linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats. 
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/stat.h>
  30#include <linux/fcntl.h>
  31#include <linux/swap.h>
  32#include <linux/string.h>
  33#include <linux/init.h>
  34#include <linux/pagemap.h>
  35#include <linux/perf_event.h>
  36#include <linux/highmem.h>
  37#include <linux/spinlock.h>
  38#include <linux/key.h>
  39#include <linux/personality.h>
  40#include <linux/binfmts.h>
  41#include <linux/utsname.h>
  42#include <linux/pid_namespace.h>
  43#include <linux/module.h>
  44#include <linux/namei.h>
  45#include <linux/mount.h>
  46#include <linux/security.h>
  47#include <linux/syscalls.h>
  48#include <linux/tsacct_kern.h>
  49#include <linux/cn_proc.h>
  50#include <linux/audit.h>
  51#include <linux/tracehook.h>
  52#include <linux/kmod.h>
  53#include <linux/fsnotify.h>
  54#include <linux/fs_struct.h>
  55#include <linux/pipe_fs_i.h>
  56#include <linux/oom.h>
  57#include <linux/compat.h>
  58
  59#include <asm/uaccess.h>
  60#include <asm/mmu_context.h>
  61#include <asm/tlb.h>
  62#include "internal.h"
  63
  64int core_uses_pid;
  65char core_pattern[CORENAME_MAX_SIZE] = "core";
  66unsigned int core_pipe_limit;
  67int suid_dumpable = 0;
  68
  69struct core_name {
  70        char *corename;
  71        int used, size;
  72};
  73static atomic_t call_count = ATOMIC_INIT(1);
  74
  75/* The maximal length of core_pattern is also specified in sysctl.c */
  76
  77static LIST_HEAD(formats);
  78static DEFINE_RWLOCK(binfmt_lock);
  79
  80int __register_binfmt(struct linux_binfmt * fmt, int insert)
  81{
  82        if (!fmt)
  83                return -EINVAL;
  84        write_lock(&binfmt_lock);
  85        insert ? list_add(&fmt->lh, &formats) :
  86                 list_add_tail(&fmt->lh, &formats);
  87        write_unlock(&binfmt_lock);
  88        return 0;       
  89}
  90
  91EXPORT_SYMBOL(__register_binfmt);
  92
  93void unregister_binfmt(struct linux_binfmt * fmt)
  94{
  95        write_lock(&binfmt_lock);
  96        list_del(&fmt->lh);
  97        write_unlock(&binfmt_lock);
  98}
  99
 100EXPORT_SYMBOL(unregister_binfmt);
 101
 102static inline void put_binfmt(struct linux_binfmt * fmt)
 103{
 104        module_put(fmt->module);
 105}
 106
 107/*
 108 * Note that a shared library must be both readable and executable due to
 109 * security reasons.
 110 *
 111 * Also note that we take the address to load from from the file itself.
 112 */
 113SYSCALL_DEFINE1(uselib, const char __user *, library)
 114{
 115        struct file *file;
 116        char *tmp = getname(library);
 117        int error = PTR_ERR(tmp);
 118        static const struct open_flags uselib_flags = {
 119                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 120                .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
 121                .intent = LOOKUP_OPEN
 122        };
 123
 124        if (IS_ERR(tmp))
 125                goto out;
 126
 127        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
 128        putname(tmp);
 129        error = PTR_ERR(file);
 130        if (IS_ERR(file))
 131                goto out;
 132
 133        error = -EINVAL;
 134        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 135                goto exit;
 136
 137        error = -EACCES;
 138        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 139                goto exit;
 140
 141        fsnotify_open(file);
 142
 143        error = -ENOEXEC;
 144        if(file->f_op) {
 145                struct linux_binfmt * fmt;
 146
 147                read_lock(&binfmt_lock);
 148                list_for_each_entry(fmt, &formats, lh) {
 149                        if (!fmt->load_shlib)
 150                                continue;
 151                        if (!try_module_get(fmt->module))
 152                                continue;
 153                        read_unlock(&binfmt_lock);
 154                        error = fmt->load_shlib(file);
 155                        read_lock(&binfmt_lock);
 156                        put_binfmt(fmt);
 157                        if (error != -ENOEXEC)
 158                                break;
 159                }
 160                read_unlock(&binfmt_lock);
 161        }
 162exit:
 163        fput(file);
 164out:
 165        return error;
 166}
 167
 168#ifdef CONFIG_MMU
 169/*
 170 * The nascent bprm->mm is not visible until exec_mmap() but it can
 171 * use a lot of memory, account these pages in current->mm temporary
 172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 173 * change the counter back via acct_arg_size(0).
 174 */
 175static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 176{
 177        struct mm_struct *mm = current->mm;
 178        long diff = (long)(pages - bprm->vma_pages);
 179
 180        if (!mm || !diff)
 181                return;
 182
 183        bprm->vma_pages = pages;
 184        add_mm_counter(mm, MM_ANONPAGES, diff);
 185}
 186
 187static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 188                int write)
 189{
 190        struct page *page;
 191        int ret;
 192
 193#ifdef CONFIG_STACK_GROWSUP
 194        if (write) {
 195                ret = expand_downwards(bprm->vma, pos);
 196                if (ret < 0)
 197                        return NULL;
 198        }
 199#endif
 200        ret = get_user_pages(current, bprm->mm, pos,
 201                        1, write, 1, &page, NULL);
 202        if (ret <= 0)
 203                return NULL;
 204
 205        if (write) {
 206                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 207                struct rlimit *rlim;
 208
 209                acct_arg_size(bprm, size / PAGE_SIZE);
 210
 211                /*
 212                 * We've historically supported up to 32 pages (ARG_MAX)
 213                 * of argument strings even with small stacks
 214                 */
 215                if (size <= ARG_MAX)
 216                        return page;
 217
 218                /*
 219                 * Limit to 1/4-th the stack size for the argv+env strings.
 220                 * This ensures that:
 221                 *  - the remaining binfmt code will not run out of stack space,
 222                 *  - the program will have a reasonable amount of stack left
 223                 *    to work from.
 224                 */
 225                rlim = current->signal->rlim;
 226                if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 227                        put_page(page);
 228                        return NULL;
 229                }
 230        }
 231
 232        return page;
 233}
 234
 235static void put_arg_page(struct page *page)
 236{
 237        put_page(page);
 238}
 239
 240static void free_arg_page(struct linux_binprm *bprm, int i)
 241{
 242}
 243
 244static void free_arg_pages(struct linux_binprm *bprm)
 245{
 246}
 247
 248static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 249                struct page *page)
 250{
 251        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 252}
 253
 254static int __bprm_mm_init(struct linux_binprm *bprm)
 255{
 256        int err;
 257        struct vm_area_struct *vma = NULL;
 258        struct mm_struct *mm = bprm->mm;
 259
 260        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 261        if (!vma)
 262                return -ENOMEM;
 263
 264        down_write(&mm->mmap_sem);
 265        vma->vm_mm = mm;
 266
 267        /*
 268         * Place the stack at the largest stack address the architecture
 269         * supports. Later, we'll move this to an appropriate place. We don't
 270         * use STACK_TOP because that can depend on attributes which aren't
 271         * configured yet.
 272         */
 273        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 274        vma->vm_end = STACK_TOP_MAX;
 275        vma->vm_start = vma->vm_end - PAGE_SIZE;
 276        vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 277        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 278        INIT_LIST_HEAD(&vma->anon_vma_chain);
 279
 280        err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
 281        if (err)
 282                goto err;
 283
 284        err = insert_vm_struct(mm, vma);
 285        if (err)
 286                goto err;
 287
 288        mm->stack_vm = mm->total_vm = 1;
 289        up_write(&mm->mmap_sem);
 290        bprm->p = vma->vm_end - sizeof(void *);
 291        return 0;
 292err:
 293        up_write(&mm->mmap_sem);
 294        bprm->vma = NULL;
 295        kmem_cache_free(vm_area_cachep, vma);
 296        return err;
 297}
 298
 299static bool valid_arg_len(struct linux_binprm *bprm, long len)
 300{
 301        return len <= MAX_ARG_STRLEN;
 302}
 303
 304#else
 305
 306static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 307{
 308}
 309
 310static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 311                int write)
 312{
 313        struct page *page;
 314
 315        page = bprm->page[pos / PAGE_SIZE];
 316        if (!page && write) {
 317                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 318                if (!page)
 319                        return NULL;
 320                bprm->page[pos / PAGE_SIZE] = page;
 321        }
 322
 323        return page;
 324}
 325
 326static void put_arg_page(struct page *page)
 327{
 328}
 329
 330static void free_arg_page(struct linux_binprm *bprm, int i)
 331{
 332        if (bprm->page[i]) {
 333                __free_page(bprm->page[i]);
 334                bprm->page[i] = NULL;
 335        }
 336}
 337
 338static void free_arg_pages(struct linux_binprm *bprm)
 339{
 340        int i;
 341
 342        for (i = 0; i < MAX_ARG_PAGES; i++)
 343                free_arg_page(bprm, i);
 344}
 345
 346static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 347                struct page *page)
 348{
 349}
 350
 351static int __bprm_mm_init(struct linux_binprm *bprm)
 352{
 353        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 354        return 0;
 355}
 356
 357static bool valid_arg_len(struct linux_binprm *bprm, long len)
 358{
 359        return len <= bprm->p;
 360}
 361
 362#endif /* CONFIG_MMU */
 363
 364/*
 365 * Create a new mm_struct and populate it with a temporary stack
 366 * vm_area_struct.  We don't have enough context at this point to set the stack
 367 * flags, permissions, and offset, so we use temporary values.  We'll update
 368 * them later in setup_arg_pages().
 369 */
 370int bprm_mm_init(struct linux_binprm *bprm)
 371{
 372        int err;
 373        struct mm_struct *mm = NULL;
 374
 375        bprm->mm = mm = mm_alloc();
 376        err = -ENOMEM;
 377        if (!mm)
 378                goto err;
 379
 380        err = init_new_context(current, mm);
 381        if (err)
 382                goto err;
 383
 384        err = __bprm_mm_init(bprm);
 385        if (err)
 386                goto err;
 387
 388        return 0;
 389
 390err:
 391        if (mm) {
 392                bprm->mm = NULL;
 393                mmdrop(mm);
 394        }
 395
 396        return err;
 397}
 398
 399struct user_arg_ptr {
 400#ifdef CONFIG_COMPAT
 401        bool is_compat;
 402#endif
 403        union {
 404                const char __user *const __user *native;
 405#ifdef CONFIG_COMPAT
 406                compat_uptr_t __user *compat;
 407#endif
 408        } ptr;
 409};
 410
 411static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 412{
 413        const char __user *native;
 414
 415#ifdef CONFIG_COMPAT
 416        if (unlikely(argv.is_compat)) {
 417                compat_uptr_t compat;
 418
 419                if (get_user(compat, argv.ptr.compat + nr))
 420                        return ERR_PTR(-EFAULT);
 421
 422                return compat_ptr(compat);
 423        }
 424#endif
 425
 426        if (get_user(native, argv.ptr.native + nr))
 427                return ERR_PTR(-EFAULT);
 428
 429        return native;
 430}
 431
 432/*
 433 * count() counts the number of strings in array ARGV.
 434 */
 435static int count(struct user_arg_ptr argv, int max)
 436{
 437        int i = 0;
 438
 439        if (argv.ptr.native != NULL) {
 440                for (;;) {
 441                        const char __user *p = get_user_arg_ptr(argv, i);
 442
 443                        if (!p)
 444                                break;
 445
 446                        if (IS_ERR(p))
 447                                return -EFAULT;
 448
 449                        if (i++ >= max)
 450                                return -E2BIG;
 451
 452                        if (fatal_signal_pending(current))
 453                                return -ERESTARTNOHAND;
 454                        cond_resched();
 455                }
 456        }
 457        return i;
 458}
 459
 460/*
 461 * 'copy_strings()' copies argument/environment strings from the old
 462 * processes's memory to the new process's stack.  The call to get_user_pages()
 463 * ensures the destination page is created and not swapped out.
 464 */
 465static int copy_strings(int argc, struct user_arg_ptr argv,
 466                        struct linux_binprm *bprm)
 467{
 468        struct page *kmapped_page = NULL;
 469        char *kaddr = NULL;
 470        unsigned long kpos = 0;
 471        int ret;
 472
 473        while (argc-- > 0) {
 474                const char __user *str;
 475                int len;
 476                unsigned long pos;
 477
 478                ret = -EFAULT;
 479                str = get_user_arg_ptr(argv, argc);
 480                if (IS_ERR(str))
 481                        goto out;
 482
 483                len = strnlen_user(str, MAX_ARG_STRLEN);
 484                if (!len)
 485                        goto out;
 486
 487                ret = -E2BIG;
 488                if (!valid_arg_len(bprm, len))
 489                        goto out;
 490
 491                /* We're going to work our way backwords. */
 492                pos = bprm->p;
 493                str += len;
 494                bprm->p -= len;
 495
 496                while (len > 0) {
 497                        int offset, bytes_to_copy;
 498
 499                        if (fatal_signal_pending(current)) {
 500                                ret = -ERESTARTNOHAND;
 501                                goto out;
 502                        }
 503                        cond_resched();
 504
 505                        offset = pos % PAGE_SIZE;
 506                        if (offset == 0)
 507                                offset = PAGE_SIZE;
 508
 509                        bytes_to_copy = offset;
 510                        if (bytes_to_copy > len)
 511                                bytes_to_copy = len;
 512
 513                        offset -= bytes_to_copy;
 514                        pos -= bytes_to_copy;
 515                        str -= bytes_to_copy;
 516                        len -= bytes_to_copy;
 517
 518                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 519                                struct page *page;
 520
 521                                page = get_arg_page(bprm, pos, 1);
 522                                if (!page) {
 523                                        ret = -E2BIG;
 524                                        goto out;
 525                                }
 526
 527                                if (kmapped_page) {
 528                                        flush_kernel_dcache_page(kmapped_page);
 529                                        kunmap(kmapped_page);
 530                                        put_arg_page(kmapped_page);
 531                                }
 532                                kmapped_page = page;
 533                                kaddr = kmap(kmapped_page);
 534                                kpos = pos & PAGE_MASK;
 535                                flush_arg_page(bprm, kpos, kmapped_page);
 536                        }
 537                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 538                                ret = -EFAULT;
 539                                goto out;
 540                        }
 541                }
 542        }
 543        ret = 0;
 544out:
 545        if (kmapped_page) {
 546                flush_kernel_dcache_page(kmapped_page);
 547                kunmap(kmapped_page);
 548                put_arg_page(kmapped_page);
 549        }
 550        return ret;
 551}
 552
 553/*
 554 * Like copy_strings, but get argv and its values from kernel memory.
 555 */
 556int copy_strings_kernel(int argc, const char *const *__argv,
 557                        struct linux_binprm *bprm)
 558{
 559        int r;
 560        mm_segment_t oldfs = get_fs();
 561        struct user_arg_ptr argv = {
 562                .ptr.native = (const char __user *const  __user *)__argv,
 563        };
 564
 565        set_fs(KERNEL_DS);
 566        r = copy_strings(argc, argv, bprm);
 567        set_fs(oldfs);
 568
 569        return r;
 570}
 571EXPORT_SYMBOL(copy_strings_kernel);
 572
 573#ifdef CONFIG_MMU
 574
 575/*
 576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 577 * the binfmt code determines where the new stack should reside, we shift it to
 578 * its final location.  The process proceeds as follows:
 579 *
 580 * 1) Use shift to calculate the new vma endpoints.
 581 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 582 *    arguments passed to subsequent functions are consistent.
 583 * 3) Move vma's page tables to the new range.
 584 * 4) Free up any cleared pgd range.
 585 * 5) Shrink the vma to cover only the new range.
 586 */
 587static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 588{
 589        struct mm_struct *mm = vma->vm_mm;
 590        unsigned long old_start = vma->vm_start;
 591        unsigned long old_end = vma->vm_end;
 592        unsigned long length = old_end - old_start;
 593        unsigned long new_start = old_start - shift;
 594        unsigned long new_end = old_end - shift;
 595        struct mmu_gather tlb;
 596
 597        BUG_ON(new_start > new_end);
 598
 599        /*
 600         * ensure there are no vmas between where we want to go
 601         * and where we are
 602         */
 603        if (vma != find_vma(mm, new_start))
 604                return -EFAULT;
 605
 606        /*
 607         * cover the whole range: [new_start, old_end)
 608         */
 609        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 610                return -ENOMEM;
 611
 612        /*
 613         * move the page tables downwards, on failure we rely on
 614         * process cleanup to remove whatever mess we made.
 615         */
 616        if (length != move_page_tables(vma, old_start,
 617                                       vma, new_start, length))
 618                return -ENOMEM;
 619
 620        lru_add_drain();
 621        tlb_gather_mmu(&tlb, mm, 0);
 622        if (new_end > old_start) {
 623                /*
 624                 * when the old and new regions overlap clear from new_end.
 625                 */
 626                free_pgd_range(&tlb, new_end, old_end, new_end,
 627                        vma->vm_next ? vma->vm_next->vm_start : 0);
 628        } else {
 629                /*
 630                 * otherwise, clean from old_start; this is done to not touch
 631                 * the address space in [new_end, old_start) some architectures
 632                 * have constraints on va-space that make this illegal (IA64) -
 633                 * for the others its just a little faster.
 634                 */
 635                free_pgd_range(&tlb, old_start, old_end, new_end,
 636                        vma->vm_next ? vma->vm_next->vm_start : 0);
 637        }
 638        tlb_finish_mmu(&tlb, new_end, old_end);
 639
 640        /*
 641         * Shrink the vma to just the new range.  Always succeeds.
 642         */
 643        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 644
 645        return 0;
 646}
 647
 648/*
 649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 650 * the stack is optionally relocated, and some extra space is added.
 651 */
 652int setup_arg_pages(struct linux_binprm *bprm,
 653                    unsigned long stack_top,
 654                    int executable_stack)
 655{
 656        unsigned long ret;
 657        unsigned long stack_shift;
 658        struct mm_struct *mm = current->mm;
 659        struct vm_area_struct *vma = bprm->vma;
 660        struct vm_area_struct *prev = NULL;
 661        unsigned long vm_flags;
 662        unsigned long stack_base;
 663        unsigned long stack_size;
 664        unsigned long stack_expand;
 665        unsigned long rlim_stack;
 666
 667#ifdef CONFIG_STACK_GROWSUP
 668        /* Limit stack size to 1GB */
 669        stack_base = rlimit_max(RLIMIT_STACK);
 670        if (stack_base > (1 << 30))
 671                stack_base = 1 << 30;
 672
 673        /* Make sure we didn't let the argument array grow too large. */
 674        if (vma->vm_end - vma->vm_start > stack_base)
 675                return -ENOMEM;
 676
 677        stack_base = PAGE_ALIGN(stack_top - stack_base);
 678
 679        stack_shift = vma->vm_start - stack_base;
 680        mm->arg_start = bprm->p - stack_shift;
 681        bprm->p = vma->vm_end - stack_shift;
 682#else
 683        stack_top = arch_align_stack(stack_top);
 684        stack_top = PAGE_ALIGN(stack_top);
 685
 686        if (unlikely(stack_top < mmap_min_addr) ||
 687            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 688                return -ENOMEM;
 689
 690        stack_shift = vma->vm_end - stack_top;
 691
 692        bprm->p -= stack_shift;
 693        mm->arg_start = bprm->p;
 694#endif
 695
 696        if (bprm->loader)
 697                bprm->loader -= stack_shift;
 698        bprm->exec -= stack_shift;
 699
 700        down_write(&mm->mmap_sem);
 701        vm_flags = VM_STACK_FLAGS;
 702
 703        /*
 704         * Adjust stack execute permissions; explicitly enable for
 705         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 706         * (arch default) otherwise.
 707         */
 708        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 709                vm_flags |= VM_EXEC;
 710        else if (executable_stack == EXSTACK_DISABLE_X)
 711                vm_flags &= ~VM_EXEC;
 712        vm_flags |= mm->def_flags;
 713        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 714
 715        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 716                        vm_flags);
 717        if (ret)
 718                goto out_unlock;
 719        BUG_ON(prev != vma);
 720
 721        /* Move stack pages down in memory. */
 722        if (stack_shift) {
 723                ret = shift_arg_pages(vma, stack_shift);
 724                if (ret)
 725                        goto out_unlock;
 726        }
 727
 728        /* mprotect_fixup is overkill to remove the temporary stack flags */
 729        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 730
 731        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 732        stack_size = vma->vm_end - vma->vm_start;
 733        /*
 734         * Align this down to a page boundary as expand_stack
 735         * will align it up.
 736         */
 737        rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 738#ifdef CONFIG_STACK_GROWSUP
 739        if (stack_size + stack_expand > rlim_stack)
 740                stack_base = vma->vm_start + rlim_stack;
 741        else
 742                stack_base = vma->vm_end + stack_expand;
 743#else
 744        if (stack_size + stack_expand > rlim_stack)
 745                stack_base = vma->vm_end - rlim_stack;
 746        else
 747                stack_base = vma->vm_start - stack_expand;
 748#endif
 749        current->mm->start_stack = bprm->p;
 750        ret = expand_stack(vma, stack_base);
 751        if (ret)
 752                ret = -EFAULT;
 753
 754out_unlock:
 755        up_write(&mm->mmap_sem);
 756        return ret;
 757}
 758EXPORT_SYMBOL(setup_arg_pages);
 759
 760#endif /* CONFIG_MMU */
 761
 762struct file *open_exec(const char *name)
 763{
 764        struct file *file;
 765        int err;
 766        static const struct open_flags open_exec_flags = {
 767                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 768                .acc_mode = MAY_EXEC | MAY_OPEN,
 769                .intent = LOOKUP_OPEN
 770        };
 771
 772        file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
 773        if (IS_ERR(file))
 774                goto out;
 775
 776        err = -EACCES;
 777        if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 778                goto exit;
 779
 780        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 781                goto exit;
 782
 783        fsnotify_open(file);
 784
 785        err = deny_write_access(file);
 786        if (err)
 787                goto exit;
 788
 789out:
 790        return file;
 791
 792exit:
 793        fput(file);
 794        return ERR_PTR(err);
 795}
 796EXPORT_SYMBOL(open_exec);
 797
 798int kernel_read(struct file *file, loff_t offset,
 799                char *addr, unsigned long count)
 800{
 801        mm_segment_t old_fs;
 802        loff_t pos = offset;
 803        int result;
 804
 805        old_fs = get_fs();
 806        set_fs(get_ds());
 807        /* The cast to a user pointer is valid due to the set_fs() */
 808        result = vfs_read(file, (void __user *)addr, count, &pos);
 809        set_fs(old_fs);
 810        return result;
 811}
 812
 813EXPORT_SYMBOL(kernel_read);
 814
 815static int exec_mmap(struct mm_struct *mm)
 816{
 817        struct task_struct *tsk;
 818        struct mm_struct * old_mm, *active_mm;
 819
 820        /* Notify parent that we're no longer interested in the old VM */
 821        tsk = current;
 822        old_mm = current->mm;
 823        sync_mm_rss(tsk, old_mm);
 824        mm_release(tsk, old_mm);
 825
 826        if (old_mm) {
 827                /*
 828                 * Make sure that if there is a core dump in progress
 829                 * for the old mm, we get out and die instead of going
 830                 * through with the exec.  We must hold mmap_sem around
 831                 * checking core_state and changing tsk->mm.
 832                 */
 833                down_read(&old_mm->mmap_sem);
 834                if (unlikely(old_mm->core_state)) {
 835                        up_read(&old_mm->mmap_sem);
 836                        return -EINTR;
 837                }
 838        }
 839        task_lock(tsk);
 840        active_mm = tsk->active_mm;
 841        tsk->mm = mm;
 842        tsk->active_mm = mm;
 843        activate_mm(active_mm, mm);
 844        task_unlock(tsk);
 845        arch_pick_mmap_layout(mm);
 846        if (old_mm) {
 847                up_read(&old_mm->mmap_sem);
 848                BUG_ON(active_mm != old_mm);
 849                mm_update_next_owner(old_mm);
 850                mmput(old_mm);
 851                return 0;
 852        }
 853        mmdrop(active_mm);
 854        return 0;
 855}
 856
 857/*
 858 * This function makes sure the current process has its own signal table,
 859 * so that flush_signal_handlers can later reset the handlers without
 860 * disturbing other processes.  (Other processes might share the signal
 861 * table via the CLONE_SIGHAND option to clone().)
 862 */
 863static int de_thread(struct task_struct *tsk)
 864{
 865        struct signal_struct *sig = tsk->signal;
 866        struct sighand_struct *oldsighand = tsk->sighand;
 867        spinlock_t *lock = &oldsighand->siglock;
 868
 869        if (thread_group_empty(tsk))
 870                goto no_thread_group;
 871
 872        /*
 873         * Kill all other threads in the thread group.
 874         */
 875        spin_lock_irq(lock);
 876        if (signal_group_exit(sig)) {
 877                /*
 878                 * Another group action in progress, just
 879                 * return so that the signal is processed.
 880                 */
 881                spin_unlock_irq(lock);
 882                return -EAGAIN;
 883        }
 884
 885        sig->group_exit_task = tsk;
 886        sig->notify_count = zap_other_threads(tsk);
 887        if (!thread_group_leader(tsk))
 888                sig->notify_count--;
 889
 890        while (sig->notify_count) {
 891                __set_current_state(TASK_UNINTERRUPTIBLE);
 892                spin_unlock_irq(lock);
 893                schedule();
 894                spin_lock_irq(lock);
 895        }
 896        spin_unlock_irq(lock);
 897
 898        /*
 899         * At this point all other threads have exited, all we have to
 900         * do is to wait for the thread group leader to become inactive,
 901         * and to assume its PID:
 902         */
 903        if (!thread_group_leader(tsk)) {
 904                struct task_struct *leader = tsk->group_leader;
 905
 906                sig->notify_count = -1; /* for exit_notify() */
 907                for (;;) {
 908                        write_lock_irq(&tasklist_lock);
 909                        if (likely(leader->exit_state))
 910                                break;
 911                        __set_current_state(TASK_UNINTERRUPTIBLE);
 912                        write_unlock_irq(&tasklist_lock);
 913                        schedule();
 914                }
 915
 916                /*
 917                 * The only record we have of the real-time age of a
 918                 * process, regardless of execs it's done, is start_time.
 919                 * All the past CPU time is accumulated in signal_struct
 920                 * from sister threads now dead.  But in this non-leader
 921                 * exec, nothing survives from the original leader thread,
 922                 * whose birth marks the true age of this process now.
 923                 * When we take on its identity by switching to its PID, we
 924                 * also take its birthdate (always earlier than our own).
 925                 */
 926                tsk->start_time = leader->start_time;
 927
 928                BUG_ON(!same_thread_group(leader, tsk));
 929                BUG_ON(has_group_leader_pid(tsk));
 930                /*
 931                 * An exec() starts a new thread group with the
 932                 * TGID of the previous thread group. Rehash the
 933                 * two threads with a switched PID, and release
 934                 * the former thread group leader:
 935                 */
 936
 937                /* Become a process group leader with the old leader's pid.
 938                 * The old leader becomes a thread of the this thread group.
 939                 * Note: The old leader also uses this pid until release_task
 940                 *       is called.  Odd but simple and correct.
 941                 */
 942                detach_pid(tsk, PIDTYPE_PID);
 943                tsk->pid = leader->pid;
 944                attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
 945                transfer_pid(leader, tsk, PIDTYPE_PGID);
 946                transfer_pid(leader, tsk, PIDTYPE_SID);
 947
 948                list_replace_rcu(&leader->tasks, &tsk->tasks);
 949                list_replace_init(&leader->sibling, &tsk->sibling);
 950
 951                tsk->group_leader = tsk;
 952                leader->group_leader = tsk;
 953
 954                tsk->exit_signal = SIGCHLD;
 955                leader->exit_signal = -1;
 956
 957                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 958                leader->exit_state = EXIT_DEAD;
 959
 960                /*
 961                 * We are going to release_task()->ptrace_unlink() silently,
 962                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
 963                 * the tracer wont't block again waiting for this thread.
 964                 */
 965                if (unlikely(leader->ptrace))
 966                        __wake_up_parent(leader, leader->parent);
 967                write_unlock_irq(&tasklist_lock);
 968
 969                release_task(leader);
 970        }
 971
 972        sig->group_exit_task = NULL;
 973        sig->notify_count = 0;
 974
 975no_thread_group:
 976        if (current->mm)
 977                setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
 978
 979        exit_itimers(sig);
 980        flush_itimer_signals();
 981
 982        if (atomic_read(&oldsighand->count) != 1) {
 983                struct sighand_struct *newsighand;
 984                /*
 985                 * This ->sighand is shared with the CLONE_SIGHAND
 986                 * but not CLONE_THREAD task, switch to the new one.
 987                 */
 988                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 989                if (!newsighand)
 990                        return -ENOMEM;
 991
 992                atomic_set(&newsighand->count, 1);
 993                memcpy(newsighand->action, oldsighand->action,
 994                       sizeof(newsighand->action));
 995
 996                write_lock_irq(&tasklist_lock);
 997                spin_lock(&oldsighand->siglock);
 998                rcu_assign_pointer(tsk->sighand, newsighand);
 999                spin_unlock(&oldsighand->siglock);
1000                write_unlock_irq(&tasklist_lock);
1001
1002                __cleanup_sighand(oldsighand);
1003        }
1004
1005        BUG_ON(!thread_group_leader(tsk));
1006        return 0;
1007}
1008
1009/*
1010 * These functions flushes out all traces of the currently running executable
1011 * so that a new one can be started
1012 */
1013static void flush_old_files(struct files_struct * files)
1014{
1015        long j = -1;
1016        struct fdtable *fdt;
1017
1018        spin_lock(&files->file_lock);
1019        for (;;) {
1020                unsigned long set, i;
1021
1022                j++;
1023                i = j * __NFDBITS;
1024                fdt = files_fdtable(files);
1025                if (i >= fdt->max_fds)
1026                        break;
1027                set = fdt->close_on_exec->fds_bits[j];
1028                if (!set)
1029                        continue;
1030                fdt->close_on_exec->fds_bits[j] = 0;
1031                spin_unlock(&files->file_lock);
1032                for ( ; set ; i++,set >>= 1) {
1033                        if (set & 1) {
1034                                sys_close(i);
1035                        }
1036                }
1037                spin_lock(&files->file_lock);
1038
1039        }
1040        spin_unlock(&files->file_lock);
1041}
1042
1043char *get_task_comm(char *buf, struct task_struct *tsk)
1044{
1045        /* buf must be at least sizeof(tsk->comm) in size */
1046        task_lock(tsk);
1047        strncpy(buf, tsk->comm, sizeof(tsk->comm));
1048        task_unlock(tsk);
1049        return buf;
1050}
1051EXPORT_SYMBOL_GPL(get_task_comm);
1052
1053void set_task_comm(struct task_struct *tsk, char *buf)
1054{
1055        task_lock(tsk);
1056
1057        /*
1058         * Threads may access current->comm without holding
1059         * the task lock, so write the string carefully.
1060         * Readers without a lock may see incomplete new
1061         * names but are safe from non-terminating string reads.
1062         */
1063        memset(tsk->comm, 0, TASK_COMM_LEN);
1064        wmb();
1065        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1066        task_unlock(tsk);
1067        perf_event_comm(tsk);
1068}
1069
1070int flush_old_exec(struct linux_binprm * bprm)
1071{
1072        int retval;
1073
1074        /*
1075         * Make sure we have a private signal table and that
1076         * we are unassociated from the previous thread group.
1077         */
1078        retval = de_thread(current);
1079        if (retval)
1080                goto out;
1081
1082        set_mm_exe_file(bprm->mm, bprm->file);
1083
1084        /*
1085         * Release all of the old mmap stuff
1086         */
1087        acct_arg_size(bprm, 0);
1088        retval = exec_mmap(bprm->mm);
1089        if (retval)
1090                goto out;
1091
1092        bprm->mm = NULL;                /* We're using it now */
1093
1094        set_fs(USER_DS);
1095        current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1096        flush_thread();
1097        current->personality &= ~bprm->per_clear;
1098
1099        return 0;
1100
1101out:
1102        return retval;
1103}
1104EXPORT_SYMBOL(flush_old_exec);
1105
1106void would_dump(struct linux_binprm *bprm, struct file *file)
1107{
1108        if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1109                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1110}
1111EXPORT_SYMBOL(would_dump);
1112
1113void setup_new_exec(struct linux_binprm * bprm)
1114{
1115        int i, ch;
1116        const char *name;
1117        char tcomm[sizeof(current->comm)];
1118
1119        arch_pick_mmap_layout(current->mm);
1120
1121        /* This is the point of no return */
1122        current->sas_ss_sp = current->sas_ss_size = 0;
1123
1124        if (current_euid() == current_uid() && current_egid() == current_gid())
1125                set_dumpable(current->mm, 1);
1126        else
1127                set_dumpable(current->mm, suid_dumpable);
1128
1129        name = bprm->filename;
1130
1131        /* Copies the binary name from after last slash */
1132        for (i=0; (ch = *(name++)) != '\0';) {
1133                if (ch == '/')
1134                        i = 0; /* overwrite what we wrote */
1135                else
1136                        if (i < (sizeof(tcomm) - 1))
1137                                tcomm[i++] = ch;
1138        }
1139        tcomm[i] = '\0';
1140        set_task_comm(current, tcomm);
1141
1142        /* Set the new mm task size. We have to do that late because it may
1143         * depend on TIF_32BIT which is only updated in flush_thread() on
1144         * some architectures like powerpc
1145         */
1146        current->mm->task_size = TASK_SIZE;
1147
1148        /* install the new credentials */
1149        if (bprm->cred->uid != current_euid() ||
1150            bprm->cred->gid != current_egid()) {
1151                current->pdeath_signal = 0;
1152        } else {
1153                would_dump(bprm, bprm->file);
1154                if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1155                        set_dumpable(current->mm, suid_dumpable);
1156        }
1157
1158        /*
1159         * Flush performance counters when crossing a
1160         * security domain:
1161         */
1162        if (!get_dumpable(current->mm))
1163                perf_event_exit_task(current);
1164
1165        /* An exec changes our domain. We are no longer part of the thread
1166           group */
1167
1168        current->self_exec_id++;
1169                        
1170        flush_signal_handlers(current, 0);
1171        flush_old_files(current->files);
1172}
1173EXPORT_SYMBOL(setup_new_exec);
1174
1175/*
1176 * Prepare credentials and lock ->cred_guard_mutex.
1177 * install_exec_creds() commits the new creds and drops the lock.
1178 * Or, if exec fails before, free_bprm() should release ->cred and
1179 * and unlock.
1180 */
1181int prepare_bprm_creds(struct linux_binprm *bprm)
1182{
1183        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1184                return -ERESTARTNOINTR;
1185
1186        bprm->cred = prepare_exec_creds();
1187        if (likely(bprm->cred))
1188                return 0;
1189
1190        mutex_unlock(&current->signal->cred_guard_mutex);
1191        return -ENOMEM;
1192}
1193
1194void free_bprm(struct linux_binprm *bprm)
1195{
1196        free_arg_pages(bprm);
1197        if (bprm->cred) {
1198                mutex_unlock(&current->signal->cred_guard_mutex);
1199                abort_creds(bprm->cred);
1200        }
1201        kfree(bprm);
1202}
1203
1204/*
1205 * install the new credentials for this executable
1206 */
1207void install_exec_creds(struct linux_binprm *bprm)
1208{
1209        security_bprm_committing_creds(bprm);
1210
1211        commit_creds(bprm->cred);
1212        bprm->cred = NULL;
1213        /*
1214         * cred_guard_mutex must be held at least to this point to prevent
1215         * ptrace_attach() from altering our determination of the task's
1216         * credentials; any time after this it may be unlocked.
1217         */
1218        security_bprm_committed_creds(bprm);
1219        mutex_unlock(&current->signal->cred_guard_mutex);
1220}
1221EXPORT_SYMBOL(install_exec_creds);
1222
1223/*
1224 * determine how safe it is to execute the proposed program
1225 * - the caller must hold ->cred_guard_mutex to protect against
1226 *   PTRACE_ATTACH
1227 */
1228int check_unsafe_exec(struct linux_binprm *bprm)
1229{
1230        struct task_struct *p = current, *t;
1231        unsigned n_fs;
1232        int res = 0;
1233
1234        if (p->ptrace) {
1235                if (p->ptrace & PT_PTRACE_CAP)
1236                        bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1237                else
1238                        bprm->unsafe |= LSM_UNSAFE_PTRACE;
1239        }
1240
1241        n_fs = 1;
1242        spin_lock(&p->fs->lock);
1243        rcu_read_lock();
1244        for (t = next_thread(p); t != p; t = next_thread(t)) {
1245                if (t->fs == p->fs)
1246                        n_fs++;
1247        }
1248        rcu_read_unlock();
1249
1250        if (p->fs->users > n_fs) {
1251                bprm->unsafe |= LSM_UNSAFE_SHARE;
1252        } else {
1253                res = -EAGAIN;
1254                if (!p->fs->in_exec) {
1255                        p->fs->in_exec = 1;
1256                        res = 1;
1257                }
1258        }
1259        spin_unlock(&p->fs->lock);
1260
1261        return res;
1262}
1263
1264/* 
1265 * Fill the binprm structure from the inode. 
1266 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1267 *
1268 * This may be called multiple times for binary chains (scripts for example).
1269 */
1270int prepare_binprm(struct linux_binprm *bprm)
1271{
1272        umode_t mode;
1273        struct inode * inode = bprm->file->f_path.dentry->d_inode;
1274        int retval;
1275
1276        mode = inode->i_mode;
1277        if (bprm->file->f_op == NULL)
1278                return -EACCES;
1279
1280        /* clear any previous set[ug]id data from a previous binary */
1281        bprm->cred->euid = current_euid();
1282        bprm->cred->egid = current_egid();
1283
1284        if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1285                /* Set-uid? */
1286                if (mode & S_ISUID) {
1287                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1288                        bprm->cred->euid = inode->i_uid;
1289                }
1290
1291                /* Set-gid? */
1292                /*
1293                 * If setgid is set but no group execute bit then this
1294                 * is a candidate for mandatory locking, not a setgid
1295                 * executable.
1296                 */
1297                if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1298                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1299                        bprm->cred->egid = inode->i_gid;
1300                }
1301        }
1302
1303        /* fill in binprm security blob */
1304        retval = security_bprm_set_creds(bprm);
1305        if (retval)
1306                return retval;
1307        bprm->cred_prepared = 1;
1308
1309        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1310        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1311}
1312
1313EXPORT_SYMBOL(prepare_binprm);
1314
1315/*
1316 * Arguments are '\0' separated strings found at the location bprm->p
1317 * points to; chop off the first by relocating brpm->p to right after
1318 * the first '\0' encountered.
1319 */
1320int remove_arg_zero(struct linux_binprm *bprm)
1321{
1322        int ret = 0;
1323        unsigned long offset;
1324        char *kaddr;
1325        struct page *page;
1326
1327        if (!bprm->argc)
1328                return 0;
1329
1330        do {
1331                offset = bprm->p & ~PAGE_MASK;
1332                page = get_arg_page(bprm, bprm->p, 0);
1333                if (!page) {
1334                        ret = -EFAULT;
1335                        goto out;
1336                }
1337                kaddr = kmap_atomic(page, KM_USER0);
1338
1339                for (; offset < PAGE_SIZE && kaddr[offset];
1340                                offset++, bprm->p++)
1341                        ;
1342
1343                kunmap_atomic(kaddr, KM_USER0);
1344                put_arg_page(page);
1345
1346                if (offset == PAGE_SIZE)
1347                        free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1348        } while (offset == PAGE_SIZE);
1349
1350        bprm->p++;
1351        bprm->argc--;
1352        ret = 0;
1353
1354out:
1355        return ret;
1356}
1357EXPORT_SYMBOL(remove_arg_zero);
1358
1359/*
1360 * cycle the list of binary formats handler, until one recognizes the image
1361 */
1362int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1363{
1364        unsigned int depth = bprm->recursion_depth;
1365        int try,retval;
1366        struct linux_binfmt *fmt;
1367        pid_t old_pid;
1368
1369        retval = security_bprm_check(bprm);
1370        if (retval)
1371                return retval;
1372
1373        retval = audit_bprm(bprm);
1374        if (retval)
1375                return retval;
1376
1377        /* Need to fetch pid before load_binary changes it */
1378        rcu_read_lock();
1379        old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1380        rcu_read_unlock();
1381
1382        retval = -ENOENT;
1383        for (try=0; try<2; try++) {
1384                read_lock(&binfmt_lock);
1385                list_for_each_entry(fmt, &formats, lh) {
1386                        int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1387                        if (!fn)
1388                                continue;
1389                        if (!try_module_get(fmt->module))
1390                                continue;
1391                        read_unlock(&binfmt_lock);
1392                        retval = fn(bprm, regs);
1393                        /*
1394                         * Restore the depth counter to its starting value
1395                         * in this call, so we don't have to rely on every
1396                         * load_binary function to restore it on return.
1397                         */
1398                        bprm->recursion_depth = depth;
1399                        if (retval >= 0) {
1400                                if (depth == 0)
1401                                        ptrace_event(PTRACE_EVENT_EXEC,
1402                                                        old_pid);
1403                                put_binfmt(fmt);
1404                                allow_write_access(bprm->file);
1405                                if (bprm->file)
1406                                        fput(bprm->file);
1407                                bprm->file = NULL;
1408                                current->did_exec = 1;
1409                                proc_exec_connector(current);
1410                                return retval;
1411                        }
1412                        read_lock(&binfmt_lock);
1413                        put_binfmt(fmt);
1414                        if (retval != -ENOEXEC || bprm->mm == NULL)
1415                                break;
1416                        if (!bprm->file) {
1417                                read_unlock(&binfmt_lock);
1418                                return retval;
1419                        }
1420                }
1421                read_unlock(&binfmt_lock);
1422#ifdef CONFIG_MODULES
1423                if (retval != -ENOEXEC || bprm->mm == NULL) {
1424                        break;
1425                } else {
1426#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1427                        if (printable(bprm->buf[0]) &&
1428                            printable(bprm->buf[1]) &&
1429                            printable(bprm->buf[2]) &&
1430                            printable(bprm->buf[3]))
1431                                break; /* -ENOEXEC */
1432                        if (try)
1433                                break; /* -ENOEXEC */
1434                        request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1435                }
1436#else
1437                break;
1438#endif
1439        }
1440        return retval;
1441}
1442
1443EXPORT_SYMBOL(search_binary_handler);
1444
1445/*
1446 * sys_execve() executes a new program.
1447 */
1448static int do_execve_common(const char *filename,
1449                                struct user_arg_ptr argv,
1450                                struct user_arg_ptr envp,
1451                                struct pt_regs *regs)
1452{
1453        struct linux_binprm *bprm;
1454        struct file *file;
1455        struct files_struct *displaced;
1456        bool clear_in_exec;
1457        int retval;
1458        const struct cred *cred = current_cred();
1459
1460        /*
1461         * We move the actual failure in case of RLIMIT_NPROC excess from
1462         * set*uid() to execve() because too many poorly written programs
1463         * don't check setuid() return code.  Here we additionally recheck
1464         * whether NPROC limit is still exceeded.
1465         */
1466        if ((current->flags & PF_NPROC_EXCEEDED) &&
1467            atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1468                retval = -EAGAIN;
1469                goto out_ret;
1470        }
1471
1472        /* We're below the limit (still or again), so we don't want to make
1473         * further execve() calls fail. */
1474        current->flags &= ~PF_NPROC_EXCEEDED;
1475
1476        retval = unshare_files(&displaced);
1477        if (retval)
1478                goto out_ret;
1479
1480        retval = -ENOMEM;
1481        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1482        if (!bprm)
1483                goto out_files;
1484
1485        retval = prepare_bprm_creds(bprm);
1486        if (retval)
1487                goto out_free;
1488
1489        retval = check_unsafe_exec(bprm);
1490        if (retval < 0)
1491                goto out_free;
1492        clear_in_exec = retval;
1493        current->in_execve = 1;
1494
1495        file = open_exec(filename);
1496        retval = PTR_ERR(file);
1497        if (IS_ERR(file))
1498                goto out_unmark;
1499
1500        sched_exec();
1501
1502        bprm->file = file;
1503        bprm->filename = filename;
1504        bprm->interp = filename;
1505
1506        retval = bprm_mm_init(bprm);
1507        if (retval)
1508                goto out_file;
1509
1510        bprm->argc = count(argv, MAX_ARG_STRINGS);
1511        if ((retval = bprm->argc) < 0)
1512                goto out;
1513
1514        bprm->envc = count(envp, MAX_ARG_STRINGS);
1515        if ((retval = bprm->envc) < 0)
1516                goto out;
1517
1518        retval = prepare_binprm(bprm);
1519        if (retval < 0)
1520                goto out;
1521
1522        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1523        if (retval < 0)
1524                goto out;
1525
1526        bprm->exec = bprm->p;
1527        retval = copy_strings(bprm->envc, envp, bprm);
1528        if (retval < 0)
1529                goto out;
1530
1531        retval = copy_strings(bprm->argc, argv, bprm);
1532        if (retval < 0)
1533                goto out;
1534
1535        retval = search_binary_handler(bprm,regs);
1536        if (retval < 0)
1537                goto out;
1538
1539        /* execve succeeded */
1540        current->fs->in_exec = 0;
1541        current->in_execve = 0;
1542        acct_update_integrals(current);
1543        free_bprm(bprm);
1544        if (displaced)
1545                put_files_struct(displaced);
1546        return retval;
1547
1548out:
1549        if (bprm->mm) {
1550                acct_arg_size(bprm, 0);
1551                mmput(bprm->mm);
1552        }
1553
1554out_file:
1555        if (bprm->file) {
1556                allow_write_access(bprm->file);
1557                fput(bprm->file);
1558        }
1559
1560out_unmark:
1561        if (clear_in_exec)
1562                current->fs->in_exec = 0;
1563        current->in_execve = 0;
1564
1565out_free:
1566        free_bprm(bprm);
1567
1568out_files:
1569        if (displaced)
1570                reset_files_struct(displaced);
1571out_ret:
1572        return retval;
1573}
1574
1575int do_execve(const char *filename,
1576        const char __user *const __user *__argv,
1577        const char __user *const __user *__envp,
1578        struct pt_regs *regs)
1579{
1580        struct user_arg_ptr argv = { .ptr.native = __argv };
1581        struct user_arg_ptr envp = { .ptr.native = __envp };
1582        return do_execve_common(filename, argv, envp, regs);
1583}
1584
1585#ifdef CONFIG_COMPAT
1586int compat_do_execve(char *filename,
1587        compat_uptr_t __user *__argv,
1588        compat_uptr_t __user *__envp,
1589        struct pt_regs *regs)
1590{
1591        struct user_arg_ptr argv = {
1592                .is_compat = true,
1593                .ptr.compat = __argv,
1594        };
1595        struct user_arg_ptr envp = {
1596                .is_compat = true,
1597                .ptr.compat = __envp,
1598        };
1599        return do_execve_common(filename, argv, envp, regs);
1600}
1601#endif
1602
1603void set_binfmt(struct linux_binfmt *new)
1604{
1605        struct mm_struct *mm = current->mm;
1606
1607        if (mm->binfmt)
1608                module_put(mm->binfmt->module);
1609
1610        mm->binfmt = new;
1611        if (new)
1612                __module_get(new->module);
1613}
1614
1615EXPORT_SYMBOL(set_binfmt);
1616
1617static int expand_corename(struct core_name *cn)
1618{
1619        char *old_corename = cn->corename;
1620
1621        cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1622        cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1623
1624        if (!cn->corename) {
1625                kfree(old_corename);
1626                return -ENOMEM;
1627        }
1628
1629        return 0;
1630}
1631
1632static int cn_printf(struct core_name *cn, const char *fmt, ...)
1633{
1634        char *cur;
1635        int need;
1636        int ret;
1637        va_list arg;
1638
1639        va_start(arg, fmt);
1640        need = vsnprintf(NULL, 0, fmt, arg);
1641        va_end(arg);
1642
1643        if (likely(need < cn->size - cn->used - 1))
1644                goto out_printf;
1645
1646        ret = expand_corename(cn);
1647        if (ret)
1648                goto expand_fail;
1649
1650out_printf:
1651        cur = cn->corename + cn->used;
1652        va_start(arg, fmt);
1653        vsnprintf(cur, need + 1, fmt, arg);
1654        va_end(arg);
1655        cn->used += need;
1656        return 0;
1657
1658expand_fail:
1659        return ret;
1660}
1661
1662static void cn_escape(char *str)
1663{
1664        for (; *str; str++)
1665                if (*str == '/')
1666                        *str = '!';
1667}
1668
1669static int cn_print_exe_file(struct core_name *cn)
1670{
1671        struct file *exe_file;
1672        char *pathbuf, *path;
1673        int ret;
1674
1675        exe_file = get_mm_exe_file(current->mm);
1676        if (!exe_file) {
1677                char *commstart = cn->corename + cn->used;
1678                ret = cn_printf(cn, "%s (path unknown)", current->comm);
1679                cn_escape(commstart);
1680                return ret;
1681        }
1682
1683        pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1684        if (!pathbuf) {
1685                ret = -ENOMEM;
1686                goto put_exe_file;
1687        }
1688
1689        path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1690        if (IS_ERR(path)) {
1691                ret = PTR_ERR(path);
1692                goto free_buf;
1693        }
1694
1695        cn_escape(path);
1696
1697        ret = cn_printf(cn, "%s", path);
1698
1699free_buf:
1700        kfree(pathbuf);
1701put_exe_file:
1702        fput(exe_file);
1703        return ret;
1704}
1705
1706/* format_corename will inspect the pattern parameter, and output a
1707 * name into corename, which must have space for at least
1708 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1709 */
1710static int format_corename(struct core_name *cn, long signr)
1711{
1712        const struct cred *cred = current_cred();
1713        const char *pat_ptr = core_pattern;
1714        int ispipe = (*pat_ptr == '|');
1715        int pid_in_pattern = 0;
1716        int err = 0;
1717
1718        cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1719        cn->corename = kmalloc(cn->size, GFP_KERNEL);
1720        cn->used = 0;
1721
1722        if (!cn->corename)
1723                return -ENOMEM;
1724
1725        /* Repeat as long as we have more pattern to process and more output
1726           space */
1727        while (*pat_ptr) {
1728                if (*pat_ptr != '%') {
1729                        if (*pat_ptr == 0)
1730                                goto out;
1731                        err = cn_printf(cn, "%c", *pat_ptr++);
1732                } else {
1733                        switch (*++pat_ptr) {
1734                        /* single % at the end, drop that */
1735                        case 0:
1736                                goto out;
1737                        /* Double percent, output one percent */
1738                        case '%':
1739                                err = cn_printf(cn, "%c", '%');
1740                                break;
1741                        /* pid */
1742                        case 'p':
1743                                pid_in_pattern = 1;
1744                                err = cn_printf(cn, "%d",
1745                                              task_tgid_vnr(current));
1746                                break;
1747                        /* uid */
1748                        case 'u':
1749                                err = cn_printf(cn, "%d", cred->uid);
1750                                break;
1751                        /* gid */
1752                        case 'g':
1753                                err = cn_printf(cn, "%d", cred->gid);
1754                                break;
1755                        /* signal that caused the coredump */
1756                        case 's':
1757                                err = cn_printf(cn, "%ld", signr);
1758                                break;
1759                        /* UNIX time of coredump */
1760                        case 't': {
1761                                struct timeval tv;
1762                                do_gettimeofday(&tv);
1763                                err = cn_printf(cn, "%lu", tv.tv_sec);
1764                                break;
1765                        }
1766                        /* hostname */
1767                        case 'h': {
1768                                char *namestart = cn->corename + cn->used;
1769                                down_read(&uts_sem);
1770                                err = cn_printf(cn, "%s",
1771                                              utsname()->nodename);
1772                                up_read(&uts_sem);
1773                                cn_escape(namestart);
1774                                break;
1775                        }
1776                        /* executable */
1777                        case 'e': {
1778                                char *commstart = cn->corename + cn->used;
1779                                err = cn_printf(cn, "%s", current->comm);
1780                                cn_escape(commstart);
1781                                break;
1782                        }
1783                        case 'E':
1784                                err = cn_print_exe_file(cn);
1785                                break;
1786                        /* core limit size */
1787                        case 'c':
1788                                err = cn_printf(cn, "%lu",
1789                                              rlimit(RLIMIT_CORE));
1790                                break;
1791                        default:
1792                                break;
1793                        }
1794                        ++pat_ptr;
1795                }
1796
1797                if (err)
1798                        return err;
1799        }
1800
1801        /* Backward compatibility with core_uses_pid:
1802         *
1803         * If core_pattern does not include a %p (as is the default)
1804         * and core_uses_pid is set, then .%pid will be appended to
1805         * the filename. Do not do this for piped commands. */
1806        if (!ispipe && !pid_in_pattern && core_uses_pid) {
1807                err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1808                if (err)
1809                        return err;
1810        }
1811out:
1812        return ispipe;
1813}
1814
1815static int zap_process(struct task_struct *start, int exit_code)
1816{
1817        struct task_struct *t;
1818        int nr = 0;
1819
1820        start->signal->flags = SIGNAL_GROUP_EXIT;
1821        start->signal->group_exit_code = exit_code;
1822        start->signal->group_stop_count = 0;
1823
1824        t = start;
1825        do {
1826                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1827                if (t != current && t->mm) {
1828                        sigaddset(&t->pending.signal, SIGKILL);
1829                        signal_wake_up(t, 1);
1830                        nr++;
1831                }
1832        } while_each_thread(start, t);
1833
1834        return nr;
1835}
1836
1837static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1838                                struct core_state *core_state, int exit_code)
1839{
1840        struct task_struct *g, *p;
1841        unsigned long flags;
1842        int nr = -EAGAIN;
1843
1844        spin_lock_irq(&tsk->sighand->siglock);
1845        if (!signal_group_exit(tsk->signal)) {
1846                mm->core_state = core_state;
1847                nr = zap_process(tsk, exit_code);
1848        }
1849        spin_unlock_irq(&tsk->sighand->siglock);
1850        if (unlikely(nr < 0))
1851                return nr;
1852
1853        if (atomic_read(&mm->mm_users) == nr + 1)
1854                goto done;
1855        /*
1856         * We should find and kill all tasks which use this mm, and we should
1857         * count them correctly into ->nr_threads. We don't take tasklist
1858         * lock, but this is safe wrt:
1859         *
1860         * fork:
1861         *      None of sub-threads can fork after zap_process(leader). All
1862         *      processes which were created before this point should be
1863         *      visible to zap_threads() because copy_process() adds the new
1864         *      process to the tail of init_task.tasks list, and lock/unlock
1865         *      of ->siglock provides a memory barrier.
1866         *
1867         * do_exit:
1868         *      The caller holds mm->mmap_sem. This means that the task which
1869         *      uses this mm can't pass exit_mm(), so it can't exit or clear
1870         *      its ->mm.
1871         *
1872         * de_thread:
1873         *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1874         *      we must see either old or new leader, this does not matter.
1875         *      However, it can change p->sighand, so lock_task_sighand(p)
1876         *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1877         *      it can't fail.
1878         *
1879         *      Note also that "g" can be the old leader with ->mm == NULL
1880         *      and already unhashed and thus removed from ->thread_group.
1881         *      This is OK, __unhash_process()->list_del_rcu() does not
1882         *      clear the ->next pointer, we will find the new leader via
1883         *      next_thread().
1884         */
1885        rcu_read_lock();
1886        for_each_process(g) {
1887                if (g == tsk->group_leader)
1888                        continue;
1889                if (g->flags & PF_KTHREAD)
1890                        continue;
1891                p = g;
1892                do {
1893                        if (p->mm) {
1894                                if (unlikely(p->mm == mm)) {
1895                                        lock_task_sighand(p, &flags);
1896                                        nr += zap_process(p, exit_code);
1897                                        unlock_task_sighand(p, &flags);
1898                                }
1899                                break;
1900                        }
1901                } while_each_thread(g, p);
1902        }
1903        rcu_read_unlock();
1904done:
1905        atomic_set(&core_state->nr_threads, nr);
1906        return nr;
1907}
1908
1909static int coredump_wait(int exit_code, struct core_state *core_state)
1910{
1911        struct task_struct *tsk = current;
1912        struct mm_struct *mm = tsk->mm;
1913        struct completion *vfork_done;
1914        int core_waiters = -EBUSY;
1915
1916        init_completion(&core_state->startup);
1917        core_state->dumper.task = tsk;
1918        core_state->dumper.next = NULL;
1919
1920        down_write(&mm->mmap_sem);
1921        if (!mm->core_state)
1922                core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1923        up_write(&mm->mmap_sem);
1924
1925        if (unlikely(core_waiters < 0))
1926                goto fail;
1927
1928        /*
1929         * Make sure nobody is waiting for us to release the VM,
1930         * otherwise we can deadlock when we wait on each other
1931         */
1932        vfork_done = tsk->vfork_done;
1933        if (vfork_done) {
1934                tsk->vfork_done = NULL;
1935                complete(vfork_done);
1936        }
1937
1938        if (core_waiters)
1939                wait_for_completion(&core_state->startup);
1940fail:
1941        return core_waiters;
1942}
1943
1944static void coredump_finish(struct mm_struct *mm)
1945{
1946        struct core_thread *curr, *next;
1947        struct task_struct *task;
1948
1949        next = mm->core_state->dumper.next;
1950        while ((curr = next) != NULL) {
1951                next = curr->next;
1952                task = curr->task;
1953                /*
1954                 * see exit_mm(), curr->task must not see
1955                 * ->task == NULL before we read ->next.
1956                 */
1957                smp_mb();
1958                curr->task = NULL;
1959                wake_up_process(task);
1960        }
1961
1962        mm->core_state = NULL;
1963}
1964
1965/*
1966 * set_dumpable converts traditional three-value dumpable to two flags and
1967 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1968 * these bits are not changed atomically.  So get_dumpable can observe the
1969 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1970 * return either old dumpable or new one by paying attention to the order of
1971 * modifying the bits.
1972 *
1973 * dumpable |   mm->flags (binary)
1974 * old  new | initial interim  final
1975 * ---------+-----------------------
1976 *  0    1  |   00      01      01
1977 *  0    2  |   00      10(*)   11
1978 *  1    0  |   01      00      00
1979 *  1    2  |   01      11      11
1980 *  2    0  |   11      10(*)   00
1981 *  2    1  |   11      11      01
1982 *
1983 * (*) get_dumpable regards interim value of 10 as 11.
1984 */
1985void set_dumpable(struct mm_struct *mm, int value)
1986{
1987        switch (value) {
1988        case 0:
1989                clear_bit(MMF_DUMPABLE, &mm->flags);
1990                smp_wmb();
1991                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1992                break;
1993        case 1:
1994                set_bit(MMF_DUMPABLE, &mm->flags);
1995                smp_wmb();
1996                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1997                break;
1998        case 2:
1999                set_bit(MMF_DUMP_SECURELY, &mm->flags);
2000                smp_wmb();
2001                set_bit(MMF_DUMPABLE, &mm->flags);
2002                break;
2003        }
2004}
2005
2006static int __get_dumpable(unsigned long mm_flags)
2007{
2008        int ret;
2009
2010        ret = mm_flags & MMF_DUMPABLE_MASK;
2011        return (ret >= 2) ? 2 : ret;
2012}
2013
2014int get_dumpable(struct mm_struct *mm)
2015{
2016        return __get_dumpable(mm->flags);
2017}
2018
2019static void wait_for_dump_helpers(struct file *file)
2020{
2021        struct pipe_inode_info *pipe;
2022
2023        pipe = file->f_path.dentry->d_inode->i_pipe;
2024
2025        pipe_lock(pipe);
2026        pipe->readers++;
2027        pipe->writers--;
2028
2029        while ((pipe->readers > 1) && (!signal_pending(current))) {
2030                wake_up_interruptible_sync(&pipe->wait);
2031                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2032                pipe_wait(pipe);
2033        }
2034
2035        pipe->readers--;
2036        pipe->writers++;
2037        pipe_unlock(pipe);
2038
2039}
2040
2041
2042/*
2043 * umh_pipe_setup
2044 * helper function to customize the process used
2045 * to collect the core in userspace.  Specifically
2046 * it sets up a pipe and installs it as fd 0 (stdin)
2047 * for the process.  Returns 0 on success, or
2048 * PTR_ERR on failure.
2049 * Note that it also sets the core limit to 1.  This
2050 * is a special value that we use to trap recursive
2051 * core dumps
2052 */
2053static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2054{
2055        struct file *rp, *wp;
2056        struct fdtable *fdt;
2057        struct coredump_params *cp = (struct coredump_params *)info->data;
2058        struct files_struct *cf = current->files;
2059
2060        wp = create_write_pipe(0);
2061        if (IS_ERR(wp))
2062                return PTR_ERR(wp);
2063
2064        rp = create_read_pipe(wp, 0);
2065        if (IS_ERR(rp)) {
2066                free_write_pipe(wp);
2067                return PTR_ERR(rp);
2068        }
2069
2070        cp->file = wp;
2071
2072        sys_close(0);
2073        fd_install(0, rp);
2074        spin_lock(&cf->file_lock);
2075        fdt = files_fdtable(cf);
2076        FD_SET(0, fdt->open_fds);
2077        FD_CLR(0, fdt->close_on_exec);
2078        spin_unlock(&cf->file_lock);
2079
2080        /* and disallow core files too */
2081        current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2082
2083        return 0;
2084}
2085
2086void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2087{
2088        struct core_state core_state;
2089        struct core_name cn;
2090        struct mm_struct *mm = current->mm;
2091        struct linux_binfmt * binfmt;
2092        const struct cred *old_cred;
2093        struct cred *cred;
2094        int retval = 0;
2095        int flag = 0;
2096        int ispipe;
2097        static atomic_t core_dump_count = ATOMIC_INIT(0);
2098        struct coredump_params cprm = {
2099                .signr = signr,
2100                .regs = regs,
2101                .limit = rlimit(RLIMIT_CORE),
2102                /*
2103                 * We must use the same mm->flags while dumping core to avoid
2104                 * inconsistency of bit flags, since this flag is not protected
2105                 * by any locks.
2106                 */
2107                .mm_flags = mm->flags,
2108        };
2109
2110        audit_core_dumps(signr);
2111
2112        binfmt = mm->binfmt;
2113        if (!binfmt || !binfmt->core_dump)
2114                goto fail;
2115        if (!__get_dumpable(cprm.mm_flags))
2116                goto fail;
2117
2118        cred = prepare_creds();
2119        if (!cred)
2120                goto fail;
2121        /*
2122         *      We cannot trust fsuid as being the "true" uid of the
2123         *      process nor do we know its entire history. We only know it
2124         *      was tainted so we dump it as root in mode 2.
2125         */
2126        if (__get_dumpable(cprm.mm_flags) == 2) {
2127                /* Setuid core dump mode */
2128                flag = O_EXCL;          /* Stop rewrite attacks */
2129                cred->fsuid = 0;        /* Dump root private */
2130        }
2131
2132        retval = coredump_wait(exit_code, &core_state);
2133        if (retval < 0)
2134                goto fail_creds;
2135
2136        old_cred = override_creds(cred);
2137
2138        /*
2139         * Clear any false indication of pending signals that might
2140         * be seen by the filesystem code called to write the core file.
2141         */
2142        clear_thread_flag(TIF_SIGPENDING);
2143
2144        ispipe = format_corename(&cn, signr);
2145
2146        if (ispipe) {
2147                int dump_count;
2148                char **helper_argv;
2149
2150                if (ispipe < 0) {
2151                        printk(KERN_WARNING "format_corename failed\n");
2152                        printk(KERN_WARNING "Aborting core\n");
2153                        goto fail_corename;
2154                }
2155
2156                if (cprm.limit == 1) {
2157                        /*
2158                         * Normally core limits are irrelevant to pipes, since
2159                         * we're not writing to the file system, but we use
2160                         * cprm.limit of 1 here as a speacial value. Any
2161                         * non-1 limit gets set to RLIM_INFINITY below, but
2162                         * a limit of 0 skips the dump.  This is a consistent
2163                         * way to catch recursive crashes.  We can still crash
2164                         * if the core_pattern binary sets RLIM_CORE =  !1
2165                         * but it runs as root, and can do lots of stupid things
2166                         * Note that we use task_tgid_vnr here to grab the pid
2167                         * of the process group leader.  That way we get the
2168                         * right pid if a thread in a multi-threaded
2169                         * core_pattern process dies.
2170                         */
2171                        printk(KERN_WARNING
2172                                "Process %d(%s) has RLIMIT_CORE set to 1\n",
2173                                task_tgid_vnr(current), current->comm);
2174                        printk(KERN_WARNING "Aborting core\n");
2175                        goto fail_unlock;
2176                }
2177                cprm.limit = RLIM_INFINITY;
2178
2179                dump_count = atomic_inc_return(&core_dump_count);
2180                if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2181                        printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2182                               task_tgid_vnr(current), current->comm);
2183                        printk(KERN_WARNING "Skipping core dump\n");
2184                        goto fail_dropcount;
2185                }
2186
2187                helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2188                if (!helper_argv) {
2189                        printk(KERN_WARNING "%s failed to allocate memory\n",
2190                               __func__);
2191                        goto fail_dropcount;
2192                }
2193
2194                retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2195                                        NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2196                                        NULL, &cprm);
2197                argv_free(helper_argv);
2198                if (retval) {
2199                        printk(KERN_INFO "Core dump to %s pipe failed\n",
2200                               cn.corename);
2201                        goto close_fail;
2202                }
2203        } else {
2204                struct inode *inode;
2205
2206                if (cprm.limit < binfmt->min_coredump)
2207                        goto fail_unlock;
2208
2209                cprm.file = filp_open(cn.corename,
2210                                 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2211                                 0600);
2212                if (IS_ERR(cprm.file))
2213                        goto fail_unlock;
2214
2215                inode = cprm.file->f_path.dentry->d_inode;
2216                if (inode->i_nlink > 1)
2217                        goto close_fail;
2218                if (d_unhashed(cprm.file->f_path.dentry))
2219                        goto close_fail;
2220                /*
2221                 * AK: actually i see no reason to not allow this for named
2222                 * pipes etc, but keep the previous behaviour for now.
2223                 */
2224                if (!S_ISREG(inode->i_mode))
2225                        goto close_fail;
2226                /*
2227                 * Dont allow local users get cute and trick others to coredump
2228                 * into their pre-created files.
2229                 */
2230                if (inode->i_uid != current_fsuid())
2231                        goto close_fail;
2232                if (!cprm.file->f_op || !cprm.file->f_op->write)
2233                        goto close_fail;
2234                if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2235                        goto close_fail;
2236        }
2237
2238        retval = binfmt->core_dump(&cprm);
2239        if (retval)
2240                current->signal->group_exit_code |= 0x80;
2241
2242        if (ispipe && core_pipe_limit)
2243                wait_for_dump_helpers(cprm.file);
2244close_fail:
2245        if (cprm.file)
2246                filp_close(cprm.file, NULL);
2247fail_dropcount:
2248        if (ispipe)
2249                atomic_dec(&core_dump_count);
2250fail_unlock:
2251        kfree(cn.corename);
2252fail_corename:
2253        coredump_finish(mm);
2254        revert_creds(old_cred);
2255fail_creds:
2256        put_cred(cred);
2257fail:
2258        return;
2259}
2260
2261/*
2262 * Core dumping helper functions.  These are the only things you should
2263 * do on a core-file: use only these functions to write out all the
2264 * necessary info.
2265 */
2266int dump_write(struct file *file, const void *addr, int nr)
2267{
2268        return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2269}
2270EXPORT_SYMBOL(dump_write);
2271
2272int dump_seek(struct file *file, loff_t off)
2273{
2274        int ret = 1;
2275
2276        if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2277                if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2278                        return 0;
2279        } else {
2280                char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2281
2282                if (!buf)
2283                        return 0;
2284                while (off > 0) {
2285                        unsigned long n = off;
2286
2287                        if (n > PAGE_SIZE)
2288                                n = PAGE_SIZE;
2289                        if (!dump_write(file, buf, n)) {
2290                                ret = 0;
2291                                break;
2292                        }
2293                        off -= n;
2294                }
2295                free_page((unsigned long)buf);
2296        }
2297        return ret;
2298}
2299EXPORT_SYMBOL(dump_seek);
2300