linux/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS initialization and VFS superblock operations. Some
  25 * initialization stuff which is rather large and complex is placed at
  26 * corresponding subsystems, but most of it is here.
  27 */
  28
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/module.h>
  32#include <linux/ctype.h>
  33#include <linux/kthread.h>
  34#include <linux/parser.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/math64.h>
  38#include <linux/writeback.h>
  39#include "ubifs.h"
  40
  41/*
  42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  43 * allocating too much.
  44 */
  45#define UBIFS_KMALLOC_OK (128*1024)
  46
  47/* Slab cache for UBIFS inodes */
  48struct kmem_cache *ubifs_inode_slab;
  49
  50/* UBIFS TNC shrinker description */
  51static struct shrinker ubifs_shrinker_info = {
  52        .shrink = ubifs_shrinker,
  53        .seeks = DEFAULT_SEEKS,
  54};
  55
  56/**
  57 * validate_inode - validate inode.
  58 * @c: UBIFS file-system description object
  59 * @inode: the inode to validate
  60 *
  61 * This is a helper function for 'ubifs_iget()' which validates various fields
  62 * of a newly built inode to make sure they contain sane values and prevent
  63 * possible vulnerabilities. Returns zero if the inode is all right and
  64 * a non-zero error code if not.
  65 */
  66static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  67{
  68        int err;
  69        const struct ubifs_inode *ui = ubifs_inode(inode);
  70
  71        if (inode->i_size > c->max_inode_sz) {
  72                ubifs_err("inode is too large (%lld)",
  73                          (long long)inode->i_size);
  74                return 1;
  75        }
  76
  77        if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  78                ubifs_err("unknown compression type %d", ui->compr_type);
  79                return 2;
  80        }
  81
  82        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  83                return 3;
  84
  85        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  86                return 4;
  87
  88        if (ui->xattr && !S_ISREG(inode->i_mode))
  89                return 5;
  90
  91        if (!ubifs_compr_present(ui->compr_type)) {
  92                ubifs_warn("inode %lu uses '%s' compression, but it was not "
  93                           "compiled in", inode->i_ino,
  94                           ubifs_compr_name(ui->compr_type));
  95        }
  96
  97        err = dbg_check_dir(c, inode);
  98        return err;
  99}
 100
 101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 102{
 103        int err;
 104        union ubifs_key key;
 105        struct ubifs_ino_node *ino;
 106        struct ubifs_info *c = sb->s_fs_info;
 107        struct inode *inode;
 108        struct ubifs_inode *ui;
 109
 110        dbg_gen("inode %lu", inum);
 111
 112        inode = iget_locked(sb, inum);
 113        if (!inode)
 114                return ERR_PTR(-ENOMEM);
 115        if (!(inode->i_state & I_NEW))
 116                return inode;
 117        ui = ubifs_inode(inode);
 118
 119        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 120        if (!ino) {
 121                err = -ENOMEM;
 122                goto out;
 123        }
 124
 125        ino_key_init(c, &key, inode->i_ino);
 126
 127        err = ubifs_tnc_lookup(c, &key, ino);
 128        if (err)
 129                goto out_ino;
 130
 131        inode->i_flags |= (S_NOCMTIME | S_NOATIME);
 132        set_nlink(inode, le32_to_cpu(ino->nlink));
 133        inode->i_uid   = le32_to_cpu(ino->uid);
 134        inode->i_gid   = le32_to_cpu(ino->gid);
 135        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 136        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 137        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 138        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 139        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 140        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 141        inode->i_mode = le32_to_cpu(ino->mode);
 142        inode->i_size = le64_to_cpu(ino->size);
 143
 144        ui->data_len    = le32_to_cpu(ino->data_len);
 145        ui->flags       = le32_to_cpu(ino->flags);
 146        ui->compr_type  = le16_to_cpu(ino->compr_type);
 147        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 148        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 149        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 150        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 151        ui->synced_i_size = ui->ui_size = inode->i_size;
 152
 153        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 154
 155        err = validate_inode(c, inode);
 156        if (err)
 157                goto out_invalid;
 158
 159        /* Disable read-ahead */
 160        inode->i_mapping->backing_dev_info = &c->bdi;
 161
 162        switch (inode->i_mode & S_IFMT) {
 163        case S_IFREG:
 164                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 165                inode->i_op = &ubifs_file_inode_operations;
 166                inode->i_fop = &ubifs_file_operations;
 167                if (ui->xattr) {
 168                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 169                        if (!ui->data) {
 170                                err = -ENOMEM;
 171                                goto out_ino;
 172                        }
 173                        memcpy(ui->data, ino->data, ui->data_len);
 174                        ((char *)ui->data)[ui->data_len] = '\0';
 175                } else if (ui->data_len != 0) {
 176                        err = 10;
 177                        goto out_invalid;
 178                }
 179                break;
 180        case S_IFDIR:
 181                inode->i_op  = &ubifs_dir_inode_operations;
 182                inode->i_fop = &ubifs_dir_operations;
 183                if (ui->data_len != 0) {
 184                        err = 11;
 185                        goto out_invalid;
 186                }
 187                break;
 188        case S_IFLNK:
 189                inode->i_op = &ubifs_symlink_inode_operations;
 190                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 191                        err = 12;
 192                        goto out_invalid;
 193                }
 194                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 195                if (!ui->data) {
 196                        err = -ENOMEM;
 197                        goto out_ino;
 198                }
 199                memcpy(ui->data, ino->data, ui->data_len);
 200                ((char *)ui->data)[ui->data_len] = '\0';
 201                break;
 202        case S_IFBLK:
 203        case S_IFCHR:
 204        {
 205                dev_t rdev;
 206                union ubifs_dev_desc *dev;
 207
 208                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 209                if (!ui->data) {
 210                        err = -ENOMEM;
 211                        goto out_ino;
 212                }
 213
 214                dev = (union ubifs_dev_desc *)ino->data;
 215                if (ui->data_len == sizeof(dev->new))
 216                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 217                else if (ui->data_len == sizeof(dev->huge))
 218                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 219                else {
 220                        err = 13;
 221                        goto out_invalid;
 222                }
 223                memcpy(ui->data, ino->data, ui->data_len);
 224                inode->i_op = &ubifs_file_inode_operations;
 225                init_special_inode(inode, inode->i_mode, rdev);
 226                break;
 227        }
 228        case S_IFSOCK:
 229        case S_IFIFO:
 230                inode->i_op = &ubifs_file_inode_operations;
 231                init_special_inode(inode, inode->i_mode, 0);
 232                if (ui->data_len != 0) {
 233                        err = 14;
 234                        goto out_invalid;
 235                }
 236                break;
 237        default:
 238                err = 15;
 239                goto out_invalid;
 240        }
 241
 242        kfree(ino);
 243        ubifs_set_inode_flags(inode);
 244        unlock_new_inode(inode);
 245        return inode;
 246
 247out_invalid:
 248        ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
 249        dbg_dump_node(c, ino);
 250        dbg_dump_inode(c, inode);
 251        err = -EINVAL;
 252out_ino:
 253        kfree(ino);
 254out:
 255        ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
 256        iget_failed(inode);
 257        return ERR_PTR(err);
 258}
 259
 260static struct inode *ubifs_alloc_inode(struct super_block *sb)
 261{
 262        struct ubifs_inode *ui;
 263
 264        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 265        if (!ui)
 266                return NULL;
 267
 268        memset((void *)ui + sizeof(struct inode), 0,
 269               sizeof(struct ubifs_inode) - sizeof(struct inode));
 270        mutex_init(&ui->ui_mutex);
 271        spin_lock_init(&ui->ui_lock);
 272        return &ui->vfs_inode;
 273};
 274
 275static void ubifs_i_callback(struct rcu_head *head)
 276{
 277        struct inode *inode = container_of(head, struct inode, i_rcu);
 278        struct ubifs_inode *ui = ubifs_inode(inode);
 279        INIT_LIST_HEAD(&inode->i_dentry);
 280        kmem_cache_free(ubifs_inode_slab, ui);
 281}
 282
 283static void ubifs_destroy_inode(struct inode *inode)
 284{
 285        struct ubifs_inode *ui = ubifs_inode(inode);
 286
 287        kfree(ui->data);
 288        call_rcu(&inode->i_rcu, ubifs_i_callback);
 289}
 290
 291/*
 292 * Note, Linux write-back code calls this without 'i_mutex'.
 293 */
 294static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 295{
 296        int err = 0;
 297        struct ubifs_info *c = inode->i_sb->s_fs_info;
 298        struct ubifs_inode *ui = ubifs_inode(inode);
 299
 300        ubifs_assert(!ui->xattr);
 301        if (is_bad_inode(inode))
 302                return 0;
 303
 304        mutex_lock(&ui->ui_mutex);
 305        /*
 306         * Due to races between write-back forced by budgeting
 307         * (see 'sync_some_inodes()') and pdflush write-back, the inode may
 308         * have already been synchronized, do not do this again. This might
 309         * also happen if it was synchronized in an VFS operation, e.g.
 310         * 'ubifs_link()'.
 311         */
 312        if (!ui->dirty) {
 313                mutex_unlock(&ui->ui_mutex);
 314                return 0;
 315        }
 316
 317        /*
 318         * As an optimization, do not write orphan inodes to the media just
 319         * because this is not needed.
 320         */
 321        dbg_gen("inode %lu, mode %#x, nlink %u",
 322                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 323        if (inode->i_nlink) {
 324                err = ubifs_jnl_write_inode(c, inode);
 325                if (err)
 326                        ubifs_err("can't write inode %lu, error %d",
 327                                  inode->i_ino, err);
 328                else
 329                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 330        }
 331
 332        ui->dirty = 0;
 333        mutex_unlock(&ui->ui_mutex);
 334        ubifs_release_dirty_inode_budget(c, ui);
 335        return err;
 336}
 337
 338static void ubifs_evict_inode(struct inode *inode)
 339{
 340        int err;
 341        struct ubifs_info *c = inode->i_sb->s_fs_info;
 342        struct ubifs_inode *ui = ubifs_inode(inode);
 343
 344        if (ui->xattr)
 345                /*
 346                 * Extended attribute inode deletions are fully handled in
 347                 * 'ubifs_removexattr()'. These inodes are special and have
 348                 * limited usage, so there is nothing to do here.
 349                 */
 350                goto out;
 351
 352        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 353        ubifs_assert(!atomic_read(&inode->i_count));
 354
 355        truncate_inode_pages(&inode->i_data, 0);
 356
 357        if (inode->i_nlink)
 358                goto done;
 359
 360        if (is_bad_inode(inode))
 361                goto out;
 362
 363        ui->ui_size = inode->i_size = 0;
 364        err = ubifs_jnl_delete_inode(c, inode);
 365        if (err)
 366                /*
 367                 * Worst case we have a lost orphan inode wasting space, so a
 368                 * simple error message is OK here.
 369                 */
 370                ubifs_err("can't delete inode %lu, error %d",
 371                          inode->i_ino, err);
 372
 373out:
 374        if (ui->dirty)
 375                ubifs_release_dirty_inode_budget(c, ui);
 376        else {
 377                /* We've deleted something - clean the "no space" flags */
 378                c->bi.nospace = c->bi.nospace_rp = 0;
 379                smp_wmb();
 380        }
 381done:
 382        end_writeback(inode);
 383}
 384
 385static void ubifs_dirty_inode(struct inode *inode, int flags)
 386{
 387        struct ubifs_inode *ui = ubifs_inode(inode);
 388
 389        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 390        if (!ui->dirty) {
 391                ui->dirty = 1;
 392                dbg_gen("inode %lu",  inode->i_ino);
 393        }
 394}
 395
 396static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 397{
 398        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 399        unsigned long long free;
 400        __le32 *uuid = (__le32 *)c->uuid;
 401
 402        free = ubifs_get_free_space(c);
 403        dbg_gen("free space %lld bytes (%lld blocks)",
 404                free, free >> UBIFS_BLOCK_SHIFT);
 405
 406        buf->f_type = UBIFS_SUPER_MAGIC;
 407        buf->f_bsize = UBIFS_BLOCK_SIZE;
 408        buf->f_blocks = c->block_cnt;
 409        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 410        if (free > c->report_rp_size)
 411                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 412        else
 413                buf->f_bavail = 0;
 414        buf->f_files = 0;
 415        buf->f_ffree = 0;
 416        buf->f_namelen = UBIFS_MAX_NLEN;
 417        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 418        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 419        ubifs_assert(buf->f_bfree <= c->block_cnt);
 420        return 0;
 421}
 422
 423static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
 424{
 425        struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
 426
 427        if (c->mount_opts.unmount_mode == 2)
 428                seq_printf(s, ",fast_unmount");
 429        else if (c->mount_opts.unmount_mode == 1)
 430                seq_printf(s, ",norm_unmount");
 431
 432        if (c->mount_opts.bulk_read == 2)
 433                seq_printf(s, ",bulk_read");
 434        else if (c->mount_opts.bulk_read == 1)
 435                seq_printf(s, ",no_bulk_read");
 436
 437        if (c->mount_opts.chk_data_crc == 2)
 438                seq_printf(s, ",chk_data_crc");
 439        else if (c->mount_opts.chk_data_crc == 1)
 440                seq_printf(s, ",no_chk_data_crc");
 441
 442        if (c->mount_opts.override_compr) {
 443                seq_printf(s, ",compr=%s",
 444                           ubifs_compr_name(c->mount_opts.compr_type));
 445        }
 446
 447        return 0;
 448}
 449
 450static int ubifs_sync_fs(struct super_block *sb, int wait)
 451{
 452        int i, err;
 453        struct ubifs_info *c = sb->s_fs_info;
 454
 455        /*
 456         * Zero @wait is just an advisory thing to help the file system shove
 457         * lots of data into the queues, and there will be the second
 458         * '->sync_fs()' call, with non-zero @wait.
 459         */
 460        if (!wait)
 461                return 0;
 462
 463        /*
 464         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 465         * do this if it waits for an already running commit.
 466         */
 467        for (i = 0; i < c->jhead_cnt; i++) {
 468                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 469                if (err)
 470                        return err;
 471        }
 472
 473        /*
 474         * Strictly speaking, it is not necessary to commit the journal here,
 475         * synchronizing write-buffers would be enough. But committing makes
 476         * UBIFS free space predictions much more accurate, so we want to let
 477         * the user be able to get more accurate results of 'statfs()' after
 478         * they synchronize the file system.
 479         */
 480        err = ubifs_run_commit(c);
 481        if (err)
 482                return err;
 483
 484        return ubi_sync(c->vi.ubi_num);
 485}
 486
 487/**
 488 * init_constants_early - initialize UBIFS constants.
 489 * @c: UBIFS file-system description object
 490 *
 491 * This function initialize UBIFS constants which do not need the superblock to
 492 * be read. It also checks that the UBI volume satisfies basic UBIFS
 493 * requirements. Returns zero in case of success and a negative error code in
 494 * case of failure.
 495 */
 496static int init_constants_early(struct ubifs_info *c)
 497{
 498        if (c->vi.corrupted) {
 499                ubifs_warn("UBI volume is corrupted - read-only mode");
 500                c->ro_media = 1;
 501        }
 502
 503        if (c->di.ro_mode) {
 504                ubifs_msg("read-only UBI device");
 505                c->ro_media = 1;
 506        }
 507
 508        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 509                ubifs_msg("static UBI volume - read-only mode");
 510                c->ro_media = 1;
 511        }
 512
 513        c->leb_cnt = c->vi.size;
 514        c->leb_size = c->vi.usable_leb_size;
 515        c->leb_start = c->di.leb_start;
 516        c->half_leb_size = c->leb_size / 2;
 517        c->min_io_size = c->di.min_io_size;
 518        c->min_io_shift = fls(c->min_io_size) - 1;
 519        c->max_write_size = c->di.max_write_size;
 520        c->max_write_shift = fls(c->max_write_size) - 1;
 521
 522        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 523                ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
 524                          c->leb_size, UBIFS_MIN_LEB_SZ);
 525                return -EINVAL;
 526        }
 527
 528        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 529                ubifs_err("too few LEBs (%d), min. is %d",
 530                          c->leb_cnt, UBIFS_MIN_LEB_CNT);
 531                return -EINVAL;
 532        }
 533
 534        if (!is_power_of_2(c->min_io_size)) {
 535                ubifs_err("bad min. I/O size %d", c->min_io_size);
 536                return -EINVAL;
 537        }
 538
 539        /*
 540         * Maximum write size has to be greater or equivalent to min. I/O
 541         * size, and be multiple of min. I/O size.
 542         */
 543        if (c->max_write_size < c->min_io_size ||
 544            c->max_write_size % c->min_io_size ||
 545            !is_power_of_2(c->max_write_size)) {
 546                ubifs_err("bad write buffer size %d for %d min. I/O unit",
 547                          c->max_write_size, c->min_io_size);
 548                return -EINVAL;
 549        }
 550
 551        /*
 552         * UBIFS aligns all node to 8-byte boundary, so to make function in
 553         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 554         * less than 8.
 555         */
 556        if (c->min_io_size < 8) {
 557                c->min_io_size = 8;
 558                c->min_io_shift = 3;
 559                if (c->max_write_size < c->min_io_size) {
 560                        c->max_write_size = c->min_io_size;
 561                        c->max_write_shift = c->min_io_shift;
 562                }
 563        }
 564
 565        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 566        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 567
 568        /*
 569         * Initialize node length ranges which are mostly needed for node
 570         * length validation.
 571         */
 572        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 573        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 574        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 575        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 576        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 577        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 578
 579        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 580        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 581        c->ranges[UBIFS_ORPH_NODE].min_len =
 582                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 583        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 584        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 585        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 586        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 587        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 588        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 589        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 590        /*
 591         * Minimum indexing node size is amended later when superblock is
 592         * read and the key length is known.
 593         */
 594        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 595        /*
 596         * Maximum indexing node size is amended later when superblock is
 597         * read and the fanout is known.
 598         */
 599        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 600
 601        /*
 602         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 603         * about these values.
 604         */
 605        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 606        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 607
 608        /*
 609         * Calculate how many bytes would be wasted at the end of LEB if it was
 610         * fully filled with data nodes of maximum size. This is used in
 611         * calculations when reporting free space.
 612         */
 613        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 614
 615        /* Buffer size for bulk-reads */
 616        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 617        if (c->max_bu_buf_len > c->leb_size)
 618                c->max_bu_buf_len = c->leb_size;
 619        return 0;
 620}
 621
 622/**
 623 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 624 * @c: UBIFS file-system description object
 625 * @lnum: LEB the write-buffer was synchronized to
 626 * @free: how many free bytes left in this LEB
 627 * @pad: how many bytes were padded
 628 *
 629 * This is a callback function which is called by the I/O unit when the
 630 * write-buffer is synchronized. We need this to correctly maintain space
 631 * accounting in bud logical eraseblocks. This function returns zero in case of
 632 * success and a negative error code in case of failure.
 633 *
 634 * This function actually belongs to the journal, but we keep it here because
 635 * we want to keep it static.
 636 */
 637static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 638{
 639        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 640}
 641
 642/*
 643 * init_constants_sb - initialize UBIFS constants.
 644 * @c: UBIFS file-system description object
 645 *
 646 * This is a helper function which initializes various UBIFS constants after
 647 * the superblock has been read. It also checks various UBIFS parameters and
 648 * makes sure they are all right. Returns zero in case of success and a
 649 * negative error code in case of failure.
 650 */
 651static int init_constants_sb(struct ubifs_info *c)
 652{
 653        int tmp, err;
 654        long long tmp64;
 655
 656        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 657        c->max_znode_sz = sizeof(struct ubifs_znode) +
 658                                c->fanout * sizeof(struct ubifs_zbranch);
 659
 660        tmp = ubifs_idx_node_sz(c, 1);
 661        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 662        c->min_idx_node_sz = ALIGN(tmp, 8);
 663
 664        tmp = ubifs_idx_node_sz(c, c->fanout);
 665        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 666        c->max_idx_node_sz = ALIGN(tmp, 8);
 667
 668        /* Make sure LEB size is large enough to fit full commit */
 669        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 670        tmp = ALIGN(tmp, c->min_io_size);
 671        if (tmp > c->leb_size) {
 672                dbg_err("too small LEB size %d, at least %d needed",
 673                        c->leb_size, tmp);
 674                return -EINVAL;
 675        }
 676
 677        /*
 678         * Make sure that the log is large enough to fit reference nodes for
 679         * all buds plus one reserved LEB.
 680         */
 681        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 682        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 683        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 684        tmp /= c->leb_size;
 685        tmp += 1;
 686        if (c->log_lebs < tmp) {
 687                dbg_err("too small log %d LEBs, required min. %d LEBs",
 688                        c->log_lebs, tmp);
 689                return -EINVAL;
 690        }
 691
 692        /*
 693         * When budgeting we assume worst-case scenarios when the pages are not
 694         * be compressed and direntries are of the maximum size.
 695         *
 696         * Note, data, which may be stored in inodes is budgeted separately, so
 697         * it is not included into 'c->bi.inode_budget'.
 698         */
 699        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 700        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 701        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 702
 703        /*
 704         * When the amount of flash space used by buds becomes
 705         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 706         * The writers are unblocked when the commit is finished. To avoid
 707         * writers to be blocked UBIFS initiates background commit in advance,
 708         * when number of bud bytes becomes above the limit defined below.
 709         */
 710        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 711
 712        /*
 713         * Ensure minimum journal size. All the bytes in the journal heads are
 714         * considered to be used, when calculating the current journal usage.
 715         * Consequently, if the journal is too small, UBIFS will treat it as
 716         * always full.
 717         */
 718        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 719        if (c->bg_bud_bytes < tmp64)
 720                c->bg_bud_bytes = tmp64;
 721        if (c->max_bud_bytes < tmp64 + c->leb_size)
 722                c->max_bud_bytes = tmp64 + c->leb_size;
 723
 724        err = ubifs_calc_lpt_geom(c);
 725        if (err)
 726                return err;
 727
 728        /* Initialize effective LEB size used in budgeting calculations */
 729        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 730        return 0;
 731}
 732
 733/*
 734 * init_constants_master - initialize UBIFS constants.
 735 * @c: UBIFS file-system description object
 736 *
 737 * This is a helper function which initializes various UBIFS constants after
 738 * the master node has been read. It also checks various UBIFS parameters and
 739 * makes sure they are all right.
 740 */
 741static void init_constants_master(struct ubifs_info *c)
 742{
 743        long long tmp64;
 744
 745        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 746        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 747
 748        /*
 749         * Calculate total amount of FS blocks. This number is not used
 750         * internally because it does not make much sense for UBIFS, but it is
 751         * necessary to report something for the 'statfs()' call.
 752         *
 753         * Subtract the LEB reserved for GC, the LEB which is reserved for
 754         * deletions, minimum LEBs for the index, and assume only one journal
 755         * head is available.
 756         */
 757        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 758        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 759        tmp64 = ubifs_reported_space(c, tmp64);
 760        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 761}
 762
 763/**
 764 * take_gc_lnum - reserve GC LEB.
 765 * @c: UBIFS file-system description object
 766 *
 767 * This function ensures that the LEB reserved for garbage collection is marked
 768 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 769 * space to zero, because lprops may contain out-of-date information if the
 770 * file-system was un-mounted before it has been committed. This function
 771 * returns zero in case of success and a negative error code in case of
 772 * failure.
 773 */
 774static int take_gc_lnum(struct ubifs_info *c)
 775{
 776        int err;
 777
 778        if (c->gc_lnum == -1) {
 779                ubifs_err("no LEB for GC");
 780                return -EINVAL;
 781        }
 782
 783        /* And we have to tell lprops that this LEB is taken */
 784        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 785                                  LPROPS_TAKEN, 0, 0);
 786        return err;
 787}
 788
 789/**
 790 * alloc_wbufs - allocate write-buffers.
 791 * @c: UBIFS file-system description object
 792 *
 793 * This helper function allocates and initializes UBIFS write-buffers. Returns
 794 * zero in case of success and %-ENOMEM in case of failure.
 795 */
 796static int alloc_wbufs(struct ubifs_info *c)
 797{
 798        int i, err;
 799
 800        c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
 801                           GFP_KERNEL);
 802        if (!c->jheads)
 803                return -ENOMEM;
 804
 805        /* Initialize journal heads */
 806        for (i = 0; i < c->jhead_cnt; i++) {
 807                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 808                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 809                if (err)
 810                        return err;
 811
 812                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 813                c->jheads[i].wbuf.jhead = i;
 814                c->jheads[i].grouped = 1;
 815        }
 816
 817        c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
 818        /*
 819         * Garbage Collector head likely contains long-term data and
 820         * does not need to be synchronized by timer. Also GC head nodes are
 821         * not grouped.
 822         */
 823        c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
 824        c->jheads[GCHD].wbuf.no_timer = 1;
 825        c->jheads[GCHD].grouped = 0;
 826
 827        return 0;
 828}
 829
 830/**
 831 * free_wbufs - free write-buffers.
 832 * @c: UBIFS file-system description object
 833 */
 834static void free_wbufs(struct ubifs_info *c)
 835{
 836        int i;
 837
 838        if (c->jheads) {
 839                for (i = 0; i < c->jhead_cnt; i++) {
 840                        kfree(c->jheads[i].wbuf.buf);
 841                        kfree(c->jheads[i].wbuf.inodes);
 842                }
 843                kfree(c->jheads);
 844                c->jheads = NULL;
 845        }
 846}
 847
 848/**
 849 * free_orphans - free orphans.
 850 * @c: UBIFS file-system description object
 851 */
 852static void free_orphans(struct ubifs_info *c)
 853{
 854        struct ubifs_orphan *orph;
 855
 856        while (c->orph_dnext) {
 857                orph = c->orph_dnext;
 858                c->orph_dnext = orph->dnext;
 859                list_del(&orph->list);
 860                kfree(orph);
 861        }
 862
 863        while (!list_empty(&c->orph_list)) {
 864                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 865                list_del(&orph->list);
 866                kfree(orph);
 867                dbg_err("orphan list not empty at unmount");
 868        }
 869
 870        vfree(c->orph_buf);
 871        c->orph_buf = NULL;
 872}
 873
 874/**
 875 * free_buds - free per-bud objects.
 876 * @c: UBIFS file-system description object
 877 */
 878static void free_buds(struct ubifs_info *c)
 879{
 880        struct rb_node *this = c->buds.rb_node;
 881        struct ubifs_bud *bud;
 882
 883        while (this) {
 884                if (this->rb_left)
 885                        this = this->rb_left;
 886                else if (this->rb_right)
 887                        this = this->rb_right;
 888                else {
 889                        bud = rb_entry(this, struct ubifs_bud, rb);
 890                        this = rb_parent(this);
 891                        if (this) {
 892                                if (this->rb_left == &bud->rb)
 893                                        this->rb_left = NULL;
 894                                else
 895                                        this->rb_right = NULL;
 896                        }
 897                        kfree(bud);
 898                }
 899        }
 900}
 901
 902/**
 903 * check_volume_empty - check if the UBI volume is empty.
 904 * @c: UBIFS file-system description object
 905 *
 906 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 907 * mapped or not. The result of checking is stored in the @c->empty variable.
 908 * Returns zero in case of success and a negative error code in case of
 909 * failure.
 910 */
 911static int check_volume_empty(struct ubifs_info *c)
 912{
 913        int lnum, err;
 914
 915        c->empty = 1;
 916        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 917                err = ubifs_is_mapped(c, lnum);
 918                if (unlikely(err < 0))
 919                        return err;
 920                if (err == 1) {
 921                        c->empty = 0;
 922                        break;
 923                }
 924
 925                cond_resched();
 926        }
 927
 928        return 0;
 929}
 930
 931/*
 932 * UBIFS mount options.
 933 *
 934 * Opt_fast_unmount: do not run a journal commit before un-mounting
 935 * Opt_norm_unmount: run a journal commit before un-mounting
 936 * Opt_bulk_read: enable bulk-reads
 937 * Opt_no_bulk_read: disable bulk-reads
 938 * Opt_chk_data_crc: check CRCs when reading data nodes
 939 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 940 * Opt_override_compr: override default compressor
 941 * Opt_err: just end of array marker
 942 */
 943enum {
 944        Opt_fast_unmount,
 945        Opt_norm_unmount,
 946        Opt_bulk_read,
 947        Opt_no_bulk_read,
 948        Opt_chk_data_crc,
 949        Opt_no_chk_data_crc,
 950        Opt_override_compr,
 951        Opt_err,
 952};
 953
 954static const match_table_t tokens = {
 955        {Opt_fast_unmount, "fast_unmount"},
 956        {Opt_norm_unmount, "norm_unmount"},
 957        {Opt_bulk_read, "bulk_read"},
 958        {Opt_no_bulk_read, "no_bulk_read"},
 959        {Opt_chk_data_crc, "chk_data_crc"},
 960        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 961        {Opt_override_compr, "compr=%s"},
 962        {Opt_err, NULL},
 963};
 964
 965/**
 966 * parse_standard_option - parse a standard mount option.
 967 * @option: the option to parse
 968 *
 969 * Normally, standard mount options like "sync" are passed to file-systems as
 970 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 971 * be present in the options string. This function tries to deal with this
 972 * situation and parse standard options. Returns 0 if the option was not
 973 * recognized, and the corresponding integer flag if it was.
 974 *
 975 * UBIFS is only interested in the "sync" option, so do not check for anything
 976 * else.
 977 */
 978static int parse_standard_option(const char *option)
 979{
 980        ubifs_msg("parse %s", option);
 981        if (!strcmp(option, "sync"))
 982                return MS_SYNCHRONOUS;
 983        return 0;
 984}
 985
 986/**
 987 * ubifs_parse_options - parse mount parameters.
 988 * @c: UBIFS file-system description object
 989 * @options: parameters to parse
 990 * @is_remount: non-zero if this is FS re-mount
 991 *
 992 * This function parses UBIFS mount options and returns zero in case success
 993 * and a negative error code in case of failure.
 994 */
 995static int ubifs_parse_options(struct ubifs_info *c, char *options,
 996                               int is_remount)
 997{
 998        char *p;
 999        substring_t args[MAX_OPT_ARGS];
1000
1001        if (!options)
1002                return 0;
1003
1004        while ((p = strsep(&options, ","))) {
1005                int token;
1006
1007                if (!*p)
1008                        continue;
1009
1010                token = match_token(p, tokens, args);
1011                switch (token) {
1012                /*
1013                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1014                 * We accept them in order to be backward-compatible. But this
1015                 * should be removed at some point.
1016                 */
1017                case Opt_fast_unmount:
1018                        c->mount_opts.unmount_mode = 2;
1019                        break;
1020                case Opt_norm_unmount:
1021                        c->mount_opts.unmount_mode = 1;
1022                        break;
1023                case Opt_bulk_read:
1024                        c->mount_opts.bulk_read = 2;
1025                        c->bulk_read = 1;
1026                        break;
1027                case Opt_no_bulk_read:
1028                        c->mount_opts.bulk_read = 1;
1029                        c->bulk_read = 0;
1030                        break;
1031                case Opt_chk_data_crc:
1032                        c->mount_opts.chk_data_crc = 2;
1033                        c->no_chk_data_crc = 0;
1034                        break;
1035                case Opt_no_chk_data_crc:
1036                        c->mount_opts.chk_data_crc = 1;
1037                        c->no_chk_data_crc = 1;
1038                        break;
1039                case Opt_override_compr:
1040                {
1041                        char *name = match_strdup(&args[0]);
1042
1043                        if (!name)
1044                                return -ENOMEM;
1045                        if (!strcmp(name, "none"))
1046                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1047                        else if (!strcmp(name, "lzo"))
1048                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1049                        else if (!strcmp(name, "zlib"))
1050                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1051                        else {
1052                                ubifs_err("unknown compressor \"%s\"", name);
1053                                kfree(name);
1054                                return -EINVAL;
1055                        }
1056                        kfree(name);
1057                        c->mount_opts.override_compr = 1;
1058                        c->default_compr = c->mount_opts.compr_type;
1059                        break;
1060                }
1061                default:
1062                {
1063                        unsigned long flag;
1064                        struct super_block *sb = c->vfs_sb;
1065
1066                        flag = parse_standard_option(p);
1067                        if (!flag) {
1068                                ubifs_err("unrecognized mount option \"%s\" "
1069                                          "or missing value", p);
1070                                return -EINVAL;
1071                        }
1072                        sb->s_flags |= flag;
1073                        break;
1074                }
1075                }
1076        }
1077
1078        return 0;
1079}
1080
1081/**
1082 * destroy_journal - destroy journal data structures.
1083 * @c: UBIFS file-system description object
1084 *
1085 * This function destroys journal data structures including those that may have
1086 * been created by recovery functions.
1087 */
1088static void destroy_journal(struct ubifs_info *c)
1089{
1090        while (!list_empty(&c->unclean_leb_list)) {
1091                struct ubifs_unclean_leb *ucleb;
1092
1093                ucleb = list_entry(c->unclean_leb_list.next,
1094                                   struct ubifs_unclean_leb, list);
1095                list_del(&ucleb->list);
1096                kfree(ucleb);
1097        }
1098        while (!list_empty(&c->old_buds)) {
1099                struct ubifs_bud *bud;
1100
1101                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1102                list_del(&bud->list);
1103                kfree(bud);
1104        }
1105        ubifs_destroy_idx_gc(c);
1106        ubifs_destroy_size_tree(c);
1107        ubifs_tnc_close(c);
1108        free_buds(c);
1109}
1110
1111/**
1112 * bu_init - initialize bulk-read information.
1113 * @c: UBIFS file-system description object
1114 */
1115static void bu_init(struct ubifs_info *c)
1116{
1117        ubifs_assert(c->bulk_read == 1);
1118
1119        if (c->bu.buf)
1120                return; /* Already initialized */
1121
1122again:
1123        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1124        if (!c->bu.buf) {
1125                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1126                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1127                        goto again;
1128                }
1129
1130                /* Just disable bulk-read */
1131                ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1132                           "disabling it", c->max_bu_buf_len);
1133                c->mount_opts.bulk_read = 1;
1134                c->bulk_read = 0;
1135                return;
1136        }
1137}
1138
1139/**
1140 * check_free_space - check if there is enough free space to mount.
1141 * @c: UBIFS file-system description object
1142 *
1143 * This function makes sure UBIFS has enough free space to be mounted in
1144 * read/write mode. UBIFS must always have some free space to allow deletions.
1145 */
1146static int check_free_space(struct ubifs_info *c)
1147{
1148        ubifs_assert(c->dark_wm > 0);
1149        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1150                ubifs_err("insufficient free space to mount in R/W mode");
1151                dbg_dump_budg(c, &c->bi);
1152                dbg_dump_lprops(c);
1153                return -ENOSPC;
1154        }
1155        return 0;
1156}
1157
1158/**
1159 * mount_ubifs - mount UBIFS file-system.
1160 * @c: UBIFS file-system description object
1161 *
1162 * This function mounts UBIFS file system. Returns zero in case of success and
1163 * a negative error code in case of failure.
1164 *
1165 * Note, the function does not de-allocate resources it it fails half way
1166 * through, and the caller has to do this instead.
1167 */
1168static int mount_ubifs(struct ubifs_info *c)
1169{
1170        int err;
1171        long long x;
1172        size_t sz;
1173
1174        c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1175        err = init_constants_early(c);
1176        if (err)
1177                return err;
1178
1179        err = ubifs_debugging_init(c);
1180        if (err)
1181                return err;
1182
1183        err = check_volume_empty(c);
1184        if (err)
1185                goto out_free;
1186
1187        if (c->empty && (c->ro_mount || c->ro_media)) {
1188                /*
1189                 * This UBI volume is empty, and read-only, or the file system
1190                 * is mounted read-only - we cannot format it.
1191                 */
1192                ubifs_err("can't format empty UBI volume: read-only %s",
1193                          c->ro_media ? "UBI volume" : "mount");
1194                err = -EROFS;
1195                goto out_free;
1196        }
1197
1198        if (c->ro_media && !c->ro_mount) {
1199                ubifs_err("cannot mount read-write - read-only media");
1200                err = -EROFS;
1201                goto out_free;
1202        }
1203
1204        /*
1205         * The requirement for the buffer is that it should fit indexing B-tree
1206         * height amount of integers. We assume the height if the TNC tree will
1207         * never exceed 64.
1208         */
1209        err = -ENOMEM;
1210        c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1211        if (!c->bottom_up_buf)
1212                goto out_free;
1213
1214        c->sbuf = vmalloc(c->leb_size);
1215        if (!c->sbuf)
1216                goto out_free;
1217
1218        if (!c->ro_mount) {
1219                c->ileb_buf = vmalloc(c->leb_size);
1220                if (!c->ileb_buf)
1221                        goto out_free;
1222        }
1223
1224        if (c->bulk_read == 1)
1225                bu_init(c);
1226
1227        if (!c->ro_mount) {
1228                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1229                                               GFP_KERNEL);
1230                if (!c->write_reserve_buf)
1231                        goto out_free;
1232        }
1233
1234        c->mounting = 1;
1235
1236        err = ubifs_read_superblock(c);
1237        if (err)
1238                goto out_free;
1239
1240        /*
1241         * Make sure the compressor which is set as default in the superblock
1242         * or overridden by mount options is actually compiled in.
1243         */
1244        if (!ubifs_compr_present(c->default_compr)) {
1245                ubifs_err("'compressor \"%s\" is not compiled in",
1246                          ubifs_compr_name(c->default_compr));
1247                err = -ENOTSUPP;
1248                goto out_free;
1249        }
1250
1251        err = init_constants_sb(c);
1252        if (err)
1253                goto out_free;
1254
1255        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1256        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1257        c->cbuf = kmalloc(sz, GFP_NOFS);
1258        if (!c->cbuf) {
1259                err = -ENOMEM;
1260                goto out_free;
1261        }
1262
1263        err = alloc_wbufs(c);
1264        if (err)
1265                goto out_cbuf;
1266
1267        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1268        if (!c->ro_mount) {
1269                /* Create background thread */
1270                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1271                if (IS_ERR(c->bgt)) {
1272                        err = PTR_ERR(c->bgt);
1273                        c->bgt = NULL;
1274                        ubifs_err("cannot spawn \"%s\", error %d",
1275                                  c->bgt_name, err);
1276                        goto out_wbufs;
1277                }
1278                wake_up_process(c->bgt);
1279        }
1280
1281        err = ubifs_read_master(c);
1282        if (err)
1283                goto out_master;
1284
1285        init_constants_master(c);
1286
1287        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1288                ubifs_msg("recovery needed");
1289                c->need_recovery = 1;
1290        }
1291
1292        if (c->need_recovery && !c->ro_mount) {
1293                err = ubifs_recover_inl_heads(c, c->sbuf);
1294                if (err)
1295                        goto out_master;
1296        }
1297
1298        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1299        if (err)
1300                goto out_master;
1301
1302        if (!c->ro_mount && c->space_fixup) {
1303                err = ubifs_fixup_free_space(c);
1304                if (err)
1305                        goto out_master;
1306        }
1307
1308        if (!c->ro_mount) {
1309                /*
1310                 * Set the "dirty" flag so that if we reboot uncleanly we
1311                 * will notice this immediately on the next mount.
1312                 */
1313                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1314                err = ubifs_write_master(c);
1315                if (err)
1316                        goto out_lpt;
1317        }
1318
1319        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1320        if (err)
1321                goto out_lpt;
1322
1323        err = ubifs_replay_journal(c);
1324        if (err)
1325                goto out_journal;
1326
1327        /* Calculate 'min_idx_lebs' after journal replay */
1328        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1329
1330        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1331        if (err)
1332                goto out_orphans;
1333
1334        if (!c->ro_mount) {
1335                int lnum;
1336
1337                err = check_free_space(c);
1338                if (err)
1339                        goto out_orphans;
1340
1341                /* Check for enough log space */
1342                lnum = c->lhead_lnum + 1;
1343                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1344                        lnum = UBIFS_LOG_LNUM;
1345                if (lnum == c->ltail_lnum) {
1346                        err = ubifs_consolidate_log(c);
1347                        if (err)
1348                                goto out_orphans;
1349                }
1350
1351                if (c->need_recovery) {
1352                        err = ubifs_recover_size(c);
1353                        if (err)
1354                                goto out_orphans;
1355                        err = ubifs_rcvry_gc_commit(c);
1356                        if (err)
1357                                goto out_orphans;
1358                } else {
1359                        err = take_gc_lnum(c);
1360                        if (err)
1361                                goto out_orphans;
1362
1363                        /*
1364                         * GC LEB may contain garbage if there was an unclean
1365                         * reboot, and it should be un-mapped.
1366                         */
1367                        err = ubifs_leb_unmap(c, c->gc_lnum);
1368                        if (err)
1369                                goto out_orphans;
1370                }
1371
1372                err = dbg_check_lprops(c);
1373                if (err)
1374                        goto out_orphans;
1375        } else if (c->need_recovery) {
1376                err = ubifs_recover_size(c);
1377                if (err)
1378                        goto out_orphans;
1379        } else {
1380                /*
1381                 * Even if we mount read-only, we have to set space in GC LEB
1382                 * to proper value because this affects UBIFS free space
1383                 * reporting. We do not want to have a situation when
1384                 * re-mounting from R/O to R/W changes amount of free space.
1385                 */
1386                err = take_gc_lnum(c);
1387                if (err)
1388                        goto out_orphans;
1389        }
1390
1391        spin_lock(&ubifs_infos_lock);
1392        list_add_tail(&c->infos_list, &ubifs_infos);
1393        spin_unlock(&ubifs_infos_lock);
1394
1395        if (c->need_recovery) {
1396                if (c->ro_mount)
1397                        ubifs_msg("recovery deferred");
1398                else {
1399                        c->need_recovery = 0;
1400                        ubifs_msg("recovery completed");
1401                        /*
1402                         * GC LEB has to be empty and taken at this point. But
1403                         * the journal head LEBs may also be accounted as
1404                         * "empty taken" if they are empty.
1405                         */
1406                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1407                }
1408        } else
1409                ubifs_assert(c->lst.taken_empty_lebs > 0);
1410
1411        err = dbg_check_filesystem(c);
1412        if (err)
1413                goto out_infos;
1414
1415        err = dbg_debugfs_init_fs(c);
1416        if (err)
1417                goto out_infos;
1418
1419        c->mounting = 0;
1420
1421        ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1422                  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1423        if (c->ro_mount)
1424                ubifs_msg("mounted read-only");
1425        x = (long long)c->main_lebs * c->leb_size;
1426        ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1427                  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1428        x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1429        ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1430                  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1431        ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1432                  c->fmt_version, c->ro_compat_version,
1433                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1434        ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1435        ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1436                c->report_rp_size, c->report_rp_size >> 10);
1437
1438        dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1439        dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1440        dbg_msg("max. write size:     %d bytes", c->max_write_size);
1441        dbg_msg("LEB size:            %d bytes (%d KiB)",
1442                c->leb_size, c->leb_size >> 10);
1443        dbg_msg("data journal heads:  %d",
1444                c->jhead_cnt - NONDATA_JHEADS_CNT);
1445        dbg_msg("UUID:                %pUB", c->uuid);
1446        dbg_msg("big_lpt              %d", c->big_lpt);
1447        dbg_msg("log LEBs:            %d (%d - %d)",
1448                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1449        dbg_msg("LPT area LEBs:       %d (%d - %d)",
1450                c->lpt_lebs, c->lpt_first, c->lpt_last);
1451        dbg_msg("orphan area LEBs:    %d (%d - %d)",
1452                c->orph_lebs, c->orph_first, c->orph_last);
1453        dbg_msg("main area LEBs:      %d (%d - %d)",
1454                c->main_lebs, c->main_first, c->leb_cnt - 1);
1455        dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1456        dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1457                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1458                c->bi.old_idx_sz >> 20);
1459        dbg_msg("key hash type:       %d", c->key_hash_type);
1460        dbg_msg("tree fanout:         %d", c->fanout);
1461        dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1462        dbg_msg("first main LEB:      %d", c->main_first);
1463        dbg_msg("max. znode size      %d", c->max_znode_sz);
1464        dbg_msg("max. index node size %d", c->max_idx_node_sz);
1465        dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1466                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1467        dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1468                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1469        dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1470                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1471        dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1472                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1473                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1474        dbg_msg("dead watermark:      %d", c->dead_wm);
1475        dbg_msg("dark watermark:      %d", c->dark_wm);
1476        dbg_msg("LEB overhead:        %d", c->leb_overhead);
1477        x = (long long)c->main_lebs * c->dark_wm;
1478        dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1479                x, x >> 10, x >> 20);
1480        dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1481                c->max_bud_bytes, c->max_bud_bytes >> 10,
1482                c->max_bud_bytes >> 20);
1483        dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1484                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1485                c->bg_bud_bytes >> 20);
1486        dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1487                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1488        dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1489        dbg_msg("commit number:       %llu", c->cmt_no);
1490
1491        return 0;
1492
1493out_infos:
1494        spin_lock(&ubifs_infos_lock);
1495        list_del(&c->infos_list);
1496        spin_unlock(&ubifs_infos_lock);
1497out_orphans:
1498        free_orphans(c);
1499out_journal:
1500        destroy_journal(c);
1501out_lpt:
1502        ubifs_lpt_free(c, 0);
1503out_master:
1504        kfree(c->mst_node);
1505        kfree(c->rcvrd_mst_node);
1506        if (c->bgt)
1507                kthread_stop(c->bgt);
1508out_wbufs:
1509        free_wbufs(c);
1510out_cbuf:
1511        kfree(c->cbuf);
1512out_free:
1513        kfree(c->write_reserve_buf);
1514        kfree(c->bu.buf);
1515        vfree(c->ileb_buf);
1516        vfree(c->sbuf);
1517        kfree(c->bottom_up_buf);
1518        ubifs_debugging_exit(c);
1519        return err;
1520}
1521
1522/**
1523 * ubifs_umount - un-mount UBIFS file-system.
1524 * @c: UBIFS file-system description object
1525 *
1526 * Note, this function is called to free allocated resourced when un-mounting,
1527 * as well as free resources when an error occurred while we were half way
1528 * through mounting (error path cleanup function). So it has to make sure the
1529 * resource was actually allocated before freeing it.
1530 */
1531static void ubifs_umount(struct ubifs_info *c)
1532{
1533        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1534                c->vi.vol_id);
1535
1536        dbg_debugfs_exit_fs(c);
1537        spin_lock(&ubifs_infos_lock);
1538        list_del(&c->infos_list);
1539        spin_unlock(&ubifs_infos_lock);
1540
1541        if (c->bgt)
1542                kthread_stop(c->bgt);
1543
1544        destroy_journal(c);
1545        free_wbufs(c);
1546        free_orphans(c);
1547        ubifs_lpt_free(c, 0);
1548
1549        kfree(c->cbuf);
1550        kfree(c->rcvrd_mst_node);
1551        kfree(c->mst_node);
1552        kfree(c->write_reserve_buf);
1553        kfree(c->bu.buf);
1554        vfree(c->ileb_buf);
1555        vfree(c->sbuf);
1556        kfree(c->bottom_up_buf);
1557        ubifs_debugging_exit(c);
1558}
1559
1560/**
1561 * ubifs_remount_rw - re-mount in read-write mode.
1562 * @c: UBIFS file-system description object
1563 *
1564 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1565 * mode. This function allocates the needed resources and re-mounts UBIFS in
1566 * read-write mode.
1567 */
1568static int ubifs_remount_rw(struct ubifs_info *c)
1569{
1570        int err, lnum;
1571
1572        if (c->rw_incompat) {
1573                ubifs_err("the file-system is not R/W-compatible");
1574                ubifs_msg("on-flash format version is w%d/r%d, but software "
1575                          "only supports up to version w%d/r%d", c->fmt_version,
1576                          c->ro_compat_version, UBIFS_FORMAT_VERSION,
1577                          UBIFS_RO_COMPAT_VERSION);
1578                return -EROFS;
1579        }
1580
1581        mutex_lock(&c->umount_mutex);
1582        dbg_save_space_info(c);
1583        c->remounting_rw = 1;
1584        c->ro_mount = 0;
1585
1586        err = check_free_space(c);
1587        if (err)
1588                goto out;
1589
1590        if (c->old_leb_cnt != c->leb_cnt) {
1591                struct ubifs_sb_node *sup;
1592
1593                sup = ubifs_read_sb_node(c);
1594                if (IS_ERR(sup)) {
1595                        err = PTR_ERR(sup);
1596                        goto out;
1597                }
1598                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1599                err = ubifs_write_sb_node(c, sup);
1600                kfree(sup);
1601                if (err)
1602                        goto out;
1603        }
1604
1605        if (c->need_recovery) {
1606                ubifs_msg("completing deferred recovery");
1607                err = ubifs_write_rcvrd_mst_node(c);
1608                if (err)
1609                        goto out;
1610                err = ubifs_recover_size(c);
1611                if (err)
1612                        goto out;
1613                err = ubifs_clean_lebs(c, c->sbuf);
1614                if (err)
1615                        goto out;
1616                err = ubifs_recover_inl_heads(c, c->sbuf);
1617                if (err)
1618                        goto out;
1619        } else {
1620                /* A readonly mount is not allowed to have orphans */
1621                ubifs_assert(c->tot_orphans == 0);
1622                err = ubifs_clear_orphans(c);
1623                if (err)
1624                        goto out;
1625        }
1626
1627        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1628                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1629                err = ubifs_write_master(c);
1630                if (err)
1631                        goto out;
1632        }
1633
1634        c->ileb_buf = vmalloc(c->leb_size);
1635        if (!c->ileb_buf) {
1636                err = -ENOMEM;
1637                goto out;
1638        }
1639
1640        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1641        if (!c->write_reserve_buf)
1642                goto out;
1643
1644        err = ubifs_lpt_init(c, 0, 1);
1645        if (err)
1646                goto out;
1647
1648        /* Create background thread */
1649        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1650        if (IS_ERR(c->bgt)) {
1651                err = PTR_ERR(c->bgt);
1652                c->bgt = NULL;
1653                ubifs_err("cannot spawn \"%s\", error %d",
1654                          c->bgt_name, err);
1655                goto out;
1656        }
1657        wake_up_process(c->bgt);
1658
1659        c->orph_buf = vmalloc(c->leb_size);
1660        if (!c->orph_buf) {
1661                err = -ENOMEM;
1662                goto out;
1663        }
1664
1665        /* Check for enough log space */
1666        lnum = c->lhead_lnum + 1;
1667        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1668                lnum = UBIFS_LOG_LNUM;
1669        if (lnum == c->ltail_lnum) {
1670                err = ubifs_consolidate_log(c);
1671                if (err)
1672                        goto out;
1673        }
1674
1675        if (c->need_recovery)
1676                err = ubifs_rcvry_gc_commit(c);
1677        else
1678                err = ubifs_leb_unmap(c, c->gc_lnum);
1679        if (err)
1680                goto out;
1681
1682        dbg_gen("re-mounted read-write");
1683        c->remounting_rw = 0;
1684
1685        if (c->need_recovery) {
1686                c->need_recovery = 0;
1687                ubifs_msg("deferred recovery completed");
1688        } else {
1689                /*
1690                 * Do not run the debugging space check if the were doing
1691                 * recovery, because when we saved the information we had the
1692                 * file-system in a state where the TNC and lprops has been
1693                 * modified in memory, but all the I/O operations (including a
1694                 * commit) were deferred. So the file-system was in
1695                 * "non-committed" state. Now the file-system is in committed
1696                 * state, and of course the amount of free space will change
1697                 * because, for example, the old index size was imprecise.
1698                 */
1699                err = dbg_check_space_info(c);
1700        }
1701
1702        if (c->space_fixup) {
1703                err = ubifs_fixup_free_space(c);
1704                if (err)
1705                        goto out;
1706        }
1707
1708        mutex_unlock(&c->umount_mutex);
1709        return err;
1710
1711out:
1712        c->ro_mount = 1;
1713        vfree(c->orph_buf);
1714        c->orph_buf = NULL;
1715        if (c->bgt) {
1716                kthread_stop(c->bgt);
1717                c->bgt = NULL;
1718        }
1719        free_wbufs(c);
1720        kfree(c->write_reserve_buf);
1721        c->write_reserve_buf = NULL;
1722        vfree(c->ileb_buf);
1723        c->ileb_buf = NULL;
1724        ubifs_lpt_free(c, 1);
1725        c->remounting_rw = 0;
1726        mutex_unlock(&c->umount_mutex);
1727        return err;
1728}
1729
1730/**
1731 * ubifs_remount_ro - re-mount in read-only mode.
1732 * @c: UBIFS file-system description object
1733 *
1734 * We assume VFS has stopped writing. Possibly the background thread could be
1735 * running a commit, however kthread_stop will wait in that case.
1736 */
1737static void ubifs_remount_ro(struct ubifs_info *c)
1738{
1739        int i, err;
1740
1741        ubifs_assert(!c->need_recovery);
1742        ubifs_assert(!c->ro_mount);
1743
1744        mutex_lock(&c->umount_mutex);
1745        if (c->bgt) {
1746                kthread_stop(c->bgt);
1747                c->bgt = NULL;
1748        }
1749
1750        dbg_save_space_info(c);
1751
1752        for (i = 0; i < c->jhead_cnt; i++)
1753                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1754
1755        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1756        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1757        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1758        err = ubifs_write_master(c);
1759        if (err)
1760                ubifs_ro_mode(c, err);
1761
1762        vfree(c->orph_buf);
1763        c->orph_buf = NULL;
1764        kfree(c->write_reserve_buf);
1765        c->write_reserve_buf = NULL;
1766        vfree(c->ileb_buf);
1767        c->ileb_buf = NULL;
1768        ubifs_lpt_free(c, 1);
1769        c->ro_mount = 1;
1770        err = dbg_check_space_info(c);
1771        if (err)
1772                ubifs_ro_mode(c, err);
1773        mutex_unlock(&c->umount_mutex);
1774}
1775
1776static void ubifs_put_super(struct super_block *sb)
1777{
1778        int i;
1779        struct ubifs_info *c = sb->s_fs_info;
1780
1781        ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1782                  c->vi.vol_id);
1783
1784        /*
1785         * The following asserts are only valid if there has not been a failure
1786         * of the media. For example, there will be dirty inodes if we failed
1787         * to write them back because of I/O errors.
1788         */
1789        if (!c->ro_error) {
1790                ubifs_assert(c->bi.idx_growth == 0);
1791                ubifs_assert(c->bi.dd_growth == 0);
1792                ubifs_assert(c->bi.data_growth == 0);
1793        }
1794
1795        /*
1796         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1797         * and file system un-mount. Namely, it prevents the shrinker from
1798         * picking this superblock for shrinking - it will be just skipped if
1799         * the mutex is locked.
1800         */
1801        mutex_lock(&c->umount_mutex);
1802        if (!c->ro_mount) {
1803                /*
1804                 * First of all kill the background thread to make sure it does
1805                 * not interfere with un-mounting and freeing resources.
1806                 */
1807                if (c->bgt) {
1808                        kthread_stop(c->bgt);
1809                        c->bgt = NULL;
1810                }
1811
1812                /*
1813                 * On fatal errors c->ro_error is set to 1, in which case we do
1814                 * not write the master node.
1815                 */
1816                if (!c->ro_error) {
1817                        int err;
1818
1819                        /* Synchronize write-buffers */
1820                        for (i = 0; i < c->jhead_cnt; i++)
1821                                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1822
1823                        /*
1824                         * We are being cleanly unmounted which means the
1825                         * orphans were killed - indicate this in the master
1826                         * node. Also save the reserved GC LEB number.
1827                         */
1828                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1829                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1830                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1831                        err = ubifs_write_master(c);
1832                        if (err)
1833                                /*
1834                                 * Recovery will attempt to fix the master area
1835                                 * next mount, so we just print a message and
1836                                 * continue to unmount normally.
1837                                 */
1838                                ubifs_err("failed to write master node, "
1839                                          "error %d", err);
1840                } else {
1841                        for (i = 0; i < c->jhead_cnt; i++)
1842                                /* Make sure write-buffer timers are canceled */
1843                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1844                }
1845        }
1846
1847        ubifs_umount(c);
1848        bdi_destroy(&c->bdi);
1849        ubi_close_volume(c->ubi);
1850        mutex_unlock(&c->umount_mutex);
1851}
1852
1853static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1854{
1855        int err;
1856        struct ubifs_info *c = sb->s_fs_info;
1857
1858        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1859
1860        err = ubifs_parse_options(c, data, 1);
1861        if (err) {
1862                ubifs_err("invalid or unknown remount parameter");
1863                return err;
1864        }
1865
1866        if (c->ro_mount && !(*flags & MS_RDONLY)) {
1867                if (c->ro_error) {
1868                        ubifs_msg("cannot re-mount R/W due to prior errors");
1869                        return -EROFS;
1870                }
1871                if (c->ro_media) {
1872                        ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1873                        return -EROFS;
1874                }
1875                err = ubifs_remount_rw(c);
1876                if (err)
1877                        return err;
1878        } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1879                if (c->ro_error) {
1880                        ubifs_msg("cannot re-mount R/O due to prior errors");
1881                        return -EROFS;
1882                }
1883                ubifs_remount_ro(c);
1884        }
1885
1886        if (c->bulk_read == 1)
1887                bu_init(c);
1888        else {
1889                dbg_gen("disable bulk-read");
1890                kfree(c->bu.buf);
1891                c->bu.buf = NULL;
1892        }
1893
1894        ubifs_assert(c->lst.taken_empty_lebs > 0);
1895        return 0;
1896}
1897
1898const struct super_operations ubifs_super_operations = {
1899        .alloc_inode   = ubifs_alloc_inode,
1900        .destroy_inode = ubifs_destroy_inode,
1901        .put_super     = ubifs_put_super,
1902        .write_inode   = ubifs_write_inode,
1903        .evict_inode   = ubifs_evict_inode,
1904        .statfs        = ubifs_statfs,
1905        .dirty_inode   = ubifs_dirty_inode,
1906        .remount_fs    = ubifs_remount_fs,
1907        .show_options  = ubifs_show_options,
1908        .sync_fs       = ubifs_sync_fs,
1909};
1910
1911/**
1912 * open_ubi - parse UBI device name string and open the UBI device.
1913 * @name: UBI volume name
1914 * @mode: UBI volume open mode
1915 *
1916 * The primary method of mounting UBIFS is by specifying the UBI volume
1917 * character device node path. However, UBIFS may also be mounted withoug any
1918 * character device node using one of the following methods:
1919 *
1920 * o ubiX_Y    - mount UBI device number X, volume Y;
1921 * o ubiY      - mount UBI device number 0, volume Y;
1922 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1923 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1924 *
1925 * Alternative '!' separator may be used instead of ':' (because some shells
1926 * like busybox may interpret ':' as an NFS host name separator). This function
1927 * returns UBI volume description object in case of success and a negative
1928 * error code in case of failure.
1929 */
1930static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1931{
1932        struct ubi_volume_desc *ubi;
1933        int dev, vol;
1934        char *endptr;
1935
1936        /* First, try to open using the device node path method */
1937        ubi = ubi_open_volume_path(name, mode);
1938        if (!IS_ERR(ubi))
1939                return ubi;
1940
1941        /* Try the "nodev" method */
1942        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1943                return ERR_PTR(-EINVAL);
1944
1945        /* ubi:NAME method */
1946        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1947                return ubi_open_volume_nm(0, name + 4, mode);
1948
1949        if (!isdigit(name[3]))
1950                return ERR_PTR(-EINVAL);
1951
1952        dev = simple_strtoul(name + 3, &endptr, 0);
1953
1954        /* ubiY method */
1955        if (*endptr == '\0')
1956                return ubi_open_volume(0, dev, mode);
1957
1958        /* ubiX_Y method */
1959        if (*endptr == '_' && isdigit(endptr[1])) {
1960                vol = simple_strtoul(endptr + 1, &endptr, 0);
1961                if (*endptr != '\0')
1962                        return ERR_PTR(-EINVAL);
1963                return ubi_open_volume(dev, vol, mode);
1964        }
1965
1966        /* ubiX:NAME method */
1967        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1968                return ubi_open_volume_nm(dev, ++endptr, mode);
1969
1970        return ERR_PTR(-EINVAL);
1971}
1972
1973static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1974{
1975        struct ubifs_info *c;
1976
1977        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1978        if (c) {
1979                spin_lock_init(&c->cnt_lock);
1980                spin_lock_init(&c->cs_lock);
1981                spin_lock_init(&c->buds_lock);
1982                spin_lock_init(&c->space_lock);
1983                spin_lock_init(&c->orphan_lock);
1984                init_rwsem(&c->commit_sem);
1985                mutex_init(&c->lp_mutex);
1986                mutex_init(&c->tnc_mutex);
1987                mutex_init(&c->log_mutex);
1988                mutex_init(&c->mst_mutex);
1989                mutex_init(&c->umount_mutex);
1990                mutex_init(&c->bu_mutex);
1991                mutex_init(&c->write_reserve_mutex);
1992                init_waitqueue_head(&c->cmt_wq);
1993                c->buds = RB_ROOT;
1994                c->old_idx = RB_ROOT;
1995                c->size_tree = RB_ROOT;
1996                c->orph_tree = RB_ROOT;
1997                INIT_LIST_HEAD(&c->infos_list);
1998                INIT_LIST_HEAD(&c->idx_gc);
1999                INIT_LIST_HEAD(&c->replay_list);
2000                INIT_LIST_HEAD(&c->replay_buds);
2001                INIT_LIST_HEAD(&c->uncat_list);
2002                INIT_LIST_HEAD(&c->empty_list);
2003                INIT_LIST_HEAD(&c->freeable_list);
2004                INIT_LIST_HEAD(&c->frdi_idx_list);
2005                INIT_LIST_HEAD(&c->unclean_leb_list);
2006                INIT_LIST_HEAD(&c->old_buds);
2007                INIT_LIST_HEAD(&c->orph_list);
2008                INIT_LIST_HEAD(&c->orph_new);
2009                c->no_chk_data_crc = 1;
2010
2011                c->highest_inum = UBIFS_FIRST_INO;
2012                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2013
2014                ubi_get_volume_info(ubi, &c->vi);
2015                ubi_get_device_info(c->vi.ubi_num, &c->di);
2016        }
2017        return c;
2018}
2019
2020static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2021{
2022        struct ubifs_info *c = sb->s_fs_info;
2023        struct inode *root;
2024        int err;
2025
2026        c->vfs_sb = sb;
2027        /* Re-open the UBI device in read-write mode */
2028        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2029        if (IS_ERR(c->ubi)) {
2030                err = PTR_ERR(c->ubi);
2031                goto out;
2032        }
2033
2034        /*
2035         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2036         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2037         * which means the user would have to wait not just for their own I/O
2038         * but the read-ahead I/O as well i.e. completely pointless.
2039         *
2040         * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2041         */
2042        c->bdi.name = "ubifs",
2043        c->bdi.capabilities = BDI_CAP_MAP_COPY;
2044        err  = bdi_init(&c->bdi);
2045        if (err)
2046                goto out_close;
2047        err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2048                           c->vi.ubi_num, c->vi.vol_id);
2049        if (err)
2050                goto out_bdi;
2051
2052        err = ubifs_parse_options(c, data, 0);
2053        if (err)
2054                goto out_bdi;
2055
2056        sb->s_bdi = &c->bdi;
2057        sb->s_fs_info = c;
2058        sb->s_magic = UBIFS_SUPER_MAGIC;
2059        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2060        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2061        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2062        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2063                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2064        sb->s_op = &ubifs_super_operations;
2065
2066        mutex_lock(&c->umount_mutex);
2067        err = mount_ubifs(c);
2068        if (err) {
2069                ubifs_assert(err < 0);
2070                goto out_unlock;
2071        }
2072
2073        /* Read the root inode */
2074        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2075        if (IS_ERR(root)) {
2076                err = PTR_ERR(root);
2077                goto out_umount;
2078        }
2079
2080        sb->s_root = d_alloc_root(root);
2081        if (!sb->s_root)
2082                goto out_iput;
2083
2084        mutex_unlock(&c->umount_mutex);
2085        return 0;
2086
2087out_iput:
2088        iput(root);
2089out_umount:
2090        ubifs_umount(c);
2091out_unlock:
2092        mutex_unlock(&c->umount_mutex);
2093out_bdi:
2094        bdi_destroy(&c->bdi);
2095out_close:
2096        ubi_close_volume(c->ubi);
2097out:
2098        return err;
2099}
2100
2101static int sb_test(struct super_block *sb, void *data)
2102{
2103        struct ubifs_info *c1 = data;
2104        struct ubifs_info *c = sb->s_fs_info;
2105
2106        return c->vi.cdev == c1->vi.cdev;
2107}
2108
2109static int sb_set(struct super_block *sb, void *data)
2110{
2111        sb->s_fs_info = data;
2112        return set_anon_super(sb, NULL);
2113}
2114
2115static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2116                        const char *name, void *data)
2117{
2118        struct ubi_volume_desc *ubi;
2119        struct ubifs_info *c;
2120        struct super_block *sb;
2121        int err;
2122
2123        dbg_gen("name %s, flags %#x", name, flags);
2124
2125        /*
2126         * Get UBI device number and volume ID. Mount it read-only so far
2127         * because this might be a new mount point, and UBI allows only one
2128         * read-write user at a time.
2129         */
2130        ubi = open_ubi(name, UBI_READONLY);
2131        if (IS_ERR(ubi)) {
2132                dbg_err("cannot open \"%s\", error %d",
2133                        name, (int)PTR_ERR(ubi));
2134                return ERR_CAST(ubi);
2135        }
2136
2137        c = alloc_ubifs_info(ubi);
2138        if (!c) {
2139                err = -ENOMEM;
2140                goto out_close;
2141        }
2142
2143        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2144
2145        sb = sget(fs_type, sb_test, sb_set, c);
2146        if (IS_ERR(sb)) {
2147                err = PTR_ERR(sb);
2148                kfree(c);
2149                goto out_close;
2150        }
2151
2152        if (sb->s_root) {
2153                struct ubifs_info *c1 = sb->s_fs_info;
2154                kfree(c);
2155                /* A new mount point for already mounted UBIFS */
2156                dbg_gen("this ubi volume is already mounted");
2157                if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2158                        err = -EBUSY;
2159                        goto out_deact;
2160                }
2161        } else {
2162                sb->s_flags = flags;
2163                err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2164                if (err)
2165                        goto out_deact;
2166                /* We do not support atime */
2167                sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2168        }
2169
2170        /* 'fill_super()' opens ubi again so we must close it here */
2171        ubi_close_volume(ubi);
2172
2173        return dget(sb->s_root);
2174
2175out_deact:
2176        deactivate_locked_super(sb);
2177out_close:
2178        ubi_close_volume(ubi);
2179        return ERR_PTR(err);
2180}
2181
2182static void kill_ubifs_super(struct super_block *s)
2183{
2184        struct ubifs_info *c = s->s_fs_info;
2185        kill_anon_super(s);
2186        kfree(c);
2187}
2188
2189static struct file_system_type ubifs_fs_type = {
2190        .name    = "ubifs",
2191        .owner   = THIS_MODULE,
2192        .mount   = ubifs_mount,
2193        .kill_sb = kill_ubifs_super,
2194};
2195
2196/*
2197 * Inode slab cache constructor.
2198 */
2199static void inode_slab_ctor(void *obj)
2200{
2201        struct ubifs_inode *ui = obj;
2202        inode_init_once(&ui->vfs_inode);
2203}
2204
2205static int __init ubifs_init(void)
2206{
2207        int err;
2208
2209        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2210
2211        /* Make sure node sizes are 8-byte aligned */
2212        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2213        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2214        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2215        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2216        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2217        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2218        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2219        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2220        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2221        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2222        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2223
2224        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2225        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2226        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2227        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2228        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2229        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2230
2231        /* Check min. node size */
2232        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2233        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2234        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2235        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2236
2237        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2238        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2239        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2240        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2241
2242        /* Defined node sizes */
2243        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2244        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2245        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2246        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2247
2248        /*
2249         * We use 2 bit wide bit-fields to store compression type, which should
2250         * be amended if more compressors are added. The bit-fields are:
2251         * @compr_type in 'struct ubifs_inode', @default_compr in
2252         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2253         */
2254        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2255
2256        /*
2257         * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2258         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2259         */
2260        if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2261                ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2262                          " at least 4096 bytes",
2263                          (unsigned int)PAGE_CACHE_SIZE);
2264                return -EINVAL;
2265        }
2266
2267        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2268                                sizeof(struct ubifs_inode), 0,
2269                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2270                                &inode_slab_ctor);
2271        if (!ubifs_inode_slab)
2272                return -ENOMEM;
2273
2274        register_shrinker(&ubifs_shrinker_info);
2275
2276        err = ubifs_compressors_init();
2277        if (err)
2278                goto out_shrinker;
2279
2280        err = dbg_debugfs_init();
2281        if (err)
2282                goto out_compr;
2283
2284        err = register_filesystem(&ubifs_fs_type);
2285        if (err) {
2286                ubifs_err("cannot register file system, error %d", err);
2287                goto out_dbg;
2288        }
2289        return 0;
2290
2291out_dbg:
2292        dbg_debugfs_exit();
2293out_compr:
2294        ubifs_compressors_exit();
2295out_shrinker:
2296        unregister_shrinker(&ubifs_shrinker_info);
2297        kmem_cache_destroy(ubifs_inode_slab);
2298        return err;
2299}
2300/* late_initcall to let compressors initialize first */
2301late_initcall(ubifs_init);
2302
2303static void __exit ubifs_exit(void)
2304{
2305        ubifs_assert(list_empty(&ubifs_infos));
2306        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2307
2308        dbg_debugfs_exit();
2309        ubifs_compressors_exit();
2310        unregister_shrinker(&ubifs_shrinker_info);
2311        kmem_cache_destroy(ubifs_inode_slab);
2312        unregister_filesystem(&ubifs_fs_type);
2313}
2314module_exit(ubifs_exit);
2315
2316MODULE_LICENSE("GPL");
2317MODULE_VERSION(__stringify(UBIFS_VERSION));
2318MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2319MODULE_DESCRIPTION("UBIFS - UBI File System");
2320