linux/include/net/red.h
<<
>>
Prefs
   1#ifndef __NET_SCHED_RED_H
   2#define __NET_SCHED_RED_H
   3
   4#include <linux/types.h>
   5#include <net/pkt_sched.h>
   6#include <net/inet_ecn.h>
   7#include <net/dsfield.h>
   8
   9/*      Random Early Detection (RED) algorithm.
  10        =======================================
  11
  12        Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
  13        for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
  14
  15        This file codes a "divisionless" version of RED algorithm
  16        as written down in Fig.17 of the paper.
  17
  18        Short description.
  19        ------------------
  20
  21        When a new packet arrives we calculate the average queue length:
  22
  23        avg = (1-W)*avg + W*current_queue_len,
  24
  25        W is the filter time constant (chosen as 2^(-Wlog)), it controls
  26        the inertia of the algorithm. To allow larger bursts, W should be
  27        decreased.
  28
  29        if (avg > th_max) -> packet marked (dropped).
  30        if (avg < th_min) -> packet passes.
  31        if (th_min < avg < th_max) we calculate probability:
  32
  33        Pb = max_P * (avg - th_min)/(th_max-th_min)
  34
  35        and mark (drop) packet with this probability.
  36        Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
  37        max_P should be small (not 1), usually 0.01..0.02 is good value.
  38
  39        max_P is chosen as a number, so that max_P/(th_max-th_min)
  40        is a negative power of two in order arithmetics to contain
  41        only shifts.
  42
  43
  44        Parameters, settable by user:
  45        -----------------------------
  46
  47        qth_min         - bytes (should be < qth_max/2)
  48        qth_max         - bytes (should be at least 2*qth_min and less limit)
  49        Wlog            - bits (<32) log(1/W).
  50        Plog            - bits (<32)
  51
  52        Plog is related to max_P by formula:
  53
  54        max_P = (qth_max-qth_min)/2^Plog;
  55
  56        F.e. if qth_max=128K and qth_min=32K, then Plog=22
  57        corresponds to max_P=0.02
  58
  59        Scell_log
  60        Stab
  61
  62        Lookup table for log((1-W)^(t/t_ave).
  63
  64
  65        NOTES:
  66
  67        Upper bound on W.
  68        -----------------
  69
  70        If you want to allow bursts of L packets of size S,
  71        you should choose W:
  72
  73        L + 1 - th_min/S < (1-(1-W)^L)/W
  74
  75        th_min/S = 32         th_min/S = 4
  76
  77        log(W)  L
  78        -1      33
  79        -2      35
  80        -3      39
  81        -4      46
  82        -5      57
  83        -6      75
  84        -7      101
  85        -8      135
  86        -9      190
  87        etc.
  88 */
  89
  90#define RED_STAB_SIZE   256
  91#define RED_STAB_MASK   (RED_STAB_SIZE - 1)
  92
  93struct red_stats {
  94        u32             prob_drop;      /* Early probability drops */
  95        u32             prob_mark;      /* Early probability marks */
  96        u32             forced_drop;    /* Forced drops, qavg > max_thresh */
  97        u32             forced_mark;    /* Forced marks, qavg > max_thresh */
  98        u32             pdrop;          /* Drops due to queue limits */
  99        u32             other;          /* Drops due to drop() calls */
 100};
 101
 102struct red_parms {
 103        /* Parameters */
 104        u32             qth_min;        /* Min avg length threshold: A scaled */
 105        u32             qth_max;        /* Max avg length threshold: A scaled */
 106        u32             Scell_max;
 107        u32             Rmask;          /* Cached random mask, see red_rmask */
 108        u8              Scell_log;
 109        u8              Wlog;           /* log(W)               */
 110        u8              Plog;           /* random number bits   */
 111        u8              Stab[RED_STAB_SIZE];
 112
 113        /* Variables */
 114        int             qcount;         /* Number of packets since last random
 115                                           number generation */
 116        u32             qR;             /* Cached random number */
 117
 118        unsigned long   qavg;           /* Average queue length: A scaled */
 119        ktime_t         qidlestart;     /* Start of current idle period */
 120};
 121
 122static inline u32 red_rmask(u8 Plog)
 123{
 124        return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
 125}
 126
 127static inline void red_set_parms(struct red_parms *p,
 128                                 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
 129                                 u8 Scell_log, u8 *stab)
 130{
 131        /* Reset average queue length, the value is strictly bound
 132         * to the parameters below, reseting hurts a bit but leaving
 133         * it might result in an unreasonable qavg for a while. --TGR
 134         */
 135        p->qavg         = 0;
 136
 137        p->qcount       = -1;
 138        p->qth_min      = qth_min << Wlog;
 139        p->qth_max      = qth_max << Wlog;
 140        p->Wlog         = Wlog;
 141        p->Plog         = Plog;
 142        p->Rmask        = red_rmask(Plog);
 143        p->Scell_log    = Scell_log;
 144        p->Scell_max    = (255 << Scell_log);
 145
 146        memcpy(p->Stab, stab, sizeof(p->Stab));
 147}
 148
 149static inline int red_is_idling(struct red_parms *p)
 150{
 151        return p->qidlestart.tv64 != 0;
 152}
 153
 154static inline void red_start_of_idle_period(struct red_parms *p)
 155{
 156        p->qidlestart = ktime_get();
 157}
 158
 159static inline void red_end_of_idle_period(struct red_parms *p)
 160{
 161        p->qidlestart.tv64 = 0;
 162}
 163
 164static inline void red_restart(struct red_parms *p)
 165{
 166        red_end_of_idle_period(p);
 167        p->qavg = 0;
 168        p->qcount = -1;
 169}
 170
 171static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
 172{
 173        s64 delta = ktime_us_delta(ktime_get(), p->qidlestart);
 174        long us_idle = min_t(s64, delta, p->Scell_max);
 175        int  shift;
 176
 177        /*
 178         * The problem: ideally, average length queue recalcultion should
 179         * be done over constant clock intervals. This is too expensive, so
 180         * that the calculation is driven by outgoing packets.
 181         * When the queue is idle we have to model this clock by hand.
 182         *
 183         * SF+VJ proposed to "generate":
 184         *
 185         *      m = idletime / (average_pkt_size / bandwidth)
 186         *
 187         * dummy packets as a burst after idle time, i.e.
 188         *
 189         *      p->qavg *= (1-W)^m
 190         *
 191         * This is an apparently overcomplicated solution (f.e. we have to
 192         * precompute a table to make this calculation in reasonable time)
 193         * I believe that a simpler model may be used here,
 194         * but it is field for experiments.
 195         */
 196
 197        shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
 198
 199        if (shift)
 200                return p->qavg >> shift;
 201        else {
 202                /* Approximate initial part of exponent with linear function:
 203                 *
 204                 *      (1-W)^m ~= 1-mW + ...
 205                 *
 206                 * Seems, it is the best solution to
 207                 * problem of too coarse exponent tabulation.
 208                 */
 209                us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
 210
 211                if (us_idle < (p->qavg >> 1))
 212                        return p->qavg - us_idle;
 213                else
 214                        return p->qavg >> 1;
 215        }
 216}
 217
 218static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
 219                                                       unsigned int backlog)
 220{
 221        /*
 222         * NOTE: p->qavg is fixed point number with point at Wlog.
 223         * The formula below is equvalent to floating point
 224         * version:
 225         *
 226         *      qavg = qavg*(1-W) + backlog*W;
 227         *
 228         * --ANK (980924)
 229         */
 230        return p->qavg + (backlog - (p->qavg >> p->Wlog));
 231}
 232
 233static inline unsigned long red_calc_qavg(struct red_parms *p,
 234                                          unsigned int backlog)
 235{
 236        if (!red_is_idling(p))
 237                return red_calc_qavg_no_idle_time(p, backlog);
 238        else
 239                return red_calc_qavg_from_idle_time(p);
 240}
 241
 242static inline u32 red_random(struct red_parms *p)
 243{
 244        return net_random() & p->Rmask;
 245}
 246
 247static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
 248{
 249        /* The formula used below causes questions.
 250
 251           OK. qR is random number in the interval 0..Rmask
 252           i.e. 0..(2^Plog). If we used floating point
 253           arithmetics, it would be: (2^Plog)*rnd_num,
 254           where rnd_num is less 1.
 255
 256           Taking into account, that qavg have fixed
 257           point at Wlog, and Plog is related to max_P by
 258           max_P = (qth_max-qth_min)/2^Plog; two lines
 259           below have the following floating point equivalent:
 260
 261           max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
 262
 263           Any questions? --ANK (980924)
 264         */
 265        return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
 266}
 267
 268enum {
 269        RED_BELOW_MIN_THRESH,
 270        RED_BETWEEN_TRESH,
 271        RED_ABOVE_MAX_TRESH,
 272};
 273
 274static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
 275{
 276        if (qavg < p->qth_min)
 277                return RED_BELOW_MIN_THRESH;
 278        else if (qavg >= p->qth_max)
 279                return RED_ABOVE_MAX_TRESH;
 280        else
 281                return RED_BETWEEN_TRESH;
 282}
 283
 284enum {
 285        RED_DONT_MARK,
 286        RED_PROB_MARK,
 287        RED_HARD_MARK,
 288};
 289
 290static inline int red_action(struct red_parms *p, unsigned long qavg)
 291{
 292        switch (red_cmp_thresh(p, qavg)) {
 293                case RED_BELOW_MIN_THRESH:
 294                        p->qcount = -1;
 295                        return RED_DONT_MARK;
 296
 297                case RED_BETWEEN_TRESH:
 298                        if (++p->qcount) {
 299                                if (red_mark_probability(p, qavg)) {
 300                                        p->qcount = 0;
 301                                        p->qR = red_random(p);
 302                                        return RED_PROB_MARK;
 303                                }
 304                        } else
 305                                p->qR = red_random(p);
 306
 307                        return RED_DONT_MARK;
 308
 309                case RED_ABOVE_MAX_TRESH:
 310                        p->qcount = -1;
 311                        return RED_HARD_MARK;
 312        }
 313
 314        BUG();
 315        return RED_DONT_MARK;
 316}
 317
 318#endif
 319