linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/cache.h>
  22
  23#include <linux/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/dmaengine.h>
  31#include <linux/hrtimer.h>
  32#include <linux/dma-mapping.h>
  33
  34/* Don't change this without changing skb_csum_unnecessary! */
  35#define CHECKSUM_NONE 0
  36#define CHECKSUM_UNNECESSARY 1
  37#define CHECKSUM_COMPLETE 2
  38#define CHECKSUM_PARTIAL 3
  39
  40#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
  41                                 ~(SMP_CACHE_BYTES - 1))
  42#define SKB_WITH_OVERHEAD(X)    \
  43        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  44#define SKB_MAX_ORDER(X, ORDER) \
  45        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  46#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
  47#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
  48
  49/* return minimum truesize of one skb containing X bytes of data */
  50#define SKB_TRUESIZE(X) ((X) +                                          \
  51                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
  52                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  53
  54/* A. Checksumming of received packets by device.
  55 *
  56 *      NONE: device failed to checksum this packet.
  57 *              skb->csum is undefined.
  58 *
  59 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
  60 *              skb->csum is undefined.
  61 *            It is bad option, but, unfortunately, many of vendors do this.
  62 *            Apparently with secret goal to sell you new device, when you
  63 *            will add new protocol to your host. F.e. IPv6. 8)
  64 *
  65 *      COMPLETE: the most generic way. Device supplied checksum of _all_
  66 *          the packet as seen by netif_rx in skb->csum.
  67 *          NOTE: Even if device supports only some protocols, but
  68 *          is able to produce some skb->csum, it MUST use COMPLETE,
  69 *          not UNNECESSARY.
  70 *
  71 *      PARTIAL: identical to the case for output below.  This may occur
  72 *          on a packet received directly from another Linux OS, e.g.,
  73 *          a virtualised Linux kernel on the same host.  The packet can
  74 *          be treated in the same way as UNNECESSARY except that on
  75 *          output (i.e., forwarding) the checksum must be filled in
  76 *          by the OS or the hardware.
  77 *
  78 * B. Checksumming on output.
  79 *
  80 *      NONE: skb is checksummed by protocol or csum is not required.
  81 *
  82 *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
  83 *      from skb->csum_start to the end and to record the checksum
  84 *      at skb->csum_start + skb->csum_offset.
  85 *
  86 *      Device must show its capabilities in dev->features, set
  87 *      at device setup time.
  88 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  89 *                        everything.
  90 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
  91 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  92 *                        TCP/UDP over IPv4. Sigh. Vendors like this
  93 *                        way by an unknown reason. Though, see comment above
  94 *                        about CHECKSUM_UNNECESSARY. 8)
  95 *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  96 *
  97 *      Any questions? No questions, good.              --ANK
  98 */
  99
 100struct net_device;
 101struct scatterlist;
 102struct pipe_inode_info;
 103
 104#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 105struct nf_conntrack {
 106        atomic_t use;
 107};
 108#endif
 109
 110#ifdef CONFIG_BRIDGE_NETFILTER
 111struct nf_bridge_info {
 112        atomic_t use;
 113        struct net_device *physindev;
 114        struct net_device *physoutdev;
 115        unsigned int mask;
 116        unsigned long data[32 / sizeof(unsigned long)];
 117};
 118#endif
 119
 120struct sk_buff_head {
 121        /* These two members must be first. */
 122        struct sk_buff  *next;
 123        struct sk_buff  *prev;
 124
 125        __u32           qlen;
 126        spinlock_t      lock;
 127};
 128
 129struct sk_buff;
 130
 131/* To allow 64K frame to be packed as single skb without frag_list. Since
 132 * GRO uses frags we allocate at least 16 regardless of page size.
 133 */
 134#if (65536/PAGE_SIZE + 2) < 16
 135#define MAX_SKB_FRAGS 16UL
 136#else
 137#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
 138#endif
 139
 140typedef struct skb_frag_struct skb_frag_t;
 141
 142struct skb_frag_struct {
 143        struct {
 144                struct page *p;
 145        } page;
 146#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 147        __u32 page_offset;
 148        __u32 size;
 149#else
 150        __u16 page_offset;
 151        __u16 size;
 152#endif
 153};
 154
 155static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 156{
 157        return frag->size;
 158}
 159
 160static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 161{
 162        frag->size = size;
 163}
 164
 165static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 166{
 167        frag->size += delta;
 168}
 169
 170static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 171{
 172        frag->size -= delta;
 173}
 174
 175#define HAVE_HW_TIME_STAMP
 176
 177/**
 178 * struct skb_shared_hwtstamps - hardware time stamps
 179 * @hwtstamp:   hardware time stamp transformed into duration
 180 *              since arbitrary point in time
 181 * @syststamp:  hwtstamp transformed to system time base
 182 *
 183 * Software time stamps generated by ktime_get_real() are stored in
 184 * skb->tstamp. The relation between the different kinds of time
 185 * stamps is as follows:
 186 *
 187 * syststamp and tstamp can be compared against each other in
 188 * arbitrary combinations.  The accuracy of a
 189 * syststamp/tstamp/"syststamp from other device" comparison is
 190 * limited by the accuracy of the transformation into system time
 191 * base. This depends on the device driver and its underlying
 192 * hardware.
 193 *
 194 * hwtstamps can only be compared against other hwtstamps from
 195 * the same device.
 196 *
 197 * This structure is attached to packets as part of the
 198 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 199 */
 200struct skb_shared_hwtstamps {
 201        ktime_t hwtstamp;
 202        ktime_t syststamp;
 203};
 204
 205/* Definitions for tx_flags in struct skb_shared_info */
 206enum {
 207        /* generate hardware time stamp */
 208        SKBTX_HW_TSTAMP = 1 << 0,
 209
 210        /* generate software time stamp */
 211        SKBTX_SW_TSTAMP = 1 << 1,
 212
 213        /* device driver is going to provide hardware time stamp */
 214        SKBTX_IN_PROGRESS = 1 << 2,
 215
 216        /* ensure the originating sk reference is available on driver level */
 217        SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
 218
 219        /* device driver supports TX zero-copy buffers */
 220        SKBTX_DEV_ZEROCOPY = 1 << 4,
 221};
 222
 223/*
 224 * The callback notifies userspace to release buffers when skb DMA is done in
 225 * lower device, the skb last reference should be 0 when calling this.
 226 * The desc is used to track userspace buffer index.
 227 */
 228struct ubuf_info {
 229        void (*callback)(void *);
 230        void *arg;
 231        unsigned long desc;
 232};
 233
 234/* This data is invariant across clones and lives at
 235 * the end of the header data, ie. at skb->end.
 236 */
 237struct skb_shared_info {
 238        unsigned short  nr_frags;
 239        unsigned short  gso_size;
 240        /* Warning: this field is not always filled in (UFO)! */
 241        unsigned short  gso_segs;
 242        unsigned short  gso_type;
 243        __be32          ip6_frag_id;
 244        __u8            tx_flags;
 245        struct sk_buff  *frag_list;
 246        struct skb_shared_hwtstamps hwtstamps;
 247
 248        /*
 249         * Warning : all fields before dataref are cleared in __alloc_skb()
 250         */
 251        atomic_t        dataref;
 252
 253        /* Intermediate layers must ensure that destructor_arg
 254         * remains valid until skb destructor */
 255        void *          destructor_arg;
 256
 257        /* must be last field, see pskb_expand_head() */
 258        skb_frag_t      frags[MAX_SKB_FRAGS];
 259};
 260
 261/* We divide dataref into two halves.  The higher 16 bits hold references
 262 * to the payload part of skb->data.  The lower 16 bits hold references to
 263 * the entire skb->data.  A clone of a headerless skb holds the length of
 264 * the header in skb->hdr_len.
 265 *
 266 * All users must obey the rule that the skb->data reference count must be
 267 * greater than or equal to the payload reference count.
 268 *
 269 * Holding a reference to the payload part means that the user does not
 270 * care about modifications to the header part of skb->data.
 271 */
 272#define SKB_DATAREF_SHIFT 16
 273#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 274
 275
 276enum {
 277        SKB_FCLONE_UNAVAILABLE,
 278        SKB_FCLONE_ORIG,
 279        SKB_FCLONE_CLONE,
 280};
 281
 282enum {
 283        SKB_GSO_TCPV4 = 1 << 0,
 284        SKB_GSO_UDP = 1 << 1,
 285
 286        /* This indicates the skb is from an untrusted source. */
 287        SKB_GSO_DODGY = 1 << 2,
 288
 289        /* This indicates the tcp segment has CWR set. */
 290        SKB_GSO_TCP_ECN = 1 << 3,
 291
 292        SKB_GSO_TCPV6 = 1 << 4,
 293
 294        SKB_GSO_FCOE = 1 << 5,
 295};
 296
 297#if BITS_PER_LONG > 32
 298#define NET_SKBUFF_DATA_USES_OFFSET 1
 299#endif
 300
 301#ifdef NET_SKBUFF_DATA_USES_OFFSET
 302typedef unsigned int sk_buff_data_t;
 303#else
 304typedef unsigned char *sk_buff_data_t;
 305#endif
 306
 307#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
 308    defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
 309#define NET_SKBUFF_NF_DEFRAG_NEEDED 1
 310#endif
 311
 312/** 
 313 *      struct sk_buff - socket buffer
 314 *      @next: Next buffer in list
 315 *      @prev: Previous buffer in list
 316 *      @tstamp: Time we arrived
 317 *      @sk: Socket we are owned by
 318 *      @dev: Device we arrived on/are leaving by
 319 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 320 *      @_skb_refdst: destination entry (with norefcount bit)
 321 *      @sp: the security path, used for xfrm
 322 *      @len: Length of actual data
 323 *      @data_len: Data length
 324 *      @mac_len: Length of link layer header
 325 *      @hdr_len: writable header length of cloned skb
 326 *      @csum: Checksum (must include start/offset pair)
 327 *      @csum_start: Offset from skb->head where checksumming should start
 328 *      @csum_offset: Offset from csum_start where checksum should be stored
 329 *      @priority: Packet queueing priority
 330 *      @local_df: allow local fragmentation
 331 *      @cloned: Head may be cloned (check refcnt to be sure)
 332 *      @ip_summed: Driver fed us an IP checksum
 333 *      @nohdr: Payload reference only, must not modify header
 334 *      @nfctinfo: Relationship of this skb to the connection
 335 *      @pkt_type: Packet class
 336 *      @fclone: skbuff clone status
 337 *      @ipvs_property: skbuff is owned by ipvs
 338 *      @peeked: this packet has been seen already, so stats have been
 339 *              done for it, don't do them again
 340 *      @nf_trace: netfilter packet trace flag
 341 *      @protocol: Packet protocol from driver
 342 *      @destructor: Destruct function
 343 *      @nfct: Associated connection, if any
 344 *      @nfct_reasm: netfilter conntrack re-assembly pointer
 345 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 346 *      @skb_iif: ifindex of device we arrived on
 347 *      @tc_index: Traffic control index
 348 *      @tc_verd: traffic control verdict
 349 *      @rxhash: the packet hash computed on receive
 350 *      @queue_mapping: Queue mapping for multiqueue devices
 351 *      @ndisc_nodetype: router type (from link layer)
 352 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 353 *      @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
 354 *              ports.
 355 *      @dma_cookie: a cookie to one of several possible DMA operations
 356 *              done by skb DMA functions
 357 *      @secmark: security marking
 358 *      @mark: Generic packet mark
 359 *      @dropcount: total number of sk_receive_queue overflows
 360 *      @vlan_tci: vlan tag control information
 361 *      @transport_header: Transport layer header
 362 *      @network_header: Network layer header
 363 *      @mac_header: Link layer header
 364 *      @tail: Tail pointer
 365 *      @end: End pointer
 366 *      @head: Head of buffer
 367 *      @data: Data head pointer
 368 *      @truesize: Buffer size
 369 *      @users: User count - see {datagram,tcp}.c
 370 */
 371
 372struct sk_buff {
 373        /* These two members must be first. */
 374        struct sk_buff          *next;
 375        struct sk_buff          *prev;
 376
 377        ktime_t                 tstamp;
 378
 379        struct sock             *sk;
 380        struct net_device       *dev;
 381
 382        /*
 383         * This is the control buffer. It is free to use for every
 384         * layer. Please put your private variables there. If you
 385         * want to keep them across layers you have to do a skb_clone()
 386         * first. This is owned by whoever has the skb queued ATM.
 387         */
 388        char                    cb[48] __aligned(8);
 389
 390        unsigned long           _skb_refdst;
 391#ifdef CONFIG_XFRM
 392        struct  sec_path        *sp;
 393#endif
 394        unsigned int            len,
 395                                data_len;
 396        __u16                   mac_len,
 397                                hdr_len;
 398        union {
 399                __wsum          csum;
 400                struct {
 401                        __u16   csum_start;
 402                        __u16   csum_offset;
 403                };
 404        };
 405        __u32                   priority;
 406        kmemcheck_bitfield_begin(flags1);
 407        __u8                    local_df:1,
 408                                cloned:1,
 409                                ip_summed:2,
 410                                nohdr:1,
 411                                nfctinfo:3;
 412        __u8                    pkt_type:3,
 413                                fclone:2,
 414                                ipvs_property:1,
 415                                peeked:1,
 416                                nf_trace:1;
 417        kmemcheck_bitfield_end(flags1);
 418        __be16                  protocol;
 419
 420        void                    (*destructor)(struct sk_buff *skb);
 421#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 422        struct nf_conntrack     *nfct;
 423#endif
 424#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 425        struct sk_buff          *nfct_reasm;
 426#endif
 427#ifdef CONFIG_BRIDGE_NETFILTER
 428        struct nf_bridge_info   *nf_bridge;
 429#endif
 430
 431        int                     skb_iif;
 432#ifdef CONFIG_NET_SCHED
 433        __u16                   tc_index;       /* traffic control index */
 434#ifdef CONFIG_NET_CLS_ACT
 435        __u16                   tc_verd;        /* traffic control verdict */
 436#endif
 437#endif
 438
 439        __u32                   rxhash;
 440
 441        __u16                   queue_mapping;
 442        kmemcheck_bitfield_begin(flags2);
 443#ifdef CONFIG_IPV6_NDISC_NODETYPE
 444        __u8                    ndisc_nodetype:2;
 445#endif
 446        __u8                    ooo_okay:1;
 447        __u8                    l4_rxhash:1;
 448        kmemcheck_bitfield_end(flags2);
 449
 450        /* 0/13 bit hole */
 451
 452#ifdef CONFIG_NET_DMA
 453        dma_cookie_t            dma_cookie;
 454#endif
 455#ifdef CONFIG_NETWORK_SECMARK
 456        __u32                   secmark;
 457#endif
 458        union {
 459                __u32           mark;
 460                __u32           dropcount;
 461        };
 462
 463        __u16                   vlan_tci;
 464
 465        sk_buff_data_t          transport_header;
 466        sk_buff_data_t          network_header;
 467        sk_buff_data_t          mac_header;
 468        /* These elements must be at the end, see alloc_skb() for details.  */
 469        sk_buff_data_t          tail;
 470        sk_buff_data_t          end;
 471        unsigned char           *head,
 472                                *data;
 473        unsigned int            truesize;
 474        atomic_t                users;
 475};
 476
 477#ifdef __KERNEL__
 478/*
 479 *      Handling routines are only of interest to the kernel
 480 */
 481#include <linux/slab.h>
 482
 483#include <asm/system.h>
 484
 485/*
 486 * skb might have a dst pointer attached, refcounted or not.
 487 * _skb_refdst low order bit is set if refcount was _not_ taken
 488 */
 489#define SKB_DST_NOREF   1UL
 490#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 491
 492/**
 493 * skb_dst - returns skb dst_entry
 494 * @skb: buffer
 495 *
 496 * Returns skb dst_entry, regardless of reference taken or not.
 497 */
 498static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 499{
 500        /* If refdst was not refcounted, check we still are in a 
 501         * rcu_read_lock section
 502         */
 503        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 504                !rcu_read_lock_held() &&
 505                !rcu_read_lock_bh_held());
 506        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 507}
 508
 509/**
 510 * skb_dst_set - sets skb dst
 511 * @skb: buffer
 512 * @dst: dst entry
 513 *
 514 * Sets skb dst, assuming a reference was taken on dst and should
 515 * be released by skb_dst_drop()
 516 */
 517static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 518{
 519        skb->_skb_refdst = (unsigned long)dst;
 520}
 521
 522extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
 523
 524/**
 525 * skb_dst_is_noref - Test if skb dst isn't refcounted
 526 * @skb: buffer
 527 */
 528static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 529{
 530        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 531}
 532
 533static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 534{
 535        return (struct rtable *)skb_dst(skb);
 536}
 537
 538extern void kfree_skb(struct sk_buff *skb);
 539extern void consume_skb(struct sk_buff *skb);
 540extern void            __kfree_skb(struct sk_buff *skb);
 541extern struct sk_buff *__alloc_skb(unsigned int size,
 542                                   gfp_t priority, int fclone, int node);
 543static inline struct sk_buff *alloc_skb(unsigned int size,
 544                                        gfp_t priority)
 545{
 546        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 547}
 548
 549static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 550                                               gfp_t priority)
 551{
 552        return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
 553}
 554
 555extern void skb_recycle(struct sk_buff *skb);
 556extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
 557
 558extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 559extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 560extern struct sk_buff *skb_clone(struct sk_buff *skb,
 561                                 gfp_t priority);
 562extern struct sk_buff *skb_copy(const struct sk_buff *skb,
 563                                gfp_t priority);
 564extern struct sk_buff *pskb_copy(struct sk_buff *skb,
 565                                 gfp_t gfp_mask);
 566extern int             pskb_expand_head(struct sk_buff *skb,
 567                                        int nhead, int ntail,
 568                                        gfp_t gfp_mask);
 569extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 570                                            unsigned int headroom);
 571extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 572                                       int newheadroom, int newtailroom,
 573                                       gfp_t priority);
 574extern int             skb_to_sgvec(struct sk_buff *skb,
 575                                    struct scatterlist *sg, int offset,
 576                                    int len);
 577extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
 578                                    struct sk_buff **trailer);
 579extern int             skb_pad(struct sk_buff *skb, int pad);
 580#define dev_kfree_skb(a)        consume_skb(a)
 581
 582extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 583                        int getfrag(void *from, char *to, int offset,
 584                        int len,int odd, struct sk_buff *skb),
 585                        void *from, int length);
 586
 587struct skb_seq_state {
 588        __u32           lower_offset;
 589        __u32           upper_offset;
 590        __u32           frag_idx;
 591        __u32           stepped_offset;
 592        struct sk_buff  *root_skb;
 593        struct sk_buff  *cur_skb;
 594        __u8            *frag_data;
 595};
 596
 597extern void           skb_prepare_seq_read(struct sk_buff *skb,
 598                                           unsigned int from, unsigned int to,
 599                                           struct skb_seq_state *st);
 600extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
 601                                   struct skb_seq_state *st);
 602extern void           skb_abort_seq_read(struct skb_seq_state *st);
 603
 604extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
 605                                    unsigned int to, struct ts_config *config,
 606                                    struct ts_state *state);
 607
 608extern void __skb_get_rxhash(struct sk_buff *skb);
 609static inline __u32 skb_get_rxhash(struct sk_buff *skb)
 610{
 611        if (!skb->rxhash)
 612                __skb_get_rxhash(skb);
 613
 614        return skb->rxhash;
 615}
 616
 617#ifdef NET_SKBUFF_DATA_USES_OFFSET
 618static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 619{
 620        return skb->head + skb->end;
 621}
 622#else
 623static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 624{
 625        return skb->end;
 626}
 627#endif
 628
 629/* Internal */
 630#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
 631
 632static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
 633{
 634        return &skb_shinfo(skb)->hwtstamps;
 635}
 636
 637/**
 638 *      skb_queue_empty - check if a queue is empty
 639 *      @list: queue head
 640 *
 641 *      Returns true if the queue is empty, false otherwise.
 642 */
 643static inline int skb_queue_empty(const struct sk_buff_head *list)
 644{
 645        return list->next == (struct sk_buff *)list;
 646}
 647
 648/**
 649 *      skb_queue_is_last - check if skb is the last entry in the queue
 650 *      @list: queue head
 651 *      @skb: buffer
 652 *
 653 *      Returns true if @skb is the last buffer on the list.
 654 */
 655static inline bool skb_queue_is_last(const struct sk_buff_head *list,
 656                                     const struct sk_buff *skb)
 657{
 658        return skb->next == (struct sk_buff *)list;
 659}
 660
 661/**
 662 *      skb_queue_is_first - check if skb is the first entry in the queue
 663 *      @list: queue head
 664 *      @skb: buffer
 665 *
 666 *      Returns true if @skb is the first buffer on the list.
 667 */
 668static inline bool skb_queue_is_first(const struct sk_buff_head *list,
 669                                      const struct sk_buff *skb)
 670{
 671        return skb->prev == (struct sk_buff *)list;
 672}
 673
 674/**
 675 *      skb_queue_next - return the next packet in the queue
 676 *      @list: queue head
 677 *      @skb: current buffer
 678 *
 679 *      Return the next packet in @list after @skb.  It is only valid to
 680 *      call this if skb_queue_is_last() evaluates to false.
 681 */
 682static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
 683                                             const struct sk_buff *skb)
 684{
 685        /* This BUG_ON may seem severe, but if we just return then we
 686         * are going to dereference garbage.
 687         */
 688        BUG_ON(skb_queue_is_last(list, skb));
 689        return skb->next;
 690}
 691
 692/**
 693 *      skb_queue_prev - return the prev packet in the queue
 694 *      @list: queue head
 695 *      @skb: current buffer
 696 *
 697 *      Return the prev packet in @list before @skb.  It is only valid to
 698 *      call this if skb_queue_is_first() evaluates to false.
 699 */
 700static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
 701                                             const struct sk_buff *skb)
 702{
 703        /* This BUG_ON may seem severe, but if we just return then we
 704         * are going to dereference garbage.
 705         */
 706        BUG_ON(skb_queue_is_first(list, skb));
 707        return skb->prev;
 708}
 709
 710/**
 711 *      skb_get - reference buffer
 712 *      @skb: buffer to reference
 713 *
 714 *      Makes another reference to a socket buffer and returns a pointer
 715 *      to the buffer.
 716 */
 717static inline struct sk_buff *skb_get(struct sk_buff *skb)
 718{
 719        atomic_inc(&skb->users);
 720        return skb;
 721}
 722
 723/*
 724 * If users == 1, we are the only owner and are can avoid redundant
 725 * atomic change.
 726 */
 727
 728/**
 729 *      skb_cloned - is the buffer a clone
 730 *      @skb: buffer to check
 731 *
 732 *      Returns true if the buffer was generated with skb_clone() and is
 733 *      one of multiple shared copies of the buffer. Cloned buffers are
 734 *      shared data so must not be written to under normal circumstances.
 735 */
 736static inline int skb_cloned(const struct sk_buff *skb)
 737{
 738        return skb->cloned &&
 739               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
 740}
 741
 742/**
 743 *      skb_header_cloned - is the header a clone
 744 *      @skb: buffer to check
 745 *
 746 *      Returns true if modifying the header part of the buffer requires
 747 *      the data to be copied.
 748 */
 749static inline int skb_header_cloned(const struct sk_buff *skb)
 750{
 751        int dataref;
 752
 753        if (!skb->cloned)
 754                return 0;
 755
 756        dataref = atomic_read(&skb_shinfo(skb)->dataref);
 757        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
 758        return dataref != 1;
 759}
 760
 761/**
 762 *      skb_header_release - release reference to header
 763 *      @skb: buffer to operate on
 764 *
 765 *      Drop a reference to the header part of the buffer.  This is done
 766 *      by acquiring a payload reference.  You must not read from the header
 767 *      part of skb->data after this.
 768 */
 769static inline void skb_header_release(struct sk_buff *skb)
 770{
 771        BUG_ON(skb->nohdr);
 772        skb->nohdr = 1;
 773        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
 774}
 775
 776/**
 777 *      skb_shared - is the buffer shared
 778 *      @skb: buffer to check
 779 *
 780 *      Returns true if more than one person has a reference to this
 781 *      buffer.
 782 */
 783static inline int skb_shared(const struct sk_buff *skb)
 784{
 785        return atomic_read(&skb->users) != 1;
 786}
 787
 788/**
 789 *      skb_share_check - check if buffer is shared and if so clone it
 790 *      @skb: buffer to check
 791 *      @pri: priority for memory allocation
 792 *
 793 *      If the buffer is shared the buffer is cloned and the old copy
 794 *      drops a reference. A new clone with a single reference is returned.
 795 *      If the buffer is not shared the original buffer is returned. When
 796 *      being called from interrupt status or with spinlocks held pri must
 797 *      be GFP_ATOMIC.
 798 *
 799 *      NULL is returned on a memory allocation failure.
 800 */
 801static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
 802                                              gfp_t pri)
 803{
 804        might_sleep_if(pri & __GFP_WAIT);
 805        if (skb_shared(skb)) {
 806                struct sk_buff *nskb = skb_clone(skb, pri);
 807                kfree_skb(skb);
 808                skb = nskb;
 809        }
 810        return skb;
 811}
 812
 813/*
 814 *      Copy shared buffers into a new sk_buff. We effectively do COW on
 815 *      packets to handle cases where we have a local reader and forward
 816 *      and a couple of other messy ones. The normal one is tcpdumping
 817 *      a packet thats being forwarded.
 818 */
 819
 820/**
 821 *      skb_unshare - make a copy of a shared buffer
 822 *      @skb: buffer to check
 823 *      @pri: priority for memory allocation
 824 *
 825 *      If the socket buffer is a clone then this function creates a new
 826 *      copy of the data, drops a reference count on the old copy and returns
 827 *      the new copy with the reference count at 1. If the buffer is not a clone
 828 *      the original buffer is returned. When called with a spinlock held or
 829 *      from interrupt state @pri must be %GFP_ATOMIC
 830 *
 831 *      %NULL is returned on a memory allocation failure.
 832 */
 833static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
 834                                          gfp_t pri)
 835{
 836        might_sleep_if(pri & __GFP_WAIT);
 837        if (skb_cloned(skb)) {
 838                struct sk_buff *nskb = skb_copy(skb, pri);
 839                kfree_skb(skb); /* Free our shared copy */
 840                skb = nskb;
 841        }
 842        return skb;
 843}
 844
 845/**
 846 *      skb_peek - peek at the head of an &sk_buff_head
 847 *      @list_: list to peek at
 848 *
 849 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 850 *      be careful with this one. A peek leaves the buffer on the
 851 *      list and someone else may run off with it. You must hold
 852 *      the appropriate locks or have a private queue to do this.
 853 *
 854 *      Returns %NULL for an empty list or a pointer to the head element.
 855 *      The reference count is not incremented and the reference is therefore
 856 *      volatile. Use with caution.
 857 */
 858static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
 859{
 860        struct sk_buff *list = ((const struct sk_buff *)list_)->next;
 861        if (list == (struct sk_buff *)list_)
 862                list = NULL;
 863        return list;
 864}
 865
 866/**
 867 *      skb_peek_tail - peek at the tail of an &sk_buff_head
 868 *      @list_: list to peek at
 869 *
 870 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 871 *      be careful with this one. A peek leaves the buffer on the
 872 *      list and someone else may run off with it. You must hold
 873 *      the appropriate locks or have a private queue to do this.
 874 *
 875 *      Returns %NULL for an empty list or a pointer to the tail element.
 876 *      The reference count is not incremented and the reference is therefore
 877 *      volatile. Use with caution.
 878 */
 879static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
 880{
 881        struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
 882        if (list == (struct sk_buff *)list_)
 883                list = NULL;
 884        return list;
 885}
 886
 887/**
 888 *      skb_queue_len   - get queue length
 889 *      @list_: list to measure
 890 *
 891 *      Return the length of an &sk_buff queue.
 892 */
 893static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
 894{
 895        return list_->qlen;
 896}
 897
 898/**
 899 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 900 *      @list: queue to initialize
 901 *
 902 *      This initializes only the list and queue length aspects of
 903 *      an sk_buff_head object.  This allows to initialize the list
 904 *      aspects of an sk_buff_head without reinitializing things like
 905 *      the spinlock.  It can also be used for on-stack sk_buff_head
 906 *      objects where the spinlock is known to not be used.
 907 */
 908static inline void __skb_queue_head_init(struct sk_buff_head *list)
 909{
 910        list->prev = list->next = (struct sk_buff *)list;
 911        list->qlen = 0;
 912}
 913
 914/*
 915 * This function creates a split out lock class for each invocation;
 916 * this is needed for now since a whole lot of users of the skb-queue
 917 * infrastructure in drivers have different locking usage (in hardirq)
 918 * than the networking core (in softirq only). In the long run either the
 919 * network layer or drivers should need annotation to consolidate the
 920 * main types of usage into 3 classes.
 921 */
 922static inline void skb_queue_head_init(struct sk_buff_head *list)
 923{
 924        spin_lock_init(&list->lock);
 925        __skb_queue_head_init(list);
 926}
 927
 928static inline void skb_queue_head_init_class(struct sk_buff_head *list,
 929                struct lock_class_key *class)
 930{
 931        skb_queue_head_init(list);
 932        lockdep_set_class(&list->lock, class);
 933}
 934
 935/*
 936 *      Insert an sk_buff on a list.
 937 *
 938 *      The "__skb_xxxx()" functions are the non-atomic ones that
 939 *      can only be called with interrupts disabled.
 940 */
 941extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
 942static inline void __skb_insert(struct sk_buff *newsk,
 943                                struct sk_buff *prev, struct sk_buff *next,
 944                                struct sk_buff_head *list)
 945{
 946        newsk->next = next;
 947        newsk->prev = prev;
 948        next->prev  = prev->next = newsk;
 949        list->qlen++;
 950}
 951
 952static inline void __skb_queue_splice(const struct sk_buff_head *list,
 953                                      struct sk_buff *prev,
 954                                      struct sk_buff *next)
 955{
 956        struct sk_buff *first = list->next;
 957        struct sk_buff *last = list->prev;
 958
 959        first->prev = prev;
 960        prev->next = first;
 961
 962        last->next = next;
 963        next->prev = last;
 964}
 965
 966/**
 967 *      skb_queue_splice - join two skb lists, this is designed for stacks
 968 *      @list: the new list to add
 969 *      @head: the place to add it in the first list
 970 */
 971static inline void skb_queue_splice(const struct sk_buff_head *list,
 972                                    struct sk_buff_head *head)
 973{
 974        if (!skb_queue_empty(list)) {
 975                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
 976                head->qlen += list->qlen;
 977        }
 978}
 979
 980/**
 981 *      skb_queue_splice - join two skb lists and reinitialise the emptied list
 982 *      @list: the new list to add
 983 *      @head: the place to add it in the first list
 984 *
 985 *      The list at @list is reinitialised
 986 */
 987static inline void skb_queue_splice_init(struct sk_buff_head *list,
 988                                         struct sk_buff_head *head)
 989{
 990        if (!skb_queue_empty(list)) {
 991                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
 992                head->qlen += list->qlen;
 993                __skb_queue_head_init(list);
 994        }
 995}
 996
 997/**
 998 *      skb_queue_splice_tail - join two skb lists, each list being a queue
 999 *      @list: the new list to add
1000 *      @head: the place to add it in the first list
1001 */
1002static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1003                                         struct sk_buff_head *head)
1004{
1005        if (!skb_queue_empty(list)) {
1006                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1007                head->qlen += list->qlen;
1008        }
1009}
1010
1011/**
1012 *      skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1013 *      @list: the new list to add
1014 *      @head: the place to add it in the first list
1015 *
1016 *      Each of the lists is a queue.
1017 *      The list at @list is reinitialised
1018 */
1019static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1020                                              struct sk_buff_head *head)
1021{
1022        if (!skb_queue_empty(list)) {
1023                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1024                head->qlen += list->qlen;
1025                __skb_queue_head_init(list);
1026        }
1027}
1028
1029/**
1030 *      __skb_queue_after - queue a buffer at the list head
1031 *      @list: list to use
1032 *      @prev: place after this buffer
1033 *      @newsk: buffer to queue
1034 *
1035 *      Queue a buffer int the middle of a list. This function takes no locks
1036 *      and you must therefore hold required locks before calling it.
1037 *
1038 *      A buffer cannot be placed on two lists at the same time.
1039 */
1040static inline void __skb_queue_after(struct sk_buff_head *list,
1041                                     struct sk_buff *prev,
1042                                     struct sk_buff *newsk)
1043{
1044        __skb_insert(newsk, prev, prev->next, list);
1045}
1046
1047extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1048                       struct sk_buff_head *list);
1049
1050static inline void __skb_queue_before(struct sk_buff_head *list,
1051                                      struct sk_buff *next,
1052                                      struct sk_buff *newsk)
1053{
1054        __skb_insert(newsk, next->prev, next, list);
1055}
1056
1057/**
1058 *      __skb_queue_head - queue a buffer at the list head
1059 *      @list: list to use
1060 *      @newsk: buffer to queue
1061 *
1062 *      Queue a buffer at the start of a list. This function takes no locks
1063 *      and you must therefore hold required locks before calling it.
1064 *
1065 *      A buffer cannot be placed on two lists at the same time.
1066 */
1067extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1068static inline void __skb_queue_head(struct sk_buff_head *list,
1069                                    struct sk_buff *newsk)
1070{
1071        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1072}
1073
1074/**
1075 *      __skb_queue_tail - queue a buffer at the list tail
1076 *      @list: list to use
1077 *      @newsk: buffer to queue
1078 *
1079 *      Queue a buffer at the end of a list. This function takes no locks
1080 *      and you must therefore hold required locks before calling it.
1081 *
1082 *      A buffer cannot be placed on two lists at the same time.
1083 */
1084extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1085static inline void __skb_queue_tail(struct sk_buff_head *list,
1086                                   struct sk_buff *newsk)
1087{
1088        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1089}
1090
1091/*
1092 * remove sk_buff from list. _Must_ be called atomically, and with
1093 * the list known..
1094 */
1095extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1096static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1097{
1098        struct sk_buff *next, *prev;
1099
1100        list->qlen--;
1101        next       = skb->next;
1102        prev       = skb->prev;
1103        skb->next  = skb->prev = NULL;
1104        next->prev = prev;
1105        prev->next = next;
1106}
1107
1108/**
1109 *      __skb_dequeue - remove from the head of the queue
1110 *      @list: list to dequeue from
1111 *
1112 *      Remove the head of the list. This function does not take any locks
1113 *      so must be used with appropriate locks held only. The head item is
1114 *      returned or %NULL if the list is empty.
1115 */
1116extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1117static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1118{
1119        struct sk_buff *skb = skb_peek(list);
1120        if (skb)
1121                __skb_unlink(skb, list);
1122        return skb;
1123}
1124
1125/**
1126 *      __skb_dequeue_tail - remove from the tail of the queue
1127 *      @list: list to dequeue from
1128 *
1129 *      Remove the tail of the list. This function does not take any locks
1130 *      so must be used with appropriate locks held only. The tail item is
1131 *      returned or %NULL if the list is empty.
1132 */
1133extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1134static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1135{
1136        struct sk_buff *skb = skb_peek_tail(list);
1137        if (skb)
1138                __skb_unlink(skb, list);
1139        return skb;
1140}
1141
1142
1143static inline int skb_is_nonlinear(const struct sk_buff *skb)
1144{
1145        return skb->data_len;
1146}
1147
1148static inline unsigned int skb_headlen(const struct sk_buff *skb)
1149{
1150        return skb->len - skb->data_len;
1151}
1152
1153static inline int skb_pagelen(const struct sk_buff *skb)
1154{
1155        int i, len = 0;
1156
1157        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1158                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1159        return len + skb_headlen(skb);
1160}
1161
1162/**
1163 * __skb_fill_page_desc - initialise a paged fragment in an skb
1164 * @skb: buffer containing fragment to be initialised
1165 * @i: paged fragment index to initialise
1166 * @page: the page to use for this fragment
1167 * @off: the offset to the data with @page
1168 * @size: the length of the data
1169 *
1170 * Initialises the @i'th fragment of @skb to point to &size bytes at
1171 * offset @off within @page.
1172 *
1173 * Does not take any additional reference on the fragment.
1174 */
1175static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1176                                        struct page *page, int off, int size)
1177{
1178        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1179
1180        frag->page.p              = page;
1181        frag->page_offset         = off;
1182        skb_frag_size_set(frag, size);
1183}
1184
1185/**
1186 * skb_fill_page_desc - initialise a paged fragment in an skb
1187 * @skb: buffer containing fragment to be initialised
1188 * @i: paged fragment index to initialise
1189 * @page: the page to use for this fragment
1190 * @off: the offset to the data with @page
1191 * @size: the length of the data
1192 *
1193 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1194 * @skb to point to &size bytes at offset @off within @page. In
1195 * addition updates @skb such that @i is the last fragment.
1196 *
1197 * Does not take any additional reference on the fragment.
1198 */
1199static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1200                                      struct page *page, int off, int size)
1201{
1202        __skb_fill_page_desc(skb, i, page, off, size);
1203        skb_shinfo(skb)->nr_frags = i + 1;
1204}
1205
1206extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1207                            int off, int size);
1208
1209#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1210#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1211#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1212
1213#ifdef NET_SKBUFF_DATA_USES_OFFSET
1214static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1215{
1216        return skb->head + skb->tail;
1217}
1218
1219static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1220{
1221        skb->tail = skb->data - skb->head;
1222}
1223
1224static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1225{
1226        skb_reset_tail_pointer(skb);
1227        skb->tail += offset;
1228}
1229#else /* NET_SKBUFF_DATA_USES_OFFSET */
1230static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1231{
1232        return skb->tail;
1233}
1234
1235static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1236{
1237        skb->tail = skb->data;
1238}
1239
1240static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1241{
1242        skb->tail = skb->data + offset;
1243}
1244
1245#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1246
1247/*
1248 *      Add data to an sk_buff
1249 */
1250extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1251static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1252{
1253        unsigned char *tmp = skb_tail_pointer(skb);
1254        SKB_LINEAR_ASSERT(skb);
1255        skb->tail += len;
1256        skb->len  += len;
1257        return tmp;
1258}
1259
1260extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1261static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1262{
1263        skb->data -= len;
1264        skb->len  += len;
1265        return skb->data;
1266}
1267
1268extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1269static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1270{
1271        skb->len -= len;
1272        BUG_ON(skb->len < skb->data_len);
1273        return skb->data += len;
1274}
1275
1276static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1277{
1278        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1279}
1280
1281extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1282
1283static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1284{
1285        if (len > skb_headlen(skb) &&
1286            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1287                return NULL;
1288        skb->len -= len;
1289        return skb->data += len;
1290}
1291
1292static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1293{
1294        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1295}
1296
1297static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1298{
1299        if (likely(len <= skb_headlen(skb)))
1300                return 1;
1301        if (unlikely(len > skb->len))
1302                return 0;
1303        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1304}
1305
1306/**
1307 *      skb_headroom - bytes at buffer head
1308 *      @skb: buffer to check
1309 *
1310 *      Return the number of bytes of free space at the head of an &sk_buff.
1311 */
1312static inline unsigned int skb_headroom(const struct sk_buff *skb)
1313{
1314        return skb->data - skb->head;
1315}
1316
1317/**
1318 *      skb_tailroom - bytes at buffer end
1319 *      @skb: buffer to check
1320 *
1321 *      Return the number of bytes of free space at the tail of an sk_buff
1322 */
1323static inline int skb_tailroom(const struct sk_buff *skb)
1324{
1325        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1326}
1327
1328/**
1329 *      skb_reserve - adjust headroom
1330 *      @skb: buffer to alter
1331 *      @len: bytes to move
1332 *
1333 *      Increase the headroom of an empty &sk_buff by reducing the tail
1334 *      room. This is only allowed for an empty buffer.
1335 */
1336static inline void skb_reserve(struct sk_buff *skb, int len)
1337{
1338        skb->data += len;
1339        skb->tail += len;
1340}
1341
1342static inline void skb_reset_mac_len(struct sk_buff *skb)
1343{
1344        skb->mac_len = skb->network_header - skb->mac_header;
1345}
1346
1347#ifdef NET_SKBUFF_DATA_USES_OFFSET
1348static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1349{
1350        return skb->head + skb->transport_header;
1351}
1352
1353static inline void skb_reset_transport_header(struct sk_buff *skb)
1354{
1355        skb->transport_header = skb->data - skb->head;
1356}
1357
1358static inline void skb_set_transport_header(struct sk_buff *skb,
1359                                            const int offset)
1360{
1361        skb_reset_transport_header(skb);
1362        skb->transport_header += offset;
1363}
1364
1365static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1366{
1367        return skb->head + skb->network_header;
1368}
1369
1370static inline void skb_reset_network_header(struct sk_buff *skb)
1371{
1372        skb->network_header = skb->data - skb->head;
1373}
1374
1375static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1376{
1377        skb_reset_network_header(skb);
1378        skb->network_header += offset;
1379}
1380
1381static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1382{
1383        return skb->head + skb->mac_header;
1384}
1385
1386static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1387{
1388        return skb->mac_header != ~0U;
1389}
1390
1391static inline void skb_reset_mac_header(struct sk_buff *skb)
1392{
1393        skb->mac_header = skb->data - skb->head;
1394}
1395
1396static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1397{
1398        skb_reset_mac_header(skb);
1399        skb->mac_header += offset;
1400}
1401
1402#else /* NET_SKBUFF_DATA_USES_OFFSET */
1403
1404static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1405{
1406        return skb->transport_header;
1407}
1408
1409static inline void skb_reset_transport_header(struct sk_buff *skb)
1410{
1411        skb->transport_header = skb->data;
1412}
1413
1414static inline void skb_set_transport_header(struct sk_buff *skb,
1415                                            const int offset)
1416{
1417        skb->transport_header = skb->data + offset;
1418}
1419
1420static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1421{
1422        return skb->network_header;
1423}
1424
1425static inline void skb_reset_network_header(struct sk_buff *skb)
1426{
1427        skb->network_header = skb->data;
1428}
1429
1430static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1431{
1432        skb->network_header = skb->data + offset;
1433}
1434
1435static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1436{
1437        return skb->mac_header;
1438}
1439
1440static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1441{
1442        return skb->mac_header != NULL;
1443}
1444
1445static inline void skb_reset_mac_header(struct sk_buff *skb)
1446{
1447        skb->mac_header = skb->data;
1448}
1449
1450static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1451{
1452        skb->mac_header = skb->data + offset;
1453}
1454#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1455
1456static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1457{
1458        return skb->csum_start - skb_headroom(skb);
1459}
1460
1461static inline int skb_transport_offset(const struct sk_buff *skb)
1462{
1463        return skb_transport_header(skb) - skb->data;
1464}
1465
1466static inline u32 skb_network_header_len(const struct sk_buff *skb)
1467{
1468        return skb->transport_header - skb->network_header;
1469}
1470
1471static inline int skb_network_offset(const struct sk_buff *skb)
1472{
1473        return skb_network_header(skb) - skb->data;
1474}
1475
1476static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1477{
1478        return pskb_may_pull(skb, skb_network_offset(skb) + len);
1479}
1480
1481/*
1482 * CPUs often take a performance hit when accessing unaligned memory
1483 * locations. The actual performance hit varies, it can be small if the
1484 * hardware handles it or large if we have to take an exception and fix it
1485 * in software.
1486 *
1487 * Since an ethernet header is 14 bytes network drivers often end up with
1488 * the IP header at an unaligned offset. The IP header can be aligned by
1489 * shifting the start of the packet by 2 bytes. Drivers should do this
1490 * with:
1491 *
1492 * skb_reserve(skb, NET_IP_ALIGN);
1493 *
1494 * The downside to this alignment of the IP header is that the DMA is now
1495 * unaligned. On some architectures the cost of an unaligned DMA is high
1496 * and this cost outweighs the gains made by aligning the IP header.
1497 *
1498 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1499 * to be overridden.
1500 */
1501#ifndef NET_IP_ALIGN
1502#define NET_IP_ALIGN    2
1503#endif
1504
1505/*
1506 * The networking layer reserves some headroom in skb data (via
1507 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1508 * the header has to grow. In the default case, if the header has to grow
1509 * 32 bytes or less we avoid the reallocation.
1510 *
1511 * Unfortunately this headroom changes the DMA alignment of the resulting
1512 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1513 * on some architectures. An architecture can override this value,
1514 * perhaps setting it to a cacheline in size (since that will maintain
1515 * cacheline alignment of the DMA). It must be a power of 2.
1516 *
1517 * Various parts of the networking layer expect at least 32 bytes of
1518 * headroom, you should not reduce this.
1519 *
1520 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1521 * to reduce average number of cache lines per packet.
1522 * get_rps_cpus() for example only access one 64 bytes aligned block :
1523 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1524 */
1525#ifndef NET_SKB_PAD
1526#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
1527#endif
1528
1529extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1530
1531static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1532{
1533        if (unlikely(skb_is_nonlinear(skb))) {
1534                WARN_ON(1);
1535                return;
1536        }
1537        skb->len = len;
1538        skb_set_tail_pointer(skb, len);
1539}
1540
1541extern void skb_trim(struct sk_buff *skb, unsigned int len);
1542
1543static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1544{
1545        if (skb->data_len)
1546                return ___pskb_trim(skb, len);
1547        __skb_trim(skb, len);
1548        return 0;
1549}
1550
1551static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1552{
1553        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1554}
1555
1556/**
1557 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1558 *      @skb: buffer to alter
1559 *      @len: new length
1560 *
1561 *      This is identical to pskb_trim except that the caller knows that
1562 *      the skb is not cloned so we should never get an error due to out-
1563 *      of-memory.
1564 */
1565static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1566{
1567        int err = pskb_trim(skb, len);
1568        BUG_ON(err);
1569}
1570
1571/**
1572 *      skb_orphan - orphan a buffer
1573 *      @skb: buffer to orphan
1574 *
1575 *      If a buffer currently has an owner then we call the owner's
1576 *      destructor function and make the @skb unowned. The buffer continues
1577 *      to exist but is no longer charged to its former owner.
1578 */
1579static inline void skb_orphan(struct sk_buff *skb)
1580{
1581        if (skb->destructor)
1582                skb->destructor(skb);
1583        skb->destructor = NULL;
1584        skb->sk         = NULL;
1585}
1586
1587/**
1588 *      __skb_queue_purge - empty a list
1589 *      @list: list to empty
1590 *
1591 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1592 *      the list and one reference dropped. This function does not take the
1593 *      list lock and the caller must hold the relevant locks to use it.
1594 */
1595extern void skb_queue_purge(struct sk_buff_head *list);
1596static inline void __skb_queue_purge(struct sk_buff_head *list)
1597{
1598        struct sk_buff *skb;
1599        while ((skb = __skb_dequeue(list)) != NULL)
1600                kfree_skb(skb);
1601}
1602
1603/**
1604 *      __dev_alloc_skb - allocate an skbuff for receiving
1605 *      @length: length to allocate
1606 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1607 *
1608 *      Allocate a new &sk_buff and assign it a usage count of one. The
1609 *      buffer has unspecified headroom built in. Users should allocate
1610 *      the headroom they think they need without accounting for the
1611 *      built in space. The built in space is used for optimisations.
1612 *
1613 *      %NULL is returned if there is no free memory.
1614 */
1615static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1616                                              gfp_t gfp_mask)
1617{
1618        struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1619        if (likely(skb))
1620                skb_reserve(skb, NET_SKB_PAD);
1621        return skb;
1622}
1623
1624extern struct sk_buff *dev_alloc_skb(unsigned int length);
1625
1626extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1627                unsigned int length, gfp_t gfp_mask);
1628
1629/**
1630 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1631 *      @dev: network device to receive on
1632 *      @length: length to allocate
1633 *
1634 *      Allocate a new &sk_buff and assign it a usage count of one. The
1635 *      buffer has unspecified headroom built in. Users should allocate
1636 *      the headroom they think they need without accounting for the
1637 *      built in space. The built in space is used for optimisations.
1638 *
1639 *      %NULL is returned if there is no free memory. Although this function
1640 *      allocates memory it can be called from an interrupt.
1641 */
1642static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1643                unsigned int length)
1644{
1645        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1646}
1647
1648static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1649                unsigned int length, gfp_t gfp)
1650{
1651        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1652
1653        if (NET_IP_ALIGN && skb)
1654                skb_reserve(skb, NET_IP_ALIGN);
1655        return skb;
1656}
1657
1658static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1659                unsigned int length)
1660{
1661        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1662}
1663
1664/**
1665 *      __netdev_alloc_page - allocate a page for ps-rx on a specific device
1666 *      @dev: network device to receive on
1667 *      @gfp_mask: alloc_pages_node mask
1668 *
1669 *      Allocate a new page. dev currently unused.
1670 *
1671 *      %NULL is returned if there is no free memory.
1672 */
1673static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1674{
1675        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1676}
1677
1678/**
1679 *      netdev_alloc_page - allocate a page for ps-rx on a specific device
1680 *      @dev: network device to receive on
1681 *
1682 *      Allocate a new page. dev currently unused.
1683 *
1684 *      %NULL is returned if there is no free memory.
1685 */
1686static inline struct page *netdev_alloc_page(struct net_device *dev)
1687{
1688        return __netdev_alloc_page(dev, GFP_ATOMIC);
1689}
1690
1691static inline void netdev_free_page(struct net_device *dev, struct page *page)
1692{
1693        __free_page(page);
1694}
1695
1696/**
1697 * skb_frag_page - retrieve the page refered to by a paged fragment
1698 * @frag: the paged fragment
1699 *
1700 * Returns the &struct page associated with @frag.
1701 */
1702static inline struct page *skb_frag_page(const skb_frag_t *frag)
1703{
1704        return frag->page.p;
1705}
1706
1707/**
1708 * __skb_frag_ref - take an addition reference on a paged fragment.
1709 * @frag: the paged fragment
1710 *
1711 * Takes an additional reference on the paged fragment @frag.
1712 */
1713static inline void __skb_frag_ref(skb_frag_t *frag)
1714{
1715        get_page(skb_frag_page(frag));
1716}
1717
1718/**
1719 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1720 * @skb: the buffer
1721 * @f: the fragment offset.
1722 *
1723 * Takes an additional reference on the @f'th paged fragment of @skb.
1724 */
1725static inline void skb_frag_ref(struct sk_buff *skb, int f)
1726{
1727        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1728}
1729
1730/**
1731 * __skb_frag_unref - release a reference on a paged fragment.
1732 * @frag: the paged fragment
1733 *
1734 * Releases a reference on the paged fragment @frag.
1735 */
1736static inline void __skb_frag_unref(skb_frag_t *frag)
1737{
1738        put_page(skb_frag_page(frag));
1739}
1740
1741/**
1742 * skb_frag_unref - release a reference on a paged fragment of an skb.
1743 * @skb: the buffer
1744 * @f: the fragment offset
1745 *
1746 * Releases a reference on the @f'th paged fragment of @skb.
1747 */
1748static inline void skb_frag_unref(struct sk_buff *skb, int f)
1749{
1750        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1751}
1752
1753/**
1754 * skb_frag_address - gets the address of the data contained in a paged fragment
1755 * @frag: the paged fragment buffer
1756 *
1757 * Returns the address of the data within @frag. The page must already
1758 * be mapped.
1759 */
1760static inline void *skb_frag_address(const skb_frag_t *frag)
1761{
1762        return page_address(skb_frag_page(frag)) + frag->page_offset;
1763}
1764
1765/**
1766 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1767 * @frag: the paged fragment buffer
1768 *
1769 * Returns the address of the data within @frag. Checks that the page
1770 * is mapped and returns %NULL otherwise.
1771 */
1772static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1773{
1774        void *ptr = page_address(skb_frag_page(frag));
1775        if (unlikely(!ptr))
1776                return NULL;
1777
1778        return ptr + frag->page_offset;
1779}
1780
1781/**
1782 * __skb_frag_set_page - sets the page contained in a paged fragment
1783 * @frag: the paged fragment
1784 * @page: the page to set
1785 *
1786 * Sets the fragment @frag to contain @page.
1787 */
1788static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1789{
1790        frag->page.p = page;
1791}
1792
1793/**
1794 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1795 * @skb: the buffer
1796 * @f: the fragment offset
1797 * @page: the page to set
1798 *
1799 * Sets the @f'th fragment of @skb to contain @page.
1800 */
1801static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1802                                     struct page *page)
1803{
1804        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1805}
1806
1807/**
1808 * skb_frag_dma_map - maps a paged fragment via the DMA API
1809 * @dev: the device to map the fragment to
1810 * @frag: the paged fragment to map
1811 * @offset: the offset within the fragment (starting at the
1812 *          fragment's own offset)
1813 * @size: the number of bytes to map
1814 * @dir: the direction of the mapping (%PCI_DMA_*)
1815 *
1816 * Maps the page associated with @frag to @device.
1817 */
1818static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1819                                          const skb_frag_t *frag,
1820                                          size_t offset, size_t size,
1821                                          enum dma_data_direction dir)
1822{
1823        return dma_map_page(dev, skb_frag_page(frag),
1824                            frag->page_offset + offset, size, dir);
1825}
1826
1827/**
1828 *      skb_clone_writable - is the header of a clone writable
1829 *      @skb: buffer to check
1830 *      @len: length up to which to write
1831 *
1832 *      Returns true if modifying the header part of the cloned buffer
1833 *      does not requires the data to be copied.
1834 */
1835static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1836{
1837        return !skb_header_cloned(skb) &&
1838               skb_headroom(skb) + len <= skb->hdr_len;
1839}
1840
1841static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1842                            int cloned)
1843{
1844        int delta = 0;
1845
1846        if (headroom < NET_SKB_PAD)
1847                headroom = NET_SKB_PAD;
1848        if (headroom > skb_headroom(skb))
1849                delta = headroom - skb_headroom(skb);
1850
1851        if (delta || cloned)
1852                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1853                                        GFP_ATOMIC);
1854        return 0;
1855}
1856
1857/**
1858 *      skb_cow - copy header of skb when it is required
1859 *      @skb: buffer to cow
1860 *      @headroom: needed headroom
1861 *
1862 *      If the skb passed lacks sufficient headroom or its data part
1863 *      is shared, data is reallocated. If reallocation fails, an error
1864 *      is returned and original skb is not changed.
1865 *
1866 *      The result is skb with writable area skb->head...skb->tail
1867 *      and at least @headroom of space at head.
1868 */
1869static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1870{
1871        return __skb_cow(skb, headroom, skb_cloned(skb));
1872}
1873
1874/**
1875 *      skb_cow_head - skb_cow but only making the head writable
1876 *      @skb: buffer to cow
1877 *      @headroom: needed headroom
1878 *
1879 *      This function is identical to skb_cow except that we replace the
1880 *      skb_cloned check by skb_header_cloned.  It should be used when
1881 *      you only need to push on some header and do not need to modify
1882 *      the data.
1883 */
1884static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1885{
1886        return __skb_cow(skb, headroom, skb_header_cloned(skb));
1887}
1888
1889/**
1890 *      skb_padto       - pad an skbuff up to a minimal size
1891 *      @skb: buffer to pad
1892 *      @len: minimal length
1893 *
1894 *      Pads up a buffer to ensure the trailing bytes exist and are
1895 *      blanked. If the buffer already contains sufficient data it
1896 *      is untouched. Otherwise it is extended. Returns zero on
1897 *      success. The skb is freed on error.
1898 */
1899 
1900static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1901{
1902        unsigned int size = skb->len;
1903        if (likely(size >= len))
1904                return 0;
1905        return skb_pad(skb, len - size);
1906}
1907
1908static inline int skb_add_data(struct sk_buff *skb,
1909                               char __user *from, int copy)
1910{
1911        const int off = skb->len;
1912
1913        if (skb->ip_summed == CHECKSUM_NONE) {
1914                int err = 0;
1915                __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1916                                                            copy, 0, &err);
1917                if (!err) {
1918                        skb->csum = csum_block_add(skb->csum, csum, off);
1919                        return 0;
1920                }
1921        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1922                return 0;
1923
1924        __skb_trim(skb, off);
1925        return -EFAULT;
1926}
1927
1928static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1929                                   const struct page *page, int off)
1930{
1931        if (i) {
1932                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1933
1934                return page == skb_frag_page(frag) &&
1935                       off == frag->page_offset + skb_frag_size(frag);
1936        }
1937        return 0;
1938}
1939
1940static inline int __skb_linearize(struct sk_buff *skb)
1941{
1942        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1943}
1944
1945/**
1946 *      skb_linearize - convert paged skb to linear one
1947 *      @skb: buffer to linarize
1948 *
1949 *      If there is no free memory -ENOMEM is returned, otherwise zero
1950 *      is returned and the old skb data released.
1951 */
1952static inline int skb_linearize(struct sk_buff *skb)
1953{
1954        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1955}
1956
1957/**
1958 *      skb_linearize_cow - make sure skb is linear and writable
1959 *      @skb: buffer to process
1960 *
1961 *      If there is no free memory -ENOMEM is returned, otherwise zero
1962 *      is returned and the old skb data released.
1963 */
1964static inline int skb_linearize_cow(struct sk_buff *skb)
1965{
1966        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1967               __skb_linearize(skb) : 0;
1968}
1969
1970/**
1971 *      skb_postpull_rcsum - update checksum for received skb after pull
1972 *      @skb: buffer to update
1973 *      @start: start of data before pull
1974 *      @len: length of data pulled
1975 *
1976 *      After doing a pull on a received packet, you need to call this to
1977 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1978 *      CHECKSUM_NONE so that it can be recomputed from scratch.
1979 */
1980
1981static inline void skb_postpull_rcsum(struct sk_buff *skb,
1982                                      const void *start, unsigned int len)
1983{
1984        if (skb->ip_summed == CHECKSUM_COMPLETE)
1985                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1986}
1987
1988unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1989
1990/**
1991 *      pskb_trim_rcsum - trim received skb and update checksum
1992 *      @skb: buffer to trim
1993 *      @len: new length
1994 *
1995 *      This is exactly the same as pskb_trim except that it ensures the
1996 *      checksum of received packets are still valid after the operation.
1997 */
1998
1999static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2000{
2001        if (likely(len >= skb->len))
2002                return 0;
2003        if (skb->ip_summed == CHECKSUM_COMPLETE)
2004                skb->ip_summed = CHECKSUM_NONE;
2005        return __pskb_trim(skb, len);
2006}
2007
2008#define skb_queue_walk(queue, skb) \
2009                for (skb = (queue)->next;                                       \
2010                     skb != (struct sk_buff *)(queue);                          \
2011                     skb = skb->next)
2012
2013#define skb_queue_walk_safe(queue, skb, tmp)                                    \
2014                for (skb = (queue)->next, tmp = skb->next;                      \
2015                     skb != (struct sk_buff *)(queue);                          \
2016                     skb = tmp, tmp = skb->next)
2017
2018#define skb_queue_walk_from(queue, skb)                                         \
2019                for (; skb != (struct sk_buff *)(queue);                        \
2020                     skb = skb->next)
2021
2022#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
2023                for (tmp = skb->next;                                           \
2024                     skb != (struct sk_buff *)(queue);                          \
2025                     skb = tmp, tmp = skb->next)
2026
2027#define skb_queue_reverse_walk(queue, skb) \
2028                for (skb = (queue)->prev;                                       \
2029                     skb != (struct sk_buff *)(queue);                          \
2030                     skb = skb->prev)
2031
2032#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
2033                for (skb = (queue)->prev, tmp = skb->prev;                      \
2034                     skb != (struct sk_buff *)(queue);                          \
2035                     skb = tmp, tmp = skb->prev)
2036
2037#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
2038                for (tmp = skb->prev;                                           \
2039                     skb != (struct sk_buff *)(queue);                          \
2040                     skb = tmp, tmp = skb->prev)
2041
2042static inline bool skb_has_frag_list(const struct sk_buff *skb)
2043{
2044        return skb_shinfo(skb)->frag_list != NULL;
2045}
2046
2047static inline void skb_frag_list_init(struct sk_buff *skb)
2048{
2049        skb_shinfo(skb)->frag_list = NULL;
2050}
2051
2052static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2053{
2054        frag->next = skb_shinfo(skb)->frag_list;
2055        skb_shinfo(skb)->frag_list = frag;
2056}
2057
2058#define skb_walk_frags(skb, iter)       \
2059        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2060
2061extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2062                                           int *peeked, int *err);
2063extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2064                                         int noblock, int *err);
2065extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2066                                     struct poll_table_struct *wait);
2067extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
2068                                               int offset, struct iovec *to,
2069                                               int size);
2070extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2071                                                        int hlen,
2072                                                        struct iovec *iov);
2073extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
2074                                                    int offset,
2075                                                    const struct iovec *from,
2076                                                    int from_offset,
2077                                                    int len);
2078extern int             skb_copy_datagram_const_iovec(const struct sk_buff *from,
2079                                                     int offset,
2080                                                     const struct iovec *to,
2081                                                     int to_offset,
2082                                                     int size);
2083extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2084extern void            skb_free_datagram_locked(struct sock *sk,
2085                                                struct sk_buff *skb);
2086extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2087                                         unsigned int flags);
2088extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
2089                                    int len, __wsum csum);
2090extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
2091                                     void *to, int len);
2092extern int             skb_store_bits(struct sk_buff *skb, int offset,
2093                                      const void *from, int len);
2094extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
2095                                              int offset, u8 *to, int len,
2096                                              __wsum csum);
2097extern int             skb_splice_bits(struct sk_buff *skb,
2098                                                unsigned int offset,
2099                                                struct pipe_inode_info *pipe,
2100                                                unsigned int len,
2101                                                unsigned int flags);
2102extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2103extern void            skb_split(struct sk_buff *skb,
2104                                 struct sk_buff *skb1, const u32 len);
2105extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2106                                 int shiftlen);
2107
2108extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
2109
2110static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2111                                       int len, void *buffer)
2112{
2113        int hlen = skb_headlen(skb);
2114
2115        if (hlen - offset >= len)
2116                return skb->data + offset;
2117
2118        if (skb_copy_bits(skb, offset, buffer, len) < 0)
2119                return NULL;
2120
2121        return buffer;
2122}
2123
2124static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2125                                             void *to,
2126                                             const unsigned int len)
2127{
2128        memcpy(to, skb->data, len);
2129}
2130
2131static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2132                                                    const int offset, void *to,
2133                                                    const unsigned int len)
2134{
2135        memcpy(to, skb->data + offset, len);
2136}
2137
2138static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2139                                           const void *from,
2140                                           const unsigned int len)
2141{
2142        memcpy(skb->data, from, len);
2143}
2144
2145static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2146                                                  const int offset,
2147                                                  const void *from,
2148                                                  const unsigned int len)
2149{
2150        memcpy(skb->data + offset, from, len);
2151}
2152
2153extern void skb_init(void);
2154
2155static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2156{
2157        return skb->tstamp;
2158}
2159
2160/**
2161 *      skb_get_timestamp - get timestamp from a skb
2162 *      @skb: skb to get stamp from
2163 *      @stamp: pointer to struct timeval to store stamp in
2164 *
2165 *      Timestamps are stored in the skb as offsets to a base timestamp.
2166 *      This function converts the offset back to a struct timeval and stores
2167 *      it in stamp.
2168 */
2169static inline void skb_get_timestamp(const struct sk_buff *skb,
2170                                     struct timeval *stamp)
2171{
2172        *stamp = ktime_to_timeval(skb->tstamp);
2173}
2174
2175static inline void skb_get_timestampns(const struct sk_buff *skb,
2176                                       struct timespec *stamp)
2177{
2178        *stamp = ktime_to_timespec(skb->tstamp);
2179}
2180
2181static inline void __net_timestamp(struct sk_buff *skb)
2182{
2183        skb->tstamp = ktime_get_real();
2184}
2185
2186static inline ktime_t net_timedelta(ktime_t t)
2187{
2188        return ktime_sub(ktime_get_real(), t);
2189}
2190
2191static inline ktime_t net_invalid_timestamp(void)
2192{
2193        return ktime_set(0, 0);
2194}
2195
2196extern void skb_timestamping_init(void);
2197
2198#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2199
2200extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2201extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2202
2203#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2204
2205static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2206{
2207}
2208
2209static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2210{
2211        return false;
2212}
2213
2214#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2215
2216/**
2217 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2218 *
2219 * PHY drivers may accept clones of transmitted packets for
2220 * timestamping via their phy_driver.txtstamp method. These drivers
2221 * must call this function to return the skb back to the stack, with
2222 * or without a timestamp.
2223 *
2224 * @skb: clone of the the original outgoing packet
2225 * @hwtstamps: hardware time stamps, may be NULL if not available
2226 *
2227 */
2228void skb_complete_tx_timestamp(struct sk_buff *skb,
2229                               struct skb_shared_hwtstamps *hwtstamps);
2230
2231/**
2232 * skb_tstamp_tx - queue clone of skb with send time stamps
2233 * @orig_skb:   the original outgoing packet
2234 * @hwtstamps:  hardware time stamps, may be NULL if not available
2235 *
2236 * If the skb has a socket associated, then this function clones the
2237 * skb (thus sharing the actual data and optional structures), stores
2238 * the optional hardware time stamping information (if non NULL) or
2239 * generates a software time stamp (otherwise), then queues the clone
2240 * to the error queue of the socket.  Errors are silently ignored.
2241 */
2242extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2243                        struct skb_shared_hwtstamps *hwtstamps);
2244
2245static inline void sw_tx_timestamp(struct sk_buff *skb)
2246{
2247        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2248            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2249                skb_tstamp_tx(skb, NULL);
2250}
2251
2252/**
2253 * skb_tx_timestamp() - Driver hook for transmit timestamping
2254 *
2255 * Ethernet MAC Drivers should call this function in their hard_xmit()
2256 * function immediately before giving the sk_buff to the MAC hardware.
2257 *
2258 * @skb: A socket buffer.
2259 */
2260static inline void skb_tx_timestamp(struct sk_buff *skb)
2261{
2262        skb_clone_tx_timestamp(skb);
2263        sw_tx_timestamp(skb);
2264}
2265
2266extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2267extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2268
2269static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2270{
2271        return skb->ip_summed & CHECKSUM_UNNECESSARY;
2272}
2273
2274/**
2275 *      skb_checksum_complete - Calculate checksum of an entire packet
2276 *      @skb: packet to process
2277 *
2278 *      This function calculates the checksum over the entire packet plus
2279 *      the value of skb->csum.  The latter can be used to supply the
2280 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
2281 *      checksum.
2282 *
2283 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
2284 *      this function can be used to verify that checksum on received
2285 *      packets.  In that case the function should return zero if the
2286 *      checksum is correct.  In particular, this function will return zero
2287 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2288 *      hardware has already verified the correctness of the checksum.
2289 */
2290static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2291{
2292        return skb_csum_unnecessary(skb) ?
2293               0 : __skb_checksum_complete(skb);
2294}
2295
2296#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2297extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2298static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2299{
2300        if (nfct && atomic_dec_and_test(&nfct->use))
2301                nf_conntrack_destroy(nfct);
2302}
2303static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2304{
2305        if (nfct)
2306                atomic_inc(&nfct->use);
2307}
2308#endif
2309#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2310static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2311{
2312        if (skb)
2313                atomic_inc(&skb->users);
2314}
2315static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2316{
2317        if (skb)
2318                kfree_skb(skb);
2319}
2320#endif
2321#ifdef CONFIG_BRIDGE_NETFILTER
2322static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2323{
2324        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2325                kfree(nf_bridge);
2326}
2327static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2328{
2329        if (nf_bridge)
2330                atomic_inc(&nf_bridge->use);
2331}
2332#endif /* CONFIG_BRIDGE_NETFILTER */
2333static inline void nf_reset(struct sk_buff *skb)
2334{
2335#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2336        nf_conntrack_put(skb->nfct);
2337        skb->nfct = NULL;
2338#endif
2339#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2340        nf_conntrack_put_reasm(skb->nfct_reasm);
2341        skb->nfct_reasm = NULL;
2342#endif
2343#ifdef CONFIG_BRIDGE_NETFILTER
2344        nf_bridge_put(skb->nf_bridge);
2345        skb->nf_bridge = NULL;
2346#endif
2347}
2348
2349/* Note: This doesn't put any conntrack and bridge info in dst. */
2350static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2351{
2352#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2353        dst->nfct = src->nfct;
2354        nf_conntrack_get(src->nfct);
2355        dst->nfctinfo = src->nfctinfo;
2356#endif
2357#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2358        dst->nfct_reasm = src->nfct_reasm;
2359        nf_conntrack_get_reasm(src->nfct_reasm);
2360#endif
2361#ifdef CONFIG_BRIDGE_NETFILTER
2362        dst->nf_bridge  = src->nf_bridge;
2363        nf_bridge_get(src->nf_bridge);
2364#endif
2365}
2366
2367static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2368{
2369#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2370        nf_conntrack_put(dst->nfct);
2371#endif
2372#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2373        nf_conntrack_put_reasm(dst->nfct_reasm);
2374#endif
2375#ifdef CONFIG_BRIDGE_NETFILTER
2376        nf_bridge_put(dst->nf_bridge);
2377#endif
2378        __nf_copy(dst, src);
2379}
2380
2381#ifdef CONFIG_NETWORK_SECMARK
2382static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2383{
2384        to->secmark = from->secmark;
2385}
2386
2387static inline void skb_init_secmark(struct sk_buff *skb)
2388{
2389        skb->secmark = 0;
2390}
2391#else
2392static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2393{ }
2394
2395static inline void skb_init_secmark(struct sk_buff *skb)
2396{ }
2397#endif
2398
2399static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2400{
2401        skb->queue_mapping = queue_mapping;
2402}
2403
2404static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2405{
2406        return skb->queue_mapping;
2407}
2408
2409static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2410{
2411        to->queue_mapping = from->queue_mapping;
2412}
2413
2414static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2415{
2416        skb->queue_mapping = rx_queue + 1;
2417}
2418
2419static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2420{
2421        return skb->queue_mapping - 1;
2422}
2423
2424static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2425{
2426        return skb->queue_mapping != 0;
2427}
2428
2429extern u16 __skb_tx_hash(const struct net_device *dev,
2430                         const struct sk_buff *skb,
2431                         unsigned int num_tx_queues);
2432
2433#ifdef CONFIG_XFRM
2434static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2435{
2436        return skb->sp;
2437}
2438#else
2439static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2440{
2441        return NULL;
2442}
2443#endif
2444
2445static inline int skb_is_gso(const struct sk_buff *skb)
2446{
2447        return skb_shinfo(skb)->gso_size;
2448}
2449
2450static inline int skb_is_gso_v6(const struct sk_buff *skb)
2451{
2452        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2453}
2454
2455extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2456
2457static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2458{
2459        /* LRO sets gso_size but not gso_type, whereas if GSO is really
2460         * wanted then gso_type will be set. */
2461        const struct skb_shared_info *shinfo = skb_shinfo(skb);
2462
2463        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2464            unlikely(shinfo->gso_type == 0)) {
2465                __skb_warn_lro_forwarding(skb);
2466                return true;
2467        }
2468        return false;
2469}
2470
2471static inline void skb_forward_csum(struct sk_buff *skb)
2472{
2473        /* Unfortunately we don't support this one.  Any brave souls? */
2474        if (skb->ip_summed == CHECKSUM_COMPLETE)
2475                skb->ip_summed = CHECKSUM_NONE;
2476}
2477
2478/**
2479 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2480 * @skb: skb to check
2481 *
2482 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2483 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2484 * use this helper, to document places where we make this assertion.
2485 */
2486static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2487{
2488#ifdef DEBUG
2489        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2490#endif
2491}
2492
2493bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2494
2495static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2496{
2497        if (irqs_disabled())
2498                return false;
2499
2500        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2501                return false;
2502
2503        if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2504                return false;
2505
2506        skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2507        if (skb_end_pointer(skb) - skb->head < skb_size)
2508                return false;
2509
2510        if (skb_shared(skb) || skb_cloned(skb))
2511                return false;
2512
2513        return true;
2514}
2515#endif  /* __KERNEL__ */
2516#endif  /* _LINUX_SKBUFF_H */
2517