linux/mm/memblock.c
<<
>>
Prefs
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.     June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23struct memblock memblock __initdata_memblock;
  24
  25int memblock_debug __initdata_memblock;
  26int memblock_can_resize __initdata_memblock;
  27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
  28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
  29
  30/* inline so we don't get a warning when pr_debug is compiled out */
  31static inline const char *memblock_type_name(struct memblock_type *type)
  32{
  33        if (type == &memblock.memory)
  34                return "memory";
  35        else if (type == &memblock.reserved)
  36                return "reserved";
  37        else
  38                return "unknown";
  39}
  40
  41/*
  42 * Address comparison utilities
  43 */
  44
  45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
  46{
  47        return addr & ~(size - 1);
  48}
  49
  50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
  51{
  52        return (addr + (size - 1)) & ~(size - 1);
  53}
  54
  55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  56                                       phys_addr_t base2, phys_addr_t size2)
  57{
  58        return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  59}
  60
  61static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
  62                                        phys_addr_t base, phys_addr_t size)
  63{
  64        unsigned long i;
  65
  66        for (i = 0; i < type->cnt; i++) {
  67                phys_addr_t rgnbase = type->regions[i].base;
  68                phys_addr_t rgnsize = type->regions[i].size;
  69                if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  70                        break;
  71        }
  72
  73        return (i < type->cnt) ? i : -1;
  74}
  75
  76/*
  77 * Find, allocate, deallocate or reserve unreserved regions. All allocations
  78 * are top-down.
  79 */
  80
  81static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
  82                                          phys_addr_t size, phys_addr_t align)
  83{
  84        phys_addr_t base, res_base;
  85        long j;
  86
  87        /* In case, huge size is requested */
  88        if (end < size)
  89                return MEMBLOCK_ERROR;
  90
  91        base = memblock_align_down((end - size), align);
  92
  93        /* Prevent allocations returning 0 as it's also used to
  94         * indicate an allocation failure
  95         */
  96        if (start == 0)
  97                start = PAGE_SIZE;
  98
  99        while (start <= base) {
 100                j = memblock_overlaps_region(&memblock.reserved, base, size);
 101                if (j < 0)
 102                        return base;
 103                res_base = memblock.reserved.regions[j].base;
 104                if (res_base < size)
 105                        break;
 106                base = memblock_align_down(res_base - size, align);
 107        }
 108
 109        return MEMBLOCK_ERROR;
 110}
 111
 112static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
 113                        phys_addr_t align, phys_addr_t start, phys_addr_t end)
 114{
 115        long i;
 116
 117        BUG_ON(0 == size);
 118
 119        /* Pump up max_addr */
 120        if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 121                end = memblock.current_limit;
 122
 123        /* We do a top-down search, this tends to limit memory
 124         * fragmentation by keeping early boot allocs near the
 125         * top of memory
 126         */
 127        for (i = memblock.memory.cnt - 1; i >= 0; i--) {
 128                phys_addr_t memblockbase = memblock.memory.regions[i].base;
 129                phys_addr_t memblocksize = memblock.memory.regions[i].size;
 130                phys_addr_t bottom, top, found;
 131
 132                if (memblocksize < size)
 133                        continue;
 134                if ((memblockbase + memblocksize) <= start)
 135                        break;
 136                bottom = max(memblockbase, start);
 137                top = min(memblockbase + memblocksize, end);
 138                if (bottom >= top)
 139                        continue;
 140                found = memblock_find_region(bottom, top, size, align);
 141                if (found != MEMBLOCK_ERROR)
 142                        return found;
 143        }
 144        return MEMBLOCK_ERROR;
 145}
 146
 147/*
 148 * Find a free area with specified alignment in a specific range.
 149 */
 150u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
 151{
 152        return memblock_find_base(size, align, start, end);
 153}
 154
 155/*
 156 * Free memblock.reserved.regions
 157 */
 158int __init_memblock memblock_free_reserved_regions(void)
 159{
 160        if (memblock.reserved.regions == memblock_reserved_init_regions)
 161                return 0;
 162
 163        return memblock_free(__pa(memblock.reserved.regions),
 164                 sizeof(struct memblock_region) * memblock.reserved.max);
 165}
 166
 167/*
 168 * Reserve memblock.reserved.regions
 169 */
 170int __init_memblock memblock_reserve_reserved_regions(void)
 171{
 172        if (memblock.reserved.regions == memblock_reserved_init_regions)
 173                return 0;
 174
 175        return memblock_reserve(__pa(memblock.reserved.regions),
 176                 sizeof(struct memblock_region) * memblock.reserved.max);
 177}
 178
 179static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 180{
 181        unsigned long i;
 182
 183        for (i = r; i < type->cnt - 1; i++) {
 184                type->regions[i].base = type->regions[i + 1].base;
 185                type->regions[i].size = type->regions[i + 1].size;
 186        }
 187        type->cnt--;
 188
 189        /* Special case for empty arrays */
 190        if (type->cnt == 0) {
 191                type->cnt = 1;
 192                type->regions[0].base = 0;
 193                type->regions[0].size = 0;
 194        }
 195}
 196
 197/* Defined below but needed now */
 198static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
 199
 200static int __init_memblock memblock_double_array(struct memblock_type *type)
 201{
 202        struct memblock_region *new_array, *old_array;
 203        phys_addr_t old_size, new_size, addr;
 204        int use_slab = slab_is_available();
 205
 206        /* We don't allow resizing until we know about the reserved regions
 207         * of memory that aren't suitable for allocation
 208         */
 209        if (!memblock_can_resize)
 210                return -1;
 211
 212        /* Calculate new doubled size */
 213        old_size = type->max * sizeof(struct memblock_region);
 214        new_size = old_size << 1;
 215
 216        /* Try to find some space for it.
 217         *
 218         * WARNING: We assume that either slab_is_available() and we use it or
 219         * we use MEMBLOCK for allocations. That means that this is unsafe to use
 220         * when bootmem is currently active (unless bootmem itself is implemented
 221         * on top of MEMBLOCK which isn't the case yet)
 222         *
 223         * This should however not be an issue for now, as we currently only
 224         * call into MEMBLOCK while it's still active, or much later when slab is
 225         * active for memory hotplug operations
 226         */
 227        if (use_slab) {
 228                new_array = kmalloc(new_size, GFP_KERNEL);
 229                addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
 230        } else
 231                addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
 232        if (addr == MEMBLOCK_ERROR) {
 233                pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 234                       memblock_type_name(type), type->max, type->max * 2);
 235                return -1;
 236        }
 237        new_array = __va(addr);
 238
 239        memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
 240                 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 241
 242        /* Found space, we now need to move the array over before
 243         * we add the reserved region since it may be our reserved
 244         * array itself that is full.
 245         */
 246        memcpy(new_array, type->regions, old_size);
 247        memset(new_array + type->max, 0, old_size);
 248        old_array = type->regions;
 249        type->regions = new_array;
 250        type->max <<= 1;
 251
 252        /* If we use SLAB that's it, we are done */
 253        if (use_slab)
 254                return 0;
 255
 256        /* Add the new reserved region now. Should not fail ! */
 257        BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
 258
 259        /* If the array wasn't our static init one, then free it. We only do
 260         * that before SLAB is available as later on, we don't know whether
 261         * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
 262         * anyways
 263         */
 264        if (old_array != memblock_memory_init_regions &&
 265            old_array != memblock_reserved_init_regions)
 266                memblock_free(__pa(old_array), old_size);
 267
 268        return 0;
 269}
 270
 271int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
 272                                          phys_addr_t addr2, phys_addr_t size2)
 273{
 274        return 1;
 275}
 276
 277static long __init_memblock memblock_add_region(struct memblock_type *type,
 278                                                phys_addr_t base, phys_addr_t size)
 279{
 280        phys_addr_t end = base + size;
 281        int i, slot = -1;
 282
 283        /* First try and coalesce this MEMBLOCK with others */
 284        for (i = 0; i < type->cnt; i++) {
 285                struct memblock_region *rgn = &type->regions[i];
 286                phys_addr_t rend = rgn->base + rgn->size;
 287
 288                /* Exit if there's no possible hits */
 289                if (rgn->base > end || rgn->size == 0)
 290                        break;
 291
 292                /* Check if we are fully enclosed within an existing
 293                 * block
 294                 */
 295                if (rgn->base <= base && rend >= end)
 296                        return 0;
 297
 298                /* Check if we overlap or are adjacent with the bottom
 299                 * of a block.
 300                 */
 301                if (base < rgn->base && end >= rgn->base) {
 302                        /* If we can't coalesce, create a new block */
 303                        if (!memblock_memory_can_coalesce(base, size,
 304                                                          rgn->base,
 305                                                          rgn->size)) {
 306                                /* Overlap & can't coalesce are mutually
 307                                 * exclusive, if you do that, be prepared
 308                                 * for trouble
 309                                 */
 310                                WARN_ON(end != rgn->base);
 311                                goto new_block;
 312                        }
 313                        /* We extend the bottom of the block down to our
 314                         * base
 315                         */
 316                        rgn->base = base;
 317                        rgn->size = rend - base;
 318
 319                        /* Return if we have nothing else to allocate
 320                         * (fully coalesced)
 321                         */
 322                        if (rend >= end)
 323                                return 0;
 324
 325                        /* We continue processing from the end of the
 326                         * coalesced block.
 327                         */
 328                        base = rend;
 329                        size = end - base;
 330                }
 331
 332                /* Now check if we overlap or are adjacent with the
 333                 * top of a block
 334                 */
 335                if (base <= rend && end >= rend) {
 336                        /* If we can't coalesce, create a new block */
 337                        if (!memblock_memory_can_coalesce(rgn->base,
 338                                                          rgn->size,
 339                                                          base, size)) {
 340                                /* Overlap & can't coalesce are mutually
 341                                 * exclusive, if you do that, be prepared
 342                                 * for trouble
 343                                 */
 344                                WARN_ON(rend != base);
 345                                goto new_block;
 346                        }
 347                        /* We adjust our base down to enclose the
 348                         * original block and destroy it. It will be
 349                         * part of our new allocation. Since we've
 350                         * freed an entry, we know we won't fail
 351                         * to allocate one later, so we won't risk
 352                         * losing the original block allocation.
 353                         */
 354                        size += (base - rgn->base);
 355                        base = rgn->base;
 356                        memblock_remove_region(type, i--);
 357                }
 358        }
 359
 360        /* If the array is empty, special case, replace the fake
 361         * filler region and return
 362         */
 363        if ((type->cnt == 1) && (type->regions[0].size == 0)) {
 364                type->regions[0].base = base;
 365                type->regions[0].size = size;
 366                return 0;
 367        }
 368
 369 new_block:
 370        /* If we are out of space, we fail. It's too late to resize the array
 371         * but then this shouldn't have happened in the first place.
 372         */
 373        if (WARN_ON(type->cnt >= type->max))
 374                return -1;
 375
 376        /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
 377        for (i = type->cnt - 1; i >= 0; i--) {
 378                if (base < type->regions[i].base) {
 379                        type->regions[i+1].base = type->regions[i].base;
 380                        type->regions[i+1].size = type->regions[i].size;
 381                } else {
 382                        type->regions[i+1].base = base;
 383                        type->regions[i+1].size = size;
 384                        slot = i + 1;
 385                        break;
 386                }
 387        }
 388        if (base < type->regions[0].base) {
 389                type->regions[0].base = base;
 390                type->regions[0].size = size;
 391                slot = 0;
 392        }
 393        type->cnt++;
 394
 395        /* The array is full ? Try to resize it. If that fails, we undo
 396         * our allocation and return an error
 397         */
 398        if (type->cnt == type->max && memblock_double_array(type)) {
 399                BUG_ON(slot < 0);
 400                memblock_remove_region(type, slot);
 401                return -1;
 402        }
 403
 404        return 0;
 405}
 406
 407long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 408{
 409        return memblock_add_region(&memblock.memory, base, size);
 410
 411}
 412
 413static long __init_memblock __memblock_remove(struct memblock_type *type,
 414                                              phys_addr_t base, phys_addr_t size)
 415{
 416        phys_addr_t end = base + size;
 417        int i;
 418
 419        /* Walk through the array for collisions */
 420        for (i = 0; i < type->cnt; i++) {
 421                struct memblock_region *rgn = &type->regions[i];
 422                phys_addr_t rend = rgn->base + rgn->size;
 423
 424                /* Nothing more to do, exit */
 425                if (rgn->base > end || rgn->size == 0)
 426                        break;
 427
 428                /* If we fully enclose the block, drop it */
 429                if (base <= rgn->base && end >= rend) {
 430                        memblock_remove_region(type, i--);
 431                        continue;
 432                }
 433
 434                /* If we are fully enclosed within a block
 435                 * then we need to split it and we are done
 436                 */
 437                if (base > rgn->base && end < rend) {
 438                        rgn->size = base - rgn->base;
 439                        if (!memblock_add_region(type, end, rend - end))
 440                                return 0;
 441                        /* Failure to split is bad, we at least
 442                         * restore the block before erroring
 443                         */
 444                        rgn->size = rend - rgn->base;
 445                        WARN_ON(1);
 446                        return -1;
 447                }
 448
 449                /* Check if we need to trim the bottom of a block */
 450                if (rgn->base < end && rend > end) {
 451                        rgn->size -= end - rgn->base;
 452                        rgn->base = end;
 453                        break;
 454                }
 455
 456                /* And check if we need to trim the top of a block */
 457                if (base < rend)
 458                        rgn->size -= rend - base;
 459
 460        }
 461        return 0;
 462}
 463
 464long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 465{
 466        return __memblock_remove(&memblock.memory, base, size);
 467}
 468
 469long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 470{
 471        return __memblock_remove(&memblock.reserved, base, size);
 472}
 473
 474long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 475{
 476        struct memblock_type *_rgn = &memblock.reserved;
 477
 478        BUG_ON(0 == size);
 479
 480        return memblock_add_region(_rgn, base, size);
 481}
 482
 483phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 484{
 485        phys_addr_t found;
 486
 487        /* We align the size to limit fragmentation. Without this, a lot of
 488         * small allocs quickly eat up the whole reserve array on sparc
 489         */
 490        size = memblock_align_up(size, align);
 491
 492        found = memblock_find_base(size, align, 0, max_addr);
 493        if (found != MEMBLOCK_ERROR &&
 494            !memblock_add_region(&memblock.reserved, found, size))
 495                return found;
 496
 497        return 0;
 498}
 499
 500phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 501{
 502        phys_addr_t alloc;
 503
 504        alloc = __memblock_alloc_base(size, align, max_addr);
 505
 506        if (alloc == 0)
 507                panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
 508                      (unsigned long long) size, (unsigned long long) max_addr);
 509
 510        return alloc;
 511}
 512
 513phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 514{
 515        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 516}
 517
 518
 519/*
 520 * Additional node-local allocators. Search for node memory is bottom up
 521 * and walks memblock regions within that node bottom-up as well, but allocation
 522 * within an memblock region is top-down. XXX I plan to fix that at some stage
 523 *
 524 * WARNING: Only available after early_node_map[] has been populated,
 525 * on some architectures, that is after all the calls to add_active_range()
 526 * have been done to populate it.
 527 */
 528
 529phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
 530{
 531#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 532        /*
 533         * This code originates from sparc which really wants use to walk by addresses
 534         * and returns the nid. This is not very convenient for early_pfn_map[] users
 535         * as the map isn't sorted yet, and it really wants to be walked by nid.
 536         *
 537         * For now, I implement the inefficient method below which walks the early
 538         * map multiple times. Eventually we may want to use an ARCH config option
 539         * to implement a completely different method for both case.
 540         */
 541        unsigned long start_pfn, end_pfn;
 542        int i;
 543
 544        for (i = 0; i < MAX_NUMNODES; i++) {
 545                get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
 546                if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
 547                        continue;
 548                *nid = i;
 549                return min(end, PFN_PHYS(end_pfn));
 550        }
 551#endif
 552        *nid = 0;
 553
 554        return end;
 555}
 556
 557static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
 558                                               phys_addr_t size,
 559                                               phys_addr_t align, int nid)
 560{
 561        phys_addr_t start, end;
 562
 563        start = mp->base;
 564        end = start + mp->size;
 565
 566        start = memblock_align_up(start, align);
 567        while (start < end) {
 568                phys_addr_t this_end;
 569                int this_nid;
 570
 571                this_end = memblock_nid_range(start, end, &this_nid);
 572                if (this_nid == nid) {
 573                        phys_addr_t ret = memblock_find_region(start, this_end, size, align);
 574                        if (ret != MEMBLOCK_ERROR &&
 575                            !memblock_add_region(&memblock.reserved, ret, size))
 576                                return ret;
 577                }
 578                start = this_end;
 579        }
 580
 581        return MEMBLOCK_ERROR;
 582}
 583
 584phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 585{
 586        struct memblock_type *mem = &memblock.memory;
 587        int i;
 588
 589        BUG_ON(0 == size);
 590
 591        /* We align the size to limit fragmentation. Without this, a lot of
 592         * small allocs quickly eat up the whole reserve array on sparc
 593         */
 594        size = memblock_align_up(size, align);
 595
 596        /* We do a bottom-up search for a region with the right
 597         * nid since that's easier considering how memblock_nid_range()
 598         * works
 599         */
 600        for (i = 0; i < mem->cnt; i++) {
 601                phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
 602                                               size, align, nid);
 603                if (ret != MEMBLOCK_ERROR)
 604                        return ret;
 605        }
 606
 607        return 0;
 608}
 609
 610phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 611{
 612        phys_addr_t res = memblock_alloc_nid(size, align, nid);
 613
 614        if (res)
 615                return res;
 616        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
 617}
 618
 619
 620/*
 621 * Remaining API functions
 622 */
 623
 624/* You must call memblock_analyze() before this. */
 625phys_addr_t __init memblock_phys_mem_size(void)
 626{
 627        return memblock.memory_size;
 628}
 629
 630/* lowest address */
 631phys_addr_t __init_memblock memblock_start_of_DRAM(void)
 632{
 633        return memblock.memory.regions[0].base;
 634}
 635
 636phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 637{
 638        int idx = memblock.memory.cnt - 1;
 639
 640        return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 641}
 642
 643/* You must call memblock_analyze() after this. */
 644void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
 645{
 646        unsigned long i;
 647        phys_addr_t limit;
 648        struct memblock_region *p;
 649
 650        if (!memory_limit)
 651                return;
 652
 653        /* Truncate the memblock regions to satisfy the memory limit. */
 654        limit = memory_limit;
 655        for (i = 0; i < memblock.memory.cnt; i++) {
 656                if (limit > memblock.memory.regions[i].size) {
 657                        limit -= memblock.memory.regions[i].size;
 658                        continue;
 659                }
 660
 661                memblock.memory.regions[i].size = limit;
 662                memblock.memory.cnt = i + 1;
 663                break;
 664        }
 665
 666        memory_limit = memblock_end_of_DRAM();
 667
 668        /* And truncate any reserves above the limit also. */
 669        for (i = 0; i < memblock.reserved.cnt; i++) {
 670                p = &memblock.reserved.regions[i];
 671
 672                if (p->base > memory_limit)
 673                        p->size = 0;
 674                else if ((p->base + p->size) > memory_limit)
 675                        p->size = memory_limit - p->base;
 676
 677                if (p->size == 0) {
 678                        memblock_remove_region(&memblock.reserved, i);
 679                        i--;
 680                }
 681        }
 682}
 683
 684static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 685{
 686        unsigned int left = 0, right = type->cnt;
 687
 688        do {
 689                unsigned int mid = (right + left) / 2;
 690
 691                if (addr < type->regions[mid].base)
 692                        right = mid;
 693                else if (addr >= (type->regions[mid].base +
 694                                  type->regions[mid].size))
 695                        left = mid + 1;
 696                else
 697                        return mid;
 698        } while (left < right);
 699        return -1;
 700}
 701
 702int __init memblock_is_reserved(phys_addr_t addr)
 703{
 704        return memblock_search(&memblock.reserved, addr) != -1;
 705}
 706
 707int __init_memblock memblock_is_memory(phys_addr_t addr)
 708{
 709        return memblock_search(&memblock.memory, addr) != -1;
 710}
 711
 712int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 713{
 714        int idx = memblock_search(&memblock.memory, base);
 715
 716        if (idx == -1)
 717                return 0;
 718        return memblock.memory.regions[idx].base <= base &&
 719                (memblock.memory.regions[idx].base +
 720                 memblock.memory.regions[idx].size) >= (base + size);
 721}
 722
 723int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 724{
 725        return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 726}
 727
 728
 729void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 730{
 731        memblock.current_limit = limit;
 732}
 733
 734static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
 735{
 736        unsigned long long base, size;
 737        int i;
 738
 739        pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
 740
 741        for (i = 0; i < region->cnt; i++) {
 742                base = region->regions[i].base;
 743                size = region->regions[i].size;
 744
 745                pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
 746                    name, i, base, base + size - 1, size);
 747        }
 748}
 749
 750void __init_memblock memblock_dump_all(void)
 751{
 752        if (!memblock_debug)
 753                return;
 754
 755        pr_info("MEMBLOCK configuration:\n");
 756        pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
 757
 758        memblock_dump(&memblock.memory, "memory");
 759        memblock_dump(&memblock.reserved, "reserved");
 760}
 761
 762void __init memblock_analyze(void)
 763{
 764        int i;
 765
 766        /* Check marker in the unused last array entry */
 767        WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
 768                != MEMBLOCK_INACTIVE);
 769        WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
 770                != MEMBLOCK_INACTIVE);
 771
 772        memblock.memory_size = 0;
 773
 774        for (i = 0; i < memblock.memory.cnt; i++)
 775                memblock.memory_size += memblock.memory.regions[i].size;
 776
 777        /* We allow resizing from there */
 778        memblock_can_resize = 1;
 779}
 780
 781void __init memblock_init(void)
 782{
 783        static int init_done __initdata = 0;
 784
 785        if (init_done)
 786                return;
 787        init_done = 1;
 788
 789        /* Hookup the initial arrays */
 790        memblock.memory.regions = memblock_memory_init_regions;
 791        memblock.memory.max             = INIT_MEMBLOCK_REGIONS;
 792        memblock.reserved.regions       = memblock_reserved_init_regions;
 793        memblock.reserved.max   = INIT_MEMBLOCK_REGIONS;
 794
 795        /* Write a marker in the unused last array entry */
 796        memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
 797        memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
 798
 799        /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
 800         * This simplifies the memblock_add() code below...
 801         */
 802        memblock.memory.regions[0].base = 0;
 803        memblock.memory.regions[0].size = 0;
 804        memblock.memory.cnt = 1;
 805
 806        /* Ditto. */
 807        memblock.reserved.regions[0].base = 0;
 808        memblock.reserved.regions[0].size = 0;
 809        memblock.reserved.cnt = 1;
 810
 811        memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
 812}
 813
 814static int __init early_memblock(char *p)
 815{
 816        if (p && strstr(p, "debug"))
 817                memblock_debug = 1;
 818        return 0;
 819}
 820early_param("memblock", early_memblock);
 821
 822#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
 823
 824static int memblock_debug_show(struct seq_file *m, void *private)
 825{
 826        struct memblock_type *type = m->private;
 827        struct memblock_region *reg;
 828        int i;
 829
 830        for (i = 0; i < type->cnt; i++) {
 831                reg = &type->regions[i];
 832                seq_printf(m, "%4d: ", i);
 833                if (sizeof(phys_addr_t) == 4)
 834                        seq_printf(m, "0x%08lx..0x%08lx\n",
 835                                   (unsigned long)reg->base,
 836                                   (unsigned long)(reg->base + reg->size - 1));
 837                else
 838                        seq_printf(m, "0x%016llx..0x%016llx\n",
 839                                   (unsigned long long)reg->base,
 840                                   (unsigned long long)(reg->base + reg->size - 1));
 841
 842        }
 843        return 0;
 844}
 845
 846static int memblock_debug_open(struct inode *inode, struct file *file)
 847{
 848        return single_open(file, memblock_debug_show, inode->i_private);
 849}
 850
 851static const struct file_operations memblock_debug_fops = {
 852        .open = memblock_debug_open,
 853        .read = seq_read,
 854        .llseek = seq_lseek,
 855        .release = single_release,
 856};
 857
 858static int __init memblock_init_debugfs(void)
 859{
 860        struct dentry *root = debugfs_create_dir("memblock", NULL);
 861        if (!root)
 862                return -ENXIO;
 863        debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
 864        debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 865
 866        return 0;
 867}
 868__initcall(memblock_init_debugfs);
 869
 870#endif /* CONFIG_DEBUG_FS */
 871