linux/fs/ubifs/io.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published by
   9 * the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program; if not, write to the Free Software Foundation, Inc., 51
  18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19 *
  20 * Authors: Artem Bityutskiy (Битюцкий Артём)
  21 *          Adrian Hunter
  22 *          Zoltan Sogor
  23 */
  24
  25/*
  26 * This file implements UBIFS I/O subsystem which provides various I/O-related
  27 * helper functions (reading/writing/checking/validating nodes) and implements
  28 * write-buffering support. Write buffers help to save space which otherwise
  29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
  30 * Instead, data first goes to the write-buffer and is flushed when the
  31 * buffer is full or when it is not used for some time (by timer). This is
  32 * similar to the mechanism is used by JFFS2.
  33 *
  34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
  35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
  36 * the underlying flash is able to program at a time, and writing in
  37 * @c->max_write_size units should presumably be faster. Obviously,
  38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
  39 * @c->max_write_size bytes in size for maximum performance. However, when a
  40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
  41 * boundary) which contains data is written, not the whole write-buffer,
  42 * because this is more space-efficient.
  43 *
  44 * This optimization adds few complications to the code. Indeed, on the one
  45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
  46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
  47 * other hand, we do not want to waste space when synchronizing the write
  48 * buffer, so during synchronization we writes in smaller chunks. And this makes
  49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
  50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
  51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
  52 * write-buffer size (@wbuf->size).
  53 *
  54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  55 * mutexes defined inside these objects. Since sometimes upper-level code
  56 * has to lock the write-buffer (e.g. journal space reservation code), many
  57 * functions related to write-buffers have "nolock" suffix which means that the
  58 * caller has to lock the write-buffer before calling this function.
  59 *
  60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  61 * aligned, UBIFS starts the next node from the aligned address, and the padded
  62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
  63 * bytes in those small gaps. Common headers of nodes store real node lengths,
  64 * not aligned lengths. Indexing nodes also store real lengths in branches.
  65 *
  66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  67 * uses padding nodes or padding bytes, if the padding node does not fit.
  68 *
  69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
  70 * they are read from the flash media.
  71 */
  72
  73#include <linux/crc32.h>
  74#include <linux/slab.h>
  75#include "ubifs.h"
  76
  77/**
  78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
  79 * @c: UBIFS file-system description object
  80 * @err: error code which is the reason of switching to R/O mode
  81 */
  82void ubifs_ro_mode(struct ubifs_info *c, int err)
  83{
  84        if (!c->ro_error) {
  85                c->ro_error = 1;
  86                c->no_chk_data_crc = 0;
  87                c->vfs_sb->s_flags |= MS_RDONLY;
  88                ubifs_warn("switched to read-only mode, error %d", err);
  89                dump_stack();
  90        }
  91}
  92
  93/*
  94 * Below are simple wrappers over UBI I/O functions which include some
  95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
  96 * for more information.
  97 */
  98
  99int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
 100                   int len, int even_ebadmsg)
 101{
 102        int err;
 103
 104        err = ubi_read(c->ubi, lnum, buf, offs, len);
 105        /*
 106         * In case of %-EBADMSG print the error message only if the
 107         * @even_ebadmsg is true.
 108         */
 109        if (err && (err != -EBADMSG || even_ebadmsg)) {
 110                ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
 111                          len, lnum, offs, err);
 112                dbg_dump_stack();
 113        }
 114        return err;
 115}
 116
 117int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
 118                    int len, int dtype)
 119{
 120        int err;
 121
 122        ubifs_assert(!c->ro_media && !c->ro_mount);
 123        if (c->ro_error)
 124                return -EROFS;
 125        if (!dbg_is_tst_rcvry(c))
 126                err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
 127        else
 128                err = dbg_leb_write(c, lnum, buf, offs, len, dtype);
 129        if (err) {
 130                ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
 131                          len, lnum, offs, err);
 132                ubifs_ro_mode(c, err);
 133                dbg_dump_stack();
 134        }
 135        return err;
 136}
 137
 138int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
 139                     int dtype)
 140{
 141        int err;
 142
 143        ubifs_assert(!c->ro_media && !c->ro_mount);
 144        if (c->ro_error)
 145                return -EROFS;
 146        if (!dbg_is_tst_rcvry(c))
 147                err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
 148        else
 149                err = dbg_leb_change(c, lnum, buf, len, dtype);
 150        if (err) {
 151                ubifs_err("changing %d bytes in LEB %d failed, error %d",
 152                          len, lnum, err);
 153                ubifs_ro_mode(c, err);
 154                dbg_dump_stack();
 155        }
 156        return err;
 157}
 158
 159int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
 160{
 161        int err;
 162
 163        ubifs_assert(!c->ro_media && !c->ro_mount);
 164        if (c->ro_error)
 165                return -EROFS;
 166        if (!dbg_is_tst_rcvry(c))
 167                err = ubi_leb_unmap(c->ubi, lnum);
 168        else
 169                err = dbg_leb_unmap(c, lnum);
 170        if (err) {
 171                ubifs_err("unmap LEB %d failed, error %d", lnum, err);
 172                ubifs_ro_mode(c, err);
 173                dbg_dump_stack();
 174        }
 175        return err;
 176}
 177
 178int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype)
 179{
 180        int err;
 181
 182        ubifs_assert(!c->ro_media && !c->ro_mount);
 183        if (c->ro_error)
 184                return -EROFS;
 185        if (!dbg_is_tst_rcvry(c))
 186                err = ubi_leb_map(c->ubi, lnum, dtype);
 187        else
 188                err = dbg_leb_map(c, lnum, dtype);
 189        if (err) {
 190                ubifs_err("mapping LEB %d failed, error %d", lnum, err);
 191                ubifs_ro_mode(c, err);
 192                dbg_dump_stack();
 193        }
 194        return err;
 195}
 196
 197int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
 198{
 199        int err;
 200
 201        err = ubi_is_mapped(c->ubi, lnum);
 202        if (err < 0) {
 203                ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
 204                          lnum, err);
 205                dbg_dump_stack();
 206        }
 207        return err;
 208}
 209
 210/**
 211 * ubifs_check_node - check node.
 212 * @c: UBIFS file-system description object
 213 * @buf: node to check
 214 * @lnum: logical eraseblock number
 215 * @offs: offset within the logical eraseblock
 216 * @quiet: print no messages
 217 * @must_chk_crc: indicates whether to always check the CRC
 218 *
 219 * This function checks node magic number and CRC checksum. This function also
 220 * validates node length to prevent UBIFS from becoming crazy when an attacker
 221 * feeds it a file-system image with incorrect nodes. For example, too large
 222 * node length in the common header could cause UBIFS to read memory outside of
 223 * allocated buffer when checking the CRC checksum.
 224 *
 225 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
 226 * true, which is controlled by corresponding UBIFS mount option. However, if
 227 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
 228 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
 229 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
 230 * is checked. This is because during mounting or re-mounting from R/O mode to
 231 * R/W mode we may read journal nodes (when replying the journal or doing the
 232 * recovery) and the journal nodes may potentially be corrupted, so checking is
 233 * required.
 234 *
 235 * This function returns zero in case of success and %-EUCLEAN in case of bad
 236 * CRC or magic.
 237 */
 238int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
 239                     int offs, int quiet, int must_chk_crc)
 240{
 241        int err = -EINVAL, type, node_len;
 242        uint32_t crc, node_crc, magic;
 243        const struct ubifs_ch *ch = buf;
 244
 245        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 246        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 247
 248        magic = le32_to_cpu(ch->magic);
 249        if (magic != UBIFS_NODE_MAGIC) {
 250                if (!quiet)
 251                        ubifs_err("bad magic %#08x, expected %#08x",
 252                                  magic, UBIFS_NODE_MAGIC);
 253                err = -EUCLEAN;
 254                goto out;
 255        }
 256
 257        type = ch->node_type;
 258        if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 259                if (!quiet)
 260                        ubifs_err("bad node type %d", type);
 261                goto out;
 262        }
 263
 264        node_len = le32_to_cpu(ch->len);
 265        if (node_len + offs > c->leb_size)
 266                goto out_len;
 267
 268        if (c->ranges[type].max_len == 0) {
 269                if (node_len != c->ranges[type].len)
 270                        goto out_len;
 271        } else if (node_len < c->ranges[type].min_len ||
 272                   node_len > c->ranges[type].max_len)
 273                goto out_len;
 274
 275        if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
 276            !c->remounting_rw && c->no_chk_data_crc)
 277                return 0;
 278
 279        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 280        node_crc = le32_to_cpu(ch->crc);
 281        if (crc != node_crc) {
 282                if (!quiet)
 283                        ubifs_err("bad CRC: calculated %#08x, read %#08x",
 284                                  crc, node_crc);
 285                err = -EUCLEAN;
 286                goto out;
 287        }
 288
 289        return 0;
 290
 291out_len:
 292        if (!quiet)
 293                ubifs_err("bad node length %d", node_len);
 294out:
 295        if (!quiet) {
 296                ubifs_err("bad node at LEB %d:%d", lnum, offs);
 297                dbg_dump_node(c, buf);
 298                dbg_dump_stack();
 299        }
 300        return err;
 301}
 302
 303/**
 304 * ubifs_pad - pad flash space.
 305 * @c: UBIFS file-system description object
 306 * @buf: buffer to put padding to
 307 * @pad: how many bytes to pad
 308 *
 309 * The flash media obliges us to write only in chunks of %c->min_io_size and
 310 * when we have to write less data we add padding node to the write-buffer and
 311 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
 312 * media is being scanned. If the amount of wasted space is not enough to fit a
 313 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
 314 * pattern (%UBIFS_PADDING_BYTE).
 315 *
 316 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
 317 * used.
 318 */
 319void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
 320{
 321        uint32_t crc;
 322
 323        ubifs_assert(pad >= 0 && !(pad & 7));
 324
 325        if (pad >= UBIFS_PAD_NODE_SZ) {
 326                struct ubifs_ch *ch = buf;
 327                struct ubifs_pad_node *pad_node = buf;
 328
 329                ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 330                ch->node_type = UBIFS_PAD_NODE;
 331                ch->group_type = UBIFS_NO_NODE_GROUP;
 332                ch->padding[0] = ch->padding[1] = 0;
 333                ch->sqnum = 0;
 334                ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
 335                pad -= UBIFS_PAD_NODE_SZ;
 336                pad_node->pad_len = cpu_to_le32(pad);
 337                crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
 338                ch->crc = cpu_to_le32(crc);
 339                memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
 340        } else if (pad > 0)
 341                /* Too little space, padding node won't fit */
 342                memset(buf, UBIFS_PADDING_BYTE, pad);
 343}
 344
 345/**
 346 * next_sqnum - get next sequence number.
 347 * @c: UBIFS file-system description object
 348 */
 349static unsigned long long next_sqnum(struct ubifs_info *c)
 350{
 351        unsigned long long sqnum;
 352
 353        spin_lock(&c->cnt_lock);
 354        sqnum = ++c->max_sqnum;
 355        spin_unlock(&c->cnt_lock);
 356
 357        if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
 358                if (sqnum >= SQNUM_WATERMARK) {
 359                        ubifs_err("sequence number overflow %llu, end of life",
 360                                  sqnum);
 361                        ubifs_ro_mode(c, -EINVAL);
 362                }
 363                ubifs_warn("running out of sequence numbers, end of life soon");
 364        }
 365
 366        return sqnum;
 367}
 368
 369/**
 370 * ubifs_prepare_node - prepare node to be written to flash.
 371 * @c: UBIFS file-system description object
 372 * @node: the node to pad
 373 * @len: node length
 374 * @pad: if the buffer has to be padded
 375 *
 376 * This function prepares node at @node to be written to the media - it
 377 * calculates node CRC, fills the common header, and adds proper padding up to
 378 * the next minimum I/O unit if @pad is not zero.
 379 */
 380void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
 381{
 382        uint32_t crc;
 383        struct ubifs_ch *ch = node;
 384        unsigned long long sqnum = next_sqnum(c);
 385
 386        ubifs_assert(len >= UBIFS_CH_SZ);
 387
 388        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 389        ch->len = cpu_to_le32(len);
 390        ch->group_type = UBIFS_NO_NODE_GROUP;
 391        ch->sqnum = cpu_to_le64(sqnum);
 392        ch->padding[0] = ch->padding[1] = 0;
 393        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 394        ch->crc = cpu_to_le32(crc);
 395
 396        if (pad) {
 397                len = ALIGN(len, 8);
 398                pad = ALIGN(len, c->min_io_size) - len;
 399                ubifs_pad(c, node + len, pad);
 400        }
 401}
 402
 403/**
 404 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
 405 * @c: UBIFS file-system description object
 406 * @node: the node to pad
 407 * @len: node length
 408 * @last: indicates the last node of the group
 409 *
 410 * This function prepares node at @node to be written to the media - it
 411 * calculates node CRC and fills the common header.
 412 */
 413void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
 414{
 415        uint32_t crc;
 416        struct ubifs_ch *ch = node;
 417        unsigned long long sqnum = next_sqnum(c);
 418
 419        ubifs_assert(len >= UBIFS_CH_SZ);
 420
 421        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 422        ch->len = cpu_to_le32(len);
 423        if (last)
 424                ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
 425        else
 426                ch->group_type = UBIFS_IN_NODE_GROUP;
 427        ch->sqnum = cpu_to_le64(sqnum);
 428        ch->padding[0] = ch->padding[1] = 0;
 429        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 430        ch->crc = cpu_to_le32(crc);
 431}
 432
 433/**
 434 * wbuf_timer_callback - write-buffer timer callback function.
 435 * @data: timer data (write-buffer descriptor)
 436 *
 437 * This function is called when the write-buffer timer expires.
 438 */
 439static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
 440{
 441        struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
 442
 443        dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
 444        wbuf->need_sync = 1;
 445        wbuf->c->need_wbuf_sync = 1;
 446        ubifs_wake_up_bgt(wbuf->c);
 447        return HRTIMER_NORESTART;
 448}
 449
 450/**
 451 * new_wbuf_timer - start new write-buffer timer.
 452 * @wbuf: write-buffer descriptor
 453 */
 454static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 455{
 456        ubifs_assert(!hrtimer_active(&wbuf->timer));
 457
 458        if (wbuf->no_timer)
 459                return;
 460        dbg_io("set timer for jhead %s, %llu-%llu millisecs",
 461               dbg_jhead(wbuf->jhead),
 462               div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
 463               div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
 464                       USEC_PER_SEC));
 465        hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
 466                               HRTIMER_MODE_REL);
 467}
 468
 469/**
 470 * cancel_wbuf_timer - cancel write-buffer timer.
 471 * @wbuf: write-buffer descriptor
 472 */
 473static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 474{
 475        if (wbuf->no_timer)
 476                return;
 477        wbuf->need_sync = 0;
 478        hrtimer_cancel(&wbuf->timer);
 479}
 480
 481/**
 482 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
 483 * @wbuf: write-buffer to synchronize
 484 *
 485 * This function synchronizes write-buffer @buf and returns zero in case of
 486 * success or a negative error code in case of failure.
 487 *
 488 * Note, although write-buffers are of @c->max_write_size, this function does
 489 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
 490 * if the write-buffer is only partially filled with data, only the used part
 491 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
 492 * This way we waste less space.
 493 */
 494int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
 495{
 496        struct ubifs_info *c = wbuf->c;
 497        int err, dirt, sync_len;
 498
 499        cancel_wbuf_timer_nolock(wbuf);
 500        if (!wbuf->used || wbuf->lnum == -1)
 501                /* Write-buffer is empty or not seeked */
 502                return 0;
 503
 504        dbg_io("LEB %d:%d, %d bytes, jhead %s",
 505               wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
 506        ubifs_assert(!(wbuf->avail & 7));
 507        ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
 508        ubifs_assert(wbuf->size >= c->min_io_size);
 509        ubifs_assert(wbuf->size <= c->max_write_size);
 510        ubifs_assert(wbuf->size % c->min_io_size == 0);
 511        ubifs_assert(!c->ro_media && !c->ro_mount);
 512        if (c->leb_size - wbuf->offs >= c->max_write_size)
 513                ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
 514
 515        if (c->ro_error)
 516                return -EROFS;
 517
 518        /*
 519         * Do not write whole write buffer but write only the minimum necessary
 520         * amount of min. I/O units.
 521         */
 522        sync_len = ALIGN(wbuf->used, c->min_io_size);
 523        dirt = sync_len - wbuf->used;
 524        if (dirt)
 525                ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
 526        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len,
 527                              wbuf->dtype);
 528        if (err)
 529                return err;
 530
 531        spin_lock(&wbuf->lock);
 532        wbuf->offs += sync_len;
 533        /*
 534         * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
 535         * But our goal is to optimize writes and make sure we write in
 536         * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
 537         * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
 538         * sure that @wbuf->offs + @wbuf->size is aligned to
 539         * @c->max_write_size. This way we make sure that after next
 540         * write-buffer flush we are again at the optimal offset (aligned to
 541         * @c->max_write_size).
 542         */
 543        if (c->leb_size - wbuf->offs < c->max_write_size)
 544                wbuf->size = c->leb_size - wbuf->offs;
 545        else if (wbuf->offs & (c->max_write_size - 1))
 546                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 547        else
 548                wbuf->size = c->max_write_size;
 549        wbuf->avail = wbuf->size;
 550        wbuf->used = 0;
 551        wbuf->next_ino = 0;
 552        spin_unlock(&wbuf->lock);
 553
 554        if (wbuf->sync_callback)
 555                err = wbuf->sync_callback(c, wbuf->lnum,
 556                                          c->leb_size - wbuf->offs, dirt);
 557        return err;
 558}
 559
 560/**
 561 * ubifs_wbuf_seek_nolock - seek write-buffer.
 562 * @wbuf: write-buffer
 563 * @lnum: logical eraseblock number to seek to
 564 * @offs: logical eraseblock offset to seek to
 565 * @dtype: data type
 566 *
 567 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
 568 * The write-buffer has to be empty. Returns zero in case of success and a
 569 * negative error code in case of failure.
 570 */
 571int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
 572                           int dtype)
 573{
 574        const struct ubifs_info *c = wbuf->c;
 575
 576        dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
 577        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
 578        ubifs_assert(offs >= 0 && offs <= c->leb_size);
 579        ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
 580        ubifs_assert(lnum != wbuf->lnum);
 581        ubifs_assert(wbuf->used == 0);
 582
 583        spin_lock(&wbuf->lock);
 584        wbuf->lnum = lnum;
 585        wbuf->offs = offs;
 586        if (c->leb_size - wbuf->offs < c->max_write_size)
 587                wbuf->size = c->leb_size - wbuf->offs;
 588        else if (wbuf->offs & (c->max_write_size - 1))
 589                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 590        else
 591                wbuf->size = c->max_write_size;
 592        wbuf->avail = wbuf->size;
 593        wbuf->used = 0;
 594        spin_unlock(&wbuf->lock);
 595        wbuf->dtype = dtype;
 596
 597        return 0;
 598}
 599
 600/**
 601 * ubifs_bg_wbufs_sync - synchronize write-buffers.
 602 * @c: UBIFS file-system description object
 603 *
 604 * This function is called by background thread to synchronize write-buffers.
 605 * Returns zero in case of success and a negative error code in case of
 606 * failure.
 607 */
 608int ubifs_bg_wbufs_sync(struct ubifs_info *c)
 609{
 610        int err, i;
 611
 612        ubifs_assert(!c->ro_media && !c->ro_mount);
 613        if (!c->need_wbuf_sync)
 614                return 0;
 615        c->need_wbuf_sync = 0;
 616
 617        if (c->ro_error) {
 618                err = -EROFS;
 619                goto out_timers;
 620        }
 621
 622        dbg_io("synchronize");
 623        for (i = 0; i < c->jhead_cnt; i++) {
 624                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 625
 626                cond_resched();
 627
 628                /*
 629                 * If the mutex is locked then wbuf is being changed, so
 630                 * synchronization is not necessary.
 631                 */
 632                if (mutex_is_locked(&wbuf->io_mutex))
 633                        continue;
 634
 635                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 636                if (!wbuf->need_sync) {
 637                        mutex_unlock(&wbuf->io_mutex);
 638                        continue;
 639                }
 640
 641                err = ubifs_wbuf_sync_nolock(wbuf);
 642                mutex_unlock(&wbuf->io_mutex);
 643                if (err) {
 644                        ubifs_err("cannot sync write-buffer, error %d", err);
 645                        ubifs_ro_mode(c, err);
 646                        goto out_timers;
 647                }
 648        }
 649
 650        return 0;
 651
 652out_timers:
 653        /* Cancel all timers to prevent repeated errors */
 654        for (i = 0; i < c->jhead_cnt; i++) {
 655                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 656
 657                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 658                cancel_wbuf_timer_nolock(wbuf);
 659                mutex_unlock(&wbuf->io_mutex);
 660        }
 661        return err;
 662}
 663
 664/**
 665 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
 666 * @wbuf: write-buffer
 667 * @buf: node to write
 668 * @len: node length
 669 *
 670 * This function writes data to flash via write-buffer @wbuf. This means that
 671 * the last piece of the node won't reach the flash media immediately if it
 672 * does not take whole max. write unit (@c->max_write_size). Instead, the node
 673 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
 674 * because more data are appended to the write-buffer).
 675 *
 676 * This function returns zero in case of success and a negative error code in
 677 * case of failure. If the node cannot be written because there is no more
 678 * space in this logical eraseblock, %-ENOSPC is returned.
 679 */
 680int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
 681{
 682        struct ubifs_info *c = wbuf->c;
 683        int err, written, n, aligned_len = ALIGN(len, 8);
 684
 685        dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
 686               dbg_ntype(((struct ubifs_ch *)buf)->node_type),
 687               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
 688        ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
 689        ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
 690        ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
 691        ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
 692        ubifs_assert(wbuf->size >= c->min_io_size);
 693        ubifs_assert(wbuf->size <= c->max_write_size);
 694        ubifs_assert(wbuf->size % c->min_io_size == 0);
 695        ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
 696        ubifs_assert(!c->ro_media && !c->ro_mount);
 697        ubifs_assert(!c->space_fixup);
 698        if (c->leb_size - wbuf->offs >= c->max_write_size)
 699                ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
 700
 701        if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
 702                err = -ENOSPC;
 703                goto out;
 704        }
 705
 706        cancel_wbuf_timer_nolock(wbuf);
 707
 708        if (c->ro_error)
 709                return -EROFS;
 710
 711        if (aligned_len <= wbuf->avail) {
 712                /*
 713                 * The node is not very large and fits entirely within
 714                 * write-buffer.
 715                 */
 716                memcpy(wbuf->buf + wbuf->used, buf, len);
 717
 718                if (aligned_len == wbuf->avail) {
 719                        dbg_io("flush jhead %s wbuf to LEB %d:%d",
 720                               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 721                        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
 722                                              wbuf->offs, wbuf->size,
 723                                              wbuf->dtype);
 724                        if (err)
 725                                goto out;
 726
 727                        spin_lock(&wbuf->lock);
 728                        wbuf->offs += wbuf->size;
 729                        if (c->leb_size - wbuf->offs >= c->max_write_size)
 730                                wbuf->size = c->max_write_size;
 731                        else
 732                                wbuf->size = c->leb_size - wbuf->offs;
 733                        wbuf->avail = wbuf->size;
 734                        wbuf->used = 0;
 735                        wbuf->next_ino = 0;
 736                        spin_unlock(&wbuf->lock);
 737                } else {
 738                        spin_lock(&wbuf->lock);
 739                        wbuf->avail -= aligned_len;
 740                        wbuf->used += aligned_len;
 741                        spin_unlock(&wbuf->lock);
 742                }
 743
 744                goto exit;
 745        }
 746
 747        written = 0;
 748
 749        if (wbuf->used) {
 750                /*
 751                 * The node is large enough and does not fit entirely within
 752                 * current available space. We have to fill and flush
 753                 * write-buffer and switch to the next max. write unit.
 754                 */
 755                dbg_io("flush jhead %s wbuf to LEB %d:%d",
 756                       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 757                memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
 758                err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
 759                                      wbuf->size, wbuf->dtype);
 760                if (err)
 761                        goto out;
 762
 763                wbuf->offs += wbuf->size;
 764                len -= wbuf->avail;
 765                aligned_len -= wbuf->avail;
 766                written += wbuf->avail;
 767        } else if (wbuf->offs & (c->max_write_size - 1)) {
 768                /*
 769                 * The write-buffer offset is not aligned to
 770                 * @c->max_write_size and @wbuf->size is less than
 771                 * @c->max_write_size. Write @wbuf->size bytes to make sure the
 772                 * following writes are done in optimal @c->max_write_size
 773                 * chunks.
 774                 */
 775                dbg_io("write %d bytes to LEB %d:%d",
 776                       wbuf->size, wbuf->lnum, wbuf->offs);
 777                err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
 778                                      wbuf->size, wbuf->dtype);
 779                if (err)
 780                        goto out;
 781
 782                wbuf->offs += wbuf->size;
 783                len -= wbuf->size;
 784                aligned_len -= wbuf->size;
 785                written += wbuf->size;
 786        }
 787
 788        /*
 789         * The remaining data may take more whole max. write units, so write the
 790         * remains multiple to max. write unit size directly to the flash media.
 791         * We align node length to 8-byte boundary because we anyway flash wbuf
 792         * if the remaining space is less than 8 bytes.
 793         */
 794        n = aligned_len >> c->max_write_shift;
 795        if (n) {
 796                n <<= c->max_write_shift;
 797                dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
 798                       wbuf->offs);
 799                err = ubifs_leb_write(c, wbuf->lnum, buf + written,
 800                                      wbuf->offs, n, wbuf->dtype);
 801                if (err)
 802                        goto out;
 803                wbuf->offs += n;
 804                aligned_len -= n;
 805                len -= n;
 806                written += n;
 807        }
 808
 809        spin_lock(&wbuf->lock);
 810        if (aligned_len)
 811                /*
 812                 * And now we have what's left and what does not take whole
 813                 * max. write unit, so write it to the write-buffer and we are
 814                 * done.
 815                 */
 816                memcpy(wbuf->buf, buf + written, len);
 817
 818        if (c->leb_size - wbuf->offs >= c->max_write_size)
 819                wbuf->size = c->max_write_size;
 820        else
 821                wbuf->size = c->leb_size - wbuf->offs;
 822        wbuf->avail = wbuf->size - aligned_len;
 823        wbuf->used = aligned_len;
 824        wbuf->next_ino = 0;
 825        spin_unlock(&wbuf->lock);
 826
 827exit:
 828        if (wbuf->sync_callback) {
 829                int free = c->leb_size - wbuf->offs - wbuf->used;
 830
 831                err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
 832                if (err)
 833                        goto out;
 834        }
 835
 836        if (wbuf->used)
 837                new_wbuf_timer_nolock(wbuf);
 838
 839        return 0;
 840
 841out:
 842        ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
 843                  len, wbuf->lnum, wbuf->offs, err);
 844        dbg_dump_node(c, buf);
 845        dbg_dump_stack();
 846        dbg_dump_leb(c, wbuf->lnum);
 847        return err;
 848}
 849
 850/**
 851 * ubifs_write_node - write node to the media.
 852 * @c: UBIFS file-system description object
 853 * @buf: the node to write
 854 * @len: node length
 855 * @lnum: logical eraseblock number
 856 * @offs: offset within the logical eraseblock
 857 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
 858 *
 859 * This function automatically fills node magic number, assigns sequence
 860 * number, and calculates node CRC checksum. The length of the @buf buffer has
 861 * to be aligned to the minimal I/O unit size. This function automatically
 862 * appends padding node and padding bytes if needed. Returns zero in case of
 863 * success and a negative error code in case of failure.
 864 */
 865int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
 866                     int offs, int dtype)
 867{
 868        int err, buf_len = ALIGN(len, c->min_io_size);
 869
 870        dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
 871               lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
 872               buf_len);
 873        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 874        ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
 875        ubifs_assert(!c->ro_media && !c->ro_mount);
 876        ubifs_assert(!c->space_fixup);
 877
 878        if (c->ro_error)
 879                return -EROFS;
 880
 881        ubifs_prepare_node(c, buf, len, 1);
 882        err = ubifs_leb_write(c, lnum, buf, offs, buf_len, dtype);
 883        if (err)
 884                dbg_dump_node(c, buf);
 885
 886        return err;
 887}
 888
 889/**
 890 * ubifs_read_node_wbuf - read node from the media or write-buffer.
 891 * @wbuf: wbuf to check for un-written data
 892 * @buf: buffer to read to
 893 * @type: node type
 894 * @len: node length
 895 * @lnum: logical eraseblock number
 896 * @offs: offset within the logical eraseblock
 897 *
 898 * This function reads a node of known type and length, checks it and stores
 899 * in @buf. If the node partially or fully sits in the write-buffer, this
 900 * function takes data from the buffer, otherwise it reads the flash media.
 901 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
 902 * error code in case of failure.
 903 */
 904int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
 905                         int lnum, int offs)
 906{
 907        const struct ubifs_info *c = wbuf->c;
 908        int err, rlen, overlap;
 909        struct ubifs_ch *ch = buf;
 910
 911        dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
 912               dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
 913        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 914        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 915        ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 916
 917        spin_lock(&wbuf->lock);
 918        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
 919        if (!overlap) {
 920                /* We may safely unlock the write-buffer and read the data */
 921                spin_unlock(&wbuf->lock);
 922                return ubifs_read_node(c, buf, type, len, lnum, offs);
 923        }
 924
 925        /* Don't read under wbuf */
 926        rlen = wbuf->offs - offs;
 927        if (rlen < 0)
 928                rlen = 0;
 929
 930        /* Copy the rest from the write-buffer */
 931        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
 932        spin_unlock(&wbuf->lock);
 933
 934        if (rlen > 0) {
 935                /* Read everything that goes before write-buffer */
 936                err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
 937                if (err && err != -EBADMSG)
 938                        return err;
 939        }
 940
 941        if (type != ch->node_type) {
 942                ubifs_err("bad node type (%d but expected %d)",
 943                          ch->node_type, type);
 944                goto out;
 945        }
 946
 947        err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
 948        if (err) {
 949                ubifs_err("expected node type %d", type);
 950                return err;
 951        }
 952
 953        rlen = le32_to_cpu(ch->len);
 954        if (rlen != len) {
 955                ubifs_err("bad node length %d, expected %d", rlen, len);
 956                goto out;
 957        }
 958
 959        return 0;
 960
 961out:
 962        ubifs_err("bad node at LEB %d:%d", lnum, offs);
 963        dbg_dump_node(c, buf);
 964        dbg_dump_stack();
 965        return -EINVAL;
 966}
 967
 968/**
 969 * ubifs_read_node - read node.
 970 * @c: UBIFS file-system description object
 971 * @buf: buffer to read to
 972 * @type: node type
 973 * @len: node length (not aligned)
 974 * @lnum: logical eraseblock number
 975 * @offs: offset within the logical eraseblock
 976 *
 977 * This function reads a node of known type and and length, checks it and
 978 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
 979 * and a negative error code in case of failure.
 980 */
 981int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
 982                    int lnum, int offs)
 983{
 984        int err, l;
 985        struct ubifs_ch *ch = buf;
 986
 987        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 988        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 989        ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
 990        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 991        ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 992
 993        err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
 994        if (err && err != -EBADMSG)
 995                return err;
 996
 997        if (type != ch->node_type) {
 998                ubifs_err("bad node type (%d but expected %d)",
 999                          ch->node_type, type);
1000                goto out;
1001        }
1002
1003        err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1004        if (err) {
1005                ubifs_err("expected node type %d", type);
1006                return err;
1007        }
1008
1009        l = le32_to_cpu(ch->len);
1010        if (l != len) {
1011                ubifs_err("bad node length %d, expected %d", l, len);
1012                goto out;
1013        }
1014
1015        return 0;
1016
1017out:
1018        ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
1019                  ubi_is_mapped(c->ubi, lnum));
1020        dbg_dump_node(c, buf);
1021        dbg_dump_stack();
1022        return -EINVAL;
1023}
1024
1025/**
1026 * ubifs_wbuf_init - initialize write-buffer.
1027 * @c: UBIFS file-system description object
1028 * @wbuf: write-buffer to initialize
1029 *
1030 * This function initializes write-buffer. Returns zero in case of success
1031 * %-ENOMEM in case of failure.
1032 */
1033int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1034{
1035        size_t size;
1036
1037        wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1038        if (!wbuf->buf)
1039                return -ENOMEM;
1040
1041        size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1042        wbuf->inodes = kmalloc(size, GFP_KERNEL);
1043        if (!wbuf->inodes) {
1044                kfree(wbuf->buf);
1045                wbuf->buf = NULL;
1046                return -ENOMEM;
1047        }
1048
1049        wbuf->used = 0;
1050        wbuf->lnum = wbuf->offs = -1;
1051        /*
1052         * If the LEB starts at the max. write size aligned address, then
1053         * write-buffer size has to be set to @c->max_write_size. Otherwise,
1054         * set it to something smaller so that it ends at the closest max.
1055         * write size boundary.
1056         */
1057        size = c->max_write_size - (c->leb_start % c->max_write_size);
1058        wbuf->avail = wbuf->size = size;
1059        wbuf->dtype = UBI_UNKNOWN;
1060        wbuf->sync_callback = NULL;
1061        mutex_init(&wbuf->io_mutex);
1062        spin_lock_init(&wbuf->lock);
1063        wbuf->c = c;
1064        wbuf->next_ino = 0;
1065
1066        hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067        wbuf->timer.function = wbuf_timer_callback_nolock;
1068        wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1069        wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1070        wbuf->delta *= 1000000000ULL;
1071        ubifs_assert(wbuf->delta <= ULONG_MAX);
1072        return 0;
1073}
1074
1075/**
1076 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1077 * @wbuf: the write-buffer where to add
1078 * @inum: the inode number
1079 *
1080 * This function adds an inode number to the inode array of the write-buffer.
1081 */
1082void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1083{
1084        if (!wbuf->buf)
1085                /* NOR flash or something similar */
1086                return;
1087
1088        spin_lock(&wbuf->lock);
1089        if (wbuf->used)
1090                wbuf->inodes[wbuf->next_ino++] = inum;
1091        spin_unlock(&wbuf->lock);
1092}
1093
1094/**
1095 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1096 * @wbuf: the write-buffer
1097 * @inum: the inode number
1098 *
1099 * This function returns with %1 if the write-buffer contains some data from the
1100 * given inode otherwise it returns with %0.
1101 */
1102static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1103{
1104        int i, ret = 0;
1105
1106        spin_lock(&wbuf->lock);
1107        for (i = 0; i < wbuf->next_ino; i++)
1108                if (inum == wbuf->inodes[i]) {
1109                        ret = 1;
1110                        break;
1111                }
1112        spin_unlock(&wbuf->lock);
1113
1114        return ret;
1115}
1116
1117/**
1118 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1119 * @c: UBIFS file-system description object
1120 * @inode: inode to synchronize
1121 *
1122 * This function synchronizes write-buffers which contain nodes belonging to
1123 * @inode. Returns zero in case of success and a negative error code in case of
1124 * failure.
1125 */
1126int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1127{
1128        int i, err = 0;
1129
1130        for (i = 0; i < c->jhead_cnt; i++) {
1131                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1132
1133                if (i == GCHD)
1134                        /*
1135                         * GC head is special, do not look at it. Even if the
1136                         * head contains something related to this inode, it is
1137                         * a _copy_ of corresponding on-flash node which sits
1138                         * somewhere else.
1139                         */
1140                        continue;
1141
1142                if (!wbuf_has_ino(wbuf, inode->i_ino))
1143                        continue;
1144
1145                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1146                if (wbuf_has_ino(wbuf, inode->i_ino))
1147                        err = ubifs_wbuf_sync_nolock(wbuf);
1148                mutex_unlock(&wbuf->io_mutex);
1149
1150                if (err) {
1151                        ubifs_ro_mode(c, err);
1152                        return err;
1153                }
1154        }
1155        return 0;
1156}
1157