linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/binfmts.h>
  24#include <linux/nsproxy.h>
  25#include <linux/pid_namespace.h>
  26#include <linux/ptrace.h>
  27#include <linux/profile.h>
  28#include <linux/mount.h>
  29#include <linux/proc_fs.h>
  30#include <linux/kthread.h>
  31#include <linux/mempolicy.h>
  32#include <linux/taskstats_kern.h>
  33#include <linux/delayacct.h>
  34#include <linux/freezer.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54
  55#include <asm/uaccess.h>
  56#include <asm/unistd.h>
  57#include <asm/pgtable.h>
  58#include <asm/mmu_context.h>
  59
  60static void exit_mm(struct task_struct * tsk);
  61
  62static void __unhash_process(struct task_struct *p, bool group_dead)
  63{
  64        nr_threads--;
  65        detach_pid(p, PIDTYPE_PID);
  66        if (group_dead) {
  67                detach_pid(p, PIDTYPE_PGID);
  68                detach_pid(p, PIDTYPE_SID);
  69
  70                list_del_rcu(&p->tasks);
  71                list_del_init(&p->sibling);
  72                __this_cpu_dec(process_counts);
  73        }
  74        list_del_rcu(&p->thread_group);
  75}
  76
  77/*
  78 * This function expects the tasklist_lock write-locked.
  79 */
  80static void __exit_signal(struct task_struct *tsk)
  81{
  82        struct signal_struct *sig = tsk->signal;
  83        bool group_dead = thread_group_leader(tsk);
  84        struct sighand_struct *sighand;
  85        struct tty_struct *uninitialized_var(tty);
  86
  87        sighand = rcu_dereference_check(tsk->sighand,
  88                                        lockdep_tasklist_lock_is_held());
  89        spin_lock(&sighand->siglock);
  90
  91        posix_cpu_timers_exit(tsk);
  92        if (group_dead) {
  93                posix_cpu_timers_exit_group(tsk);
  94                tty = sig->tty;
  95                sig->tty = NULL;
  96        } else {
  97                /*
  98                 * This can only happen if the caller is de_thread().
  99                 * FIXME: this is the temporary hack, we should teach
 100                 * posix-cpu-timers to handle this case correctly.
 101                 */
 102                if (unlikely(has_group_leader_pid(tsk)))
 103                        posix_cpu_timers_exit_group(tsk);
 104
 105                /*
 106                 * If there is any task waiting for the group exit
 107                 * then notify it:
 108                 */
 109                if (sig->notify_count > 0 && !--sig->notify_count)
 110                        wake_up_process(sig->group_exit_task);
 111
 112                if (tsk == sig->curr_target)
 113                        sig->curr_target = next_thread(tsk);
 114                /*
 115                 * Accumulate here the counters for all threads but the
 116                 * group leader as they die, so they can be added into
 117                 * the process-wide totals when those are taken.
 118                 * The group leader stays around as a zombie as long
 119                 * as there are other threads.  When it gets reaped,
 120                 * the exit.c code will add its counts into these totals.
 121                 * We won't ever get here for the group leader, since it
 122                 * will have been the last reference on the signal_struct.
 123                 */
 124                sig->utime = cputime_add(sig->utime, tsk->utime);
 125                sig->stime = cputime_add(sig->stime, tsk->stime);
 126                sig->gtime = cputime_add(sig->gtime, tsk->gtime);
 127                sig->min_flt += tsk->min_flt;
 128                sig->maj_flt += tsk->maj_flt;
 129                sig->nvcsw += tsk->nvcsw;
 130                sig->nivcsw += tsk->nivcsw;
 131                sig->inblock += task_io_get_inblock(tsk);
 132                sig->oublock += task_io_get_oublock(tsk);
 133                task_io_accounting_add(&sig->ioac, &tsk->ioac);
 134                sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 135        }
 136
 137        sig->nr_threads--;
 138        __unhash_process(tsk, group_dead);
 139
 140        /*
 141         * Do this under ->siglock, we can race with another thread
 142         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 143         */
 144        flush_sigqueue(&tsk->pending);
 145        tsk->sighand = NULL;
 146        spin_unlock(&sighand->siglock);
 147
 148        __cleanup_sighand(sighand);
 149        clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
 150        if (group_dead) {
 151                flush_sigqueue(&sig->shared_pending);
 152                tty_kref_put(tty);
 153        }
 154}
 155
 156static void delayed_put_task_struct(struct rcu_head *rhp)
 157{
 158        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 159
 160        perf_event_delayed_put(tsk);
 161        trace_sched_process_free(tsk);
 162        put_task_struct(tsk);
 163}
 164
 165
 166void release_task(struct task_struct * p)
 167{
 168        struct task_struct *leader;
 169        int zap_leader;
 170repeat:
 171        /* don't need to get the RCU readlock here - the process is dead and
 172         * can't be modifying its own credentials. But shut RCU-lockdep up */
 173        rcu_read_lock();
 174        atomic_dec(&__task_cred(p)->user->processes);
 175        rcu_read_unlock();
 176
 177        proc_flush_task(p);
 178
 179        write_lock_irq(&tasklist_lock);
 180        ptrace_release_task(p);
 181        __exit_signal(p);
 182
 183        /*
 184         * If we are the last non-leader member of the thread
 185         * group, and the leader is zombie, then notify the
 186         * group leader's parent process. (if it wants notification.)
 187         */
 188        zap_leader = 0;
 189        leader = p->group_leader;
 190        if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
 191                /*
 192                 * If we were the last child thread and the leader has
 193                 * exited already, and the leader's parent ignores SIGCHLD,
 194                 * then we are the one who should release the leader.
 195                 */
 196                zap_leader = do_notify_parent(leader, leader->exit_signal);
 197                if (zap_leader)
 198                        leader->exit_state = EXIT_DEAD;
 199        }
 200
 201        write_unlock_irq(&tasklist_lock);
 202        release_thread(p);
 203        call_rcu(&p->rcu, delayed_put_task_struct);
 204
 205        p = leader;
 206        if (unlikely(zap_leader))
 207                goto repeat;
 208}
 209
 210/*
 211 * This checks not only the pgrp, but falls back on the pid if no
 212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 213 * without this...
 214 *
 215 * The caller must hold rcu lock or the tasklist lock.
 216 */
 217struct pid *session_of_pgrp(struct pid *pgrp)
 218{
 219        struct task_struct *p;
 220        struct pid *sid = NULL;
 221
 222        p = pid_task(pgrp, PIDTYPE_PGID);
 223        if (p == NULL)
 224                p = pid_task(pgrp, PIDTYPE_PID);
 225        if (p != NULL)
 226                sid = task_session(p);
 227
 228        return sid;
 229}
 230
 231/*
 232 * Determine if a process group is "orphaned", according to the POSIX
 233 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 234 * by terminal-generated stop signals.  Newly orphaned process groups are
 235 * to receive a SIGHUP and a SIGCONT.
 236 *
 237 * "I ask you, have you ever known what it is to be an orphan?"
 238 */
 239static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
 240{
 241        struct task_struct *p;
 242
 243        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 244                if ((p == ignored_task) ||
 245                    (p->exit_state && thread_group_empty(p)) ||
 246                    is_global_init(p->real_parent))
 247                        continue;
 248
 249                if (task_pgrp(p->real_parent) != pgrp &&
 250                    task_session(p->real_parent) == task_session(p))
 251                        return 0;
 252        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 253
 254        return 1;
 255}
 256
 257int is_current_pgrp_orphaned(void)
 258{
 259        int retval;
 260
 261        read_lock(&tasklist_lock);
 262        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 263        read_unlock(&tasklist_lock);
 264
 265        return retval;
 266}
 267
 268static bool has_stopped_jobs(struct pid *pgrp)
 269{
 270        struct task_struct *p;
 271
 272        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 273                if (p->signal->flags & SIGNAL_STOP_STOPPED)
 274                        return true;
 275        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 276
 277        return false;
 278}
 279
 280/*
 281 * Check to see if any process groups have become orphaned as
 282 * a result of our exiting, and if they have any stopped jobs,
 283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 284 */
 285static void
 286kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 287{
 288        struct pid *pgrp = task_pgrp(tsk);
 289        struct task_struct *ignored_task = tsk;
 290
 291        if (!parent)
 292                 /* exit: our father is in a different pgrp than
 293                  * we are and we were the only connection outside.
 294                  */
 295                parent = tsk->real_parent;
 296        else
 297                /* reparent: our child is in a different pgrp than
 298                 * we are, and it was the only connection outside.
 299                 */
 300                ignored_task = NULL;
 301
 302        if (task_pgrp(parent) != pgrp &&
 303            task_session(parent) == task_session(tsk) &&
 304            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 305            has_stopped_jobs(pgrp)) {
 306                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 307                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 308        }
 309}
 310
 311/**
 312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 313 *
 314 * If a kernel thread is launched as a result of a system call, or if
 315 * it ever exits, it should generally reparent itself to kthreadd so it
 316 * isn't in the way of other processes and is correctly cleaned up on exit.
 317 *
 318 * The various task state such as scheduling policy and priority may have
 319 * been inherited from a user process, so we reset them to sane values here.
 320 *
 321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 322 */
 323static void reparent_to_kthreadd(void)
 324{
 325        write_lock_irq(&tasklist_lock);
 326
 327        ptrace_unlink(current);
 328        /* Reparent to init */
 329        current->real_parent = current->parent = kthreadd_task;
 330        list_move_tail(&current->sibling, &current->real_parent->children);
 331
 332        /* Set the exit signal to SIGCHLD so we signal init on exit */
 333        current->exit_signal = SIGCHLD;
 334
 335        if (task_nice(current) < 0)
 336                set_user_nice(current, 0);
 337        /* cpus_allowed? */
 338        /* rt_priority? */
 339        /* signals? */
 340        memcpy(current->signal->rlim, init_task.signal->rlim,
 341               sizeof(current->signal->rlim));
 342
 343        atomic_inc(&init_cred.usage);
 344        commit_creds(&init_cred);
 345        write_unlock_irq(&tasklist_lock);
 346}
 347
 348void __set_special_pids(struct pid *pid)
 349{
 350        struct task_struct *curr = current->group_leader;
 351
 352        if (task_session(curr) != pid)
 353                change_pid(curr, PIDTYPE_SID, pid);
 354
 355        if (task_pgrp(curr) != pid)
 356                change_pid(curr, PIDTYPE_PGID, pid);
 357}
 358
 359static void set_special_pids(struct pid *pid)
 360{
 361        write_lock_irq(&tasklist_lock);
 362        __set_special_pids(pid);
 363        write_unlock_irq(&tasklist_lock);
 364}
 365
 366/*
 367 * Let kernel threads use this to say that they allow a certain signal.
 368 * Must not be used if kthread was cloned with CLONE_SIGHAND.
 369 */
 370int allow_signal(int sig)
 371{
 372        if (!valid_signal(sig) || sig < 1)
 373                return -EINVAL;
 374
 375        spin_lock_irq(&current->sighand->siglock);
 376        /* This is only needed for daemonize()'ed kthreads */
 377        sigdelset(&current->blocked, sig);
 378        /*
 379         * Kernel threads handle their own signals. Let the signal code
 380         * know it'll be handled, so that they don't get converted to
 381         * SIGKILL or just silently dropped.
 382         */
 383        current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
 384        recalc_sigpending();
 385        spin_unlock_irq(&current->sighand->siglock);
 386        return 0;
 387}
 388
 389EXPORT_SYMBOL(allow_signal);
 390
 391int disallow_signal(int sig)
 392{
 393        if (!valid_signal(sig) || sig < 1)
 394                return -EINVAL;
 395
 396        spin_lock_irq(&current->sighand->siglock);
 397        current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
 398        recalc_sigpending();
 399        spin_unlock_irq(&current->sighand->siglock);
 400        return 0;
 401}
 402
 403EXPORT_SYMBOL(disallow_signal);
 404
 405/*
 406 *      Put all the gunge required to become a kernel thread without
 407 *      attached user resources in one place where it belongs.
 408 */
 409
 410void daemonize(const char *name, ...)
 411{
 412        va_list args;
 413        sigset_t blocked;
 414
 415        va_start(args, name);
 416        vsnprintf(current->comm, sizeof(current->comm), name, args);
 417        va_end(args);
 418
 419        /*
 420         * If we were started as result of loading a module, close all of the
 421         * user space pages.  We don't need them, and if we didn't close them
 422         * they would be locked into memory.
 423         */
 424        exit_mm(current);
 425        /*
 426         * We don't want to have TIF_FREEZE set if the system-wide hibernation
 427         * or suspend transition begins right now.
 428         */
 429        current->flags |= (PF_NOFREEZE | PF_KTHREAD);
 430
 431        if (current->nsproxy != &init_nsproxy) {
 432                get_nsproxy(&init_nsproxy);
 433                switch_task_namespaces(current, &init_nsproxy);
 434        }
 435        set_special_pids(&init_struct_pid);
 436        proc_clear_tty(current);
 437
 438        /* Block and flush all signals */
 439        sigfillset(&blocked);
 440        sigprocmask(SIG_BLOCK, &blocked, NULL);
 441        flush_signals(current);
 442
 443        /* Become as one with the init task */
 444
 445        daemonize_fs_struct();
 446        exit_files(current);
 447        current->files = init_task.files;
 448        atomic_inc(&current->files->count);
 449
 450        reparent_to_kthreadd();
 451}
 452
 453EXPORT_SYMBOL(daemonize);
 454
 455static void close_files(struct files_struct * files)
 456{
 457        int i, j;
 458        struct fdtable *fdt;
 459
 460        j = 0;
 461
 462        /*
 463         * It is safe to dereference the fd table without RCU or
 464         * ->file_lock because this is the last reference to the
 465         * files structure.  But use RCU to shut RCU-lockdep up.
 466         */
 467        rcu_read_lock();
 468        fdt = files_fdtable(files);
 469        rcu_read_unlock();
 470        for (;;) {
 471                unsigned long set;
 472                i = j * __NFDBITS;
 473                if (i >= fdt->max_fds)
 474                        break;
 475                set = fdt->open_fds->fds_bits[j++];
 476                while (set) {
 477                        if (set & 1) {
 478                                struct file * file = xchg(&fdt->fd[i], NULL);
 479                                if (file) {
 480                                        filp_close(file, files);
 481                                        cond_resched();
 482                                }
 483                        }
 484                        i++;
 485                        set >>= 1;
 486                }
 487        }
 488}
 489
 490struct files_struct *get_files_struct(struct task_struct *task)
 491{
 492        struct files_struct *files;
 493
 494        task_lock(task);
 495        files = task->files;
 496        if (files)
 497                atomic_inc(&files->count);
 498        task_unlock(task);
 499
 500        return files;
 501}
 502
 503void put_files_struct(struct files_struct *files)
 504{
 505        struct fdtable *fdt;
 506
 507        if (atomic_dec_and_test(&files->count)) {
 508                close_files(files);
 509                /*
 510                 * Free the fd and fdset arrays if we expanded them.
 511                 * If the fdtable was embedded, pass files for freeing
 512                 * at the end of the RCU grace period. Otherwise,
 513                 * you can free files immediately.
 514                 */
 515                rcu_read_lock();
 516                fdt = files_fdtable(files);
 517                if (fdt != &files->fdtab)
 518                        kmem_cache_free(files_cachep, files);
 519                free_fdtable(fdt);
 520                rcu_read_unlock();
 521        }
 522}
 523
 524void reset_files_struct(struct files_struct *files)
 525{
 526        struct task_struct *tsk = current;
 527        struct files_struct *old;
 528
 529        old = tsk->files;
 530        task_lock(tsk);
 531        tsk->files = files;
 532        task_unlock(tsk);
 533        put_files_struct(old);
 534}
 535
 536void exit_files(struct task_struct *tsk)
 537{
 538        struct files_struct * files = tsk->files;
 539
 540        if (files) {
 541                task_lock(tsk);
 542                tsk->files = NULL;
 543                task_unlock(tsk);
 544                put_files_struct(files);
 545        }
 546}
 547
 548#ifdef CONFIG_MM_OWNER
 549/*
 550 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 551 */
 552void mm_update_next_owner(struct mm_struct *mm)
 553{
 554        struct task_struct *c, *g, *p = current;
 555
 556retry:
 557        /*
 558         * If the exiting or execing task is not the owner, it's
 559         * someone else's problem.
 560         */
 561        if (mm->owner != p)
 562                return;
 563        /*
 564         * The current owner is exiting/execing and there are no other
 565         * candidates.  Do not leave the mm pointing to a possibly
 566         * freed task structure.
 567         */
 568        if (atomic_read(&mm->mm_users) <= 1) {
 569                mm->owner = NULL;
 570                return;
 571        }
 572
 573        read_lock(&tasklist_lock);
 574        /*
 575         * Search in the children
 576         */
 577        list_for_each_entry(c, &p->children, sibling) {
 578                if (c->mm == mm)
 579                        goto assign_new_owner;
 580        }
 581
 582        /*
 583         * Search in the siblings
 584         */
 585        list_for_each_entry(c, &p->real_parent->children, sibling) {
 586                if (c->mm == mm)
 587                        goto assign_new_owner;
 588        }
 589
 590        /*
 591         * Search through everything else. We should not get
 592         * here often
 593         */
 594        do_each_thread(g, c) {
 595                if (c->mm == mm)
 596                        goto assign_new_owner;
 597        } while_each_thread(g, c);
 598
 599        read_unlock(&tasklist_lock);
 600        /*
 601         * We found no owner yet mm_users > 1: this implies that we are
 602         * most likely racing with swapoff (try_to_unuse()) or /proc or
 603         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 604         */
 605        mm->owner = NULL;
 606        return;
 607
 608assign_new_owner:
 609        BUG_ON(c == p);
 610        get_task_struct(c);
 611        /*
 612         * The task_lock protects c->mm from changing.
 613         * We always want mm->owner->mm == mm
 614         */
 615        task_lock(c);
 616        /*
 617         * Delay read_unlock() till we have the task_lock()
 618         * to ensure that c does not slip away underneath us
 619         */
 620        read_unlock(&tasklist_lock);
 621        if (c->mm != mm) {
 622                task_unlock(c);
 623                put_task_struct(c);
 624                goto retry;
 625        }
 626        mm->owner = c;
 627        task_unlock(c);
 628        put_task_struct(c);
 629}
 630#endif /* CONFIG_MM_OWNER */
 631
 632/*
 633 * Turn us into a lazy TLB process if we
 634 * aren't already..
 635 */
 636static void exit_mm(struct task_struct * tsk)
 637{
 638        struct mm_struct *mm = tsk->mm;
 639        struct core_state *core_state;
 640
 641        mm_release(tsk, mm);
 642        if (!mm)
 643                return;
 644        /*
 645         * Serialize with any possible pending coredump.
 646         * We must hold mmap_sem around checking core_state
 647         * and clearing tsk->mm.  The core-inducing thread
 648         * will increment ->nr_threads for each thread in the
 649         * group with ->mm != NULL.
 650         */
 651        down_read(&mm->mmap_sem);
 652        core_state = mm->core_state;
 653        if (core_state) {
 654                struct core_thread self;
 655                up_read(&mm->mmap_sem);
 656
 657                self.task = tsk;
 658                self.next = xchg(&core_state->dumper.next, &self);
 659                /*
 660                 * Implies mb(), the result of xchg() must be visible
 661                 * to core_state->dumper.
 662                 */
 663                if (atomic_dec_and_test(&core_state->nr_threads))
 664                        complete(&core_state->startup);
 665
 666                for (;;) {
 667                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 668                        if (!self.task) /* see coredump_finish() */
 669                                break;
 670                        schedule();
 671                }
 672                __set_task_state(tsk, TASK_RUNNING);
 673                down_read(&mm->mmap_sem);
 674        }
 675        atomic_inc(&mm->mm_count);
 676        BUG_ON(mm != tsk->active_mm);
 677        /* more a memory barrier than a real lock */
 678        task_lock(tsk);
 679        tsk->mm = NULL;
 680        up_read(&mm->mmap_sem);
 681        enter_lazy_tlb(mm, current);
 682        /* We don't want this task to be frozen prematurely */
 683        clear_freeze_flag(tsk);
 684        task_unlock(tsk);
 685        mm_update_next_owner(mm);
 686        mmput(mm);
 687}
 688
 689/*
 690 * When we die, we re-parent all our children.
 691 * Try to give them to another thread in our thread
 692 * group, and if no such member exists, give it to
 693 * the child reaper process (ie "init") in our pid
 694 * space.
 695 */
 696static struct task_struct *find_new_reaper(struct task_struct *father)
 697        __releases(&tasklist_lock)
 698        __acquires(&tasklist_lock)
 699{
 700        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 701        struct task_struct *thread;
 702
 703        thread = father;
 704        while_each_thread(father, thread) {
 705                if (thread->flags & PF_EXITING)
 706                        continue;
 707                if (unlikely(pid_ns->child_reaper == father))
 708                        pid_ns->child_reaper = thread;
 709                return thread;
 710        }
 711
 712        if (unlikely(pid_ns->child_reaper == father)) {
 713                write_unlock_irq(&tasklist_lock);
 714                if (unlikely(pid_ns == &init_pid_ns))
 715                        panic("Attempted to kill init!");
 716
 717                zap_pid_ns_processes(pid_ns);
 718                write_lock_irq(&tasklist_lock);
 719                /*
 720                 * We can not clear ->child_reaper or leave it alone.
 721                 * There may by stealth EXIT_DEAD tasks on ->children,
 722                 * forget_original_parent() must move them somewhere.
 723                 */
 724                pid_ns->child_reaper = init_pid_ns.child_reaper;
 725        }
 726
 727        return pid_ns->child_reaper;
 728}
 729
 730/*
 731* Any that need to be release_task'd are put on the @dead list.
 732 */
 733static void reparent_leader(struct task_struct *father, struct task_struct *p,
 734                                struct list_head *dead)
 735{
 736        list_move_tail(&p->sibling, &p->real_parent->children);
 737
 738        if (p->exit_state == EXIT_DEAD)
 739                return;
 740        /*
 741         * If this is a threaded reparent there is no need to
 742         * notify anyone anything has happened.
 743         */
 744        if (same_thread_group(p->real_parent, father))
 745                return;
 746
 747        /* We don't want people slaying init.  */
 748        p->exit_signal = SIGCHLD;
 749
 750        /* If it has exited notify the new parent about this child's death. */
 751        if (!p->ptrace &&
 752            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 753                if (do_notify_parent(p, p->exit_signal)) {
 754                        p->exit_state = EXIT_DEAD;
 755                        list_move_tail(&p->sibling, dead);
 756                }
 757        }
 758
 759        kill_orphaned_pgrp(p, father);
 760}
 761
 762static void forget_original_parent(struct task_struct *father)
 763{
 764        struct task_struct *p, *n, *reaper;
 765        LIST_HEAD(dead_children);
 766
 767        write_lock_irq(&tasklist_lock);
 768        /*
 769         * Note that exit_ptrace() and find_new_reaper() might
 770         * drop tasklist_lock and reacquire it.
 771         */
 772        exit_ptrace(father);
 773        reaper = find_new_reaper(father);
 774
 775        list_for_each_entry_safe(p, n, &father->children, sibling) {
 776                struct task_struct *t = p;
 777                do {
 778                        t->real_parent = reaper;
 779                        if (t->parent == father) {
 780                                BUG_ON(t->ptrace);
 781                                t->parent = t->real_parent;
 782                        }
 783                        if (t->pdeath_signal)
 784                                group_send_sig_info(t->pdeath_signal,
 785                                                    SEND_SIG_NOINFO, t);
 786                } while_each_thread(p, t);
 787                reparent_leader(father, p, &dead_children);
 788        }
 789        write_unlock_irq(&tasklist_lock);
 790
 791        BUG_ON(!list_empty(&father->children));
 792
 793        list_for_each_entry_safe(p, n, &dead_children, sibling) {
 794                list_del_init(&p->sibling);
 795                release_task(p);
 796        }
 797}
 798
 799/*
 800 * Send signals to all our closest relatives so that they know
 801 * to properly mourn us..
 802 */
 803static void exit_notify(struct task_struct *tsk, int group_dead)
 804{
 805        bool autoreap;
 806
 807        /*
 808         * This does two things:
 809         *
 810         * A.  Make init inherit all the child processes
 811         * B.  Check to see if any process groups have become orphaned
 812         *      as a result of our exiting, and if they have any stopped
 813         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 814         */
 815        forget_original_parent(tsk);
 816        exit_task_namespaces(tsk);
 817
 818        write_lock_irq(&tasklist_lock);
 819        if (group_dead)
 820                kill_orphaned_pgrp(tsk->group_leader, NULL);
 821
 822        /* Let father know we died
 823         *
 824         * Thread signals are configurable, but you aren't going to use
 825         * that to send signals to arbitrary processes.
 826         * That stops right now.
 827         *
 828         * If the parent exec id doesn't match the exec id we saved
 829         * when we started then we know the parent has changed security
 830         * domain.
 831         *
 832         * If our self_exec id doesn't match our parent_exec_id then
 833         * we have changed execution domain as these two values started
 834         * the same after a fork.
 835         */
 836        if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
 837            (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
 838             tsk->self_exec_id != tsk->parent_exec_id))
 839                tsk->exit_signal = SIGCHLD;
 840
 841        if (unlikely(tsk->ptrace)) {
 842                int sig = thread_group_leader(tsk) &&
 843                                thread_group_empty(tsk) &&
 844                                !ptrace_reparented(tsk) ?
 845                        tsk->exit_signal : SIGCHLD;
 846                autoreap = do_notify_parent(tsk, sig);
 847        } else if (thread_group_leader(tsk)) {
 848                autoreap = thread_group_empty(tsk) &&
 849                        do_notify_parent(tsk, tsk->exit_signal);
 850        } else {
 851                autoreap = true;
 852        }
 853
 854        tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 855
 856        /* mt-exec, de_thread() is waiting for group leader */
 857        if (unlikely(tsk->signal->notify_count < 0))
 858                wake_up_process(tsk->signal->group_exit_task);
 859        write_unlock_irq(&tasklist_lock);
 860
 861        /* If the process is dead, release it - nobody will wait for it */
 862        if (autoreap)
 863                release_task(tsk);
 864}
 865
 866#ifdef CONFIG_DEBUG_STACK_USAGE
 867static void check_stack_usage(void)
 868{
 869        static DEFINE_SPINLOCK(low_water_lock);
 870        static int lowest_to_date = THREAD_SIZE;
 871        unsigned long free;
 872
 873        free = stack_not_used(current);
 874
 875        if (free >= lowest_to_date)
 876                return;
 877
 878        spin_lock(&low_water_lock);
 879        if (free < lowest_to_date) {
 880                printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
 881                                "left\n",
 882                                current->comm, free);
 883                lowest_to_date = free;
 884        }
 885        spin_unlock(&low_water_lock);
 886}
 887#else
 888static inline void check_stack_usage(void) {}
 889#endif
 890
 891NORET_TYPE void do_exit(long code)
 892{
 893        struct task_struct *tsk = current;
 894        int group_dead;
 895
 896        profile_task_exit(tsk);
 897
 898        WARN_ON(blk_needs_flush_plug(tsk));
 899
 900        if (unlikely(in_interrupt()))
 901                panic("Aiee, killing interrupt handler!");
 902        if (unlikely(!tsk->pid))
 903                panic("Attempted to kill the idle task!");
 904
 905        /*
 906         * If do_exit is called because this processes oopsed, it's possible
 907         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 908         * continuing. Amongst other possible reasons, this is to prevent
 909         * mm_release()->clear_child_tid() from writing to a user-controlled
 910         * kernel address.
 911         */
 912        set_fs(USER_DS);
 913
 914        ptrace_event(PTRACE_EVENT_EXIT, code);
 915
 916        validate_creds_for_do_exit(tsk);
 917
 918        /*
 919         * We're taking recursive faults here in do_exit. Safest is to just
 920         * leave this task alone and wait for reboot.
 921         */
 922        if (unlikely(tsk->flags & PF_EXITING)) {
 923                printk(KERN_ALERT
 924                        "Fixing recursive fault but reboot is needed!\n");
 925                /*
 926                 * We can do this unlocked here. The futex code uses
 927                 * this flag just to verify whether the pi state
 928                 * cleanup has been done or not. In the worst case it
 929                 * loops once more. We pretend that the cleanup was
 930                 * done as there is no way to return. Either the
 931                 * OWNER_DIED bit is set by now or we push the blocked
 932                 * task into the wait for ever nirwana as well.
 933                 */
 934                tsk->flags |= PF_EXITPIDONE;
 935                set_current_state(TASK_UNINTERRUPTIBLE);
 936                schedule();
 937        }
 938
 939        exit_irq_thread();
 940
 941        exit_signals(tsk);  /* sets PF_EXITING */
 942        /*
 943         * tsk->flags are checked in the futex code to protect against
 944         * an exiting task cleaning up the robust pi futexes.
 945         */
 946        smp_mb();
 947        raw_spin_unlock_wait(&tsk->pi_lock);
 948
 949        if (unlikely(in_atomic()))
 950                printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
 951                                current->comm, task_pid_nr(current),
 952                                preempt_count());
 953
 954        acct_update_integrals(tsk);
 955        /* sync mm's RSS info before statistics gathering */
 956        if (tsk->mm)
 957                sync_mm_rss(tsk, tsk->mm);
 958        group_dead = atomic_dec_and_test(&tsk->signal->live);
 959        if (group_dead) {
 960                hrtimer_cancel(&tsk->signal->real_timer);
 961                exit_itimers(tsk->signal);
 962                if (tsk->mm)
 963                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 964        }
 965        acct_collect(code, group_dead);
 966        if (group_dead)
 967                tty_audit_exit();
 968        if (unlikely(tsk->audit_context))
 969                audit_free(tsk);
 970
 971        tsk->exit_code = code;
 972        taskstats_exit(tsk, group_dead);
 973
 974        exit_mm(tsk);
 975
 976        if (group_dead)
 977                acct_process();
 978        trace_sched_process_exit(tsk);
 979
 980        exit_sem(tsk);
 981        exit_shm(tsk);
 982        exit_files(tsk);
 983        exit_fs(tsk);
 984        check_stack_usage();
 985        exit_thread();
 986
 987        /*
 988         * Flush inherited counters to the parent - before the parent
 989         * gets woken up by child-exit notifications.
 990         *
 991         * because of cgroup mode, must be called before cgroup_exit()
 992         */
 993        perf_event_exit_task(tsk);
 994
 995        cgroup_exit(tsk, 1);
 996
 997        if (group_dead)
 998                disassociate_ctty(1);
 999
1000        module_put(task_thread_info(tsk)->exec_domain->module);
1001
1002        proc_exit_connector(tsk);
1003
1004        /*
1005         * FIXME: do that only when needed, using sched_exit tracepoint
1006         */
1007        ptrace_put_breakpoints(tsk);
1008
1009        exit_notify(tsk, group_dead);
1010#ifdef CONFIG_NUMA
1011        task_lock(tsk);
1012        mpol_put(tsk->mempolicy);
1013        tsk->mempolicy = NULL;
1014        task_unlock(tsk);
1015#endif
1016#ifdef CONFIG_FUTEX
1017        if (unlikely(current->pi_state_cache))
1018                kfree(current->pi_state_cache);
1019#endif
1020        /*
1021         * Make sure we are holding no locks:
1022         */
1023        debug_check_no_locks_held(tsk);
1024        /*
1025         * We can do this unlocked here. The futex code uses this flag
1026         * just to verify whether the pi state cleanup has been done
1027         * or not. In the worst case it loops once more.
1028         */
1029        tsk->flags |= PF_EXITPIDONE;
1030
1031        if (tsk->io_context)
1032                exit_io_context(tsk);
1033
1034        if (tsk->splice_pipe)
1035                __free_pipe_info(tsk->splice_pipe);
1036
1037        validate_creds_for_do_exit(tsk);
1038
1039        preempt_disable();
1040        exit_rcu();
1041        /* causes final put_task_struct in finish_task_switch(). */
1042        tsk->state = TASK_DEAD;
1043        schedule();
1044        BUG();
1045        /* Avoid "noreturn function does return".  */
1046        for (;;)
1047                cpu_relax();    /* For when BUG is null */
1048}
1049
1050EXPORT_SYMBOL_GPL(do_exit);
1051
1052NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1053{
1054        if (comp)
1055                complete(comp);
1056
1057        do_exit(code);
1058}
1059
1060EXPORT_SYMBOL(complete_and_exit);
1061
1062SYSCALL_DEFINE1(exit, int, error_code)
1063{
1064        do_exit((error_code&0xff)<<8);
1065}
1066
1067/*
1068 * Take down every thread in the group.  This is called by fatal signals
1069 * as well as by sys_exit_group (below).
1070 */
1071NORET_TYPE void
1072do_group_exit(int exit_code)
1073{
1074        struct signal_struct *sig = current->signal;
1075
1076        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1077
1078        if (signal_group_exit(sig))
1079                exit_code = sig->group_exit_code;
1080        else if (!thread_group_empty(current)) {
1081                struct sighand_struct *const sighand = current->sighand;
1082                spin_lock_irq(&sighand->siglock);
1083                if (signal_group_exit(sig))
1084                        /* Another thread got here before we took the lock.  */
1085                        exit_code = sig->group_exit_code;
1086                else {
1087                        sig->group_exit_code = exit_code;
1088                        sig->flags = SIGNAL_GROUP_EXIT;
1089                        zap_other_threads(current);
1090                }
1091                spin_unlock_irq(&sighand->siglock);
1092        }
1093
1094        do_exit(exit_code);
1095        /* NOTREACHED */
1096}
1097
1098/*
1099 * this kills every thread in the thread group. Note that any externally
1100 * wait4()-ing process will get the correct exit code - even if this
1101 * thread is not the thread group leader.
1102 */
1103SYSCALL_DEFINE1(exit_group, int, error_code)
1104{
1105        do_group_exit((error_code & 0xff) << 8);
1106        /* NOTREACHED */
1107        return 0;
1108}
1109
1110struct wait_opts {
1111        enum pid_type           wo_type;
1112        int                     wo_flags;
1113        struct pid              *wo_pid;
1114
1115        struct siginfo __user   *wo_info;
1116        int __user              *wo_stat;
1117        struct rusage __user    *wo_rusage;
1118
1119        wait_queue_t            child_wait;
1120        int                     notask_error;
1121};
1122
1123static inline
1124struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1125{
1126        if (type != PIDTYPE_PID)
1127                task = task->group_leader;
1128        return task->pids[type].pid;
1129}
1130
1131static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1132{
1133        return  wo->wo_type == PIDTYPE_MAX ||
1134                task_pid_type(p, wo->wo_type) == wo->wo_pid;
1135}
1136
1137static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1138{
1139        if (!eligible_pid(wo, p))
1140                return 0;
1141        /* Wait for all children (clone and not) if __WALL is set;
1142         * otherwise, wait for clone children *only* if __WCLONE is
1143         * set; otherwise, wait for non-clone children *only*.  (Note:
1144         * A "clone" child here is one that reports to its parent
1145         * using a signal other than SIGCHLD.) */
1146        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1147            && !(wo->wo_flags & __WALL))
1148                return 0;
1149
1150        return 1;
1151}
1152
1153static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1154                                pid_t pid, uid_t uid, int why, int status)
1155{
1156        struct siginfo __user *infop;
1157        int retval = wo->wo_rusage
1158                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1159
1160        put_task_struct(p);
1161        infop = wo->wo_info;
1162        if (infop) {
1163                if (!retval)
1164                        retval = put_user(SIGCHLD, &infop->si_signo);
1165                if (!retval)
1166                        retval = put_user(0, &infop->si_errno);
1167                if (!retval)
1168                        retval = put_user((short)why, &infop->si_code);
1169                if (!retval)
1170                        retval = put_user(pid, &infop->si_pid);
1171                if (!retval)
1172                        retval = put_user(uid, &infop->si_uid);
1173                if (!retval)
1174                        retval = put_user(status, &infop->si_status);
1175        }
1176        if (!retval)
1177                retval = pid;
1178        return retval;
1179}
1180
1181/*
1182 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1183 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1184 * the lock and this task is uninteresting.  If we return nonzero, we have
1185 * released the lock and the system call should return.
1186 */
1187static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1188{
1189        unsigned long state;
1190        int retval, status, traced;
1191        pid_t pid = task_pid_vnr(p);
1192        uid_t uid = __task_cred(p)->uid;
1193        struct siginfo __user *infop;
1194
1195        if (!likely(wo->wo_flags & WEXITED))
1196                return 0;
1197
1198        if (unlikely(wo->wo_flags & WNOWAIT)) {
1199                int exit_code = p->exit_code;
1200                int why;
1201
1202                get_task_struct(p);
1203                read_unlock(&tasklist_lock);
1204                if ((exit_code & 0x7f) == 0) {
1205                        why = CLD_EXITED;
1206                        status = exit_code >> 8;
1207                } else {
1208                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1209                        status = exit_code & 0x7f;
1210                }
1211                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1212        }
1213
1214        /*
1215         * Try to move the task's state to DEAD
1216         * only one thread is allowed to do this:
1217         */
1218        state = xchg(&p->exit_state, EXIT_DEAD);
1219        if (state != EXIT_ZOMBIE) {
1220                BUG_ON(state != EXIT_DEAD);
1221                return 0;
1222        }
1223
1224        traced = ptrace_reparented(p);
1225        /*
1226         * It can be ptraced but not reparented, check
1227         * thread_group_leader() to filter out sub-threads.
1228         */
1229        if (likely(!traced) && thread_group_leader(p)) {
1230                struct signal_struct *psig;
1231                struct signal_struct *sig;
1232                unsigned long maxrss;
1233                cputime_t tgutime, tgstime;
1234
1235                /*
1236                 * The resource counters for the group leader are in its
1237                 * own task_struct.  Those for dead threads in the group
1238                 * are in its signal_struct, as are those for the child
1239                 * processes it has previously reaped.  All these
1240                 * accumulate in the parent's signal_struct c* fields.
1241                 *
1242                 * We don't bother to take a lock here to protect these
1243                 * p->signal fields, because they are only touched by
1244                 * __exit_signal, which runs with tasklist_lock
1245                 * write-locked anyway, and so is excluded here.  We do
1246                 * need to protect the access to parent->signal fields,
1247                 * as other threads in the parent group can be right
1248                 * here reaping other children at the same time.
1249                 *
1250                 * We use thread_group_times() to get times for the thread
1251                 * group, which consolidates times for all threads in the
1252                 * group including the group leader.
1253                 */
1254                thread_group_times(p, &tgutime, &tgstime);
1255                spin_lock_irq(&p->real_parent->sighand->siglock);
1256                psig = p->real_parent->signal;
1257                sig = p->signal;
1258                psig->cutime =
1259                        cputime_add(psig->cutime,
1260                        cputime_add(tgutime,
1261                                    sig->cutime));
1262                psig->cstime =
1263                        cputime_add(psig->cstime,
1264                        cputime_add(tgstime,
1265                                    sig->cstime));
1266                psig->cgtime =
1267                        cputime_add(psig->cgtime,
1268                        cputime_add(p->gtime,
1269                        cputime_add(sig->gtime,
1270                                    sig->cgtime)));
1271                psig->cmin_flt +=
1272                        p->min_flt + sig->min_flt + sig->cmin_flt;
1273                psig->cmaj_flt +=
1274                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1275                psig->cnvcsw +=
1276                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1277                psig->cnivcsw +=
1278                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1279                psig->cinblock +=
1280                        task_io_get_inblock(p) +
1281                        sig->inblock + sig->cinblock;
1282                psig->coublock +=
1283                        task_io_get_oublock(p) +
1284                        sig->oublock + sig->coublock;
1285                maxrss = max(sig->maxrss, sig->cmaxrss);
1286                if (psig->cmaxrss < maxrss)
1287                        psig->cmaxrss = maxrss;
1288                task_io_accounting_add(&psig->ioac, &p->ioac);
1289                task_io_accounting_add(&psig->ioac, &sig->ioac);
1290                spin_unlock_irq(&p->real_parent->sighand->siglock);
1291        }
1292
1293        /*
1294         * Now we are sure this task is interesting, and no other
1295         * thread can reap it because we set its state to EXIT_DEAD.
1296         */
1297        read_unlock(&tasklist_lock);
1298
1299        retval = wo->wo_rusage
1300                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1301        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1302                ? p->signal->group_exit_code : p->exit_code;
1303        if (!retval && wo->wo_stat)
1304                retval = put_user(status, wo->wo_stat);
1305
1306        infop = wo->wo_info;
1307        if (!retval && infop)
1308                retval = put_user(SIGCHLD, &infop->si_signo);
1309        if (!retval && infop)
1310                retval = put_user(0, &infop->si_errno);
1311        if (!retval && infop) {
1312                int why;
1313
1314                if ((status & 0x7f) == 0) {
1315                        why = CLD_EXITED;
1316                        status >>= 8;
1317                } else {
1318                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1319                        status &= 0x7f;
1320                }
1321                retval = put_user((short)why, &infop->si_code);
1322                if (!retval)
1323                        retval = put_user(status, &infop->si_status);
1324        }
1325        if (!retval && infop)
1326                retval = put_user(pid, &infop->si_pid);
1327        if (!retval && infop)
1328                retval = put_user(uid, &infop->si_uid);
1329        if (!retval)
1330                retval = pid;
1331
1332        if (traced) {
1333                write_lock_irq(&tasklist_lock);
1334                /* We dropped tasklist, ptracer could die and untrace */
1335                ptrace_unlink(p);
1336                /*
1337                 * If this is not a sub-thread, notify the parent.
1338                 * If parent wants a zombie, don't release it now.
1339                 */
1340                if (thread_group_leader(p) &&
1341                    !do_notify_parent(p, p->exit_signal)) {
1342                        p->exit_state = EXIT_ZOMBIE;
1343                        p = NULL;
1344                }
1345                write_unlock_irq(&tasklist_lock);
1346        }
1347        if (p != NULL)
1348                release_task(p);
1349
1350        return retval;
1351}
1352
1353static int *task_stopped_code(struct task_struct *p, bool ptrace)
1354{
1355        if (ptrace) {
1356                if (task_is_stopped_or_traced(p) &&
1357                    !(p->jobctl & JOBCTL_LISTENING))
1358                        return &p->exit_code;
1359        } else {
1360                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1361                        return &p->signal->group_exit_code;
1362        }
1363        return NULL;
1364}
1365
1366/**
1367 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1368 * @wo: wait options
1369 * @ptrace: is the wait for ptrace
1370 * @p: task to wait for
1371 *
1372 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1373 *
1374 * CONTEXT:
1375 * read_lock(&tasklist_lock), which is released if return value is
1376 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1377 *
1378 * RETURNS:
1379 * 0 if wait condition didn't exist and search for other wait conditions
1380 * should continue.  Non-zero return, -errno on failure and @p's pid on
1381 * success, implies that tasklist_lock is released and wait condition
1382 * search should terminate.
1383 */
1384static int wait_task_stopped(struct wait_opts *wo,
1385                                int ptrace, struct task_struct *p)
1386{
1387        struct siginfo __user *infop;
1388        int retval, exit_code, *p_code, why;
1389        uid_t uid = 0; /* unneeded, required by compiler */
1390        pid_t pid;
1391
1392        /*
1393         * Traditionally we see ptrace'd stopped tasks regardless of options.
1394         */
1395        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1396                return 0;
1397
1398        if (!task_stopped_code(p, ptrace))
1399                return 0;
1400
1401        exit_code = 0;
1402        spin_lock_irq(&p->sighand->siglock);
1403
1404        p_code = task_stopped_code(p, ptrace);
1405        if (unlikely(!p_code))
1406                goto unlock_sig;
1407
1408        exit_code = *p_code;
1409        if (!exit_code)
1410                goto unlock_sig;
1411
1412        if (!unlikely(wo->wo_flags & WNOWAIT))
1413                *p_code = 0;
1414
1415        uid = task_uid(p);
1416unlock_sig:
1417        spin_unlock_irq(&p->sighand->siglock);
1418        if (!exit_code)
1419                return 0;
1420
1421        /*
1422         * Now we are pretty sure this task is interesting.
1423         * Make sure it doesn't get reaped out from under us while we
1424         * give up the lock and then examine it below.  We don't want to
1425         * keep holding onto the tasklist_lock while we call getrusage and
1426         * possibly take page faults for user memory.
1427         */
1428        get_task_struct(p);
1429        pid = task_pid_vnr(p);
1430        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1431        read_unlock(&tasklist_lock);
1432
1433        if (unlikely(wo->wo_flags & WNOWAIT))
1434                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1435
1436        retval = wo->wo_rusage
1437                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1438        if (!retval && wo->wo_stat)
1439                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1440
1441        infop = wo->wo_info;
1442        if (!retval && infop)
1443                retval = put_user(SIGCHLD, &infop->si_signo);
1444        if (!retval && infop)
1445                retval = put_user(0, &infop->si_errno);
1446        if (!retval && infop)
1447                retval = put_user((short)why, &infop->si_code);
1448        if (!retval && infop)
1449                retval = put_user(exit_code, &infop->si_status);
1450        if (!retval && infop)
1451                retval = put_user(pid, &infop->si_pid);
1452        if (!retval && infop)
1453                retval = put_user(uid, &infop->si_uid);
1454        if (!retval)
1455                retval = pid;
1456        put_task_struct(p);
1457
1458        BUG_ON(!retval);
1459        return retval;
1460}
1461
1462/*
1463 * Handle do_wait work for one task in a live, non-stopped state.
1464 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1465 * the lock and this task is uninteresting.  If we return nonzero, we have
1466 * released the lock and the system call should return.
1467 */
1468static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1469{
1470        int retval;
1471        pid_t pid;
1472        uid_t uid;
1473
1474        if (!unlikely(wo->wo_flags & WCONTINUED))
1475                return 0;
1476
1477        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1478                return 0;
1479
1480        spin_lock_irq(&p->sighand->siglock);
1481        /* Re-check with the lock held.  */
1482        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1483                spin_unlock_irq(&p->sighand->siglock);
1484                return 0;
1485        }
1486        if (!unlikely(wo->wo_flags & WNOWAIT))
1487                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1488        uid = task_uid(p);
1489        spin_unlock_irq(&p->sighand->siglock);
1490
1491        pid = task_pid_vnr(p);
1492        get_task_struct(p);
1493        read_unlock(&tasklist_lock);
1494
1495        if (!wo->wo_info) {
1496                retval = wo->wo_rusage
1497                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1498                put_task_struct(p);
1499                if (!retval && wo->wo_stat)
1500                        retval = put_user(0xffff, wo->wo_stat);
1501                if (!retval)
1502                        retval = pid;
1503        } else {
1504                retval = wait_noreap_copyout(wo, p, pid, uid,
1505                                             CLD_CONTINUED, SIGCONT);
1506                BUG_ON(retval == 0);
1507        }
1508
1509        return retval;
1510}
1511
1512/*
1513 * Consider @p for a wait by @parent.
1514 *
1515 * -ECHILD should be in ->notask_error before the first call.
1516 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1517 * Returns zero if the search for a child should continue;
1518 * then ->notask_error is 0 if @p is an eligible child,
1519 * or another error from security_task_wait(), or still -ECHILD.
1520 */
1521static int wait_consider_task(struct wait_opts *wo, int ptrace,
1522                                struct task_struct *p)
1523{
1524        int ret = eligible_child(wo, p);
1525        if (!ret)
1526                return ret;
1527
1528        ret = security_task_wait(p);
1529        if (unlikely(ret < 0)) {
1530                /*
1531                 * If we have not yet seen any eligible child,
1532                 * then let this error code replace -ECHILD.
1533                 * A permission error will give the user a clue
1534                 * to look for security policy problems, rather
1535                 * than for mysterious wait bugs.
1536                 */
1537                if (wo->notask_error)
1538                        wo->notask_error = ret;
1539                return 0;
1540        }
1541
1542        /* dead body doesn't have much to contribute */
1543        if (unlikely(p->exit_state == EXIT_DEAD)) {
1544                /*
1545                 * But do not ignore this task until the tracer does
1546                 * wait_task_zombie()->do_notify_parent().
1547                 */
1548                if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1549                        wo->notask_error = 0;
1550                return 0;
1551        }
1552
1553        /* slay zombie? */
1554        if (p->exit_state == EXIT_ZOMBIE) {
1555                /*
1556                 * A zombie ptracee is only visible to its ptracer.
1557                 * Notification and reaping will be cascaded to the real
1558                 * parent when the ptracer detaches.
1559                 */
1560                if (likely(!ptrace) && unlikely(p->ptrace)) {
1561                        /* it will become visible, clear notask_error */
1562                        wo->notask_error = 0;
1563                        return 0;
1564                }
1565
1566                /* we don't reap group leaders with subthreads */
1567                if (!delay_group_leader(p))
1568                        return wait_task_zombie(wo, p);
1569
1570                /*
1571                 * Allow access to stopped/continued state via zombie by
1572                 * falling through.  Clearing of notask_error is complex.
1573                 *
1574                 * When !@ptrace:
1575                 *
1576                 * If WEXITED is set, notask_error should naturally be
1577                 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1578                 * so, if there are live subthreads, there are events to
1579                 * wait for.  If all subthreads are dead, it's still safe
1580                 * to clear - this function will be called again in finite
1581                 * amount time once all the subthreads are released and
1582                 * will then return without clearing.
1583                 *
1584                 * When @ptrace:
1585                 *
1586                 * Stopped state is per-task and thus can't change once the
1587                 * target task dies.  Only continued and exited can happen.
1588                 * Clear notask_error if WCONTINUED | WEXITED.
1589                 */
1590                if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1591                        wo->notask_error = 0;
1592        } else {
1593                /*
1594                 * If @p is ptraced by a task in its real parent's group,
1595                 * hide group stop/continued state when looking at @p as
1596                 * the real parent; otherwise, a single stop can be
1597                 * reported twice as group and ptrace stops.
1598                 *
1599                 * If a ptracer wants to distinguish the two events for its
1600                 * own children, it should create a separate process which
1601                 * takes the role of real parent.
1602                 */
1603                if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1604                        return 0;
1605
1606                /*
1607                 * @p is alive and it's gonna stop, continue or exit, so
1608                 * there always is something to wait for.
1609                 */
1610                wo->notask_error = 0;
1611        }
1612
1613        /*
1614         * Wait for stopped.  Depending on @ptrace, different stopped state
1615         * is used and the two don't interact with each other.
1616         */
1617        ret = wait_task_stopped(wo, ptrace, p);
1618        if (ret)
1619                return ret;
1620
1621        /*
1622         * Wait for continued.  There's only one continued state and the
1623         * ptracer can consume it which can confuse the real parent.  Don't
1624         * use WCONTINUED from ptracer.  You don't need or want it.
1625         */
1626        return wait_task_continued(wo, p);
1627}
1628
1629/*
1630 * Do the work of do_wait() for one thread in the group, @tsk.
1631 *
1632 * -ECHILD should be in ->notask_error before the first call.
1633 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1634 * Returns zero if the search for a child should continue; then
1635 * ->notask_error is 0 if there were any eligible children,
1636 * or another error from security_task_wait(), or still -ECHILD.
1637 */
1638static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1639{
1640        struct task_struct *p;
1641
1642        list_for_each_entry(p, &tsk->children, sibling) {
1643                int ret = wait_consider_task(wo, 0, p);
1644                if (ret)
1645                        return ret;
1646        }
1647
1648        return 0;
1649}
1650
1651static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1652{
1653        struct task_struct *p;
1654
1655        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1656                int ret = wait_consider_task(wo, 1, p);
1657                if (ret)
1658                        return ret;
1659        }
1660
1661        return 0;
1662}
1663
1664static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1665                                int sync, void *key)
1666{
1667        struct wait_opts *wo = container_of(wait, struct wait_opts,
1668                                                child_wait);
1669        struct task_struct *p = key;
1670
1671        if (!eligible_pid(wo, p))
1672                return 0;
1673
1674        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1675                return 0;
1676
1677        return default_wake_function(wait, mode, sync, key);
1678}
1679
1680void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1681{
1682        __wake_up_sync_key(&parent->signal->wait_chldexit,
1683                                TASK_INTERRUPTIBLE, 1, p);
1684}
1685
1686static long do_wait(struct wait_opts *wo)
1687{
1688        struct task_struct *tsk;
1689        int retval;
1690
1691        trace_sched_process_wait(wo->wo_pid);
1692
1693        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1694        wo->child_wait.private = current;
1695        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1696repeat:
1697        /*
1698         * If there is nothing that can match our critiera just get out.
1699         * We will clear ->notask_error to zero if we see any child that
1700         * might later match our criteria, even if we are not able to reap
1701         * it yet.
1702         */
1703        wo->notask_error = -ECHILD;
1704        if ((wo->wo_type < PIDTYPE_MAX) &&
1705           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1706                goto notask;
1707
1708        set_current_state(TASK_INTERRUPTIBLE);
1709        read_lock(&tasklist_lock);
1710        tsk = current;
1711        do {
1712                retval = do_wait_thread(wo, tsk);
1713                if (retval)
1714                        goto end;
1715
1716                retval = ptrace_do_wait(wo, tsk);
1717                if (retval)
1718                        goto end;
1719
1720                if (wo->wo_flags & __WNOTHREAD)
1721                        break;
1722        } while_each_thread(current, tsk);
1723        read_unlock(&tasklist_lock);
1724
1725notask:
1726        retval = wo->notask_error;
1727        if (!retval && !(wo->wo_flags & WNOHANG)) {
1728                retval = -ERESTARTSYS;
1729                if (!signal_pending(current)) {
1730                        schedule();
1731                        goto repeat;
1732                }
1733        }
1734end:
1735        __set_current_state(TASK_RUNNING);
1736        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1737        return retval;
1738}
1739
1740SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1741                infop, int, options, struct rusage __user *, ru)
1742{
1743        struct wait_opts wo;
1744        struct pid *pid = NULL;
1745        enum pid_type type;
1746        long ret;
1747
1748        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1749                return -EINVAL;
1750        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1751                return -EINVAL;
1752
1753        switch (which) {
1754        case P_ALL:
1755                type = PIDTYPE_MAX;
1756                break;
1757        case P_PID:
1758                type = PIDTYPE_PID;
1759                if (upid <= 0)
1760                        return -EINVAL;
1761                break;
1762        case P_PGID:
1763                type = PIDTYPE_PGID;
1764                if (upid <= 0)
1765                        return -EINVAL;
1766                break;
1767        default:
1768                return -EINVAL;
1769        }
1770
1771        if (type < PIDTYPE_MAX)
1772                pid = find_get_pid(upid);
1773
1774        wo.wo_type      = type;
1775        wo.wo_pid       = pid;
1776        wo.wo_flags     = options;
1777        wo.wo_info      = infop;
1778        wo.wo_stat      = NULL;
1779        wo.wo_rusage    = ru;
1780        ret = do_wait(&wo);
1781
1782        if (ret > 0) {
1783                ret = 0;
1784        } else if (infop) {
1785                /*
1786                 * For a WNOHANG return, clear out all the fields
1787                 * we would set so the user can easily tell the
1788                 * difference.
1789                 */
1790                if (!ret)
1791                        ret = put_user(0, &infop->si_signo);
1792                if (!ret)
1793                        ret = put_user(0, &infop->si_errno);
1794                if (!ret)
1795                        ret = put_user(0, &infop->si_code);
1796                if (!ret)
1797                        ret = put_user(0, &infop->si_pid);
1798                if (!ret)
1799                        ret = put_user(0, &infop->si_uid);
1800                if (!ret)
1801                        ret = put_user(0, &infop->si_status);
1802        }
1803
1804        put_pid(pid);
1805
1806        /* avoid REGPARM breakage on x86: */
1807        asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1808        return ret;
1809}
1810
1811SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1812                int, options, struct rusage __user *, ru)
1813{
1814        struct wait_opts wo;
1815        struct pid *pid = NULL;
1816        enum pid_type type;
1817        long ret;
1818
1819        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1820                        __WNOTHREAD|__WCLONE|__WALL))
1821                return -EINVAL;
1822
1823        if (upid == -1)
1824                type = PIDTYPE_MAX;
1825        else if (upid < 0) {
1826                type = PIDTYPE_PGID;
1827                pid = find_get_pid(-upid);
1828        } else if (upid == 0) {
1829                type = PIDTYPE_PGID;
1830                pid = get_task_pid(current, PIDTYPE_PGID);
1831        } else /* upid > 0 */ {
1832                type = PIDTYPE_PID;
1833                pid = find_get_pid(upid);
1834        }
1835
1836        wo.wo_type      = type;
1837        wo.wo_pid       = pid;
1838        wo.wo_flags     = options | WEXITED;
1839        wo.wo_info      = NULL;
1840        wo.wo_stat      = stat_addr;
1841        wo.wo_rusage    = ru;
1842        ret = do_wait(&wo);
1843        put_pid(pid);
1844
1845        /* avoid REGPARM breakage on x86: */
1846        asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1847        return ret;
1848}
1849
1850#ifdef __ARCH_WANT_SYS_WAITPID
1851
1852/*
1853 * sys_waitpid() remains for compatibility. waitpid() should be
1854 * implemented by calling sys_wait4() from libc.a.
1855 */
1856SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1857{
1858        return sys_wait4(pid, stat_addr, options, NULL);
1859}
1860
1861#endif
1862