linux/fs/proc/task_mmu.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/hugetlb.h>
   3#include <linux/huge_mm.h>
   4#include <linux/mount.h>
   5#include <linux/seq_file.h>
   6#include <linux/highmem.h>
   7#include <linux/ptrace.h>
   8#include <linux/slab.h>
   9#include <linux/pagemap.h>
  10#include <linux/mempolicy.h>
  11#include <linux/rmap.h>
  12#include <linux/swap.h>
  13#include <linux/swapops.h>
  14
  15#include <asm/elf.h>
  16#include <asm/uaccess.h>
  17#include <asm/tlbflush.h>
  18#include "internal.h"
  19
  20void task_mem(struct seq_file *m, struct mm_struct *mm)
  21{
  22        unsigned long data, text, lib, swap;
  23        unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24
  25        /*
  26         * Note: to minimize their overhead, mm maintains hiwater_vm and
  27         * hiwater_rss only when about to *lower* total_vm or rss.  Any
  28         * collector of these hiwater stats must therefore get total_vm
  29         * and rss too, which will usually be the higher.  Barriers? not
  30         * worth the effort, such snapshots can always be inconsistent.
  31         */
  32        hiwater_vm = total_vm = mm->total_vm;
  33        if (hiwater_vm < mm->hiwater_vm)
  34                hiwater_vm = mm->hiwater_vm;
  35        hiwater_rss = total_rss = get_mm_rss(mm);
  36        if (hiwater_rss < mm->hiwater_rss)
  37                hiwater_rss = mm->hiwater_rss;
  38
  39        data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  40        text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  41        lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  42        swap = get_mm_counter(mm, MM_SWAPENTS);
  43        seq_printf(m,
  44                "VmPeak:\t%8lu kB\n"
  45                "VmSize:\t%8lu kB\n"
  46                "VmLck:\t%8lu kB\n"
  47                "VmPin:\t%8lu kB\n"
  48                "VmHWM:\t%8lu kB\n"
  49                "VmRSS:\t%8lu kB\n"
  50                "VmData:\t%8lu kB\n"
  51                "VmStk:\t%8lu kB\n"
  52                "VmExe:\t%8lu kB\n"
  53                "VmLib:\t%8lu kB\n"
  54                "VmPTE:\t%8lu kB\n"
  55                "VmSwap:\t%8lu kB\n",
  56                hiwater_vm << (PAGE_SHIFT-10),
  57                (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  58                mm->locked_vm << (PAGE_SHIFT-10),
  59                mm->pinned_vm << (PAGE_SHIFT-10),
  60                hiwater_rss << (PAGE_SHIFT-10),
  61                total_rss << (PAGE_SHIFT-10),
  62                data << (PAGE_SHIFT-10),
  63                mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  64                (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  65                swap << (PAGE_SHIFT-10));
  66}
  67
  68unsigned long task_vsize(struct mm_struct *mm)
  69{
  70        return PAGE_SIZE * mm->total_vm;
  71}
  72
  73unsigned long task_statm(struct mm_struct *mm,
  74                         unsigned long *shared, unsigned long *text,
  75                         unsigned long *data, unsigned long *resident)
  76{
  77        *shared = get_mm_counter(mm, MM_FILEPAGES);
  78        *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  79                                                                >> PAGE_SHIFT;
  80        *data = mm->total_vm - mm->shared_vm;
  81        *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  82        return mm->total_vm;
  83}
  84
  85static void pad_len_spaces(struct seq_file *m, int len)
  86{
  87        len = 25 + sizeof(void*) * 6 - len;
  88        if (len < 1)
  89                len = 1;
  90        seq_printf(m, "%*c", len, ' ');
  91}
  92
  93static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  94{
  95        if (vma && vma != priv->tail_vma) {
  96                struct mm_struct *mm = vma->vm_mm;
  97                up_read(&mm->mmap_sem);
  98                mmput(mm);
  99        }
 100}
 101
 102static void *m_start(struct seq_file *m, loff_t *pos)
 103{
 104        struct proc_maps_private *priv = m->private;
 105        unsigned long last_addr = m->version;
 106        struct mm_struct *mm;
 107        struct vm_area_struct *vma, *tail_vma = NULL;
 108        loff_t l = *pos;
 109
 110        /* Clear the per syscall fields in priv */
 111        priv->task = NULL;
 112        priv->tail_vma = NULL;
 113
 114        /*
 115         * We remember last_addr rather than next_addr to hit with
 116         * mmap_cache most of the time. We have zero last_addr at
 117         * the beginning and also after lseek. We will have -1 last_addr
 118         * after the end of the vmas.
 119         */
 120
 121        if (last_addr == -1UL)
 122                return NULL;
 123
 124        priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 125        if (!priv->task)
 126                return ERR_PTR(-ESRCH);
 127
 128        mm = mm_for_maps(priv->task);
 129        if (!mm || IS_ERR(mm))
 130                return mm;
 131        down_read(&mm->mmap_sem);
 132
 133        tail_vma = get_gate_vma(priv->task->mm);
 134        priv->tail_vma = tail_vma;
 135
 136        /* Start with last addr hint */
 137        vma = find_vma(mm, last_addr);
 138        if (last_addr && vma) {
 139                vma = vma->vm_next;
 140                goto out;
 141        }
 142
 143        /*
 144         * Check the vma index is within the range and do
 145         * sequential scan until m_index.
 146         */
 147        vma = NULL;
 148        if ((unsigned long)l < mm->map_count) {
 149                vma = mm->mmap;
 150                while (l-- && vma)
 151                        vma = vma->vm_next;
 152                goto out;
 153        }
 154
 155        if (l != mm->map_count)
 156                tail_vma = NULL; /* After gate vma */
 157
 158out:
 159        if (vma)
 160                return vma;
 161
 162        /* End of vmas has been reached */
 163        m->version = (tail_vma != NULL)? 0: -1UL;
 164        up_read(&mm->mmap_sem);
 165        mmput(mm);
 166        return tail_vma;
 167}
 168
 169static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 170{
 171        struct proc_maps_private *priv = m->private;
 172        struct vm_area_struct *vma = v;
 173        struct vm_area_struct *tail_vma = priv->tail_vma;
 174
 175        (*pos)++;
 176        if (vma && (vma != tail_vma) && vma->vm_next)
 177                return vma->vm_next;
 178        vma_stop(priv, vma);
 179        return (vma != tail_vma)? tail_vma: NULL;
 180}
 181
 182static void m_stop(struct seq_file *m, void *v)
 183{
 184        struct proc_maps_private *priv = m->private;
 185        struct vm_area_struct *vma = v;
 186
 187        if (!IS_ERR(vma))
 188                vma_stop(priv, vma);
 189        if (priv->task)
 190                put_task_struct(priv->task);
 191}
 192
 193static int do_maps_open(struct inode *inode, struct file *file,
 194                        const struct seq_operations *ops)
 195{
 196        struct proc_maps_private *priv;
 197        int ret = -ENOMEM;
 198        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 199        if (priv) {
 200                priv->pid = proc_pid(inode);
 201                ret = seq_open(file, ops);
 202                if (!ret) {
 203                        struct seq_file *m = file->private_data;
 204                        m->private = priv;
 205                } else {
 206                        kfree(priv);
 207                }
 208        }
 209        return ret;
 210}
 211
 212static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 213{
 214        struct mm_struct *mm = vma->vm_mm;
 215        struct file *file = vma->vm_file;
 216        vm_flags_t flags = vma->vm_flags;
 217        unsigned long ino = 0;
 218        unsigned long long pgoff = 0;
 219        unsigned long start, end;
 220        dev_t dev = 0;
 221        int len;
 222
 223        if (file) {
 224                struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 225                dev = inode->i_sb->s_dev;
 226                ino = inode->i_ino;
 227                pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 228        }
 229
 230        /* We don't show the stack guard page in /proc/maps */
 231        start = vma->vm_start;
 232        if (stack_guard_page_start(vma, start))
 233                start += PAGE_SIZE;
 234        end = vma->vm_end;
 235        if (stack_guard_page_end(vma, end))
 236                end -= PAGE_SIZE;
 237
 238        seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
 239                        start,
 240                        end,
 241                        flags & VM_READ ? 'r' : '-',
 242                        flags & VM_WRITE ? 'w' : '-',
 243                        flags & VM_EXEC ? 'x' : '-',
 244                        flags & VM_MAYSHARE ? 's' : 'p',
 245                        pgoff,
 246                        MAJOR(dev), MINOR(dev), ino, &len);
 247
 248        /*
 249         * Print the dentry name for named mappings, and a
 250         * special [heap] marker for the heap:
 251         */
 252        if (file) {
 253                pad_len_spaces(m, len);
 254                seq_path(m, &file->f_path, "\n");
 255        } else {
 256                const char *name = arch_vma_name(vma);
 257                if (!name) {
 258                        if (mm) {
 259                                if (vma->vm_start <= mm->brk &&
 260                                                vma->vm_end >= mm->start_brk) {
 261                                        name = "[heap]";
 262                                } else if (vma->vm_start <= mm->start_stack &&
 263                                           vma->vm_end >= mm->start_stack) {
 264                                        name = "[stack]";
 265                                }
 266                        } else {
 267                                name = "[vdso]";
 268                        }
 269                }
 270                if (name) {
 271                        pad_len_spaces(m, len);
 272                        seq_puts(m, name);
 273                }
 274        }
 275        seq_putc(m, '\n');
 276}
 277
 278static int show_map(struct seq_file *m, void *v)
 279{
 280        struct vm_area_struct *vma = v;
 281        struct proc_maps_private *priv = m->private;
 282        struct task_struct *task = priv->task;
 283
 284        show_map_vma(m, vma);
 285
 286        if (m->count < m->size)  /* vma is copied successfully */
 287                m->version = (vma != get_gate_vma(task->mm))
 288                        ? vma->vm_start : 0;
 289        return 0;
 290}
 291
 292static const struct seq_operations proc_pid_maps_op = {
 293        .start  = m_start,
 294        .next   = m_next,
 295        .stop   = m_stop,
 296        .show   = show_map
 297};
 298
 299static int maps_open(struct inode *inode, struct file *file)
 300{
 301        return do_maps_open(inode, file, &proc_pid_maps_op);
 302}
 303
 304const struct file_operations proc_maps_operations = {
 305        .open           = maps_open,
 306        .read           = seq_read,
 307        .llseek         = seq_lseek,
 308        .release        = seq_release_private,
 309};
 310
 311/*
 312 * Proportional Set Size(PSS): my share of RSS.
 313 *
 314 * PSS of a process is the count of pages it has in memory, where each
 315 * page is divided by the number of processes sharing it.  So if a
 316 * process has 1000 pages all to itself, and 1000 shared with one other
 317 * process, its PSS will be 1500.
 318 *
 319 * To keep (accumulated) division errors low, we adopt a 64bit
 320 * fixed-point pss counter to minimize division errors. So (pss >>
 321 * PSS_SHIFT) would be the real byte count.
 322 *
 323 * A shift of 12 before division means (assuming 4K page size):
 324 *      - 1M 3-user-pages add up to 8KB errors;
 325 *      - supports mapcount up to 2^24, or 16M;
 326 *      - supports PSS up to 2^52 bytes, or 4PB.
 327 */
 328#define PSS_SHIFT 12
 329
 330#ifdef CONFIG_PROC_PAGE_MONITOR
 331struct mem_size_stats {
 332        struct vm_area_struct *vma;
 333        unsigned long resident;
 334        unsigned long shared_clean;
 335        unsigned long shared_dirty;
 336        unsigned long private_clean;
 337        unsigned long private_dirty;
 338        unsigned long referenced;
 339        unsigned long anonymous;
 340        unsigned long anonymous_thp;
 341        unsigned long swap;
 342        u64 pss;
 343};
 344
 345
 346static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 347                unsigned long ptent_size, struct mm_walk *walk)
 348{
 349        struct mem_size_stats *mss = walk->private;
 350        struct vm_area_struct *vma = mss->vma;
 351        struct page *page;
 352        int mapcount;
 353
 354        if (is_swap_pte(ptent)) {
 355                mss->swap += ptent_size;
 356                return;
 357        }
 358
 359        if (!pte_present(ptent))
 360                return;
 361
 362        page = vm_normal_page(vma, addr, ptent);
 363        if (!page)
 364                return;
 365
 366        if (PageAnon(page))
 367                mss->anonymous += ptent_size;
 368
 369        mss->resident += ptent_size;
 370        /* Accumulate the size in pages that have been accessed. */
 371        if (pte_young(ptent) || PageReferenced(page))
 372                mss->referenced += ptent_size;
 373        mapcount = page_mapcount(page);
 374        if (mapcount >= 2) {
 375                if (pte_dirty(ptent) || PageDirty(page))
 376                        mss->shared_dirty += ptent_size;
 377                else
 378                        mss->shared_clean += ptent_size;
 379                mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 380        } else {
 381                if (pte_dirty(ptent) || PageDirty(page))
 382                        mss->private_dirty += ptent_size;
 383                else
 384                        mss->private_clean += ptent_size;
 385                mss->pss += (ptent_size << PSS_SHIFT);
 386        }
 387}
 388
 389static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 390                           struct mm_walk *walk)
 391{
 392        struct mem_size_stats *mss = walk->private;
 393        struct vm_area_struct *vma = mss->vma;
 394        pte_t *pte;
 395        spinlock_t *ptl;
 396
 397        spin_lock(&walk->mm->page_table_lock);
 398        if (pmd_trans_huge(*pmd)) {
 399                if (pmd_trans_splitting(*pmd)) {
 400                        spin_unlock(&walk->mm->page_table_lock);
 401                        wait_split_huge_page(vma->anon_vma, pmd);
 402                } else {
 403                        smaps_pte_entry(*(pte_t *)pmd, addr,
 404                                        HPAGE_PMD_SIZE, walk);
 405                        spin_unlock(&walk->mm->page_table_lock);
 406                        mss->anonymous_thp += HPAGE_PMD_SIZE;
 407                        return 0;
 408                }
 409        } else {
 410                spin_unlock(&walk->mm->page_table_lock);
 411        }
 412        /*
 413         * The mmap_sem held all the way back in m_start() is what
 414         * keeps khugepaged out of here and from collapsing things
 415         * in here.
 416         */
 417        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 418        for (; addr != end; pte++, addr += PAGE_SIZE)
 419                smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 420        pte_unmap_unlock(pte - 1, ptl);
 421        cond_resched();
 422        return 0;
 423}
 424
 425static int show_smap(struct seq_file *m, void *v)
 426{
 427        struct proc_maps_private *priv = m->private;
 428        struct task_struct *task = priv->task;
 429        struct vm_area_struct *vma = v;
 430        struct mem_size_stats mss;
 431        struct mm_walk smaps_walk = {
 432                .pmd_entry = smaps_pte_range,
 433                .mm = vma->vm_mm,
 434                .private = &mss,
 435        };
 436
 437        memset(&mss, 0, sizeof mss);
 438        mss.vma = vma;
 439        /* mmap_sem is held in m_start */
 440        if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 441                walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 442
 443        show_map_vma(m, vma);
 444
 445        seq_printf(m,
 446                   "Size:           %8lu kB\n"
 447                   "Rss:            %8lu kB\n"
 448                   "Pss:            %8lu kB\n"
 449                   "Shared_Clean:   %8lu kB\n"
 450                   "Shared_Dirty:   %8lu kB\n"
 451                   "Private_Clean:  %8lu kB\n"
 452                   "Private_Dirty:  %8lu kB\n"
 453                   "Referenced:     %8lu kB\n"
 454                   "Anonymous:      %8lu kB\n"
 455                   "AnonHugePages:  %8lu kB\n"
 456                   "Swap:           %8lu kB\n"
 457                   "KernelPageSize: %8lu kB\n"
 458                   "MMUPageSize:    %8lu kB\n"
 459                   "Locked:         %8lu kB\n",
 460                   (vma->vm_end - vma->vm_start) >> 10,
 461                   mss.resident >> 10,
 462                   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 463                   mss.shared_clean  >> 10,
 464                   mss.shared_dirty  >> 10,
 465                   mss.private_clean >> 10,
 466                   mss.private_dirty >> 10,
 467                   mss.referenced >> 10,
 468                   mss.anonymous >> 10,
 469                   mss.anonymous_thp >> 10,
 470                   mss.swap >> 10,
 471                   vma_kernel_pagesize(vma) >> 10,
 472                   vma_mmu_pagesize(vma) >> 10,
 473                   (vma->vm_flags & VM_LOCKED) ?
 474                        (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 475
 476        if (m->count < m->size)  /* vma is copied successfully */
 477                m->version = (vma != get_gate_vma(task->mm))
 478                        ? vma->vm_start : 0;
 479        return 0;
 480}
 481
 482static const struct seq_operations proc_pid_smaps_op = {
 483        .start  = m_start,
 484        .next   = m_next,
 485        .stop   = m_stop,
 486        .show   = show_smap
 487};
 488
 489static int smaps_open(struct inode *inode, struct file *file)
 490{
 491        return do_maps_open(inode, file, &proc_pid_smaps_op);
 492}
 493
 494const struct file_operations proc_smaps_operations = {
 495        .open           = smaps_open,
 496        .read           = seq_read,
 497        .llseek         = seq_lseek,
 498        .release        = seq_release_private,
 499};
 500
 501static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 502                                unsigned long end, struct mm_walk *walk)
 503{
 504        struct vm_area_struct *vma = walk->private;
 505        pte_t *pte, ptent;
 506        spinlock_t *ptl;
 507        struct page *page;
 508
 509        split_huge_page_pmd(walk->mm, pmd);
 510
 511        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 512        for (; addr != end; pte++, addr += PAGE_SIZE) {
 513                ptent = *pte;
 514                if (!pte_present(ptent))
 515                        continue;
 516
 517                page = vm_normal_page(vma, addr, ptent);
 518                if (!page)
 519                        continue;
 520
 521                /* Clear accessed and referenced bits. */
 522                ptep_test_and_clear_young(vma, addr, pte);
 523                ClearPageReferenced(page);
 524        }
 525        pte_unmap_unlock(pte - 1, ptl);
 526        cond_resched();
 527        return 0;
 528}
 529
 530#define CLEAR_REFS_ALL 1
 531#define CLEAR_REFS_ANON 2
 532#define CLEAR_REFS_MAPPED 3
 533
 534static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 535                                size_t count, loff_t *ppos)
 536{
 537        struct task_struct *task;
 538        char buffer[PROC_NUMBUF];
 539        struct mm_struct *mm;
 540        struct vm_area_struct *vma;
 541        int type;
 542        int rv;
 543
 544        memset(buffer, 0, sizeof(buffer));
 545        if (count > sizeof(buffer) - 1)
 546                count = sizeof(buffer) - 1;
 547        if (copy_from_user(buffer, buf, count))
 548                return -EFAULT;
 549        rv = kstrtoint(strstrip(buffer), 10, &type);
 550        if (rv < 0)
 551                return rv;
 552        if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
 553                return -EINVAL;
 554        task = get_proc_task(file->f_path.dentry->d_inode);
 555        if (!task)
 556                return -ESRCH;
 557        mm = get_task_mm(task);
 558        if (mm) {
 559                struct mm_walk clear_refs_walk = {
 560                        .pmd_entry = clear_refs_pte_range,
 561                        .mm = mm,
 562                };
 563                down_read(&mm->mmap_sem);
 564                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 565                        clear_refs_walk.private = vma;
 566                        if (is_vm_hugetlb_page(vma))
 567                                continue;
 568                        /*
 569                         * Writing 1 to /proc/pid/clear_refs affects all pages.
 570                         *
 571                         * Writing 2 to /proc/pid/clear_refs only affects
 572                         * Anonymous pages.
 573                         *
 574                         * Writing 3 to /proc/pid/clear_refs only affects file
 575                         * mapped pages.
 576                         */
 577                        if (type == CLEAR_REFS_ANON && vma->vm_file)
 578                                continue;
 579                        if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 580                                continue;
 581                        walk_page_range(vma->vm_start, vma->vm_end,
 582                                        &clear_refs_walk);
 583                }
 584                flush_tlb_mm(mm);
 585                up_read(&mm->mmap_sem);
 586                mmput(mm);
 587        }
 588        put_task_struct(task);
 589
 590        return count;
 591}
 592
 593const struct file_operations proc_clear_refs_operations = {
 594        .write          = clear_refs_write,
 595        .llseek         = noop_llseek,
 596};
 597
 598struct pagemapread {
 599        int pos, len;
 600        u64 *buffer;
 601};
 602
 603#define PM_ENTRY_BYTES      sizeof(u64)
 604#define PM_STATUS_BITS      3
 605#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 606#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 607#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 608#define PM_PSHIFT_BITS      6
 609#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 610#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 611#define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 612#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 613#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 614
 615#define PM_PRESENT          PM_STATUS(4LL)
 616#define PM_SWAP             PM_STATUS(2LL)
 617#define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
 618#define PM_END_OF_BUFFER    1
 619
 620static int add_to_pagemap(unsigned long addr, u64 pfn,
 621                          struct pagemapread *pm)
 622{
 623        pm->buffer[pm->pos++] = pfn;
 624        if (pm->pos >= pm->len)
 625                return PM_END_OF_BUFFER;
 626        return 0;
 627}
 628
 629static int pagemap_pte_hole(unsigned long start, unsigned long end,
 630                                struct mm_walk *walk)
 631{
 632        struct pagemapread *pm = walk->private;
 633        unsigned long addr;
 634        int err = 0;
 635        for (addr = start; addr < end; addr += PAGE_SIZE) {
 636                err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
 637                if (err)
 638                        break;
 639        }
 640        return err;
 641}
 642
 643static u64 swap_pte_to_pagemap_entry(pte_t pte)
 644{
 645        swp_entry_t e = pte_to_swp_entry(pte);
 646        return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
 647}
 648
 649static u64 pte_to_pagemap_entry(pte_t pte)
 650{
 651        u64 pme = 0;
 652        if (is_swap_pte(pte))
 653                pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
 654                        | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
 655        else if (pte_present(pte))
 656                pme = PM_PFRAME(pte_pfn(pte))
 657                        | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
 658        return pme;
 659}
 660
 661static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 662                             struct mm_walk *walk)
 663{
 664        struct vm_area_struct *vma;
 665        struct pagemapread *pm = walk->private;
 666        pte_t *pte;
 667        int err = 0;
 668
 669        split_huge_page_pmd(walk->mm, pmd);
 670
 671        /* find the first VMA at or above 'addr' */
 672        vma = find_vma(walk->mm, addr);
 673        for (; addr != end; addr += PAGE_SIZE) {
 674                u64 pfn = PM_NOT_PRESENT;
 675
 676                /* check to see if we've left 'vma' behind
 677                 * and need a new, higher one */
 678                if (vma && (addr >= vma->vm_end))
 679                        vma = find_vma(walk->mm, addr);
 680
 681                /* check that 'vma' actually covers this address,
 682                 * and that it isn't a huge page vma */
 683                if (vma && (vma->vm_start <= addr) &&
 684                    !is_vm_hugetlb_page(vma)) {
 685                        pte = pte_offset_map(pmd, addr);
 686                        pfn = pte_to_pagemap_entry(*pte);
 687                        /* unmap before userspace copy */
 688                        pte_unmap(pte);
 689                }
 690                err = add_to_pagemap(addr, pfn, pm);
 691                if (err)
 692                        return err;
 693        }
 694
 695        cond_resched();
 696
 697        return err;
 698}
 699
 700#ifdef CONFIG_HUGETLB_PAGE
 701static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
 702{
 703        u64 pme = 0;
 704        if (pte_present(pte))
 705                pme = PM_PFRAME(pte_pfn(pte) + offset)
 706                        | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
 707        return pme;
 708}
 709
 710/* This function walks within one hugetlb entry in the single call */
 711static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
 712                                 unsigned long addr, unsigned long end,
 713                                 struct mm_walk *walk)
 714{
 715        struct pagemapread *pm = walk->private;
 716        int err = 0;
 717        u64 pfn;
 718
 719        for (; addr != end; addr += PAGE_SIZE) {
 720                int offset = (addr & ~hmask) >> PAGE_SHIFT;
 721                pfn = huge_pte_to_pagemap_entry(*pte, offset);
 722                err = add_to_pagemap(addr, pfn, pm);
 723                if (err)
 724                        return err;
 725        }
 726
 727        cond_resched();
 728
 729        return err;
 730}
 731#endif /* HUGETLB_PAGE */
 732
 733/*
 734 * /proc/pid/pagemap - an array mapping virtual pages to pfns
 735 *
 736 * For each page in the address space, this file contains one 64-bit entry
 737 * consisting of the following:
 738 *
 739 * Bits 0-55  page frame number (PFN) if present
 740 * Bits 0-4   swap type if swapped
 741 * Bits 5-55  swap offset if swapped
 742 * Bits 55-60 page shift (page size = 1<<page shift)
 743 * Bit  61    reserved for future use
 744 * Bit  62    page swapped
 745 * Bit  63    page present
 746 *
 747 * If the page is not present but in swap, then the PFN contains an
 748 * encoding of the swap file number and the page's offset into the
 749 * swap. Unmapped pages return a null PFN. This allows determining
 750 * precisely which pages are mapped (or in swap) and comparing mapped
 751 * pages between processes.
 752 *
 753 * Efficient users of this interface will use /proc/pid/maps to
 754 * determine which areas of memory are actually mapped and llseek to
 755 * skip over unmapped regions.
 756 */
 757#define PAGEMAP_WALK_SIZE       (PMD_SIZE)
 758#define PAGEMAP_WALK_MASK       (PMD_MASK)
 759static ssize_t pagemap_read(struct file *file, char __user *buf,
 760                            size_t count, loff_t *ppos)
 761{
 762        struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 763        struct mm_struct *mm;
 764        struct pagemapread pm;
 765        int ret = -ESRCH;
 766        struct mm_walk pagemap_walk = {};
 767        unsigned long src;
 768        unsigned long svpfn;
 769        unsigned long start_vaddr;
 770        unsigned long end_vaddr;
 771        int copied = 0;
 772
 773        if (!task)
 774                goto out;
 775
 776        ret = -EINVAL;
 777        /* file position must be aligned */
 778        if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
 779                goto out_task;
 780
 781        ret = 0;
 782        if (!count)
 783                goto out_task;
 784
 785        pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
 786        pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
 787        ret = -ENOMEM;
 788        if (!pm.buffer)
 789                goto out_task;
 790
 791        mm = mm_for_maps(task);
 792        ret = PTR_ERR(mm);
 793        if (!mm || IS_ERR(mm))
 794                goto out_free;
 795
 796        pagemap_walk.pmd_entry = pagemap_pte_range;
 797        pagemap_walk.pte_hole = pagemap_pte_hole;
 798#ifdef CONFIG_HUGETLB_PAGE
 799        pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
 800#endif
 801        pagemap_walk.mm = mm;
 802        pagemap_walk.private = &pm;
 803
 804        src = *ppos;
 805        svpfn = src / PM_ENTRY_BYTES;
 806        start_vaddr = svpfn << PAGE_SHIFT;
 807        end_vaddr = TASK_SIZE_OF(task);
 808
 809        /* watch out for wraparound */
 810        if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
 811                start_vaddr = end_vaddr;
 812
 813        /*
 814         * The odds are that this will stop walking way
 815         * before end_vaddr, because the length of the
 816         * user buffer is tracked in "pm", and the walk
 817         * will stop when we hit the end of the buffer.
 818         */
 819        ret = 0;
 820        while (count && (start_vaddr < end_vaddr)) {
 821                int len;
 822                unsigned long end;
 823
 824                pm.pos = 0;
 825                end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
 826                /* overflow ? */
 827                if (end < start_vaddr || end > end_vaddr)
 828                        end = end_vaddr;
 829                down_read(&mm->mmap_sem);
 830                ret = walk_page_range(start_vaddr, end, &pagemap_walk);
 831                up_read(&mm->mmap_sem);
 832                start_vaddr = end;
 833
 834                len = min(count, PM_ENTRY_BYTES * pm.pos);
 835                if (copy_to_user(buf, pm.buffer, len)) {
 836                        ret = -EFAULT;
 837                        goto out_mm;
 838                }
 839                copied += len;
 840                buf += len;
 841                count -= len;
 842        }
 843        *ppos += copied;
 844        if (!ret || ret == PM_END_OF_BUFFER)
 845                ret = copied;
 846
 847out_mm:
 848        mmput(mm);
 849out_free:
 850        kfree(pm.buffer);
 851out_task:
 852        put_task_struct(task);
 853out:
 854        return ret;
 855}
 856
 857const struct file_operations proc_pagemap_operations = {
 858        .llseek         = mem_lseek, /* borrow this */
 859        .read           = pagemap_read,
 860};
 861#endif /* CONFIG_PROC_PAGE_MONITOR */
 862
 863#ifdef CONFIG_NUMA
 864
 865struct numa_maps {
 866        struct vm_area_struct *vma;
 867        unsigned long pages;
 868        unsigned long anon;
 869        unsigned long active;
 870        unsigned long writeback;
 871        unsigned long mapcount_max;
 872        unsigned long dirty;
 873        unsigned long swapcache;
 874        unsigned long node[MAX_NUMNODES];
 875};
 876
 877struct numa_maps_private {
 878        struct proc_maps_private proc_maps;
 879        struct numa_maps md;
 880};
 881
 882static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
 883                        unsigned long nr_pages)
 884{
 885        int count = page_mapcount(page);
 886
 887        md->pages += nr_pages;
 888        if (pte_dirty || PageDirty(page))
 889                md->dirty += nr_pages;
 890
 891        if (PageSwapCache(page))
 892                md->swapcache += nr_pages;
 893
 894        if (PageActive(page) || PageUnevictable(page))
 895                md->active += nr_pages;
 896
 897        if (PageWriteback(page))
 898                md->writeback += nr_pages;
 899
 900        if (PageAnon(page))
 901                md->anon += nr_pages;
 902
 903        if (count > md->mapcount_max)
 904                md->mapcount_max = count;
 905
 906        md->node[page_to_nid(page)] += nr_pages;
 907}
 908
 909static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
 910                unsigned long addr)
 911{
 912        struct page *page;
 913        int nid;
 914
 915        if (!pte_present(pte))
 916                return NULL;
 917
 918        page = vm_normal_page(vma, addr, pte);
 919        if (!page)
 920                return NULL;
 921
 922        if (PageReserved(page))
 923                return NULL;
 924
 925        nid = page_to_nid(page);
 926        if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
 927                return NULL;
 928
 929        return page;
 930}
 931
 932static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
 933                unsigned long end, struct mm_walk *walk)
 934{
 935        struct numa_maps *md;
 936        spinlock_t *ptl;
 937        pte_t *orig_pte;
 938        pte_t *pte;
 939
 940        md = walk->private;
 941        spin_lock(&walk->mm->page_table_lock);
 942        if (pmd_trans_huge(*pmd)) {
 943                if (pmd_trans_splitting(*pmd)) {
 944                        spin_unlock(&walk->mm->page_table_lock);
 945                        wait_split_huge_page(md->vma->anon_vma, pmd);
 946                } else {
 947                        pte_t huge_pte = *(pte_t *)pmd;
 948                        struct page *page;
 949
 950                        page = can_gather_numa_stats(huge_pte, md->vma, addr);
 951                        if (page)
 952                                gather_stats(page, md, pte_dirty(huge_pte),
 953                                                HPAGE_PMD_SIZE/PAGE_SIZE);
 954                        spin_unlock(&walk->mm->page_table_lock);
 955                        return 0;
 956                }
 957        } else {
 958                spin_unlock(&walk->mm->page_table_lock);
 959        }
 960
 961        orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 962        do {
 963                struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
 964                if (!page)
 965                        continue;
 966                gather_stats(page, md, pte_dirty(*pte), 1);
 967
 968        } while (pte++, addr += PAGE_SIZE, addr != end);
 969        pte_unmap_unlock(orig_pte, ptl);
 970        return 0;
 971}
 972#ifdef CONFIG_HUGETLB_PAGE
 973static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
 974                unsigned long addr, unsigned long end, struct mm_walk *walk)
 975{
 976        struct numa_maps *md;
 977        struct page *page;
 978
 979        if (pte_none(*pte))
 980                return 0;
 981
 982        page = pte_page(*pte);
 983        if (!page)
 984                return 0;
 985
 986        md = walk->private;
 987        gather_stats(page, md, pte_dirty(*pte), 1);
 988        return 0;
 989}
 990
 991#else
 992static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
 993                unsigned long addr, unsigned long end, struct mm_walk *walk)
 994{
 995        return 0;
 996}
 997#endif
 998
 999/*
1000 * Display pages allocated per node and memory policy via /proc.
1001 */
1002static int show_numa_map(struct seq_file *m, void *v)
1003{
1004        struct numa_maps_private *numa_priv = m->private;
1005        struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1006        struct vm_area_struct *vma = v;
1007        struct numa_maps *md = &numa_priv->md;
1008        struct file *file = vma->vm_file;
1009        struct mm_struct *mm = vma->vm_mm;
1010        struct mm_walk walk = {};
1011        struct mempolicy *pol;
1012        int n;
1013        char buffer[50];
1014
1015        if (!mm)
1016                return 0;
1017
1018        /* Ensure we start with an empty set of numa_maps statistics. */
1019        memset(md, 0, sizeof(*md));
1020
1021        md->vma = vma;
1022
1023        walk.hugetlb_entry = gather_hugetbl_stats;
1024        walk.pmd_entry = gather_pte_stats;
1025        walk.private = md;
1026        walk.mm = mm;
1027
1028        pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
1029        mpol_to_str(buffer, sizeof(buffer), pol, 0);
1030        mpol_cond_put(pol);
1031
1032        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1033
1034        if (file) {
1035                seq_printf(m, " file=");
1036                seq_path(m, &file->f_path, "\n\t= ");
1037        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1038                seq_printf(m, " heap");
1039        } else if (vma->vm_start <= mm->start_stack &&
1040                        vma->vm_end >= mm->start_stack) {
1041                seq_printf(m, " stack");
1042        }
1043
1044        if (is_vm_hugetlb_page(vma))
1045                seq_printf(m, " huge");
1046
1047        walk_page_range(vma->vm_start, vma->vm_end, &walk);
1048
1049        if (!md->pages)
1050                goto out;
1051
1052        if (md->anon)
1053                seq_printf(m, " anon=%lu", md->anon);
1054
1055        if (md->dirty)
1056                seq_printf(m, " dirty=%lu", md->dirty);
1057
1058        if (md->pages != md->anon && md->pages != md->dirty)
1059                seq_printf(m, " mapped=%lu", md->pages);
1060
1061        if (md->mapcount_max > 1)
1062                seq_printf(m, " mapmax=%lu", md->mapcount_max);
1063
1064        if (md->swapcache)
1065                seq_printf(m, " swapcache=%lu", md->swapcache);
1066
1067        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1068                seq_printf(m, " active=%lu", md->active);
1069
1070        if (md->writeback)
1071                seq_printf(m, " writeback=%lu", md->writeback);
1072
1073        for_each_node_state(n, N_HIGH_MEMORY)
1074                if (md->node[n])
1075                        seq_printf(m, " N%d=%lu", n, md->node[n]);
1076out:
1077        seq_putc(m, '\n');
1078
1079        if (m->count < m->size)
1080                m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1081        return 0;
1082}
1083
1084static const struct seq_operations proc_pid_numa_maps_op = {
1085        .start  = m_start,
1086        .next   = m_next,
1087        .stop   = m_stop,
1088        .show   = show_numa_map,
1089};
1090
1091static int numa_maps_open(struct inode *inode, struct file *file)
1092{
1093        struct numa_maps_private *priv;
1094        int ret = -ENOMEM;
1095        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1096        if (priv) {
1097                priv->proc_maps.pid = proc_pid(inode);
1098                ret = seq_open(file, &proc_pid_numa_maps_op);
1099                if (!ret) {
1100                        struct seq_file *m = file->private_data;
1101                        m->private = priv;
1102                } else {
1103                        kfree(priv);
1104                }
1105        }
1106        return ret;
1107}
1108
1109const struct file_operations proc_numa_maps_operations = {
1110        .open           = numa_maps_open,
1111        .read           = seq_read,
1112        .llseek         = seq_lseek,
1113        .release        = seq_release_private,
1114};
1115#endif /* CONFIG_NUMA */
1116