, &slot);
1766
1767                if (level != 0) {
1768                        int dec = 0;
1769                        if (ret && slot > 0) {
1770                                dec = 1;
1771                                slot -= 1;
1772                        }
1773                        p->slots[level] = slot;
1774                        err = setup_nodes_for_search(trans, root, p, b, level,
1775                                             ins_len, &write_lock_level);
1776                        if (err == -EAGAIN)
1777                                goto again;
1778                        if (err) {
1779                                ret = err;
1780                                goto done;
1781                        }
1782                        b = p->nodes[level];
1783                        slot = p->slots[level];
1784
1785                        /*
1786                         * slot 0 is special, if we change the key
1787                         * we have to update the parent pointer
1788                         * which means we must have a write lock
1789                         * on the parent
1790                         */
1791                        if (slot == 0 && cow &&
1792                            write_lock_level < level + 1) {
1793                                write_lock_level = level + 1;
1794                                btrfs_release_path(p);
1795                                goto again;
1796                        }
1797
1798                        unlock_up(p, level, lowest_unlock);
1799
1800                        if (level == lowest_level) {
1801                                if (dec)
1802                                        p->slots[level]++;
1803                                goto done;
1804                        }
1805
1806                        err = read_block_for_search(trans, root, p,
1807                                                    &b, level, slot, key);
1808                        if (err == -EAGAIN)
1809                                goto again;
1810                        if (err) {
1811                                ret = err;
1812                                goto done;
1813                        }
1814
1815                        if (!p->skip_locking) {
1816                                level = btrfs_header_level(b);
1817                                if (level <= write_lock_level) {
1818                                        err = btrfs_try_tree_write_lock(b);
1819                                        if (!err) {
1820                                                btrfs_set_path_blocking(p);
1821                                                btrfs_tree_lock(b);
1822                                                btrfs_clear_path_blocking(p, b,
1823                                                                  BTRFS_WRITE_LOCK);
1824                                        }
1825                                        p->locks[level] = BTRFS_WRITE_LOCK;
1826                                } else {
1827                                        err = btrfs_try_tree_read_lock(b);
1828                                        if (!err) {
1829                                                btrfs_set_path_blocking(p);
1830                                                btrfs_tree_read_lock(b);
1831                                                btrfs_clear_path_blocking(p, b,
1832                                                                  BTRFS_READ_LOCK);
1833                                        }
1834                                        p->locks[level] = BTRFS_READ_LOCK;
1835                                }
1836                                p->nodes[level] = b;
1837                        }
1838                } else {
1839                        p->slots[level] = slot;
1840                        if (ins_len > 0 &&
1841                            btrfs_leaf_free_space(root, b) < ins_len) {
1842                                if (write_lock_level < 1) {
1843                                        write_lock_level = 1;
1844                                        btrfs_release_path(p);
1845                                        goto again;
1846                                }
1847
1848                                btrfs_set_path_blocking(p);
1849                                err = split_leaf(trans, root, key,
1850                                                 p, ins_len, ret == 0);
1851                                btrfs_clear_path_blocking(p, NULL, 0);
1852
1853                                BUG_ON(err > 0);
1854                                if (err) {
1855                                        ret = err;
1856                                        goto done;
1857                                }
1858                        }
1859                        if (!p->search_for_split)
1860                                unlock_up(p, level, lowest_unlock);
1861                        goto done;
1862                }
1863        }
1864        ret = 1;
1865done:
1866        /*
1867         * we don't really know what they plan on doing with the path
1868         * from here on, so for now just mark it as blocking
1869         */
1870        if (!p->leave_spinning)
1871                btrfs_set_path_blocking(p);
1872        if (ret < 0)
1873                btrfs_release_path(p);
1874        return ret;
1875}
1876
1877/*
1878 * adjust the pointers going up the tree, starting at level
1879 * making sure the right key of each node is points to 'key'.
1880 * This is used after shifting pointers to the left, so it stops
1881 * fixing up pointers when a given leaf/node is not in slot 0 of the
1882 * higher levels
1883 *
1884 * If this fails to write a tree block, it returns -1, but continues
1885 * fixing up the blocks in ram so the tree is consistent.
1886 */
1887static int fixup_low_keys(struct btrfs_trans_handle *trans,
1888                          struct btrfs_root *root, struct btrfs_path *path,
1889                          struct btrfs_disk_key *key, int level)
1890{
1891        int i;
1892        int ret = 0;
1893        struct extent_buffer *t;
1894
1895        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1896                int tslot = path->slots[i];
1897                if (!path->nodes[i])
1898                        break;
1899                t = path->nodes[i];
1900                btrfs_set_node_key(t, key, tslot);
1901                btrfs_mark_buffer_dirty(path->nodes[i]);
1902                if (tslot != 0)
1903                        break;
1904        }
1905        return ret;
1906}
1907
1908/*
1909 * update item key.
1910 *
1911 * This function isn't completely safe. It's the caller's responsibility
1912 * that the new key won't break the order
1913 */
1914int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1915                            struct btrfs_root *root, struct btrfs_path *path,
1916                            struct btrfs_key *new_key)
1917{
1918        struct btrfs_disk_key disk_key;
1919        struct extent_buffer *eb;
1920        int slot;
1921
1922        eb = path->nodes[0];
1923        slot = path->slots[0];
1924        if (slot > 0) {
1925                btrfs_item_key(eb, &disk_key, slot - 1);
1926                if (comp_keys(&disk_key, new_key) >= 0)
1927                        return -1;
1928        }
1929        if (slot < btrfs_header_nritems(eb) - 1) {
1930                btrfs_item_key(eb, &disk_key, slot + 1);
1931                if (comp_keys(&disk_key, new_key) <= 0)
1932                        return -1;
1933        }
1934
1935        btrfs_cpu_key_to_disk(&disk_key, new_key);
1936        btrfs_set_item_key(eb, &disk_key, slot);
1937        btrfs_mark_buffer_dirty(eb);
1938        if (slot == 0)
1939                fixup_low_keys(trans, root, path, &disk_key, 1);
1940        return 0;
1941}
1942
1943/*
1944 * try to push data from one node into the next node left in the
1945 * tree.
1946 *
1947 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1948 * error, and > 0 if there was no room in the left hand block.
1949 */
1950static int push_node_left(struct btrfs_trans_handle *trans,
1951                          struct btrfs_root *root, struct extent_buffer *dst,
1952                          struct extent_buffer *src, int empty)
1953{
1954        int push_items = 0;
1955        int src_nritems;
1956        int dst_nritems;
1957        int ret = 0;
1958
1959        src_nritems = btrfs_header_nritems(src);
1960        dst_nritems = btrfs_header_nritems(dst);
1961        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1962        WARN_ON(btrfs_header_generation(src) != trans->transid);
1963        WARN_ON(btrfs_header_generation(dst) != trans->transid);
1964
1965        if (!empty && src_nritems <= 8)
1966                return 1;
1967
1968        if (push_items <= 0)
1969                return 1;
1970
1971        if (empty) {
1972                push_items = min(src_nritems, push_items);
1973                if (push_items < src_nritems) {
1974                        /* leave at least 8 pointers in the node if
1975                         * we aren't going to empty it
1976                         */
1977                        if (src_nritems - push_items < 8) {
1978                                if (push_items <= 8)
1979                                        return 1;
1980                                push_items -= 8;
1981                        }
1982                }
1983        } else
1984                push_items = min(src_nritems - 8, push_items);
1985
1986        copy_extent_buffer(dst, src,
1987                           btrfs_node_key_ptr_offset(dst_nritems),
1988                           btrfs_node_key_ptr_offset(0),
1989                           push_items * sizeof(struct btrfs_key_ptr));
1990
1991        if (push_items < src_nritems) {
1992                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1993                                      btrfs_node_key_ptr_offset(push_items),
1994                                      (src_nritems - push_items) *
1995                                      sizeof(struct btrfs_key_ptr));
1996        }
1997        btrfs_set_header_nritems(src, src_nritems - push_items);
1998        btrfs_set_header_nritems(dst, dst_nritems + push_items);
1999        btrfs_mark_buffer_dirty(src);
2000        btrfs_mark_buffer_dirty(dst);
2001
2002        return ret;
2003}
2004
2005/*
2006 * try to push data from one node into the next node right in the
2007 * tree.
2008 *
2009 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2010 * error, and > 0 if there was no room in the right hand block.
2011 *
2012 * this will  only push up to 1/2 the contents of the left node over
2013 */
2014static int balance_node_right(struct btrfs_trans_handle *trans,
2015                              struct btrfs_root *root,
2016                              struct extent_buffer *dst,
2017                              struct extent_buffer *src)
2018{
2019        int push_items = 0;
2020        int max_push;
2021        int src_nritems;
2022        int dst_nritems;
2023        int ret = 0;
2024
2025        WARN_ON(btrfs_header_generation(src) != trans->transid);
2026        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2027
2028        src_nritems = btrfs_header_nritems(src);
2029        dst_nritems = btrfs_header_nritems(dst);
2030        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2031        if (push_items <= 0)
2032                return 1;
2033
2034        if (src_nritems < 4)
2035                return 1;
2036
2037        max_push = src_nritems / 2 + 1;
2038        /* don't try to empty the node */
2039        if (max_push >= src_nritems)
2040                return 1;
2041
2042        if (max_push < push_items)
2043                push_items = max_push;
2044
2045        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2046                                      btrfs_node_key_ptr_offset(0),
2047                                      (dst_nritems) *
2048                                      sizeof(struct btrfs_key_ptr));
2049
2050        copy_extent_buffer(dst, src,
2051                           btrfs_node_key_ptr_offset(0),
2052                           btrfs_node_key_ptr_offset(src_nritems - push_items),
2053                           push_items * sizeof(struct btrfs_key_ptr));
2054
2055        btrfs_set_header_nritems(src, src_nritems - push_items);
2056        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2057
2058        btrfs_mark_buffer_dirty(src);
2059        btrfs_mark_buffer_dirty(dst);
2060
2061        return ret;
2062}
2063
2064/*
2065 * helper function to insert a new root level in the tree.
2066 * A new node is allocated, and a single item is inserted to
2067 * point to the existing root
2068 *
2069 * returns zero on success or < 0 on failure.
2070 */
2071static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2072                           struct btrfs_root *root,
2073                           struct btrfs_path *path, int level)
2074{
2075        u64 lower_gen;
2076        struct extent_buffer *lower;
2077        struct extent_buffer *c;
2078        struct extent_buffer *old;
2079        struct btrfs_disk_key lower_key;
2080
2081        BUG_ON(path->nodes[level]);
2082        BUG_ON(path->nodes[level-1] != root->node);
2083
2084        lower = path->nodes[level-1];
2085        if (level == 1)
2086                btrfs_item_key(lower, &lower_key, 0);
2087        else
2088                btrfs_node_key(lower, &lower_key, 0);
2089
2090        c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2091                                   root->root_key.objectid, &lower_key,
2092                                   level, root->node->start, 0);
2093        if (IS_ERR(c))
2094                return PTR_ERR(c);
2095
2096        root_add_used(root, root->nodesize);
2097
2098        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2099        btrfs_set_header_nritems(c, 1);
2100        btrfs_set_header_level(c, level);
2101        btrfs_set_header_bytenr(c, c->start);
2102        btrfs_set_header_generation(c, trans->transid);
2103        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2104        btrfs_set_header_owner(c, root->root_key.objectid);
2105
2106        write_extent_buffer(c, root->fs_info->fsid,
2107                            (unsigned long)btrfs_header_fsid(c),
2108                            BTRFS_FSID_SIZE);
2109
2110        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2111                            (unsigned long)btrfs_header_chunk_tree_uuid(c),
2112                            BTRFS_UUID_SIZE);
2113
2114        btrfs_set_node_key(c, &lower_key, 0);
2115        btrfs_set_node_blockptr(c, 0, lower->start);
2116        lower_gen = btrfs_header_generation(lower);
2117        WARN_ON(lower_gen != trans->transid);
2118
2119        btrfs_set_node_ptr_generation(c, 0, lower_gen);
2120
2121        btrfs_mark_buffer_dirty(c);
2122
2123        old = root->node;
2124        rcu_assign_pointer(root->node, c);
2125
2126        /* the super has an extra ref to root->node */
2127        free_extent_buffer(old);
2128
2129        add_root_to_dirty_list(root);
2130        extent_buffer_get(c);
2131        path->nodes[level] = c;
2132        path->locks[level] = BTRFS_WRITE_LOCK;
2133        path->slots[level] = 0;
2134        return 0;
2135}
2136
2137/*
2138 * worker function to insert a single pointer in a node.
2139 * the node should have enough room for the pointer already
2140 *
2141 * slot and level indicate where you want the key to go, and
2142 * blocknr is the block the key points to.
2143 *
2144 * returns zero on success and < 0 on any error
2145 */
2146static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2147                      *root, struct btrfs_path *path, struct btrfs_disk_key
2148                      *key, u64 bytenr, int slot, int level)
2149{
2150        struct extent_buffer *lower;
2151        int nritems;
2152
2153        BUG_ON(!path->nodes[level]);
2154        btrfs_assert_tree_locked(path->nodes[level]);
2155        lower = path->nodes[level];
2156        nritems = btrfs_header_nritems(lower);
2157        BUG_ON(slot > nritems);
2158        if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2159                BUG();
2160        if (slot != nritems) {
2161                memmove_extent_buffer(lower,
2162                              btrfs_node_key_ptr_offset(slot + 1),
2163                              btrfs_node_key_ptr_offset(slot),
2164                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
2165        }
2166        btrfs_set_node_key(lower, key, slot);
2167        btrfs_set_node_blockptr(lower, slot, bytenr);
2168        WARN_ON(trans->transid == 0);
2169        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2170        btrfs_set_header_nritems(lower, nritems + 1);
2171        btrfs_mark_buffer_dirty(lower);
2172        return 0;
2173}
2174
2175/*
2176 * split the node at the specified level in path in two.
2177 * The path is corrected to point to the appropriate node after the split
2178 *
2179 * Before splitting this tries to make some room in the node by pushing
2180 * left and right, if either one works, it returns right away.
2181 *
2182 * returns 0 on success and < 0 on failure
2183 */
2184static noinline int split_node(struct btrfs_trans_handle *trans,
2185                               struct btrfs_root *root,
2186                               struct btrfs_path *path, int level)
2187{
2188        struct extent_buffer *c;
2189        struct extent_buffer *split;
2190        struct btrfs_disk_key disk_key;
2191        int mid;
2192        int ret;
2193        int wret;
2194        u32 c_nritems;
2195
2196        c = path->nodes[level];
2197        WARN_ON(btrfs_header_generation(c) != trans->transid);
2198        if (c == root->node) {
2199                /* trying to split the root, lets make a new one */
2200                ret = insert_new_root(trans, root, path, level + 1);
2201                if (ret)
2202                        return ret;
2203        } else {
2204                ret = push_nodes_for_insert(trans, root, path, level);
2205                c = path->nodes[level];
2206                if (!ret && btrfs_header_nritems(c) <
2207                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2208                        return 0;
2209                if (ret < 0)
2210                        return ret;
2211        }
2212
2213        c_nritems = btrfs_header_nritems(c);
2214        mid = (c_nritems + 1) / 2;
2215        btrfs_node_key(c, &disk_key, mid);
2216
2217        split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2218                                        root->root_key.objectid,
2219                                        &disk_key, level, c->start, 0);
2220        if (IS_ERR(split))
2221                return PTR_ERR(split);
2222
2223        root_add_used(root, root->nodesize);
2224
2225        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2226        btrfs_set_header_level(split, btrfs_header_level(c));
2227        btrfs_set_header_bytenr(split, split->start);
2228        btrfs_set_header_generation(split, trans->transid);
2229        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2230        btrfs_set_header_owner(split, root->root_key.objectid);
2231        write_extent_buffer(split, root->fs_info->fsid,
2232                            (unsigned long)btrfs_header_fsid(split),
2233                            BTRFS_FSID_SIZE);
2234        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2235                            (unsigned long)btrfs_header_chunk_tree_uuid(split),
2236                            BTRFS_UUID_SIZE);
2237
2238
2239        copy_extent_buffer(split, c,
2240                           btrfs_node_key_ptr_offset(0),
2241                           btrfs_node_key_ptr_offset(mid),
2242                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2243        btrfs_set_header_nritems(split, c_nritems - mid);
2244        btrfs_set_header_nritems(c, mid);
2245        ret = 0;
2246
2247        btrfs_mark_buffer_dirty(c);
2248        btrfs_mark_buffer_dirty(split);
2249
2250        wret = insert_ptr(trans, root, path, &disk_key, split->start,
2251                          path->slots[level + 1] + 1,
2252                          level + 1);
2253        if (wret)
2254                ret = wret;
2255
2256        if (path->slots[level] >= mid) {
2257                path->slots[level] -= mid;
2258                btrfs_tree_unlock(c);
2259                free_extent_buffer(c);
2260                path->nodes[level] = split;
2261                path->slots[level + 1] += 1;
2262        } else {
2263                btrfs_tree_unlock(split);
2264                free_extent_buffer(split);
2265        }
2266        return ret;
2267}
2268
2269/*
2270 * how many bytes are required to store the items in a leaf.  start
2271 * and nr indicate which items in the leaf to check.  This totals up the
2272 * space used both by the item structs and the item data
2273 */
2274static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2275{
2276        int data_len;
2277        int nritems = btrfs_header_nritems(l);
2278        int end = min(nritems, start + nr) - 1;
2279
2280        if (!nr)
2281                return 0;
2282        data_len = btrfs_item_end_nr(l, start);
2283        data_len = data_len - btrfs_item_offset_nr(l, end);
2284        data_len += sizeof(struct btrfs_item) * nr;
2285        WARN_ON(data_len < 0);
2286        return data_len;
2287}
2288
2289/*
2290 * The space between the end of the leaf items and
2291 * the start of the leaf data.  IOW, how much room
2292 * the leaf has left for both items and data
2293 */
2294noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2295                                   struct extent_buffer *leaf)
2296{
2297        int nritems = btrfs_header_nritems(leaf);
2298        int ret;
2299        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2300        if (ret < 0) {
2301                printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2302                       "used %d nritems %d\n",
2303                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2304                       leaf_space_used(leaf, 0, nritems), nritems);
2305        }
2306        return ret;
2307}
2308
2309/*
2310 * min slot controls the lowest index we're willing to push to the
2311 * right.  We'll push up to and including min_slot, but no lower
2312 */
2313static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2314                                      struct btrfs_root *root,
2315                                      struct btrfs_path *path,
2316                                      int data_size, int empty,
2317                                      struct extent_buffer *right,
2318                                      int free_space, u32 left_nritems,
2319                                      u32 min_slot)
2320{
2321        struct extent_buffer *left = path->nodes[0];
2322        struct extent_buffer *upper = path->nodes[1];
2323        struct btrfs_disk_key disk_key;
2324        int slot;
2325        u32 i;
2326        int push_space = 0;
2327        int push_items = 0;
2328        struct btrfs_item *item;
2329        u32 nr;
2330        u32 right_nritems;
2331        u32 data_end;
2332        u32 this_item_size;
2333
2334        if (empty)
2335                nr = 0;
2336        else
2337                nr = max_t(u32, 1, min_slot);
2338
2339        if (path->slots[0] >= left_nritems)
2340                push_space += data_size;
2341
2342        slot = path->slots[1];
2343        i = left_nritems - 1;
2344        while (i >= nr) {
2345                item = btrfs_item_nr(left, i);
2346
2347                if (!empty && push_items > 0) {
2348                        if (path->slots[0] > i)
2349                                break;
2350                        if (path->slots[0] == i) {
2351                                int space = btrfs_leaf_free_space(root, left);
2352                                if (space + push_space * 2 > free_space)
2353                                        break;
2354                        }
2355                }
2356
2357                if (path->slots[0] == i)
2358                        push_space += data_size;
2359
2360                this_item_size = btrfs_item_size(left, item);
2361                if (this_item_size + sizeof(*item) + push_space > free_space)
2362                        break;
2363
2364                push_items++;
2365                push_space += this_item_size + sizeof(*item);
2366                if (i == 0)
2367                        break;
2368                i--;
2369        }
2370
2371        if (push_items == 0)
2372                goto out_unlock;
2373
2374        if (!empty && push_items == left_nritems)
2375                WARN_ON(1);
2376
2377        /* push left to right */
2378        right_nritems = btrfs_header_nritems(right);
2379
2380        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2381        push_space -= leaf_data_end(root, left);
2382
2383        /* make room in the right data area */
2384        data_end = leaf_data_end(root, right);
2385        memmove_extent_buffer(right,
2386                              btrfs_leaf_data(right) + data_end - push_space,
2387                              btrfs_leaf_data(right) + data_end,
2388                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
2389
2390        /* copy from the left data area */
2391        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2392                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2393                     btrfs_leaf_data(left) + leaf_data_end(root, left),
2394                     push_space);
2395
2396        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2397                              btrfs_item_nr_offset(0),
2398                              right_nritems * sizeof(struct btrfs_item));
2399
2400        /* copy the items from left to right */
2401        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2402                   btrfs_item_nr_offset(left_nritems - push_items),
2403                   push_items * sizeof(struct btrfs_item));
2404
2405        /* update the item pointers */
2406        right_nritems += push_items;
2407        btrfs_set_header_nritems(right, right_nritems);
2408        push_space = BTRFS_LEAF_DATA_SIZE(root);
2409        for (i = 0; i < right_nritems; i++) {
2410                item = btrfs_item_nr(right, i);
2411                push_space -= btrfs_item_size(right, item);
2412                btrfs_set_item_offset(right, item, push_space);
2413        }
2414
2415        left_nritems -= push_items;
2416        btrfs_set_header_nritems(left, left_nritems);
2417
2418        if (left_nritems)
2419                btrfs_mark_buffer_dirty(left);
2420        else
2421                clean_tree_block(trans, root, left);
2422
2423        btrfs_mark_buffer_dirty(right);
2424
2425        btrfs_item_key(right, &disk_key, 0);
2426        btrfs_set_node_key(upper, &disk_key, slot + 1);
2427        btrfs_mark_buffer_dirty(upper);
2428
2429        /* then fixup the leaf pointer in the path */
2430        if (path->slots[0] >= left_nritems) {
2431                path->slots[0] -= left_nritems;
2432                if (btrfs_header_nritems(path->nodes[0]) == 0)
2433                        clean_tree_block(trans, root, path->nodes[0]);
2434                btrfs_tree_unlock(path->nodes[0]);
2435                free_extent_buffer(path->nodes[0]);
2436                path->nodes[0] = right;
2437                path->slots[1] += 1;
2438        } else {
2439                btrfs_tree_unlock(right);
2440                free_extent_buffer(right);
2441        }
2442        return 0;
2443
2444out_unlock:
2445        btrfs_tree_unlock(right);
2446        free_extent_buffer(right);
2447        return 1;
2448}
2449
2450/*
2451 * push some data in the path leaf to the right, trying to free up at
2452 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2453 *
2454 * returns 1 if the push failed because the other node didn't have enough
2455 * room, 0 if everything worked out and < 0 if there were major errors.
2456 *
2457 * this will push starting from min_slot to the end of the leaf.  It won't
2458 * push any slot lower than min_slot
2459 */
2460static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2461                           *root, struct btrfs_path *path,
2462                           int min_data_size, int data_size,
2463                           int empty, u32 min_slot)
2464{
2465        struct extent_buffer *left = path->nodes[0];
2466        struct extent_buffer *right;
2467        struct extent_buffer *upper;
2468        int slot;
2469        int free_space;
2470        u32 left_nritems;
2471        int ret;
2472
2473        if (!path->nodes[1])
2474                return 1;
2475
2476        slot = path->slots[1];
2477        upper = path->nodes[1];
2478        if (slot >= btrfs_header_nritems(upper) - 1)
2479                return 1;
2480
2481        btrfs_assert_tree_locked(path->nodes[1]);
2482
2483        right = read_node_slot(root, upper, slot + 1);
2484        if (right == NULL)
2485                return 1;
2486
2487        btrfs_tree_lock(right);
2488        btrfs_set_lock_blocking(right);
2489
2490        free_space = btrfs_leaf_free_space(root, right);
2491        if (free_space < data_size)
2492                goto out_unlock;
2493
2494        /* cow and double check */
2495        ret = btrfs_cow_block(trans, root, right, upper,
2496                              slot + 1, &right);
2497        if (ret)
2498                goto out_unlock;
2499
2500        free_space = btrfs_leaf_free_space(root, right);
2501        if (free_space < data_size)
2502                goto out_unlock;
2503
2504        left_nritems = btrfs_header_nritems(left);
2505        if (left_nritems == 0)
2506                goto out_unlock;
2507
2508        return __push_leaf_right(trans, root, path, min_data_size, empty,
2509                                right, free_space, left_nritems, min_slot);
2510out_unlock:
2511        btrfs_tree_unlock(right);
2512        free_extent_buffer(right);
2513        return 1;
2514}
2515
2516/*
2517 * push some data in the path leaf to the left, trying to free up at
2518 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2519 *
2520 * max_slot can put a limit on how far into the leaf we'll push items.  The
2521 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2522 * items
2523 */
2524static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2525                                     struct btrfs_root *root,
2526                                     struct btrfs_path *path, int data_size,
2527                                     int empty, struct extent_buffer *left,
2528                                     int free_space, u32 right_nritems,
2529                                     u32 max_slot)
2530{
2531        struct btrfs_disk_key disk_key;
2532        struct extent_buffer *right = path->nodes[0];
2533        int i;
2534        int push_space = 0;
2535        int push_items = 0;
2536        struct btrfs_item *item;
2537        u32 old_left_nritems;
2538        u32 nr;
2539        int ret = 0;
2540        int wret;
2541        u32 this_item_size;
2542        u32 old_left_item_size;
2543
2544        if (empty)
2545                nr = min(right_nritems, max_slot);
2546        else
2547                nr = min(right_nritems - 1, max_slot);
2548
2549        for (i = 0; i < nr; i++) {
2550                item = btrfs_item_nr(right, i);
2551
2552                if (!empty && push_items > 0) {
2553                        if (path->slots[0] < i)
2554                                break;
2555                        if (path->slots[0] == i) {
2556                                int space = btrfs_leaf_free_space(root, right);
2557                                if (space + push_space * 2 > free_space)
2558                                        break;
2559                        }
2560                }
2561
2562                if (path->slots[0] == i)
2563                        push_space += data_size;
2564
2565                this_item_size = btrfs_item_size(right, item);
2566                if (this_item_size + sizeof(*item) + push_space > free_space)
2567                        break;
2568
2569                push_items++;
2570                push_space += this_item_size + sizeof(*item);
2571        }
2572
2573        if (push_items == 0) {
2574                ret = 1;
2575                goto out;
2576        }
2577        if (!empty && push_items == btrfs_header_nritems(right))
2578                WARN_ON(1);
2579
2580        /* push data from right to left */
2581        copy_extent_buffer(left, right,
2582                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
2583                           btrfs_item_nr_offset(0),
2584                           push_items * sizeof(struct btrfs_item));
2585
2586        push_space = BTRFS_LEAF_DATA_SIZE(root) -
2587                     btrfs_item_offset_nr(right, push_items - 1);
2588
2589        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2590                     leaf_data_end(root, left) - push_space,
2591                     btrfs_leaf_data(right) +
2592                     btrfs_item_offset_nr(right, push_items - 1),
2593                     push_space);
2594        old_left_nritems = btrfs_header_nritems(left);
2595        BUG_ON(old_left_nritems <= 0);
2596
2597        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2598        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2599                u32 ioff;
2600
2601                item = btrfs_item_nr(left, i);
2602
2603                ioff = btrfs_item_offset(left, item);
2604                btrfs_set_item_offset(left, item,
2605                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2606        }
2607        btrfs_set_header_nritems(left, old_left_nritems + push_items);
2608
2609        /* fixup right node */
2610        if (push_items > right_nritems) {
2611                printk(KERN_CRIT "push items %d nr %u\n", push_items,
2612                       right_nritems);
2613                WARN_ON(1);
2614        }
2615
2616        if (push_items < right_nritems) {
2617                push_space = btrfs_item_offset_nr(right, push_items - 1) -
2618                                                  leaf_data_end(root, right);
2619                memmove_extent_buffer(right, btrfs_leaf_data(right) +
2620                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2621                                      btrfs_leaf_data(right) +
2622                                      leaf_data_end(root, right), push_space);
2623
2624                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2625                              btrfs_item_nr_offset(push_items),
2626                             (btrfs_header_nritems(right) - push_items) *
2627                             sizeof(struct btrfs_item));
2628        }
2629        right_nritems -= push_items;
2630        btrfs_set_header_nritems(right, right_nritems);
2631        push_space = BTRFS_LEAF_DATA_SIZE(root);
2632        for (i = 0; i < right_nritems; i++) {
2633                item = btrfs_item_nr(right, i);
2634
2635                push_space = push_space - btrfs_item_size(right, item);
2636                btrfs_set_item_offset(right, item, push_space);
2637        }
2638
2639        btrfs_mark_buffer_dirty(left);
2640        if (right_nritems)
2641                btrfs_mark_buffer_dirty(right);
2642        else
2643                clean_tree_block(trans, root, right);
2644
2645        btrfs_item_key(right, &disk_key, 0);
2646        wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2647        if (wret)
2648                ret = wret;
2649
2650        /* then fixup the leaf pointer in the path */
2651        if (path->slots[0] < push_items) {
2652                path->slots[0] += old_left_nritems;
2653                btrfs_tree_unlock(path->nodes[0]);
2654                free_extent_buffer(path->nodes[0]);
2655                path->nodes[0] = left;
2656                path->slots[1] -= 1;
2657        } else {
2658                btrfs_tree_unlock(left);
2659                free_extent_buffer(left);
2660                path->slots[0] -= push_items;
2661        }
2662        BUG_ON(path->slots[0] < 0);
2663        return ret;
2664out:
2665        btrfs_tree_unlock(left);
2666        free_extent_buffer(left);
2667        return ret;
2668}
2669
2670/*
2671 * push some data in the path leaf to the left, trying to free up at
2672 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2673 *
2674 * max_slot can put a limit on how far into the leaf we'll push items.  The
2675 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2676 * items
2677 */
2678static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2679                          *root, struct btrfs_path *path, int min_data_size,
2680                          int data_size, int empty, u32 max_slot)
2681{
2682        struct extent_buffer *right = path->nodes[0];
2683        struct extent_buffer *left;
2684        int slot;
2685        int free_space;
2686        u32 right_nritems;
2687        int ret = 0;
2688
2689        slot = path->slots[1];
2690        if (slot == 0)
2691                return 1;
2692        if (!path->nodes[1])
2693                return 1;
2694
2695        right_nritems = btrfs_header_nritems(right);
2696        if (right_nritems == 0)
2697                return 1;
2698
2699        btrfs_assert_tree_locked(path->nodes[1]);
2700
2701        left = read_node_slot(root, path->nodes[1], slot - 1);
2702        if (left == NULL)
2703                return 1;
2704
2705        btrfs_tree_lock(left);
2706        btrfs_set_lock_blocking(left);
2707
2708        free_space = btrfs_leaf_free_space(root, left);
2709        if (free_space < data_size) {
2710                ret = 1;
2711                goto out;
2712        }
2713
2714        /* cow and double check */
2715        ret = btrfs_cow_block(trans, root, left,
2716                              path->nodes[1], slot - 1, &left);
2717        if (ret) {
2718                /* we hit -ENOSPC, but it isn't fatal here */
2719                ret = 1;
2720                goto out;
2721        }
2722
2723        free_space = btrfs_leaf_free_space(root, left);
2724        if (free_space < data_size) {
2725                ret = 1;
2726                goto out;
2727        }
2728
2729        return __push_leaf_left(trans, root, path, min_data_size,
2730                               empty, left, free_space, right_nritems,
2731                               max_slot);
2732out:
2733        btrfs_tree_unlock(left);
2734        free_extent_buffer(left);
2735        return ret;
2736}
2737
2738/*
2739 * split the path's leaf in two, making sure there is at least data_size
2740 * available for the resulting leaf level of the path.
2741 *
2742 * returns 0 if all went well and < 0 on failure.
2743 */
2744static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2745                               struct btrfs_root *root,
2746                               struct btrfs_path *path,
2747                               struct extent_buffer *l,
2748                               struct extent_buffer *right,
2749                               int slot, int mid, int nritems)
2750{
2751        int data_copy_size;
2752        int rt_data_off;
2753        int i;
2754        int ret = 0;
2755        int wret;
2756        struct btrfs_disk_key disk_key;
2757
2758        nritems = nritems - mid;
2759        btrfs_set_header_nritems(right, nritems);
2760        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2761
2762        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2763                           btrfs_item_nr_offset(mid),
2764                           nritems * sizeof(struct btrfs_item));
2765
2766        copy_extent_buffer(right, l,
2767                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2768                     data_copy_size, btrfs_leaf_data(l) +
2769                     leaf_data_end(root, l), data_copy_size);
2770
2771        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2772                      btrfs_item_end_nr(l, mid);
2773
2774        for (i = 0; i < nritems; i++) {
2775                struct btrfs_item *item = btrfs_item_nr(right, i);
2776                u32 ioff;
2777
2778                ioff = btrfs_item_offset(right, item);
2779                btrfs_set_item_offset(right, item, ioff + rt_data_off);
2780        }
2781
2782        btrfs_set_header_nritems(l, mid);
2783        ret = 0;
2784        btrfs_item_key(right, &disk_key, 0);
2785        wret = insert_ptr(trans, root, path, &disk_key, right->start,
2786                          path->slots[1] + 1, 1);
2787        if (wret)
2788                ret = wret;
2789
2790        btrfs_mark_buffer_dirty(right);
2791        btrfs_mark_buffer_dirty(l);
2792        BUG_ON(path->slots[0] != slot);
2793
2794        if (mid <= slot) {
2795                btrfs_tree_unlock(path->nodes[0]);
2796                free_extent_buffer(path->nodes[0]);
2797                path->nodes[0] = right;
2798                path->slots[0] -= mid;
2799                path->slots[1] += 1;
2800        } else {
2801                btrfs_tree_unlock(right);
2802                free_extent_buffer(right);
2803        }
2804
2805        BUG_ON(path->slots[0] < 0);
2806
2807        return ret;
2808}
2809
2810/*
2811 * double splits happen when we need to insert a big item in the middle
2812 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2813 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2814 *          A                 B                 C
2815 *
2816 * We avoid this by trying to push the items on either side of our target
2817 * into the adjacent leaves.  If all goes well we can avoid the double split
2818 * completely.
2819 */
2820static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2821                                          struct btrfs_root *root,
2822                                          struct btrfs_path *path,
2823                                          int data_size)
2824{
2825        int ret;
2826        int progress = 0;
2827        int slot;
2828        u32 nritems;
2829
2830        slot = path->slots[0];
2831
2832        /*
2833         * try to push all the items after our slot into the
2834         * right leaf
2835         */
2836        ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2837        if (ret < 0)
2838                return ret;
2839
2840        if (ret == 0)
2841                progress++;
2842
2843        nritems = btrfs_header_nritems(path->nodes[0]);
2844        /*
2845         * our goal is to get our slot at the start or end of a leaf.  If
2846         * we've done so we're done
2847         */
2848        if (path->slots[0] == 0 || path->slots[0] == nritems)
2849                return 0;
2850
2851        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2852                return 0;
2853
2854        /* try to push all the items before our slot into the next leaf */
2855        slot = path->slots[0];
2856        ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2857        if (ret < 0)
2858                return ret;
2859
2860        if (ret == 0)
2861                progress++;
2862
2863        if (progress)
2864                return 0;
2865        return 1;
2866}
2867
2868/*
2869 * split the path's leaf in two, making sure there is at least data_size
2870 * available for the resulting leaf level of the path.
2871 *
2872 * returns 0 if all went well and < 0 on failure.
2873 */
2874static noinline int split_leaf(struct btrfs_trans_handle *trans,
2875                               struct btrfs_root *root,
2876                               struct btrfs_key *ins_key,
2877                               struct btrfs_path *path, int data_size,
2878                               int extend)
2879{
2880        struct btrfs_disk_key disk_key;
2881        struct extent_buffer *l;
2882        u32 nritems;
2883        int mid;
2884        int slot;
2885        struct extent_buffer *right;
2886        int ret = 0;
2887        int wret;
2888        int split;
2889        int num_doubles = 0;
2890        int tried_avoid_double = 0;
2891
2892        l = path->nodes[0];
2893        slot = path->slots[0];
2894        if (extend && data_size + btrfs_item_size_nr(l, slot) +
2895            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2896                return -EOVERFLOW;
2897
2898        /* first try to make some room by pushing left and right */
2899        if (data_size) {
2900                wret = push_leaf_right(trans, root, path, data_size,
2901                                       data_size, 0, 0);
2902                if (wret < 0)
2903                        return wret;
2904                if (wret) {
2905                        wret = push_leaf_left(trans, root, path, data_size,
2906                                              data_size, 0, (u32)-1);
2907                        if (wret < 0)
2908                                return wret;
2909                }
2910                l = path->nodes[0];
2911
2912                /* did the pushes work? */
2913                if (btrfs_leaf_free_space(root, l) >= data_size)
2914                        return 0;
2915        }
2916
2917        if (!path->nodes[1]) {
2918                ret = insert_new_root(trans, root, path, 1);
2919                if (ret)
2920                        return ret;
2921        }
2922again:
2923        split = 1;
2924        l = path->nodes[0];
2925        slot = path->slots[0];
2926        nritems = btrfs_header_nritems(l);
2927        mid = (nritems + 1) / 2;
2928
2929        if (mid <= slot) {
2930                if (nritems == 1 ||
2931                    leaf_space_used(l, mid, nritems - mid) + data_size >
2932                        BTRFS_LEAF_DATA_SIZE(root)) {
2933                        if (slot >= nritems) {
2934                                split = 0;
2935                        } else {
2936                                mid = slot;
2937                                if (mid != nritems &&
2938                                    leaf_space_used(l, mid, nritems - mid) +
2939                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2940                                        if (data_size && !tried_avoid_double)
2941                                                goto push_for_double;
2942                                        split = 2;
2943                                }
2944                        }
2945                }
2946        } else {
2947                if (leaf_space_used(l, 0, mid) + data_size >
2948                        BTRFS_LEAF_DATA_SIZE(root)) {
2949                        if (!extend && data_size && slot == 0) {
2950                                split = 0;
2951                        } else if ((extend || !data_size) && slot == 0) {
2952                                mid = 1;
2953                        } else {
2954                                mid = slot;
2955                                if (mid != nritems &&
2956                                    leaf_space_used(l, mid, nritems - mid) +
2957                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2958                                        if (data_size && !tried_avoid_double)
2959                                                goto push_for_double;
2960                                        split = 2 ;
2961                                }
2962                        }
2963                }
2964        }
2965
2966        if (split == 0)
2967                btrfs_cpu_key_to_disk(&disk_key, ins_key);
2968        else
2969                btrfs_item_key(l, &disk_key, mid);
2970
2971        right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2972                                        root->root_key.objectid,
2973                                        &disk_key, 0, l->start, 0);
2974        if (IS_ERR(right))
2975                return PTR_ERR(right);
2976
2977        root_add_used(root, root->leafsize);
2978
2979        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2980        btrfs_set_header_bytenr(right, right->start);
2981        btrfs_set_header_generation(right, trans->transid);
2982        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2983        btrfs_set_header_owner(right, root->root_key.objectid);
2984        btrfs_set_header_level(right, 0);
2985        write_extent_buffer(right, root->fs_info->fsid,
2986                            (unsigned long)btrfs_header_fsid(right),
2987                            BTRFS_FSID_SIZE);
2988
2989        write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2990                            (unsigned long)btrfs_header_chunk_tree_uuid(right),
2991                            BTRFS_UUID_SIZE);
2992
2993        if (split == 0) {
2994                if (mid <= slot) {
2995                        btrfs_set_header_nritems(right, 0);
2996                        wret = insert_ptr(trans, root, path,
2997                                          &disk_key, right->start,
2998                                          path->slots[1] + 1, 1);
2999                        if (wret)
3000                                ret = wret;
3001
3002                        btrfs_tree_unlock(path->nodes[0]);
3003                        free_extent_buffer(path->nodes[0]);
3004                        path->nodes[0] = right;
3005                        path->slots[0] = 0;
3006                        path->slots[1] += 1;
3007                } else {
3008                        btrfs_set_header_nritems(right, 0);
3009                        wret = insert_ptr(trans, root, path,
3010                                          &disk_key,
3011                                          right->start,
3012                                          path->slots[1], 1);
3013                        if (wret)
3014                                ret = wret;
3015                        btrfs_tree_unlock(path->nodes[0]);
3016                        free_extent_buffer(path->nodes[0]);
3017                        path->nodes[0] = right;
3018                        path->slots[0] = 0;
3019                        if (path->slots[1] == 0) {
3020                                wret = fixup_low_keys(trans, root,
3021                                                path, &disk_key, 1);
3022                                if (wret)
3023                                        ret = wret;
3024                        }
3025                }
3026                btrfs_mark_buffer_dirty(right);
3027                return ret;
3028        }
3029
3030        ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3031        BUG_ON(ret);
3032
3033        if (split == 2) {
3034                BUG_ON(num_doubles != 0);
3035                num_doubles++;
3036                goto again;
3037        }
3038
3039        return ret;
3040
3041push_for_double:
3042        push_for_double_split(trans, root, path, data_size);
3043        tried_avoid_double = 1;
3044        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3045                return 0;
3046        goto again;
3047}
3048
3049static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3050                                         struct btrfs_root *root,
3051                                         struct btrfs_path *path, int ins_len)
3052{
3053        struct btrfs_key key;
3054        struct extent_buffer *leaf;
3055        struct btrfs_file_extent_item *fi;
3056        u64 extent_len = 0;
3057        u32 item_size;
3058        int ret;
3059
3060        leaf = path->nodes[0];
3061        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3062
3063        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3064               key.type != BTRFS_EXTENT_CSUM_KEY);
3065
3066        if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3067                return 0;
3068
3069        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3070        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3071                fi = btrfs_item_ptr(leaf, path->slots[0],
3072                                    struct btrfs_file_extent_item);
3073                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3074        }
3075        btrfs_release_path(path);
3076
3077        path->keep_locks = 1;
3078        path->search_for_split = 1;
3079        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3080        path->search_for_split = 0;
3081        if (ret < 0)
3082                goto err;
3083
3084        ret = -EAGAIN;
3085        leaf = path->nodes[0];
3086        /* if our item isn't there or got smaller, return now */
3087        if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3088                goto err;
3089
3090        /* the leaf has  changed, it now has room.  return now */
3091        if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3092                goto err;
3093
3094        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3095                fi = btrfs_item_ptr(leaf, path->slots[0],
3096                                    struct btrfs_file_extent_item);
3097                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3098                        goto err;
3099        }
3100
3101        btrfs_set_path_blocking(path);
3102        ret = split_leaf(trans, root, &key, path, ins_len, 1);
3103        if (ret)
3104                goto err;
3105
3106        path->keep_locks = 0;
3107        btrfs_unlock_up_safe(path, 1);
3108        return 0;
3109err:
3110        path->keep_locks = 0;
3111        return ret;
3112}
3113
3114static noinline int split_item(struct btrfs_trans_handle *trans,
3115                               struct btrfs_root *root,
3116                               struct btrfs_path *path,
3117                               struct btrfs_key *new_key,
3118                               unsigned long split_offset)
3119{
3120        struct extent_buffer *leaf;
3121        struct btrfs_item *item;
3122        struct btrfs_item *new_item;
3123        int slot;
3124        char *buf;
3125        u32 nritems;
3126        u32 item_size;
3127        u32 orig_offset;
3128        struct btrfs_disk_key disk_key;
3129
3130        leaf = path->nodes[0];
3131        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3132
3133        btrfs_set_path_blocking(path);
3134
3135        item = btrfs_item_nr(leaf, path->slots[0]);
3136        orig_offset = btrfs_item_offset(leaf, item);
3137        item_size = btrfs_item_size(leaf, item);
3138
3139        buf = kmalloc(item_size, GFP_NOFS);
3140        if (!buf)
3141                return -ENOMEM;
3142
3143        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3144                            path->slots[0]), item_size);
3145
3146        slot = path->slots[0] + 1;
3147        nritems = btrfs_header_nritems(leaf);
3148        if (slot != nritems) {
3149                /* shift the items */
3150                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3151                                btrfs_item_nr_offset(slot),
3152                                (nritems - slot) * sizeof(struct btrfs_item));
3153        }
3154
3155        btrfs_cpu_key_to_disk(&disk_key, new_key);
3156        btrfs_set_item_key(leaf, &disk_key, slot);
3157
3158        new_item = btrfs_item_nr(leaf, slot);
3159
3160        btrfs_set_item_offset(leaf, new_item, orig_offset);
3161        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3162
3163        btrfs_set_item_offset(leaf, item,
3164                              orig_offset + item_size - split_offset);
3165        btrfs_set_item_size(leaf, item, split_offset);
3166
3167        btrfs_set_header_nritems(leaf, nritems + 1);
3168
3169        /* write the data for the start of the original item */
3170        write_extent_buffer(leaf, buf,
3171                            btrfs_item_ptr_offset(leaf, path->slots[0]),
3172                            split_offset);
3173
3174        /* write the data for the new item */
3175        write_extent_buffer(leaf, buf + split_offset,
3176                            btrfs_item_ptr_offset(leaf, slot),
3177                            item_size - split_offset);
3178        btrfs_mark_buffer_dirty(leaf);
3179
3180        BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3181        kfree(buf);
3182        return 0;
3183}
3184
3185/*
3186 * This function splits a single item into two items,
3187 * giving 'new_key' to the new item and splitting the
3188 * old one at split_offset (from the start of the item).
3189 *
3190 * The path may be released by this operation.  After
3191 * the split, the path is pointing to the old item.  The
3192 * new item is going to be in the same node as the old one.
3193 *
3194 * Note, the item being split must be smaller enough to live alone on
3195 * a tree block with room for one extra struct btrfs_item
3196 *
3197 * This allows us to split the item in place, keeping a lock on the
3198 * leaf the entire time.
3199 */
3200int btrfs_split_item(struct btrfs_trans_handle *trans,
3201                     struct btrfs_root *root,
3202                     struct btrfs_path *path,
3203                     struct btrfs_key *new_key,
3204                     unsigned long split_offset)
3205{
3206        int ret;
3207        ret = setup_leaf_for_split(trans, root, path,
3208                                   sizeof(struct btrfs_item));
3209        if (ret)
3210                return ret;
3211
3212        ret = split_item(trans, root, path, new_key, split_offset);
3213        return ret;
3214}
3215
3216/*
3217 * This function duplicate a item, giving 'new_key' to the new item.
3218 * It guarantees both items live in the same tree leaf and the new item
3219 * is contiguous with the original item.
3220 *
3221 * This allows us to split file extent in place, keeping a lock on the
3222 * leaf the entire time.
3223 */
3224int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3225                         struct btrfs_root *root,
3226                         struct btrfs_path *path,
3227                         struct btrfs_key *new_key)
3228{
3229        struct extent_buffer *leaf;
3230        int ret;
3231        u32 item_size;
3232
3233        leaf = path->nodes[0];
3234        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3235        ret = setup_leaf_for_split(trans, root, path,
3236                                   item_size + sizeof(struct btrfs_item));
3237        if (ret)
3238                return ret;
3239
3240        path->slots[0]++;
3241        ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3242                                     item_size, item_size +
3243                                     sizeof(struct btrfs_item), 1);
3244        BUG_ON(ret);
3245
3246        leaf = path->nodes[0];
3247        memcpy_extent_buffer(leaf,
3248                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3249                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3250                             item_size);
3251        return 0;
3252}
3253
3254/*
3255 * make the item pointed to by the path smaller.  new_size indicates
3256 * how small to make it, and from_end tells us if we just chop bytes
3257 * off the end of the item or if we shift the item to chop bytes off
3258 * the front.
3259 */
3260int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3261                        struct btrfs_root *root,
3262                        struct btrfs_path *path,
3263                        u32 new_size, int from_end)
3264{
3265        int slot;
3266        struct extent_buffer *leaf;
3267        struct btrfs_item *item;
3268        u32 nritems;
3269        unsigned int data_end;
3270        unsigned int old_data_start;
3271        unsigned int old_size;
3272        unsigned int size_diff;
3273        int i;
3274
3275        leaf = path->nodes[0];
3276        slot = path->slots[0];
3277
3278        old_size = btrfs_item_size_nr(leaf, slot);
3279        if (old_size == new_size)
3280                return 0;
3281
3282        nritems = btrfs_header_nritems(leaf);
3283        data_end = leaf_data_end(root, leaf);
3284
3285        old_data_start = btrfs_item_offset_nr(leaf, slot);
3286
3287        size_diff = old_size - new_size;
3288
3289        BUG_ON(slot < 0);
3290        BUG_ON(slot >= nritems);
3291
3292        /*
3293         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3294         */
3295        /* first correct the data pointers */
3296        for (i = slot; i < nritems; i++) {
3297                u32 ioff;
3298                item = btrfs_item_nr(leaf, i);
3299
3300                ioff = btrfs_item_offset(leaf, item);
3301                btrfs_set_item_offset(leaf, item, ioff + size_diff);
3302        }
3303
3304        /* shift the data */
3305        if (from_end) {
3306                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3307                              data_end + size_diff, btrfs_leaf_data(leaf) +
3308                              data_end, old_data_start + new_size - data_end);
3309        } else {
3310                struct btrfs_disk_key disk_key;
3311                u64 offset;
3312
3313                btrfs_item_key(leaf, &disk_key, slot);
3314
3315                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3316                        unsigned long ptr;
3317                        struct btrfs_file_extent_item *fi;
3318
3319                        fi = btrfs_item_ptr(leaf, slot,
3320                                            struct btrfs_file_extent_item);
3321                        fi = (struct btrfs_file_extent_item *)(
3322                             (unsigned long)fi - size_diff);
3323
3324                        if (btrfs_file_extent_type(leaf, fi) ==
3325                            BTRFS_FILE_EXTENT_INLINE) {
3326                                ptr = btrfs_item_ptr_offset(leaf, slot);
3327                                memmove_extent_buffer(leaf, ptr,
3328                                      (unsigned long)fi,
3329                                      offsetof(struct btrfs_file_extent_item,
3330                                                 disk_bytenr));
3331                        }
3332                }
3333
3334                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3335                              data_end + size_diff, btrfs_leaf_data(leaf) +
3336                              data_end, old_data_start - data_end);
3337
3338                offset = btrfs_disk_key_offset(&disk_key);
3339                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3340                btrfs_set_item_key(leaf, &disk_key, slot);
3341                if (slot == 0)
3342                        fixup_low_keys(trans, root, path, &disk_key, 1);
3343        }
3344
3345        item = btrfs_item_nr(leaf, slot);
3346        btrfs_set_item_size(leaf, item, new_size);
3347        btrfs_mark_buffer_dirty(leaf);
3348
3349        if (btrfs_leaf_free_space(root, leaf) < 0) {
3350                btrfs_print_leaf(root, leaf);
3351                BUG();
3352        }
3353        return 0;
3354}
3355
3356/*
3357 * make the item pointed to by the path bigger, data_size is the new size.
3358 */
3359int btrfs_extend_item(struct btrfs_trans_handle *trans,
3360                      struct btrfs_root *root, struct btrfs_path *path,
3361                      u32 data_size)
3362{
3363        int slot;
3364        struct extent_buffer *leaf;
3365        struct btrfs_item *item;
3366        u32 nritems;
3367        unsigned int data_end;
3368        unsigned int old_data;
3369        unsigned int old_size;
3370        int i;
3371
3372        leaf = path->nodes[0];
3373
3374        nritems = btrfs_header_nritems(leaf);
3375        data_end = leaf_data_end(root, leaf);
3376
3377        if (btrfs_leaf_free_space(root, leaf) < data_size) {
3378                btrfs_print_leaf(root, leaf);
3379                BUG();
3380        }
3381        slot = path->slots[0];
3382        old_data = btrfs_item_end_nr(leaf, slot);
3383
3384        BUG_ON(slot < 0);
3385        if (slot >= nritems) {
3386                btrfs_print_leaf(root, leaf);
3387                printk(KERN_CRIT "slot %d too large, nritems %d\n",
3388                       slot, nritems);
3389                BUG_ON(1);
3390        }
3391
3392        /*
3393         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3394         */
3395        /* first correct the data pointers */
3396        for (i = slot; i < nritems; i++) {
3397                u32 ioff;
3398                item = btrfs_item_nr(leaf, i);
3399
3400                ioff = btrfs_item_offset(leaf, item);
3401                btrfs_set_item_offset(leaf, item, ioff - data_size);
3402        }
3403
3404        /* shift the data */
3405        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3406                      data_end - data_size, btrfs_leaf_data(leaf) +
3407                      data_end, old_data - data_end);
3408
3409        data_end = old_data;
3410        old_size = btrfs_item_size_nr(leaf, slot);
3411        item = btrfs_item_nr(leaf, slot);
3412        btrfs_set_item_size(leaf, item, old_size + data_size);
3413        btrfs_mark_buffer_dirty(leaf);
3414
3415        if (btrfs_leaf_free_space(root, leaf) < 0) {
3416                btrfs_print_leaf(root, leaf);
3417                BUG();
3418        }
3419        return 0;
3420}
3421
3422/*
3423 * Given a key and some data, insert items into the tree.
3424 * This does all the path init required, making room in the tree if needed.
3425 * Returns the number of keys that were inserted.
3426 */
3427int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3428                            struct btrfs_root *root,
3429                            struct btrfs_path *path,
3430                            struct btrfs_key *cpu_key, u32 *data_size,
3431                            int nr)
3432{
3433        struct extent_buffer *leaf;
3434        struct btrfs_item *item;
3435        int ret = 0;
3436        int slot;
3437        int i;
3438        u32 nritems;
3439        u32 total_data = 0;
3440        u32 total_size = 0;
3441        unsigned int data_end;
3442        struct btrfs_disk_key disk_key;
3443        struct btrfs_key found_key;
3444
3445        for (i = 0; i < nr; i++) {
3446                if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3447                    BTRFS_LEAF_DATA_SIZE(root)) {
3448                        break;
3449                        nr = i;
3450                }
3451                total_data += data_size[i];
3452                total_size += data_size[i] + sizeof(struct btrfs_item);
3453        }
3454        BUG_ON(nr == 0);
3455
3456        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3457        if (ret == 0)
3458                return -EEXIST;
3459        if (ret < 0)
3460                goto out;
3461
3462        leaf = path->nodes[0];
3463
3464        nritems = btrfs_header_nritems(leaf);
3465        data_end = leaf_data_end(root, leaf);
3466
3467        if (btrfs_leaf_free_space(root, leaf) < total_size) {
3468                for (i = nr; i >= 0; i--) {
3469                        total_data -= data_size[i];
3470                        total_size -= data_size[i] + sizeof(struct btrfs_item);
3471                        if (total_size < btrfs_leaf_free_space(root, leaf))
3472                                break;
3473                }
3474                nr = i;
3475        }
3476
3477        slot = path->slots[0];
3478        BUG_ON(slot < 0);
3479
3480        if (slot != nritems) {
3481                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3482
3483                item = btrfs_item_nr(leaf, slot);
3484                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3485
3486                /* figure out how many keys we can insert in here */
3487                total_data = data_size[0];
3488                for (i = 1; i < nr; i++) {
3489                        if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3490                                break;
3491                        total_data += data_size[i];
3492                }
3493                nr = i;
3494
3495                if (old_data < data_end) {
3496                        btrfs_print_leaf(root, leaf);
3497                        printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3498                               slot, old_data, data_end);
3499                        BUG_ON(1);
3500                }
3501                /*
3502                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3503                 */
3504                /* first correct the data pointers */
3505                for (i = slot; i < nritems; i++) {
3506                        u32 ioff;
3507
3508                        item = btrfs_item_nr(leaf, i);
3509                        ioff = btrfs_item_offset(leaf, item);
3510                        btrfs_set_item_offset(leaf, item, ioff - total_data);
3511                }
3512                /* shift the items */
3513                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3514                              btrfs_item_nr_offset(slot),
3515                              (nritems - slot) * sizeof(struct btrfs_item));
3516
3517                /* shift the data */
3518                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3519                              data_end - total_data, btrfs_leaf_data(leaf) +
3520                              data_end, old_data - data_end);
3521                data_end = old_data;
3522        } else {
3523                /*
3524                 * this sucks but it has to be done, if we are inserting at
3525                 * the end of the leaf only insert 1 of the items, since we
3526                 * have no way of knowing whats on the next leaf and we'd have
3527                 * to drop our current locks to figure it out
3528                 */
3529                nr = 1;
3530        }
3531
3532        /* setup the item for the new data */
3533        for (i = 0; i < nr; i++) {
3534                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3535                btrfs_set_item_key(leaf, &disk_key, slot + i);
3536                item = btrfs_item_nr(leaf, slot + i);
3537                btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3538                data_end -= data_size[i];
3539                btrfs_set_item_size(leaf, item, data_size[i]);
3540        }
3541        btrfs_set_header_nritems(leaf, nritems + nr);
3542        btrfs_mark_buffer_dirty(leaf);
3543
3544        ret = 0;
3545        if (slot == 0) {
3546                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3547                ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3548        }
3549
3550        if (btrfs_leaf_free_space(root, leaf) < 0) {
3551                btrfs_print_leaf(root, leaf);
3552                BUG();
3553        }
3554out:
3555        if (!ret)
3556                ret = nr;
3557        return ret;
3558}
3559
3560/*
3561 * this is a helper for btrfs_insert_empty_items, the main goal here is
3562 * to save stack depth by doing the bulk of the work in a function
3563 * that doesn't call btrfs_search_slot
3564 */
3565int setup_items_for_insert(struct btrfs_trans_handle *trans,
3566                           struct btrfs_root *root, struct btrfs_path *path,
3567                           struct btrfs_key *cpu_key, u32 *data_size,
3568                           u32 total_data, u32 total_size, int nr)
3569{
3570        struct btrfs_item *item;
3571        int i;
3572        u32 nritems;
3573        unsigned int data_end;
3574        struct btrfs_disk_key disk_key;
3575        int ret;
3576        struct extent_buffer *leaf;
3577        int slot;
3578
3579        leaf = path->nodes[0];
3580        slot = path->slots[0];
3581
3582        nritems = btrfs_header_nritems(leaf);
3583        data_end = leaf_data_end(root, leaf);
3584
3585        if (btrfs_leaf_free_space(root, leaf) < total_size) {
3586                btrfs_print_leaf(root, leaf);
3587                printk(KERN_CRIT "not enough freespace need %u have %d\n",
3588                       total_size, btrfs_leaf_free_space(root, leaf));
3589                BUG();
3590        }
3591
3592        if (slot != nritems) {
3593                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3594
3595                if (old_data < data_end) {
3596                        btrfs_print_leaf(root, leaf);
3597                        printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3598                               slot, old_data, data_end);
3599                        BUG_ON(1);
3600                }
3601                /*
3602                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3603                 */
3604                /* first correct the data pointers */
3605                for (i = slot; i < nritems; i++) {
3606                        u32 ioff;
3607
3608                        item = btrfs_item_nr(leaf, i);
3609                        ioff = btrfs_item_offset(leaf, item);
3610                        btrfs_set_item_offset(leaf, item, ioff - total_data);
3611                }
3612                /* shift the items */
3613                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3614                              btrfs_item_nr_offset(slot),
3615                              (nritems - slot) * sizeof(struct btrfs_item));
3616
3617                /* shift the data */
3618                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3619                              data_end - total_data, btrfs_leaf_data(leaf) +
3620                              data_end, old_data - data_end);
3621                data_end = old_data;
3622        }
3623
3624        /* setup the item for the new data */
3625        for (i = 0; i < nr; i++) {
3626                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3627                btrfs_set_item_key(leaf, &disk_key, slot + i);
3628                item = btrfs_item_nr(leaf, slot + i);
3629                btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3630                data_end -= data_size[i];
3631                btrfs_set_item_size(leaf, item, data_size[i]);
3632        }
3633
3634        btrfs_set_header_nritems(leaf, nritems + nr);
3635
3636        ret = 0;
3637        if (slot == 0) {
3638                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3639                ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3640        }
3641        btrfs_unlock_up_safe(path, 1);
3642        btrfs_mark_buffer_dirty(leaf);
3643
3644        if (btrfs_leaf_free_space(root, leaf) < 0) {
3645                btrfs_print_leaf(root, leaf);
3646                BUG();
3647        }
3648        return ret;
3649}
3650
3651/*
3652 * Given a key and some data, insert items into the tree.
3653 * This does all the path init required, making room in the tree if needed.
3654 */
3655int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3656                            struct btrfs_root *root,
3657                            struct btrfs_path *path,
3658                            struct btrfs_key *cpu_key, u32 *data_size,
3659                            int nr)
3660{
3661        int ret = 0;
3662        int slot;
3663        int i;
3664        u32 total_size = 0;
3665        u32 total_data = 0;
3666
3667        for (i = 0; i < nr; i++)
3668                total_data += data_size[i];
3669
3670        total_size = total_data + (nr * sizeof(struct btrfs_item));
3671        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3672        if (ret == 0)
3673                return -EEXIST;
3674        if (ret < 0)
3675                goto out;
3676
3677        slot = path->slots[0];
3678        BUG_ON(slot < 0);
3679
3680        ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3681                               total_data, total_size, nr);
3682
3683out:
3684        return ret;
3685}
3686
3687/*
3688 * Given a key and some data, insert an item into the tree.
3689 * This does all the path init required, making room in the tree if needed.
3690 */
3691int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3692                      *root, struct btrfs_key *cpu_key, void *data, u32
3693                      data_size)
3694{
3695        int ret = 0;
3696        struct btrfs_path *path;
3697        struct extent_buffer *leaf;
3698        unsigned long ptr;
3699
3700        path = btrfs_alloc_path();
3701        if (!path)
3702                return -ENOMEM;
3703        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3704        if (!ret) {
3705                leaf = path->nodes[0];
3706                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3707                write_extent_buffer(leaf, data, ptr, data_size);
3708                btrfs_mark_buffer_dirty(leaf);
3709        }
3710        btrfs_free_path(path);
3711        return ret;
3712}
3713
3714/*
3715 * delete the pointer from a given node.
3716 *
3717 * the tree should have been previously balanced so the deletion does not
3718 * empty a node.
3719 */
3720static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3721                   struct btrfs_path *path, int level, int slot)
3722{
3723        struct extent_buffer *parent = path->nodes[level];
3724        u32 nritems;
3725        int ret = 0;
3726        int wret;
3727
3728        nritems = btrfs_header_nritems(parent);
3729        if (slot != nritems - 1) {
3730                memmove_extent_buffer(parent,
3731                              btrfs_node_key_ptr_offset(slot),
3732                              btrfs_node_key_ptr_offset(slot + 1),
3733                              sizeof(struct btrfs_key_ptr) *
3734                              (nritems - slot - 1));
3735        }
3736        nritems--;
3737        btrfs_set_header_nritems(parent, nritems);
3738        if (nritems == 0 && parent == root->node) {
3739                BUG_ON(btrfs_header_level(root->node) != 1);
3740                /* just turn the root into a leaf and break */
3741                btrfs_set_header_level(root->node, 0);
3742        } else if (slot == 0) {
3743                struct btrfs_disk_key disk_key;
3744
3745                btrfs_node_key(parent, &disk_key, 0);
3746                wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3747                if (wret)
3748                        ret = wret;
3749        }
3750        btrfs_mark_buffer_dirty(parent);
3751        return ret;
3752}
3753
3754/*
3755 * a helper function to delete the leaf pointed to by path->slots[1] and
3756 * path->nodes[1].
3757 *
3758 * This deletes the pointer in path->nodes[1] and frees the leaf
3759 * block extent.  zero is returned if it all worked out, < 0 otherwise.
3760 *
3761 * The path must have already been setup for deleting the leaf, including
3762 * all the proper balancing.  path->nodes[1] must be locked.
3763 */
3764static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3765                                   struct btrfs_root *root,
3766                                   struct btrfs_path *path,
3767                                   struct extent_buffer *leaf)
3768{
3769        int ret;
3770
3771        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3772        ret = del_ptr(trans, root, path, 1, path->slots[1]);
3773        if (ret)
3774                return ret;
3775
3776        /*
3777         * btrfs_free_extent is expensive, we want to make sure we
3778         * aren't holding any locks when we call it
3779         */
3780        btrfs_unlock_up_safe(path, 0);
3781
3782        root_sub_used(root, leaf->len);
3783
3784        btrfs_free_tree_block(trans, root, leaf, 0, 1);
3785        return 0;
3786}
3787/*
3788 * delete the item at the leaf level in path.  If that empties
3789 * the leaf, remove it from the tree
3790 */
3791int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3792                    struct btrfs_path *path, int slot, int nr)
3793{
3794        struct extent_buffer *leaf;
3795        struct btrfs_item *item;
3796        int last_off;
3797        int dsize = 0;
3798        int ret = 0;
3799        int wret;
3800        int i;
3801        u32 nritems;
3802
3803        leaf = path->nodes[0];
3804        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3805
3806        for (i = 0; i < nr; i++)
3807                dsize += btrfs_item_size_nr(leaf, slot + i);
3808
3809        nritems = btrfs_header_nritems(leaf);
3810
3811        if (slot + nr != nritems) {
3812                int data_end = leaf_data_end(root, leaf);
3813
3814                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3815                              data_end + dsize,
3816                              btrfs_leaf_data(leaf) + data_end,
3817                              last_off - data_end);
3818
3819                for (i = slot + nr; i < nritems; i++) {
3820                        u32 ioff;
3821
3822                        item = btrfs_item_nr(leaf, i);
3823                        ioff = btrfs_item_offset(leaf, item);
3824                        btrfs_set_item_offset(leaf, item, ioff + dsize);
3825                }
3826
3827                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3828                              btrfs_item_nr_offset(slot + nr),
3829                              sizeof(struct btrfs_item) *
3830                              (nritems - slot - nr));
3831        }
3832        btrfs_set_header_nritems(leaf, nritems - nr);
3833        nritems -= nr;
3834
3835        /* delete the leaf if we've emptied it */
3836        if (nritems == 0) {
3837                if (leaf == root->node) {
3838                        btrfs_set_header_level(leaf, 0);
3839                } else {
3840                        btrfs_set_path_blocking(path);
3841                        clean_tree_block(trans, root, leaf);
3842                        ret = btrfs_del_leaf(trans, root, path, leaf);
3843                        BUG_ON(ret);
3844                }
3845        } else {
3846                int used = leaf_space_used(leaf, 0, nritems);
3847                if (slot == 0) {
3848                        struct btrfs_disk_key disk_key;
3849
3850                        btrfs_item_key(leaf, &disk_key, 0);
3851                        wret = fixup_low_keys(trans, root, path,
3852                                              &disk_key, 1);
3853                        if (wret)
3854                                ret = wret;
3855                }
3856
3857                /* delete the leaf if it is mostly empty */
3858                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3859                        /* push_leaf_left fixes the path.
3860                         * make sure the path still points to our leaf
3861                         * for possible call to del_ptr below
3862                         */
3863                        slot = path->slots[1];
3864                        extent_buffer_get(leaf);
3865
3866                        btrfs_set_path_blocking(path);
3867                        wret = push_leaf_left(trans, root, path, 1, 1,
3868                                              1, (u32)-1);
3869                        if (wret < 0 && wret != -ENOSPC)
3870                                ret = wret;
3871
3872                        if (path->nodes[0] == leaf &&
3873                            btrfs_header_nritems(leaf)) {
3874                                wret = push_leaf_right(trans, root, path, 1,
3875                                                       1, 1, 0);
3876                                if (wret < 0 && wret != -ENOSPC)
3877                                        ret = wret;
3878                        }
3879
3880                        if (btrfs_header_nritems(leaf) == 0) {
3881                                path->slots[1] = slot;
3882                                ret = btrfs_del_leaf(trans, root, path, leaf);
3883                                BUG_ON(ret);
3884                                free_extent_buffer(leaf);
3885                        } else {
3886                                /* if we're still in the path, make sure
3887                                 * we're dirty.  Otherwise, one of the
3888                                 * push_leaf functions must have already
3889                                 * dirtied this buffer
3890                                 */
3891                                if (path->nodes[0] == leaf)
3892                                        btrfs_mark_buffer_dirty(leaf);
3893                                free_extent_buffer(leaf);
3894                        }
3895                } else {
3896                        btrfs_mark_buffer_dirty(leaf);
3897                }
3898        }
3899        return ret;
3900}
3901
3902/*
3903 * search the tree again to find a leaf with lesser keys
3904 * returns 0 if it found something or 1 if there are no lesser leaves.
3905 * returns < 0 on io errors.
3906 *
3907 * This may release the path, and so you may lose any locks held at the
3908 * time you call it.
3909 */
3910int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3911{
3912        struct btrfs_key key;
3913        struct btrfs_disk_key found_key;
3914        int ret;
3915
3916        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3917
3918        if (key.offset > 0)
3919                key.offset--;
3920        else if (key.type > 0)
3921                key.type--;
3922        else if (key.objectid > 0)
3923                key.objectid--;
3924        else
3925                return 1;
3926
3927        btrfs_release_path(path);
3928        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3929        if (ret < 0)
3930                return ret;
3931        btrfs_item_key(path->nodes[0], &found_key, 0);
3932        ret = comp_keys(&found_key, &key);
3933        if (ret < 0)
3934                return 0;
3935        return 1;
3936}
3937
3938/*
3939 * A helper function to walk down the tree starting at min_key, and looking
3940 * for nodes or leaves that are either in cache or have a minimum
3941 * transaction id.  This is used by the btree defrag code, and tree logging
3942 *
3943 * This does not cow, but it does stuff the starting key it finds back
3944 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3945 * key and get a writable path.
3946 *
3947 * This does lock as it descends, and path->keep_locks should be set
3948 * to 1 by the caller.
3949 *
3950 * This honors path->lowest_level to prevent descent past a given level
3951 * of the tree.
3952 *
3953 * min_trans indicates the oldest transaction that you are interested
3954 * in walking through.  Any nodes or leaves older than min_trans are
3955 * skipped over (without reading them).
3956 *
3957 * returns zero if something useful was found, < 0 on error and 1 if there
3958 * was nothing in the tree that matched the search criteria.
3959 */
3960int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3961                         struct btrfs_key *max_key,
3962                         struct btrfs_path *path, int cache_only,
3963                         u64 min_trans)
3964{
3965        struct extent_buffer *cur;
3966        struct btrfs_key found_key;
3967        int slot;
3968        int sret;
3969        u32 nritems;
3970        int level;
3971        int ret = 1;
3972
3973        WARN_ON(!path->keep_locks);
3974again:
3975        cur = btrfs_read_lock_root_node(root);
3976        level = btrfs_header_level(cur);
3977        WARN_ON(path->nodes[level]);
3978        path->nodes[level] = cur;
3979        path->locks[level] = BTRFS_READ_LOCK;
3980
3981        if (btrfs_header_generation(cur) < min_trans) {
3982                ret = 1;
3983                goto out;
3984        }
3985        while (1) {
3986                nritems = btrfs_header_nritems(cur);
3987                level = btrfs_header_level(cur);
3988                sret = bin_search(cur, min_key, level, &slot);
3989
3990                /* at the lowest level, we're done, setup the path and exit */
3991                if (level == path->lowest_level) {
3992                        if (slot >= nritems)
3993                                goto find_next_key;
3994                        ret = 0;
3995                        path->slots[level] = slot;
3996                        btrfs_item_key_to_cpu(cur, &found_key, slot);
3997                        goto out;
3998                }
3999                if (sret && slot > 0)
4000                        slot--;
4001                /*
4002                 * check this node pointer against the cache_only and
4003                 * min_trans parameters.  If it isn't in cache or is too
4004                 * old, skip to the next one.
4005                 */
4006                while (slot < nritems) {
4007                        u64 blockptr;
4008                        u64 gen;
4009                        struct extent_buffer *tmp;
4010                        struct btrfs_disk_key disk_key;
4011
4012                        blockptr = btrfs_node_blockptr(cur, slot);
4013                        gen = btrfs_node_ptr_generation(cur, slot);
4014                        if (gen < min_trans) {
4015                                slot++;
4016                                continue;
4017                        }
4018                        if (!cache_only)
4019                                break;
4020
4021                        if (max_key) {
4022                                btrfs_node_key(cur, &disk_key, slot);
4023                                if (comp_keys(&disk_key, max_key) >= 0) {
4024                                        ret = 1;
4025                                        goto out;
4026                                }
4027                        }
4028
4029                        tmp = btrfs_find_tree_block(root, blockptr,
4030                                            btrfs_level_size(root, level - 1));
4031
4032                        if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4033                                free_extent_buffer(tmp);
4034                                break;
4035                        }
4036                        if (tmp)
4037                                free_extent_buffer(tmp);
4038                        slot++;
4039                }
4040find_next_key:
4041                /*
4042                 * we didn't find a candidate key in this node, walk forward
4043                 * and find another one
4044                 */
4045                if (slot >= nritems) {
4046                        path->slots[level] = slot;
4047                        btrfs_set_path_blocking(path);
4048                        sret = btrfs_find_next_key(root, path, min_key, level,
4049                                                  cache_only, min_trans);
4050                        if (sret == 0) {
4051                                btrfs_release_path(path);
4052                                goto again;
4053                        } else {
4054                                goto out;
4055                        }
4056                }
4057                /* save our key for returning back */
4058                btrfs_node_key_to_cpu(cur, &found_key, slot);
4059                path->slots[level] = slot;
4060                if (level == path->lowest_level) {
4061                        ret = 0;
4062                        unlock_up(path, level, 1);
4063                        goto out;
4064                }
4065                btrfs_set_path_blocking(path);
4066                cur = read_node_slot(root, cur, slot);
4067                BUG_ON(!cur);
4068
4069                btrfs_tree_read_lock(cur);
4070
4071                path->locks[level - 1] = BTRFS_READ_LOCK;
4072                path->nodes[level - 1] = cur;
4073                unlock_up(path, level, 1);
4074                btrfs_clear_path_blocking(path, NULL, 0);
4075        }
4076out:
4077        if (ret == 0)
4078                memcpy(min_key, &found_key, sizeof(found_key));
4079        btrfs_set_path_blocking(path);
4080        return ret;
4081}
4082
4083/*
4084 * this is similar to btrfs_next_leaf, but does not try to preserve
4085 * and fixup the path.  It looks for and returns the next key in the
4086 * tree based on the current path and the cache_only and min_trans
4087 * parameters.
4088 *
4089 * 0 is returned if another key is found, < 0 if there are any errors
4090 * and 1 is returned if there are no higher keys in the tree
4091 *
4092 * path->keep_locks should be set to 1 on the search made before
4093 * calling this function.
4094 */
4095int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4096                        struct btrfs_key *key, int level,
4097                        int cache_only, u64 min_trans)
4098{
4099        int slot;
4100        struct extent_buffer *c;
4101
4102        WARN_ON(!path->keep_locks);
4103        while (level < BTRFS_MAX_LEVEL) {
4104                if (!path->nodes[level])
4105                        return 1;
4106
4107                slot = path->slots[level] + 1;
4108                c = path->nodes[level];
4109next:
4110                if (slot >= btrfs_header_nritems(c)) {
4111                        int ret;
4112                        int orig_lowest;
4113                        struct btrfs_key cur_key;
4114                        if (level + 1 >= BTRFS_MAX_LEVEL ||
4115                            !path->nodes[level + 1])
4116                                return 1;
4117
4118                        if (path->locks[level + 1]) {
4119                                level++;
4120                                continue;
4121                        }
4122
4123                        slot = btrfs_header_nritems(c) - 1;
4124                        if (level == 0)
4125                                btrfs_item_key_to_cpu(c, &cur_key, slot);
4126                        else
4127                                btrfs_node_key_to_cpu(c, &cur_key, slot);
4128
4129                        orig_lowest = path->lowest_level;
4130                        btrfs_release_path(path);
4131                        path->lowest_level = level;
4132                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
4133                                                0, 0);
4134                        path->lowest_level = orig_lowest;
4135                        if (ret < 0)
4136                                return ret;
4137
4138                        c = path->nodes[level];
4139                        slot = path->slots[level];
4140                        if (ret == 0)
4141                                slot++;
4142                        goto next;
4143                }
4144
4145                if (level == 0)
4146                        btrfs_item_key_to_cpu(c, key, slot);
4147                else {
4148                        u64 blockptr = btrfs_node_blockptr(c, slot);
4149                        u64 gen = btrfs_node_ptr_generation(c, slot);
4150
4151                        if (cache_only) {
4152                                struct extent_buffer *cur;
4153                                cur = btrfs_find_tree_block(root, blockptr,
4154                                            btrfs_level_size(root, level - 1));
4155                                if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4156                                        slot++;
4157                                        if (cur)
4158                                                free_extent_buffer(cur);
4159                                        goto next;
4160                                }
4161                                free_extent_buffer(cur);
4162                        }
4163                        if (gen < min_trans) {
4164                                slot++;
4165                                goto next;
4166                        }
4167                        btrfs_node_key_to_cpu(c, key, slot);
4168                }
4169                return 0;
4170        }
4171        return 1;
4172}
4173
4174/*
4175 * search the tree again to find a leaf with greater keys
4176 * returns 0 if it found something or 1 if there are no greater leaves.
4177 * returns < 0 on io errors.
4178 */
4179int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4180{
4181        int slot;
4182        int level;
4183        struct extent_buffer *c;
4184        struct extent_buffer *next;
4185        struct btrfs_key key;
4186        u32 nritems;
4187        int ret;
4188        int old_spinning = path->leave_spinning;
4189        int next_rw_lock = 0;
4190
4191        nritems = btrfs_header_nritems(path->nodes[0]);
4192        if (nritems == 0)
4193                return 1;
4194
4195        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4196again:
4197        level = 1;
4198        next = NULL;
4199        next_rw_lock = 0;
4200        btrfs_release_path(path);
4201
4202        path->keep_locks = 1;
4203        path->leave_spinning = 1;
4204
4205        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4206        path->keep_locks = 0;
4207
4208        if (ret < 0)
4209                return ret;
4210
4211        nritems = btrfs_header_nritems(path->nodes[0]);
4212        /*
4213         * by releasing the path above we dropped all our locks.  A balance
4214         * could have added more items next to the key that used to be
4215         * at the very end of the block.  So, check again here and
4216         * advance the path if there are now more items available.
4217         */
4218        if (nritems > 0 && path->slots[0] < nritems - 1) {
4219                if (ret == 0)
4220                        path->slots[0]++;
4221                ret = 0;
4222                goto done;
4223        }
4224
4225        while (level < BTRFS_MAX_LEVEL) {
4226                if (!path->nodes[level]) {
4227                        ret = 1;
4228                        goto done;
4229                }
4230
4231                slot = path->slots[level] + 1;
4232                c = path->nodes[level];
4233                if (slot >= btrfs_header_nritems(c)) {
4234                        level++;
4235                        if (level == BTRFS_MAX_LEVEL) {
4236                                ret = 1;
4237                                goto done;
4238                        }
4239                        continue;
4240                }
4241
4242                if (next) {
4243                        btrfs_tree_unlock_rw(next, next_rw_lock);
4244                        free_extent_buffer(next);
4245                }
4246
4247                next = c;
4248                next_rw_lock = path->locks[level];
4249                ret = read_block_for_search(NULL, root, path, &next, level,
4250                                            slot, &key);
4251                if (ret == -EAGAIN)
4252                        goto again;
4253
4254                if (ret < 0) {
4255                        btrfs_release_path(path);
4256                        goto done;
4257                }
4258
4259                if (!path->skip_locking) {
4260                        ret = btrfs_try_tree_read_lock(next);
4261                        if (!ret) {
4262                                btrfs_set_path_blocking(path);
4263                                btrfs_tree_read_lock(next);
4264                                btrfs_clear_path_blocking(path, next,
4265                                                          BTRFS_READ_LOCK);
4266                        }
4267                        next_rw_lock = BTRFS_READ_LOCK;
4268                }
4269                break;
4270        }
4271        path->slots[level] = slot;
4272        while (1) {
4273                level--;
4274                c = path->nodes[level];
4275                if (path->locks[level])
4276                        btrfs_tree_unlock_rw(c, path->locks[level]);
4277
4278                free_extent_buffer(c);
4279                path->nodes[level] = next;
4280                path->slots[level] = 0;
4281                if (!path->skip_locking)
4282                        path->locks[level] = next_rw_lock;
4283                if (!level)
4284                        break;
4285
4286                ret = read_block_for_search(NULL, root, path, &next, level,
4287                                            0, &key);
4288                if (ret == -EAGAIN)
4289                        goto again;
4290
4291                if (ret < 0) {
4292                        btrfs_release_path(path);
4293                        goto done;
4294                }
4295
4296                if (!path->skip_locking) {
4297                        ret = btrfs_try_tree_read_lock(next);
4298                        if (!ret) {
4299                                btrfs_set_path_blocking(path);
4300                                btrfs_tree_read_lock(next);
4301                                btrfs_clear_path_blocking(path, next,
4302                                                          BTRFS_READ_LOCK);
4303                        }
4304                        next_rw_lock = BTRFS_READ_LOCK;
4305                }
4306        }
4307        ret = 0;
4308done:
4309        unlock_up(path, 0, 1);
4310        path->leave_spinning = old_spinning;
4311        if (!old_spinning)
4312                btrfs_set_path_blocking(path);
4313
4314        return ret;
4315}
4316
4317/*
4318 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4319 * searching until it gets past min_objectid or finds an item of 'type'
4320 *
4321 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4322 */
4323int btrfs_previous_item(struct btrfs_root *root,
4324                        struct btrfs_path *path, u64 min_objectid,
4325                        int type)
4326{
4327        struct btrfs_key found_key;
4328        struct extent_buffer *leaf;
4329        u32 nritems;
4330        int ret;
4331
4332        while (1) {
4333                if (path->slots[0] == 0) {
4334                        btrfs_set_path_blocking(path);
4335                        ret = btrfs_prev_leaf(root, path);
4336                        if (ret != 0)
4337                                return ret;
4338                } else {
4339                        path->slots[0]--;
4340                }
4341                leaf = path->nodes[0];
4342                nritems = btrfs_header_nritems(leaf);
4343                if (nritems == 0)
4344                        return 1;
4345                if (path->slots[0] == nritems)
4346                        path->slots[0]--;
4347
4348                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4349                if (found_key.objectid < min_objectid)
4350                        break;
4351                if (found_key.type == type)
4352                        return 0;
4353                if (found_key.objectid == min_objectid &&
4354                    found_key.type < type)
4355                        break;
4356        }
4357        return 1;
4358}
4359