1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34#include <linux/cpu.h>
35#include <linux/export.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/tick.h>
43#include <linux/seq_file.h>
44#include <linux/err.h>
45#include <linux/debugobjects.h>
46#include <linux/sched.h>
47#include <linux/timer.h>
48
49#include <asm/uaccess.h>
50
51#include <trace/events/timer.h>
52
53
54
55
56
57
58
59
60
61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62{
63
64 .clock_base =
65 {
66 {
67 .index = HRTIMER_BASE_MONOTONIC,
68 .clockid = CLOCK_MONOTONIC,
69 .get_time = &ktime_get,
70 .resolution = KTIME_LOW_RES,
71 },
72 {
73 .index = HRTIMER_BASE_REALTIME,
74 .clockid = CLOCK_REALTIME,
75 .get_time = &ktime_get_real,
76 .resolution = KTIME_LOW_RES,
77 },
78 {
79 .index = HRTIMER_BASE_BOOTTIME,
80 .clockid = CLOCK_BOOTTIME,
81 .get_time = &ktime_get_boottime,
82 .resolution = KTIME_LOW_RES,
83 },
84 }
85};
86
87static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
88 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
89 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
90 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
91};
92
93static inline int hrtimer_clockid_to_base(clockid_t clock_id)
94{
95 return hrtimer_clock_to_base_table[clock_id];
96}
97
98
99
100
101
102
103static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
104{
105 ktime_t xtim, mono, boot;
106 struct timespec xts, tom, slp;
107
108 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
109
110 xtim = timespec_to_ktime(xts);
111 mono = ktime_add(xtim, timespec_to_ktime(tom));
112 boot = ktime_add(mono, timespec_to_ktime(slp));
113 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
114 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
115 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
116}
117
118
119
120
121
122#ifdef CONFIG_SMP
123
124
125
126
127
128
129
130
131
132
133
134
135
136static
137struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 unsigned long *flags)
139{
140 struct hrtimer_clock_base *base;
141
142 for (;;) {
143 base = timer->base;
144 if (likely(base != NULL)) {
145 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 if (likely(base == timer->base))
147 return base;
148
149 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 }
151 cpu_relax();
152 }
153}
154
155
156
157
158
159static int hrtimer_get_target(int this_cpu, int pinned)
160{
161#ifdef CONFIG_NO_HZ
162 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
163 return get_nohz_timer_target();
164#endif
165 return this_cpu;
166}
167
168
169
170
171
172
173
174
175static int
176hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
177{
178#ifdef CONFIG_HIGH_RES_TIMERS
179 ktime_t expires;
180
181 if (!new_base->cpu_base->hres_active)
182 return 0;
183
184 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
185 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
186#else
187 return 0;
188#endif
189}
190
191
192
193
194static inline struct hrtimer_clock_base *
195switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
196 int pinned)
197{
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
200 int this_cpu = smp_processor_id();
201 int cpu = hrtimer_get_target(this_cpu, pinned);
202 int basenum = base->index;
203
204again:
205 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206 new_base = &new_cpu_base->clock_base[basenum];
207
208 if (base != new_base) {
209
210
211
212
213
214
215
216
217
218 if (unlikely(hrtimer_callback_running(timer)))
219 return base;
220
221
222 timer->base = NULL;
223 raw_spin_unlock(&base->cpu_base->lock);
224 raw_spin_lock(&new_base->cpu_base->lock);
225
226 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
227 cpu = this_cpu;
228 raw_spin_unlock(&new_base->cpu_base->lock);
229 raw_spin_lock(&base->cpu_base->lock);
230 timer->base = base;
231 goto again;
232 }
233 timer->base = new_base;
234 }
235 return new_base;
236}
237
238#else
239
240static inline struct hrtimer_clock_base *
241lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242{
243 struct hrtimer_clock_base *base = timer->base;
244
245 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
246
247 return base;
248}
249
250# define switch_hrtimer_base(t, b, p) (b)
251
252#endif
253
254
255
256
257
258#if BITS_PER_LONG < 64
259# ifndef CONFIG_KTIME_SCALAR
260
261
262
263
264
265
266
267ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
268{
269 ktime_t tmp;
270
271 if (likely(nsec < NSEC_PER_SEC)) {
272 tmp.tv64 = nsec;
273 } else {
274 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275
276 tmp = ktime_set((long)nsec, rem);
277 }
278
279 return ktime_add(kt, tmp);
280}
281
282EXPORT_SYMBOL_GPL(ktime_add_ns);
283
284
285
286
287
288
289
290
291ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
292{
293 ktime_t tmp;
294
295 if (likely(nsec < NSEC_PER_SEC)) {
296 tmp.tv64 = nsec;
297 } else {
298 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
299
300 tmp = ktime_set((long)nsec, rem);
301 }
302
303 return ktime_sub(kt, tmp);
304}
305
306EXPORT_SYMBOL_GPL(ktime_sub_ns);
307# endif
308
309
310
311
312u64 ktime_divns(const ktime_t kt, s64 div)
313{
314 u64 dclc;
315 int sft = 0;
316
317 dclc = ktime_to_ns(kt);
318
319 while (div >> 32) {
320 sft++;
321 div >>= 1;
322 }
323 dclc >>= sft;
324 do_div(dclc, (unsigned long) div);
325
326 return dclc;
327}
328#endif
329
330
331
332
333ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
334{
335 ktime_t res = ktime_add(lhs, rhs);
336
337
338
339
340
341 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
342 res = ktime_set(KTIME_SEC_MAX, 0);
343
344 return res;
345}
346
347EXPORT_SYMBOL_GPL(ktime_add_safe);
348
349#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
350
351static struct debug_obj_descr hrtimer_debug_descr;
352
353static void *hrtimer_debug_hint(void *addr)
354{
355 return ((struct hrtimer *) addr)->function;
356}
357
358
359
360
361
362static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
363{
364 struct hrtimer *timer = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 hrtimer_cancel(timer);
369 debug_object_init(timer, &hrtimer_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374}
375
376
377
378
379
380
381static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
382{
383 switch (state) {
384
385 case ODEBUG_STATE_NOTAVAILABLE:
386 WARN_ON_ONCE(1);
387 return 0;
388
389 case ODEBUG_STATE_ACTIVE:
390 WARN_ON(1);
391
392 default:
393 return 0;
394 }
395}
396
397
398
399
400
401static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
402{
403 struct hrtimer *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 hrtimer_cancel(timer);
408 debug_object_free(timer, &hrtimer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413}
414
415static struct debug_obj_descr hrtimer_debug_descr = {
416 .name = "hrtimer",
417 .debug_hint = hrtimer_debug_hint,
418 .fixup_init = hrtimer_fixup_init,
419 .fixup_activate = hrtimer_fixup_activate,
420 .fixup_free = hrtimer_fixup_free,
421};
422
423static inline void debug_hrtimer_init(struct hrtimer *timer)
424{
425 debug_object_init(timer, &hrtimer_debug_descr);
426}
427
428static inline void debug_hrtimer_activate(struct hrtimer *timer)
429{
430 debug_object_activate(timer, &hrtimer_debug_descr);
431}
432
433static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
434{
435 debug_object_deactivate(timer, &hrtimer_debug_descr);
436}
437
438static inline void debug_hrtimer_free(struct hrtimer *timer)
439{
440 debug_object_free(timer, &hrtimer_debug_descr);
441}
442
443static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
444 enum hrtimer_mode mode);
445
446void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
447 enum hrtimer_mode mode)
448{
449 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
450 __hrtimer_init(timer, clock_id, mode);
451}
452EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
453
454void destroy_hrtimer_on_stack(struct hrtimer *timer)
455{
456 debug_object_free(timer, &hrtimer_debug_descr);
457}
458
459#else
460static inline void debug_hrtimer_init(struct hrtimer *timer) { }
461static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463#endif
464
465static inline void
466debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468{
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471}
472
473static inline void debug_activate(struct hrtimer *timer)
474{
475 debug_hrtimer_activate(timer);
476 trace_hrtimer_start(timer);
477}
478
479static inline void debug_deactivate(struct hrtimer *timer)
480{
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
483}
484
485
486#ifdef CONFIG_HIGH_RES_TIMERS
487
488
489
490
491static int hrtimer_hres_enabled __read_mostly = 1;
492
493
494
495
496static int __init setup_hrtimer_hres(char *str)
497{
498 if (!strcmp(str, "off"))
499 hrtimer_hres_enabled = 0;
500 else if (!strcmp(str, "on"))
501 hrtimer_hres_enabled = 1;
502 else
503 return 0;
504 return 1;
505}
506
507__setup("highres=", setup_hrtimer_hres);
508
509
510
511
512static inline int hrtimer_is_hres_enabled(void)
513{
514 return hrtimer_hres_enabled;
515}
516
517
518
519
520static inline int hrtimer_hres_active(void)
521{
522 return __this_cpu_read(hrtimer_bases.hres_active);
523}
524
525
526
527
528
529
530static void
531hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
532{
533 int i;
534 struct hrtimer_clock_base *base = cpu_base->clock_base;
535 ktime_t expires, expires_next;
536
537 expires_next.tv64 = KTIME_MAX;
538
539 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
540 struct hrtimer *timer;
541 struct timerqueue_node *next;
542
543 next = timerqueue_getnext(&base->active);
544 if (!next)
545 continue;
546 timer = container_of(next, struct hrtimer, node);
547
548 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549
550
551
552
553
554 if (expires.tv64 < 0)
555 expires.tv64 = 0;
556 if (expires.tv64 < expires_next.tv64)
557 expires_next = expires;
558 }
559
560 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
561 return;
562
563 cpu_base->expires_next.tv64 = expires_next.tv64;
564
565 if (cpu_base->expires_next.tv64 != KTIME_MAX)
566 tick_program_event(cpu_base->expires_next, 1);
567}
568
569
570
571
572
573
574
575
576
577
578static int hrtimer_reprogram(struct hrtimer *timer,
579 struct hrtimer_clock_base *base)
580{
581 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
582 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
583 int res;
584
585 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
586
587
588
589
590
591
592
593
594 if (hrtimer_callback_running(timer))
595 return 0;
596
597
598
599
600
601
602
603 if (expires.tv64 < 0)
604 return -ETIME;
605
606 if (expires.tv64 >= cpu_base->expires_next.tv64)
607 return 0;
608
609
610
611
612
613
614
615 if (cpu_base->hang_detected)
616 return 0;
617
618
619
620
621 res = tick_program_event(expires, 0);
622 if (!IS_ERR_VALUE(res))
623 cpu_base->expires_next = expires;
624 return res;
625}
626
627
628
629
630static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
631{
632 base->expires_next.tv64 = KTIME_MAX;
633 base->hres_active = 0;
634}
635
636
637
638
639
640
641
642static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643 struct hrtimer_clock_base *base,
644 int wakeup)
645{
646 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
647 if (wakeup) {
648 raw_spin_unlock(&base->cpu_base->lock);
649 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650 raw_spin_lock(&base->cpu_base->lock);
651 } else
652 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
653
654 return 1;
655 }
656
657 return 0;
658}
659
660
661
662
663
664
665static void retrigger_next_event(void *arg)
666{
667 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
668 struct timespec realtime_offset, xtim, wtm, sleep;
669
670 if (!hrtimer_hres_active())
671 return;
672
673
674 get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
675 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
676
677
678 raw_spin_lock(&base->lock);
679 base->clock_base[HRTIMER_BASE_REALTIME].offset =
680 timespec_to_ktime(realtime_offset);
681 base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
682 timespec_to_ktime(sleep);
683
684 hrtimer_force_reprogram(base, 0);
685 raw_spin_unlock(&base->lock);
686}
687
688
689
690
691static int hrtimer_switch_to_hres(void)
692{
693 int i, cpu = smp_processor_id();
694 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
695 unsigned long flags;
696
697 if (base->hres_active)
698 return 1;
699
700 local_irq_save(flags);
701
702 if (tick_init_highres()) {
703 local_irq_restore(flags);
704 printk(KERN_WARNING "Could not switch to high resolution "
705 "mode on CPU %d\n", cpu);
706 return 0;
707 }
708 base->hres_active = 1;
709 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
710 base->clock_base[i].resolution = KTIME_HIGH_RES;
711
712 tick_setup_sched_timer();
713
714
715 retrigger_next_event(NULL);
716 local_irq_restore(flags);
717 return 1;
718}
719
720#else
721
722static inline int hrtimer_hres_active(void) { return 0; }
723static inline int hrtimer_is_hres_enabled(void) { return 0; }
724static inline int hrtimer_switch_to_hres(void) { return 0; }
725static inline void
726hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
727static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
728 struct hrtimer_clock_base *base,
729 int wakeup)
730{
731 return 0;
732}
733static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
734static inline void retrigger_next_event(void *arg) { }
735
736#endif
737
738
739
740
741
742
743
744
745
746
747
748
749void clock_was_set(void)
750{
751#ifdef CONFIG_HIGH_RES_TIMERS
752
753 on_each_cpu(retrigger_next_event, NULL, 1);
754#endif
755 timerfd_clock_was_set();
756}
757
758
759
760
761
762void hrtimers_resume(void)
763{
764 WARN_ONCE(!irqs_disabled(),
765 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
766
767 retrigger_next_event(NULL);
768 timerfd_clock_was_set();
769}
770
771static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
772{
773#ifdef CONFIG_TIMER_STATS
774 if (timer->start_site)
775 return;
776 timer->start_site = __builtin_return_address(0);
777 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
778 timer->start_pid = current->pid;
779#endif
780}
781
782static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
783{
784#ifdef CONFIG_TIMER_STATS
785 timer->start_site = NULL;
786#endif
787}
788
789static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
790{
791#ifdef CONFIG_TIMER_STATS
792 if (likely(!timer_stats_active))
793 return;
794 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
795 timer->function, timer->start_comm, 0);
796#endif
797}
798
799
800
801
802static inline
803void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
804{
805 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
806}
807
808
809
810
811
812
813
814
815
816
817u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
818{
819 u64 orun = 1;
820 ktime_t delta;
821
822 delta = ktime_sub(now, hrtimer_get_expires(timer));
823
824 if (delta.tv64 < 0)
825 return 0;
826
827 if (interval.tv64 < timer->base->resolution.tv64)
828 interval.tv64 = timer->base->resolution.tv64;
829
830 if (unlikely(delta.tv64 >= interval.tv64)) {
831 s64 incr = ktime_to_ns(interval);
832
833 orun = ktime_divns(delta, incr);
834 hrtimer_add_expires_ns(timer, incr * orun);
835 if (hrtimer_get_expires_tv64(timer) > now.tv64)
836 return orun;
837
838
839
840
841 orun++;
842 }
843 hrtimer_add_expires(timer, interval);
844
845 return orun;
846}
847EXPORT_SYMBOL_GPL(hrtimer_forward);
848
849
850
851
852
853
854
855
856
857static int enqueue_hrtimer(struct hrtimer *timer,
858 struct hrtimer_clock_base *base)
859{
860 debug_activate(timer);
861
862 timerqueue_add(&base->active, &timer->node);
863 base->cpu_base->active_bases |= 1 << base->index;
864
865
866
867
868
869 timer->state |= HRTIMER_STATE_ENQUEUED;
870
871 return (&timer->node == base->active.next);
872}
873
874
875
876
877
878
879
880
881
882
883
884static void __remove_hrtimer(struct hrtimer *timer,
885 struct hrtimer_clock_base *base,
886 unsigned long newstate, int reprogram)
887{
888 struct timerqueue_node *next_timer;
889 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
890 goto out;
891
892 next_timer = timerqueue_getnext(&base->active);
893 timerqueue_del(&base->active, &timer->node);
894 if (&timer->node == next_timer) {
895#ifdef CONFIG_HIGH_RES_TIMERS
896
897 if (reprogram && hrtimer_hres_active()) {
898 ktime_t expires;
899
900 expires = ktime_sub(hrtimer_get_expires(timer),
901 base->offset);
902 if (base->cpu_base->expires_next.tv64 == expires.tv64)
903 hrtimer_force_reprogram(base->cpu_base, 1);
904 }
905#endif
906 }
907 if (!timerqueue_getnext(&base->active))
908 base->cpu_base->active_bases &= ~(1 << base->index);
909out:
910 timer->state = newstate;
911}
912
913
914
915
916static inline int
917remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
918{
919 if (hrtimer_is_queued(timer)) {
920 unsigned long state;
921 int reprogram;
922
923
924
925
926
927
928
929
930
931 debug_deactivate(timer);
932 timer_stats_hrtimer_clear_start_info(timer);
933 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
934
935
936
937
938
939 state = timer->state & HRTIMER_STATE_CALLBACK;
940 __remove_hrtimer(timer, base, state, reprogram);
941 return 1;
942 }
943 return 0;
944}
945
946int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
947 unsigned long delta_ns, const enum hrtimer_mode mode,
948 int wakeup)
949{
950 struct hrtimer_clock_base *base, *new_base;
951 unsigned long flags;
952 int ret, leftmost;
953
954 base = lock_hrtimer_base(timer, &flags);
955
956
957 ret = remove_hrtimer(timer, base);
958
959
960 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
961
962 if (mode & HRTIMER_MODE_REL) {
963 tim = ktime_add_safe(tim, new_base->get_time());
964
965
966
967
968
969
970
971#ifdef CONFIG_TIME_LOW_RES
972 tim = ktime_add_safe(tim, base->resolution);
973#endif
974 }
975
976 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
977
978 timer_stats_hrtimer_set_start_info(timer);
979
980 leftmost = enqueue_hrtimer(timer, new_base);
981
982
983
984
985
986
987
988 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
989 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
990
991 unlock_hrtimer_base(timer, &flags);
992
993 return ret;
994}
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1008 unsigned long delta_ns, const enum hrtimer_mode mode)
1009{
1010 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1011}
1012EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024int
1025hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026{
1027 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028}
1029EXPORT_SYMBOL_GPL(hrtimer_start);
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042int hrtimer_try_to_cancel(struct hrtimer *timer)
1043{
1044 struct hrtimer_clock_base *base;
1045 unsigned long flags;
1046 int ret = -1;
1047
1048 base = lock_hrtimer_base(timer, &flags);
1049
1050 if (!hrtimer_callback_running(timer))
1051 ret = remove_hrtimer(timer, base);
1052
1053 unlock_hrtimer_base(timer, &flags);
1054
1055 return ret;
1056
1057}
1058EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068int hrtimer_cancel(struct hrtimer *timer)
1069{
1070 for (;;) {
1071 int ret = hrtimer_try_to_cancel(timer);
1072
1073 if (ret >= 0)
1074 return ret;
1075 cpu_relax();
1076 }
1077}
1078EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079
1080
1081
1082
1083
1084ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085{
1086 unsigned long flags;
1087 ktime_t rem;
1088
1089 lock_hrtimer_base(timer, &flags);
1090 rem = hrtimer_expires_remaining(timer);
1091 unlock_hrtimer_base(timer, &flags);
1092
1093 return rem;
1094}
1095EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096
1097#ifdef CONFIG_NO_HZ
1098
1099
1100
1101
1102
1103
1104ktime_t hrtimer_get_next_event(void)
1105{
1106 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1107 struct hrtimer_clock_base *base = cpu_base->clock_base;
1108 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1109 unsigned long flags;
1110 int i;
1111
1112 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113
1114 if (!hrtimer_hres_active()) {
1115 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1116 struct hrtimer *timer;
1117 struct timerqueue_node *next;
1118
1119 next = timerqueue_getnext(&base->active);
1120 if (!next)
1121 continue;
1122
1123 timer = container_of(next, struct hrtimer, node);
1124 delta.tv64 = hrtimer_get_expires_tv64(timer);
1125 delta = ktime_sub(delta, base->get_time());
1126 if (delta.tv64 < mindelta.tv64)
1127 mindelta.tv64 = delta.tv64;
1128 }
1129 }
1130
1131 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133 if (mindelta.tv64 < 0)
1134 mindelta.tv64 = 0;
1135 return mindelta;
1136}
1137#endif
1138
1139static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 enum hrtimer_mode mode)
1141{
1142 struct hrtimer_cpu_base *cpu_base;
1143 int base;
1144
1145 memset(timer, 0, sizeof(struct hrtimer));
1146
1147 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1148
1149 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 clock_id = CLOCK_MONOTONIC;
1151
1152 base = hrtimer_clockid_to_base(clock_id);
1153 timer->base = &cpu_base->clock_base[base];
1154 timerqueue_init(&timer->node);
1155
1156#ifdef CONFIG_TIMER_STATS
1157 timer->start_site = NULL;
1158 timer->start_pid = -1;
1159 memset(timer->start_comm, 0, TASK_COMM_LEN);
1160#endif
1161}
1162
1163
1164
1165
1166
1167
1168
1169void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 enum hrtimer_mode mode)
1171{
1172 debug_init(timer, clock_id, mode);
1173 __hrtimer_init(timer, clock_id, mode);
1174}
1175EXPORT_SYMBOL_GPL(hrtimer_init);
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186{
1187 struct hrtimer_cpu_base *cpu_base;
1188 int base = hrtimer_clockid_to_base(which_clock);
1189
1190 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1191 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192
1193 return 0;
1194}
1195EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196
1197static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198{
1199 struct hrtimer_clock_base *base = timer->base;
1200 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 enum hrtimer_restart (*fn)(struct hrtimer *);
1202 int restart;
1203
1204 WARN_ON(!irqs_disabled());
1205
1206 debug_deactivate(timer);
1207 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 timer_stats_account_hrtimer(timer);
1209 fn = timer->function;
1210
1211
1212
1213
1214
1215
1216 raw_spin_unlock(&cpu_base->lock);
1217 trace_hrtimer_expire_entry(timer, now);
1218 restart = fn(timer);
1219 trace_hrtimer_expire_exit(timer);
1220 raw_spin_lock(&cpu_base->lock);
1221
1222
1223
1224
1225
1226
1227 if (restart != HRTIMER_NORESTART) {
1228 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 enqueue_hrtimer(timer, base);
1230 }
1231
1232 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233
1234 timer->state &= ~HRTIMER_STATE_CALLBACK;
1235}
1236
1237#ifdef CONFIG_HIGH_RES_TIMERS
1238
1239
1240
1241
1242
1243void hrtimer_interrupt(struct clock_event_device *dev)
1244{
1245 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246 ktime_t expires_next, now, entry_time, delta;
1247 int i, retries = 0;
1248
1249 BUG_ON(!cpu_base->hres_active);
1250 cpu_base->nr_events++;
1251 dev->next_event.tv64 = KTIME_MAX;
1252
1253 entry_time = now = ktime_get();
1254retry:
1255 expires_next.tv64 = KTIME_MAX;
1256
1257 raw_spin_lock(&cpu_base->lock);
1258
1259
1260
1261
1262
1263
1264
1265 cpu_base->expires_next.tv64 = KTIME_MAX;
1266
1267 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1268 struct hrtimer_clock_base *base;
1269 struct timerqueue_node *node;
1270 ktime_t basenow;
1271
1272 if (!(cpu_base->active_bases & (1 << i)))
1273 continue;
1274
1275 base = cpu_base->clock_base + i;
1276 basenow = ktime_add(now, base->offset);
1277
1278 while ((node = timerqueue_getnext(&base->active))) {
1279 struct hrtimer *timer;
1280
1281 timer = container_of(node, struct hrtimer, node);
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1297 ktime_t expires;
1298
1299 expires = ktime_sub(hrtimer_get_expires(timer),
1300 base->offset);
1301 if (expires.tv64 < expires_next.tv64)
1302 expires_next = expires;
1303 break;
1304 }
1305
1306 __run_hrtimer(timer, &basenow);
1307 }
1308 }
1309
1310
1311
1312
1313
1314 cpu_base->expires_next = expires_next;
1315 raw_spin_unlock(&cpu_base->lock);
1316
1317
1318 if (expires_next.tv64 == KTIME_MAX ||
1319 !tick_program_event(expires_next, 0)) {
1320 cpu_base->hang_detected = 0;
1321 return;
1322 }
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334 now = ktime_get();
1335 cpu_base->nr_retries++;
1336 if (++retries < 3)
1337 goto retry;
1338
1339
1340
1341
1342
1343
1344 cpu_base->nr_hangs++;
1345 cpu_base->hang_detected = 1;
1346 delta = ktime_sub(now, entry_time);
1347 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1348 cpu_base->max_hang_time = delta;
1349
1350
1351
1352
1353 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1354 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1355 else
1356 expires_next = ktime_add(now, delta);
1357 tick_program_event(expires_next, 1);
1358 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1359 ktime_to_ns(delta));
1360}
1361
1362
1363
1364
1365
1366static void __hrtimer_peek_ahead_timers(void)
1367{
1368 struct tick_device *td;
1369
1370 if (!hrtimer_hres_active())
1371 return;
1372
1373 td = &__get_cpu_var(tick_cpu_device);
1374 if (td && td->evtdev)
1375 hrtimer_interrupt(td->evtdev);
1376}
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387void hrtimer_peek_ahead_timers(void)
1388{
1389 unsigned long flags;
1390
1391 local_irq_save(flags);
1392 __hrtimer_peek_ahead_timers();
1393 local_irq_restore(flags);
1394}
1395
1396static void run_hrtimer_softirq(struct softirq_action *h)
1397{
1398 hrtimer_peek_ahead_timers();
1399}
1400
1401#else
1402
1403static inline void __hrtimer_peek_ahead_timers(void) { }
1404
1405#endif
1406
1407
1408
1409
1410
1411
1412
1413
1414void hrtimer_run_pending(void)
1415{
1416 if (hrtimer_hres_active())
1417 return;
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1428 hrtimer_switch_to_hres();
1429}
1430
1431
1432
1433
1434void hrtimer_run_queues(void)
1435{
1436 struct timerqueue_node *node;
1437 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1438 struct hrtimer_clock_base *base;
1439 int index, gettime = 1;
1440
1441 if (hrtimer_hres_active())
1442 return;
1443
1444 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1445 base = &cpu_base->clock_base[index];
1446 if (!timerqueue_getnext(&base->active))
1447 continue;
1448
1449 if (gettime) {
1450 hrtimer_get_softirq_time(cpu_base);
1451 gettime = 0;
1452 }
1453
1454 raw_spin_lock(&cpu_base->lock);
1455
1456 while ((node = timerqueue_getnext(&base->active))) {
1457 struct hrtimer *timer;
1458
1459 timer = container_of(node, struct hrtimer, node);
1460 if (base->softirq_time.tv64 <=
1461 hrtimer_get_expires_tv64(timer))
1462 break;
1463
1464 __run_hrtimer(timer, &base->softirq_time);
1465 }
1466 raw_spin_unlock(&cpu_base->lock);
1467 }
1468}
1469
1470
1471
1472
1473static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1474{
1475 struct hrtimer_sleeper *t =
1476 container_of(timer, struct hrtimer_sleeper, timer);
1477 struct task_struct *task = t->task;
1478
1479 t->task = NULL;
1480 if (task)
1481 wake_up_process(task);
1482
1483 return HRTIMER_NORESTART;
1484}
1485
1486void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1487{
1488 sl->timer.function = hrtimer_wakeup;
1489 sl->task = task;
1490}
1491EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1492
1493static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1494{
1495 hrtimer_init_sleeper(t, current);
1496
1497 do {
1498 set_current_state(TASK_INTERRUPTIBLE);
1499 hrtimer_start_expires(&t->timer, mode);
1500 if (!hrtimer_active(&t->timer))
1501 t->task = NULL;
1502
1503 if (likely(t->task))
1504 schedule();
1505
1506 hrtimer_cancel(&t->timer);
1507 mode = HRTIMER_MODE_ABS;
1508
1509 } while (t->task && !signal_pending(current));
1510
1511 __set_current_state(TASK_RUNNING);
1512
1513 return t->task == NULL;
1514}
1515
1516static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1517{
1518 struct timespec rmt;
1519 ktime_t rem;
1520
1521 rem = hrtimer_expires_remaining(timer);
1522 if (rem.tv64 <= 0)
1523 return 0;
1524 rmt = ktime_to_timespec(rem);
1525
1526 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1527 return -EFAULT;
1528
1529 return 1;
1530}
1531
1532long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1533{
1534 struct hrtimer_sleeper t;
1535 struct timespec __user *rmtp;
1536 int ret = 0;
1537
1538 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1539 HRTIMER_MODE_ABS);
1540 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1541
1542 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1543 goto out;
1544
1545 rmtp = restart->nanosleep.rmtp;
1546 if (rmtp) {
1547 ret = update_rmtp(&t.timer, rmtp);
1548 if (ret <= 0)
1549 goto out;
1550 }
1551
1552
1553 ret = -ERESTART_RESTARTBLOCK;
1554out:
1555 destroy_hrtimer_on_stack(&t.timer);
1556 return ret;
1557}
1558
1559long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1560 const enum hrtimer_mode mode, const clockid_t clockid)
1561{
1562 struct restart_block *restart;
1563 struct hrtimer_sleeper t;
1564 int ret = 0;
1565 unsigned long slack;
1566
1567 slack = current->timer_slack_ns;
1568 if (rt_task(current))
1569 slack = 0;
1570
1571 hrtimer_init_on_stack(&t.timer, clockid, mode);
1572 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1573 if (do_nanosleep(&t, mode))
1574 goto out;
1575
1576
1577 if (mode == HRTIMER_MODE_ABS) {
1578 ret = -ERESTARTNOHAND;
1579 goto out;
1580 }
1581
1582 if (rmtp) {
1583 ret = update_rmtp(&t.timer, rmtp);
1584 if (ret <= 0)
1585 goto out;
1586 }
1587
1588 restart = ¤t_thread_info()->restart_block;
1589 restart->fn = hrtimer_nanosleep_restart;
1590 restart->nanosleep.clockid = t.timer.base->clockid;
1591 restart->nanosleep.rmtp = rmtp;
1592 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1593
1594 ret = -ERESTART_RESTARTBLOCK;
1595out:
1596 destroy_hrtimer_on_stack(&t.timer);
1597 return ret;
1598}
1599
1600SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1601 struct timespec __user *, rmtp)
1602{
1603 struct timespec tu;
1604
1605 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1606 return -EFAULT;
1607
1608 if (!timespec_valid(&tu))
1609 return -EINVAL;
1610
1611 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1612}
1613
1614
1615
1616
1617static void __cpuinit init_hrtimers_cpu(int cpu)
1618{
1619 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1620 int i;
1621
1622 raw_spin_lock_init(&cpu_base->lock);
1623
1624 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1625 cpu_base->clock_base[i].cpu_base = cpu_base;
1626 timerqueue_init_head(&cpu_base->clock_base[i].active);
1627 }
1628
1629 hrtimer_init_hres(cpu_base);
1630}
1631
1632#ifdef CONFIG_HOTPLUG_CPU
1633
1634static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1635 struct hrtimer_clock_base *new_base)
1636{
1637 struct hrtimer *timer;
1638 struct timerqueue_node *node;
1639
1640 while ((node = timerqueue_getnext(&old_base->active))) {
1641 timer = container_of(node, struct hrtimer, node);
1642 BUG_ON(hrtimer_callback_running(timer));
1643 debug_deactivate(timer);
1644
1645
1646
1647
1648
1649
1650 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1651 timer->base = new_base;
1652
1653
1654
1655
1656
1657
1658
1659
1660 enqueue_hrtimer(timer, new_base);
1661
1662
1663 timer->state &= ~HRTIMER_STATE_MIGRATE;
1664 }
1665}
1666
1667static void migrate_hrtimers(int scpu)
1668{
1669 struct hrtimer_cpu_base *old_base, *new_base;
1670 int i;
1671
1672 BUG_ON(cpu_online(scpu));
1673 tick_cancel_sched_timer(scpu);
1674
1675 local_irq_disable();
1676 old_base = &per_cpu(hrtimer_bases, scpu);
1677 new_base = &__get_cpu_var(hrtimer_bases);
1678
1679
1680
1681
1682 raw_spin_lock(&new_base->lock);
1683 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1684
1685 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1686 migrate_hrtimer_list(&old_base->clock_base[i],
1687 &new_base->clock_base[i]);
1688 }
1689
1690 raw_spin_unlock(&old_base->lock);
1691 raw_spin_unlock(&new_base->lock);
1692
1693
1694 __hrtimer_peek_ahead_timers();
1695 local_irq_enable();
1696}
1697
1698#endif
1699
1700static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1701 unsigned long action, void *hcpu)
1702{
1703 int scpu = (long)hcpu;
1704
1705 switch (action) {
1706
1707 case CPU_UP_PREPARE:
1708 case CPU_UP_PREPARE_FROZEN:
1709 init_hrtimers_cpu(scpu);
1710 break;
1711
1712#ifdef CONFIG_HOTPLUG_CPU
1713 case CPU_DYING:
1714 case CPU_DYING_FROZEN:
1715 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1716 break;
1717 case CPU_DEAD:
1718 case CPU_DEAD_FROZEN:
1719 {
1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1721 migrate_hrtimers(scpu);
1722 break;
1723 }
1724#endif
1725
1726 default:
1727 break;
1728 }
1729
1730 return NOTIFY_OK;
1731}
1732
1733static struct notifier_block __cpuinitdata hrtimers_nb = {
1734 .notifier_call = hrtimer_cpu_notify,
1735};
1736
1737void __init hrtimers_init(void)
1738{
1739 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1740 (void *)(long)smp_processor_id());
1741 register_cpu_notifier(&hrtimers_nb);
1742#ifdef CONFIG_HIGH_RES_TIMERS
1743 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1744#endif
1745}
1746
1747
1748
1749
1750
1751
1752
1753
1754int __sched
1755schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1756 const enum hrtimer_mode mode, int clock)
1757{
1758 struct hrtimer_sleeper t;
1759
1760
1761
1762
1763
1764 if (expires && !expires->tv64) {
1765 __set_current_state(TASK_RUNNING);
1766 return 0;
1767 }
1768
1769
1770
1771
1772 if (!expires) {
1773 schedule();
1774 __set_current_state(TASK_RUNNING);
1775 return -EINTR;
1776 }
1777
1778 hrtimer_init_on_stack(&t.timer, clock, mode);
1779 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1780
1781 hrtimer_init_sleeper(&t, current);
1782
1783 hrtimer_start_expires(&t.timer, mode);
1784 if (!hrtimer_active(&t.timer))
1785 t.task = NULL;
1786
1787 if (likely(t.task))
1788 schedule();
1789
1790 hrtimer_cancel(&t.timer);
1791 destroy_hrtimer_on_stack(&t.timer);
1792
1793 __set_current_state(TASK_RUNNING);
1794
1795 return !t.task ? 0 : -EINTR;
1796}
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1827 const enum hrtimer_mode mode)
1828{
1829 return schedule_hrtimeout_range_clock(expires, delta, mode,
1830 CLOCK_MONOTONIC);
1831}
1832EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856int __sched schedule_hrtimeout(ktime_t *expires,
1857 const enum hrtimer_mode mode)
1858{
1859 return schedule_hrtimeout_range(expires, 0, mode);
1860}
1861EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1862